=

i
U T L T |.|

»AVA

networking

Introduction

By now you've seen all the hype, read all the books, and discovered all the wonders of
Java. But most of us still use C++ or C to create our hard-core applications, saving
Javafor our Web pages or leaving it to HTML jocks to fiddle with. Doing so denies
us the opportunity to use a programming language that makes interfacing with a
computer infinitely easier, with less frustration and faster results.

Javais much more than "Dancing Dukes' or a programming language for Web pages.
It isastrong aternative to the masochistic programming of the past, in which
countless months were spent debugging compared to the mere days it took to code the
initial concept. Java alows us to spend more time in the conceptua phase of software
design, thinking up new and creative ways to bring the vast knowledge of the Internet
and its many users to our desktop.

Today, our information, and its steady flow, is garnered from the Internet and the
millions of fellow computer users around the world. Up until now, you've no doubt
designed programs to interface with that knowledge using C or C++. Javawill change
all of that. In addition to its ability to create adorable and functional user interfaces
quickly and easily is Java's ability to easily connect to the Internet. Javais, after
all,the Internet Language.

What This Book Is All About

Advanced Java Networking is designed to present you with amyriad of alternativesto
connect your applications to the Internet. It is neither a programming reference nor a
marketing brochure. Well leave that to the geeks and marketeers to battle out. Instead,
we wanted to explore each alternative without marketing bias or engineering snobbery.

One part of the engineering community will tell you that sockets are the only true way
to communicate information over a network. Another segment will say that Java-only
applications relying on Remote Method Invocation (RMI) will solve all your

communication problems. Then, of course, there is the Common Object Request
Broker Architecture (CORBA) camp. WEe'll discuss these alternatives, and we will
also explore aspects of server-side programming in which we use aWeb server asa
mechanism to generate dynamic Web pages that can be connected to databases (and
just about anything else). We present an honest account of each alternative and
guidelines for choosing what's best for your business or programming needs. In
addition to the hundreds of lines of sample code we supply to help you start from
scratch with Java communication, we place an additional emphasis on migration of
your existing desktop-centric applications to an Internet-ready world.

Who Should Read This Book

This book is not for beginning programmers nor isit an introductory Javatext. We
assume that you have a strong object-oriented programming background, preferably in
Java. Y ou should have a strong grasp of such Java fundamentals as how to create a
class, how to compile and execute programs on your native system, and how to
deploy Java applications. Furthermore, you should understand a good deal of the
terminology of the object-oriented world.

How to Read This Book

We've conceived this book in parts, with each part further divided in chapters. Each
part addresses one aspect of Internet programming, be it Java Fundamentals; Core
Networking such as RMI, CORBA, or Java Database Connectivity (JDBC);
Advanced Networking like Beans and Web Servers; general Java Networking
information, including a special chapter on Internet security that addresses simple
Applet Security restrictions; or more complex subjects such as Directory Services and
JINDI. We have aso included a short chapter that is an introduction to TCP/IP and
how the Internet works. | have found thisinvaluable as the very first thing that we
cover in the Internet Programming course | teach.

Finally, we want to show you that Java programming is much more than an animation
floating by a Web page or interactive Internet content. Javais alanguage that can hold
itsown in the world of desktop applications and the examples in the book typically
are written as applications rather than as applets. We make no effort to contain our
enthusiasm for Java and certainly don't apologize for our delight in working with it.
We hope that you will come to love this language as much as we have.

Conventions

We use the monospaced Courier font to denote source code and type out our code
listings. If you see a Courier word within a sentence (for example "Java Vectors are
cool"), it isthe name of aclass or object. We are also firm believersin the step-by-
step approach to code samples. Therefore, we have generally shown the entire code
listing and the additions from the previous instance of it. The changes are in Courier
Bold. For example, the first time we show a code snippet, it looks like this:

public class Dick

{

And when we make an addition it is bolded:

public class Dick

{
}

String loves = "Bobbie";

Also, when we show a command prompt, the part you typeis aso bolded:

Y%prompt% dir c:\games

There are sidebars throughout this book that highlight certain parts of the text, as
follows.

o Tipsinform you of aspecia or unique way to accomplish something in Java
networking.

o Alertstell you of any bugs or "gotchas' that you should be aware of while
programming your applications.

» Notes simply point out any information that might be useful to you in your
network programming endeavors.

Fixes and Updates

We would also like to take a moment to apologize in advance for any errors. This
book has been atotal blast to write, and we might have gotten caught up in our own
excitement here and there. In any event, we hope you have fun reading about and
exploring the Java networked world!

The CD-ROM that accompanies this book (see " About the CD-ROM," at the back of
the book for details regarding the CD-ROM) contains severa of the applications that
we have developed in this book. Additionally, a specia Web page has been created as
afront-end to navigating the CD-ROM and for linking to related Web sites. To access
that Web page, please load the file named index.html, found in the root directory of
the CD-ROM, into your browser.

To err is human, and the authors of this book are as human as can be. Despite testing
every example thoroughly, both from an installation and compilation perspective,
problems can occur. If we find a problem with any of the programming examplesin
this book, we will post afix as soon as possible on our Web site:

http://www.prenhall.com/~java sun

This online Web supplement can also be linked to from the Web page included on the
CD-ROM included with this book.

Thanks a Million!

About the time that Prashant Sridharan wrote the first edition of this book, | started
teaching an undergraduate course titled (innocently enough) Internet Programming
(CS-328). My personal goals for the course were that it would be Java based and that
it would cover TCP/IP, sockets programming, the use of databases, and distributed
object programming. In 1997, there were textbooks on networking and textbooks on
Java, but there were no textbooks on networking using Java. | found Prashant's book
in the trade book section of our local bookstore. Topically, it was almost a perfect fit
for the course outline that | had developed. CS-328 began in the fall of 1997, with
Prashant's book as its text. The course has been immensely popular and has been
offered to afull house of juniors and seniors every semester since.

Writing the second edition of this book has been a balancing act that has been
frustrating at times; rewarding in the support of colleagues, friends, and family; and—
to see one's efforts in print—quite satisfying. | had never had the slightest desire to
tackle the task of authoring abook, especialy atechnology-based book. As an adjunct
faculty member in the Computer Science Department in the T. J. Watson School of
Engineering and Applied Science at Binghamton University (State University of New
Y ork) for the last 25 years, | have taught many different programming courses and
used texts by many authors, from many sources. | found that, after using the same
textbook for several semesters, | would have collected alist of corrections and
suggestions for improvements and updates in order to keep the course material current.

After four semesters (two years—along timein the life of Java) with the first edition,
| decided that the material in the book was getting alittle stale. After all, Java had
progressed to JDK 1.1.7 and the examplesin the book were still JIDK 1.0. Many of the
predictions made about the course that Java would take had not materialized. The
book cried out for a second edition. Like any good instructor, | phoned the publisher
and eventually was put in touch with Mark Taub. | asked Mark when the second
edition would be out and was told that he wished that he could tell me: Prashant no
longer worked for Sun and had taken anew job at Microsoft (now there's a defection
for you) and didn't have the time required for a second edition. Mark then did
something | never expected and asked innocently, "Y ou seem to know what the book
needs and you've been using it for quite awhile, would you be interested in tackling
the second edition?"

After much soul searching and discussion with my wife and my associatesin
academia, Les Lander, Margaret lwobi, and Eileene Head, | called Mark back. | told
Mark that despite my doubts, my associates thought that it would be a good
opportunity for growth (and what else did | have to do with my time?). Conveniently,
they seemed to forget that | work fulltime as an Advisory Programmer at L ockheed
Martin Federal Systems, Owego, New Y ork, where | am also the site Webmaster.

It has been abusy 10 months since my first contact with Mark. I've really had fun
doing thisand am really grateful to Mark and Prentice Hall for giving me the
opportunity to investigate and write about Java Networking (one of my favorite

topics). I'm grateful, too, for the help Anne Trowbridge of Prentice Hall gave me with
the CD-ROM that accompanies the book.

There are anumber of people that | must credit for their help with getting this book to
market. First and foremost is my wife, Bobbie, to whom | have been married for 32
years. She has patiently supported me through more projects than | care to count.

| owe special thanks to associates at L ockheed Martin: first to my manager MaryL ou
Marcotte for letting me divvy up last year's vacation in the strange way that | did to
complete the writing. MaryLou, It's hard adjusting to a normal schedule again.

Scott Rush, our site electronic security guru helped me with the chapter on Java
security.

My very special thanks go to Noah Ternullo. Noah is both awork associate and one
our graduate students at the university. CS-328 is an undergraduate course; however,
because it is an Internet-based course, it attracts alot of graduate students. Graduate
students wanting to take CS-328 must register for Independent Study, successfully
compl ete the course, and do an additional research project in amutually agreed upon
topic in Java networking. They present their project (along with a paper) to the class
at the end of the semester. At the time Noah was a graduate student in my class, Sun
had just announced JINI, and he decided that that was what he wanted to research.
The night that Noah did the class presentation, he and a friend dragged three PCsinto
the classroom from their cars and set everything up. One machine was running Linux;
another, NT; and the third, W95. The presentation was not only a great demonstration
of Java portability, but areally good demonstration of JINI. | was so impressed that |
invited Noah to write the chapter on JINI. | hope that his contribution to this text will
help him fulfill his dreams for entering a doctoral program.

Specia thanks also go to my course assistant for CS-328, Edwin Chiu. Edwin has
been with me through five semesters and has now earned his bachelor's degree and is
currently applying to graduate schools. Edwin tackled the conversion of the Internet
Appointment Calendar from Joe to the Visibroker Orb.

Additional thanks go to Peter DeAngelis of Lockheed Martin for coming to our aid
when it looked like Visibroker had gotten the best of us and to Elaine Murray for her
review of the general information part of the CORBA chapter.

Last, but not least | owe areal debt to the production team from BooksCraft: Don
MacL aren, Bill Hartman, and Sara Black. Without Don gently reminding me of
production schedules we wouldn't be at this point.

Finally, let us not forget Prashant Sridharan. | owe Prashant the greatest thanks both
for writing an excellent first edition and then for changing jobs so that | could write
the second edition. Much of what Prashant wrote in the first edition is still included,
still applicable.

We, Prashant and |, both had alot of fun bringing this book to you. We hope that
you'll find it as useful as we found it fun.

Chapter 1. Advanced Java

e BasicJava

o Javal/O Routines

e Introduction to Threading in Java

e Object Serialization

e Performance

e A First Look at Java Networking in Action

Our tour of Java networking begins with asimple and quick tutorial on several of the
advanced features of the Java programming language. From there, we dive straight
into the application programming interfaces (APIs) associated with connecting Java
objects across disparate machines and networks. Each of these APIs has both
strengths and weaknesses, and we certainly highlight the strengths while exposing the
weaknesses. Finally, we describe the tools necessary to provide a safe environment
for your Java applications, without sacrificing the power of the language itself. Our
discussion begins here, with the fastest object-oriented tutorial this side of the
Mississippi.

Basic Java

When beginnersfirst take to C++, their primal screams can be heard for miles. Often,
emergency crews are dispatched immediately to prevent the serious injuries that are
typically endured when beginners are first confronted with the dreaded * pointer->.
Enough to make a grown man cry, C++ is a powerful yet incredibly difficult language.

Enter Java. Java is object-oriented, modular, elegant, and—in the hands of a master—
quite poetic! Java code can be beautiful and powerful, fun and exciting, and, most
importantly, incredibly useful!

This chapter focuses on some of the advanced concepts you need to grasp in order to
support your further endeavors using Java. Throughout the discussion, you will see
sample code that highlights some of Java's inherently object-oriented features:
encapsulation and information hiding, modularity, inheritance, and elegance. We
intend this chapter to provide you with a base of terminology, not a comprehensive
Java language tutorial. Beginners should be forewarned: This book assumes you know
the language.

Much of what is discussed in this chapter is the fundamental design aspects of an
object-oriented language. For seasoned programmers, the urge to skip this chapter will
be strong. However, many of the advanced features of Java, aswell asthe
architectural decisions that must be made for a Java networked application, are based
on the fundamental concepts we describe in this chapter and are of great importance
to both veteran and rookie networking programmers alike.

Object-Oriented Design Using Java

In Java, you declare classes as a collection of operations performed on a set of data.
Because data cannot be passed by reference (Javais a pointer-free language—Iet the

cheering begin!), Java classes are needed to contain data so that it can be modified
within other classes.

Classes vs. Interfaces

The prevailing assumption about Javaisthat you are unable to separate
implementations from interfaces. However, this assumption isfalse. Java provides an
interface component that is similar to its class counterpart except that it is not
permitted to have member functions. Indeed, other objects that will implement its
method and variable definitions, asillustrated in the following snippet, must reuse this
interface.

public interface MyAdvancedJavalnterface

{
public abstract void methodOne();

void.methodTwo();
}

public class MyAdvancedJavaClass implements MyAdvancedJavalnterface

{
MyAdvancedJavaClass()

{
}

public void methodOne()
{

}

public void methodTwo()
{

}

All member functions declared within interfaces are, by default, public and abstract.
This means that they are available for public consumption and must be implemented
in aclass before they can be used. Furthermore, interfaces do not have constructors
and must be extended before they can be used.

Data Members

Good object-oriented style dictates that all data members of a class should be declared
private, hidden from any operations other than those included in the classitself. But,
any experienced object-oriented (OO) programmer will tell you in no uncertain terms
that thisis often stupid and inane for small classes. Because structs are not available
in Java, you can group data into one container by using a class. Whether you
subscribe to the artificialy enforced private-data-member scheme of C++ or the
language-enforced scheme of Smalltalk is entirely up to you. Java, however, assumes
that data members are public unless otherwise instructed, as the following snippet
suggests.

public class MyAdvancedJavaClass

{
public int numltems;
private int itemArray[];
}:
Methods

Another important component of the Java class is the operation, or method. Methods
allow outside classes to perform operations on the data contained in your class. By
forcing other classesto utilize your data through the classes, you enforce
implementation hiding. It doesn't matter to other classes that your collection of datais
an array, for asfar as those classes are concerned, it could be aVector. Somewhere
down the line, you could change the implementation to a HashTable if efficiency
becomes a concern. The bottom lineis that the classes that use your methods don't
care, and don't need to know, so long as the method signature (the method name and
its accompanying parameters) remains the same. The following code shows how a
method can be introduced within aclass.

public class MyAdvancedJavaClass

{
public int numltems;
private int itemArray[];
public void addltem(int item)
{
itemArray[numltems] = item;
numltems++;
}:
}:
Constructors

But, there is one small problem with this example. The datais never initialized! This
iswhere the notion of constructors comes in. Constructors set up a class for use.
Classes don't need to specify a constructor; indeed a constructor is, by default, ssmply
afunction call to nothing. In this case, however, our class must call a constructor
because our data needs to be initialized before it can be used.

In Java, everything isinherited from the superclass Object. All Objects must be
initialized, or allocated, before they are used. For example, the declaration

public int numltems;

specifies an integer value. Theint is aprimitive type, but just like an Object, and
therefore int needs to be initialized. We can do so in the declaration itself

public int numltems = O;

or we can use the constructor and initialize the array as well

public class MyAdvancedJavaClass

{

public int numltems;
private int itemArray[];

MyAdvancedJavaClass()
{

numltems = O;
itemArray = new int[10];
}

public void addltem(int item)
{

itemArray[numltems] = item;
numltems++;

Keep in mind that initializing a variable at its declaration affords little flexibility for
any classes or methods that subsequently will use your object. A constructor can be
modified easily to accept incoming data as well, enabling you to modify your object
depending on the context of its use:

public class MyAdvancedJavaClass

{

public int numltems;
private int itemArray[];

MyAdvancedJavaClass(int initialVvalue, int arraylLength)

{

numltems = initialValue;
itemArray = new int[arraylLength];

public void addltem(int item)
{

itemArray[numltems] = item;
numltems++;

};

An object is allowed to have several constructors, so long as no two constructors have
the same method signature (parameter list):

public class MyAdvancedJavaClass

{

public int numltems;
private int itemArray[];

MyAdvancedJavaClass()
{

numltems = O;
itemArray = new int[10];
}

MyAdvancedJavaClass(int initialValue, int arraylLength)

{

numltems = initialValue;
itemArray = new int[arraylLength];

}

public void addltem(int item)
{

itemArray[numltems] = item;
numltems++;

};

Sometimes, confusion may arise when there are several constructorsthat all do the
same thing, but with different sets of data. In Java, constructors are allowed to call
themselves, eliminate duplicate code, and enable you to consolidate all your
constructor code in one place:

MyAdvancedJavaClass()

{
/* Insteadof..

numltems = O;
itemArray = new int[10];
*/
// call the more specific constructor
this(0, 10);
}

MyAdvancedJavaClass(int initialValue,int arraylLength)

{

numltems = initialValue;
itemArray = new int[arraylLength];

Constructors are powerful tools. They enable you to create classes and use them
dynamically without any significant hard-coding. Aswe will see, good constructor
design is essential to an object-oriented architecture that works.

Creating and Initializing an Object

We mentioned earlier that all Java classes inherit from the Object superclass. The
constructor for an Object isinvoked using the new operation. Thisinitialization
operation is used at object creation and is not used again during the object's lifecycle.
One example of an object being initialized is the array initialization in our sample
class. The new operation first alocates memory for the object and then invokes the
object's constructor.

Because we created two kinds of constructors, our sample class can be invoked in one
of two ways:

myAdvancedJavalnstancel
myAdvancedJavalnstance2

new MyAdvancedJavaClass();
new MyAdvancedJavaClass(10, 100);

Thefirst instance of our classisinitialized to the default values 0 and 10. When we
invoked the new operation on this instance, the new operation set the values
appropriately, and created a new instance of Array within the classinstance. The
second instance of our class set numitemsto 10 and created a 100-item Array.

Asyou can see, thiskind of dynamic class creation is very flexible. We could just as
easily create another instance of our class with entirely different (or the same) initia
values. Thisisone of the basic principles of object-oriented design espoused by
languages such as Java.

Each instance of the object maintains a similar-looking but entirely different set of
variables. Changing the values in one instance does not result in a changein the
values of the variables of the other instances. Remember, an instance of aclassislike
your BMW 328i convertible. Asthe analogy in Figure 1-1 illustrates, it looks as cool
as every other BMW 328i, but just because you modify yours to remove the annoying
electronic inhibition of speed, that doesn't mean every other Beemer also will be
changed!

Figure 1-1. Just as customizing your BMW makes it different from other BMWs,
modifying variables in one instance doesn't change them in all instances.

BMW

MyBMW HerBMW YourBMW

Instances of BMW

Applying Good Object-Oriented Design Skills

Maybe you're tired of driving your minivan because your husband (or wife) makes
you! What you really want isa BMW Z3 roadster. So, you drive your behemoth
Toyota van down to the nearest BMW dealer and trade it in for the Z3. Now, because
you have a different car, does that mean you have to learn how to drive all over again?
Thisis obviously not the case (unless you just traded in aVVolvo, in which case you
have to learn to drive to begin with). That's because the world, yes the same world

that brought you Elvis and Hillary Clinton, isinherently object-oriented.

Inheritance

Your Z3, and every other car on the road, isacar, pure and simple. All cars have
accelerators, brakes, steering wheels, and, even though you don't usethemin a
Beemer, turn signals. If we take this analogy further, we can say that every car
inherits from the same "base class,” asillustrated in Figure 1-2

Figure 1-2. In any object-oriented environment, classes inherit the characteristics of
their base classes.

Car

Subaru

BMW Z3 Justy

VW Bug

A base classis aspecial kind of object that forms the foundation for other classes. In
Java, abase classis usually inherited later on. Think of derived classes as "kinds of"
base classes. In other words, "aBMW Z3 isakind of car." With that in mind, we
create the following class structure:

public class Car

{
}

public class BMWZ3 extends Car

{
}

The extends keyword tells the BMWZ3 class to utilize the properties, values, and
behavior of the Car base class. But there is one small problem. Can you ever drive a
generic "car"? No, because there is no such thing. There are always kinds of cars, but
never a specific thing that is known simply as a car. Java gives us the notion of an
"abstract base class."

An abstract base classis, quite simply, a class that must be inherited from. It can

never be used as a stand-alone class. In Java, the abstract keyword gives a class this
unique property.

public abstract class Car

{
int topSpeed;
¥
public class BMWZ3 extends Car
{
}

In this situation, the Car class can never be instantiated or used asis. It must be
inherited. When the BMWZ3 class inherits from Car, it also obtains all the variables
and methods within the Car class. So, our BMWZ3 class gets to use topSpeed as if it
were its own member variable.

Somewhere in your code you might want to check what type of variable you are using.
Java provides the instanceof keyword to enable you to inquire as to what the abstract
base class of an object is. For example, the following two code snippets would return
the value true:

BMWZ3 bmwVariable;
FordTaurus fordVariable;

if(bmwvariable instanceof Car) . . .

if (fordvariable instanceof Object) . . .

whereas the following code snippet would return the value fal se.

if (bmwVariable instanceof PandaBear)

Notice that Java's inheritance model is quite ssmple. In C++, objects are allowed to
inherit from one or more abstract base classes and can be made to inherit the
implementation of those interfaces as well. Java, as a matter of simplicity, does not
allow this, nor does it plan to at any time in the future. There are ways to get around
multiple implementation inheritance, but they do not really involve inheritance at all.
The bottom lineisthat if you need to use multiple implementation inheritance, you
probably won't want to use Java.

Code Reuse

Let's say that you are putting together your son's bicycle on Christmas morning. The
instructions call for you to use a Phillips-head screwdriver. Y ou take the screwdriver
out of the toolbox, useit, and put it back. A few minutes later, you need the
screwdriver again. Surely you would use the same screwdriver, not go to the hardware
store and buy a new one!

Likewise, code reuseis of vital importance to the programmer on atight schedule.

Y ou will need to streamline your code so that you can distribute commonly used tasks
to specific modules. For example, many of the online demonstrations we provide with
this book include animation examples. Rather than recreate the animation routines, we
reused the same set of animation tools we devel oped beforehand. Because we coded
the animators with reuse in mind, we were able to take advantage of a strong interface
design and an effective inheritance scheme.

OOP—Strong, Efficient, and Effective

Whew! Whether thisisyour first foray using the Javalanguage or your 101st, all of
your design begins in this one place. There are three steps to creating an object that
you can use time and again:

1. Strong interface design
2. Efficient classimplementation
3. Effective inheritance

With the fundamentals of object-oriented programming under your belt, you are ready
to explore the simplicity with which you can create programs in Java that handle input
and output. The Java /O routines are not only easy, but extremely powerful. Bringing
your C++ |/O to Javawill result in as little functional 1oss as migrating object-oriented
design techniques to Java from C++.

Java I/O Routines

Java provides several tools for the input and output of data, ranging from the Abstract
Window Toolkit (AWT) or the Swing Components to the core System functions of
Java classes. The AWT isexactly what it saysit is: a set of components for designing
windows and graphical user interfaces that uses the peer components of the

underlying operating system for their implementation. The Swing Components do the
same thing, but rather than using the peer components of the host operation system,
al the components are 100% pure Java components and can take on the look and feel
of the components of the host operating system or have their own "custom” look and
feel. The core System classes are built-in routines for gathering and disseminating
information from Java objects.

This section highlights some of the input and output routines provided by the core
Java capabilities as well as the Swing Components and Abstract Window Toolkit. As
we delve further into the realm of networked programming, we will discover that
much of what drives our decisions on a networked architecture will be that which is
detailed in this section. Because input and output are the most important actions a
computer program performs, we must devel op a strong understanding of the I/0
capabilities and limitations of Java.

Streams

Imagine your grandfather fishing in a stream. He knows that as long as he stays there,
he's going to get a bite. Somewhere, somehow, sometime afish is going to come
down that stream, and your grandfather is going to get it.

Just as your grandfather is the consumer of fish, your applications are either
consumers or providers of data. In Java, all input and output routines are handled
through streams. An input stream is simply aflow of data, just as your grandfather's
stream isaflow of fish. You can write your application to fish for data out of your
input stream and eventually to produce data as well. When your application spits out
information, it does so through a stream. This time, your application is the producer,
and the consumer is another application or device down the line.

Java provides several different kinds of streams, each designed to handle a different
kind of data. The standard input and output streams form the basis for all the others.
InputStream and OutputStream are both available for you to use asis, or you can
derive more complicated stream schemes from them. In order to create the other kinds
of Java streams, first you must create and define the basic streams.

Perhaps the most-used stream formats are the Datal nputStream and the
DataOutputStream. Both of these streams enable you to read or write primitive data
types, giving you the flexibility within your application to control the results of your
application’'s execution. Without this kind of functionality, you would have to write
specific bytes rather than reading specific data.

File buffers are amethod commonly used to increase performance in an input/output
scheme. Bufferedl nputStreams and BufferedOutputStreams read in chunks of data
(the size of which you can define) at atime. When you read from or write to the
buffered streams, you are actually playing with the buffer, not the actual datain the
stream. Occasionally, you must flush the buffers to make sure that all the datain the
buffer is completely read from or written to the file system.

Sometimes you will want to exchange information with another application using a
stream. In this case, you can set up apipe. A pipeisatwo-way stream, sort of. The

input end of a pipe in one application is directly connected to the output end of the
same pipe on another application. If you write to the input of the pipe, you will read
the same exact data at the pipe's output end. Asyou can seein Figure 1-3 thisisa
pretty nifty way to promote interapplication communication.

Figure 1-3. Pipes enable interaction between two or more applications.

Input Output
"Hey Dude" O) "Hey Dude”
Application One Application Two

Last, you will eventually want to fiddle with files on your local file system. The
FilelnputStream and FileOutputStream enable you to open, read, and write files as we
will show you in amoment. Remember that Java has strict restrictions on applet
security, so most file streams can be manipulated only by applications. For more
information, consult Chapter 13, "Java and Security."

The Java Core System

In Java, applications are allowed to write to the standard output devices on a machine.
If you use a Web browser such as Netscape, the standard output to which Javawrites
isthe "Java Console" mentioned in one of Navigator's windows. If you write a Java
application (i.e., a stand-alone applet), the standard output device is the command line
from which you execute the program.

The System Class

One of the classes Javaincludesin every applet or application, whether you specify
that it do so or not, isthe System class. The System class provides support for
input/output (1/0) using the Java console; you are to provide the ability to write to the
console, read from the console, and write errors to the user. The Java consoleis
provided in two ways, one for browsers and one for applications. In the browser
environment the console is a separate browser window that has controls for scrolling
and clearing. For applications run from the operating system (OS) command line, the
console is the text interface you see and suffers the same problems as the text base OS
environment (lack of scrolling backwards). The Java console isreally intended to
provide the same level of user interactivity asthe C++ cin, cout, and cerr objects. The
names of the standard Java streams are in, out, and err; these names can be changed
using the System classes setln, setOut, and setErr methods. Changing the names of
these streams can only be done by the SecurityManager.

Input Using the System Class

Input in the System class is actually handled by the InputStream class contained in the
Java |/O routines. System.in is an object of type InputStream that is created,
maintained, and initialized by the System class. In other words, it's yours for the
taking; you don't have to do athing to useit.

The InputStream class assumes that you will be reading from the standard input
stream (the keyboard you are sitting at). A stream is a sequence of charactersretrieved
from somewhere. The standard input stream is the location that your operating system
uses to get data from you. Because streams are defined as characters from a source, it
Is entirely conceivable that a stream could be afile, a modem, amicrophone, or even a
connection to another process running on your computer or another computer. As a
matter of fact, Javatreats files and other peripherals as streams. This abstraction of a
stream simplifies I/O programming by reducing al 1/0 to a stream.

So, how do you get input from the user? Simply use the System class's input stream to
get the information you require. The input stream is an object with several methods to
facilitate datainput. For example, there are primitive, yet useful, routines to get
characters and strings, to read integers and other numbers, and even to get a stream of
unfiltered and untranslated bytes. Deciding which routine to use is ssmply a matter of
which kind of data you wish to read. In our example, we will read and write strings:

public class InputOutputTest()

{
String str; //private data
public void getinput(){
// read a string from the Java console keyboard (sysin)
str = System.in.getIn(Q);
}
}

Output Using the System Class

Aswith input, output is handled through streams. How can output be astreamif a
stream is a sequence of characters from a source? Well, the source is your application,
and the stream is routed to a device known as the standard output. The standard output
is usually your monitor, but it could be other things as well. Most notably, the
standard output is set to be the Java console when an applet runs within Netscape
Navigator. When you run the following example from within an applet, watch your
Java console for the output. If you run it from within an application, the output should
show up on the command line.

public class InputOutputTest(){
String str; // classdata

public void getinput(){
// read a string from the keyboard
str = System.in.getIn();

public void drawOutput(){
// write a string to the console screen
System.out._printin(str);

Files

The stream classes would be pretty uselessif you couldn't manipulate files as well.
There are several security mechanisms defined in the security model used by Java-
capable browsers for running applets. These mechanisms prevent unguarded file
access and will be discussed in more depth in Chapter 13, "Java and Security.” But for
now, sSimply assume that as long as you are not writing an applet, you will be able to
manipulate files. In the purest sense, standard input and output are files. As such, they
are sometimes subject to the same applet security restrictions, so be forewarned.

The Basics

When reading and writing to and from files, there are three steps that must be
followed:

1. Openthefilefor reading or writing.
2. Read or write from thefile.
3. Closethefile.

It isimportant to do each step. Failing to open afile will, obviously, prevent you from
reading. But perhaps not as intuitively, you must still close the file or you may wreck
your file system. Every application is allowed a certain number of file descriptors
(handles) that maintain the status of afile. If you run out of available file descriptors,
you will no longer be able to open any other files. The following snippet uses the
FileReader class to read the contents of afile specified on the command line and the
PrintWriter classto write it to the Java console:

import java. io.*;
public class ShowFile{
public static void main (Stringargs[]){
try{
FileReader fin = new FileReader(args[0]);
PrintWriter consoleOut = new PrintWriter(System.out, true);
char c[] = new char[512];
int count = O;
while ((count=Fin.read(c))!=-1)
consoleOut.write(c,0,count);
consoleOut.flush();
consoleOut.close();
fin.close();

catch(FileNotFoundException e){
System.out.printin(e.toString());
}

catch(10Exception e) {
System.out.printin(e.toString());

When opening afile, you have three options. Y ou can open thefile for reading so you
can extract datafrom it, but you will be prevented from writing to the file unless you
closeit and open it for writing. Y ou can open it for writing, but you will be prevented
from reading fromit. Finally, you can append to afile, which is similar to writing
except that it preserves any data already in thefile.

Taking Files One Step Further

So what do files have to do with networked computing? Well, the diagram in Figure
1-4 offersa graphical representation of input and output streams. Remember that
streams are merely interfaces to collections of data. What if that datais located on a
network connection rather than in aflat file or akeyboard?

Figure 1-4. With Java, your input or output need not reside on the same physical
machine on which your application is running.

Console f—

M, . /-"’ In e,
' : %
Devi L— f;’;’ L J .
evice - N\
\\ .-'?'-:: .-"f \'\
A - . '
- XX - Application
. ~ ry LY e i
File K/ ™\ g
o 0
b T
= Out

Network

The standard interface to a network in the computer world is a socket. A socketisa
connection between processes across a network. The processes can be located on the
same physical machine, the same Local Area Network, or even across the world on
different LANS. The three basic steps still apply:

1. Open aconnection to the remote process.
2. Read or write data.
3. Close the connection.

Again, as with file manipulation, you can use the InputStream and OutputStream
objects to interface to the socket. In fact, sockets are nothing but filesin the purest
sense. The advantage to this file-centric hierarchy is perhaps not as obvious as it
should be. In the end, all three forms of input sources are completely interchangeable.
Y ou should not write your applications to be specific to a specific kind of file. In an
object-oriented design, the objects you create should simply know that they will have
to read or write data down the line.

The Abstract Window Toolkit and Swing Classes

The AWT is ahalf-baked attempt to create a user interface toolbox for programmers.
Because al the various classes, containers, and widgets in the toolkit are capable of
being used both in the applets embedded in Web pages and in the stand-alone
applications on your desktop, it is a powerfully extensible tool. At the heart of this
kind of flexibility isthe ideathat the toolkit is an abstraction—in other words, alayer
on top of your current windowing system. This abstraction is more understandable if
you know the background behind it. When Sun was courting its early customers,
Netscape insisted that the Java Virtual Machine (JVM) included in its browser must
create widgets that had the exact look and feel of the host operating system's widgets.
Since "Swing" wasn't yet agleam in its father's eye, the only way to accomplish this
was to use the peer components of the host operating system. Thus we can truly say
that the AWT is an abstraction of the windowing system of the operating system.

Y our current windowing system may be anything from X11/Motif to Windows 95's
own window system. In any event, the AWT ensures that native calls are made to
these windowing systemsin order to allow applications to run on top of the desktop.
For applets within a Web page, the browser manufacturer essentially creates a
windowing system that renders the AWT's widgets within itself.

The end result of all thisisthat eventually anative call is made for each action taken
by the AWT. Y our applications need not be aware of this, for Java's platform
independence ensures that, no matter the platform on which you execute bytecodes,
the results will be identical.

One of the problems with this approach to user interface (Ul) implementation is that
when making a Ul that must be rendered the same way on al the platformsit isto be
targeted to, small differences in the way that components are rendered on each of the
targeted systems may cause the overall effect to have problems. For instance, a Ul
having several closely aligned text fields may look good on Windows platforms but
appear overlayed on UNIX machines.

One of the major complaints about the AWT by people used to building user
interfaces for enterprise applications was that it had arelatively small set of widgets
and low functionality. AWT provided only slightly more functionality than the
widgets provided in HTML's forms controls. In early 1997 the work on JDK 1.1
incorporated a number of new pieces including Netscape Corporation's Internet
Foundation Classes (IFC), components from IBM's Taligent Division, and Lighthouse
Design. Thefirst release of Swing 1.0 in early 1998 contained almost 250 classes and
80 interfaces. The art of user interface creation had been raised to anew level and was
now able to go head to head with platform-specific development tools.

The Java 1.2 platform provides a set of components (Swing) that eliminate this
problem by eliminating the use of peer components. The Swing components are pure
Java and will render reliably on all host platforms. With Swing the native look and
fedl of Windows, Motif, or Mac widgets are options from a predefined list of look and
feelsthat are extensible by the user.

Input Alternatives

The AWT and Swing contain widgets designed to elicit response from the user. From
simple text areas to more complex dialog boxes, each one is designed to funnel
information from the user's keyboard to your application. Most of them are very easy
to use and program, so well leaveit to the several Java books on the market to
provide you with areference and abasic list and explanation of the elements that are
included.

Remember that input in awindowing system is not limited to typing words on the
screen. Every push button, checkbox, or scroll bar event is aform of input that you
may or may not choose to deal with. Every AWT class has some way or another of
checking the status of its input mechanism. For example, your scroll bar will be able
to tell you if it has been moved. Y ou may choose then to take some action, or let the
AWT do it for you. Thereis no need to implement scrolling text for a scroll bar when
the AWT isfully capable of doing it.

Output Alternatives

Obvioudly, the easiest way to display output with the AWT isto display something
graphically. The AWT supports simple graphics routines for drawing, aswell as for
the usual suite of 1abels, multimedia, and widget manipulation. Output is significantly
easier using the AWT. Without the toolkit, you would have to manage not only what
to do with the input you receive, but also how to display your response.

/O in Short

Input and output are at the heart of every program you create. No matter what the
objective of your application, somehow you will need either to get a response from
the user, to display aresponse, or maybe even both. To take things one step farther,
your input or output need not reside on the same physical machine as that on which
your application is running. Indeed, that is the very subject of this book. By stretching
your applications to fit a networked model, you will be able to take full advantage of
the input and output schemes offered to you by Java.

When your applications receive several inputs, they will often get inundated with
processing. To aleviate this, Java provides afull suite of threading utilities, which we
discuss in the next section. Threads allow your applications to execute stepsin
paralel. So, when your application receives two different inputs simultaneously, you
can use threads to simultaneously resolve them and produce output.

Introduction to Threading in Java

Multithreaded (MT) programs are the current rage in computer science. Books upon
books upon books have been written that describe the benefits of threading, the
threading features inherent in various operating systems, and the various forms of
threaded architectures.

So, what on earth are threads? How can you use them in your programs? Will
threading continue to work in those applications that run native on operating systems
that do not support threading? What does it mean to be MT-safe, and how do you
design an M T-safe program?

The entire realm of multithreaded and multitasked programming transcends the scope
of this book. We will confer that knowledge of the topic that is directly related to the
ideas of networked programming and, in cases where more research may be warranted,
direct you to the appropriate resources.

What Are Threads?

Let's say you're sitting in your living room watching another Washington Redskins
victory. You get bored watching the massacre of the Dallas Cowboys, and you decide
that you would like to see the 49ers game in progress. In the good old days, you
would have to actually switch channels and choose between one or the other. But,
these days, televisions have Picture-in-Picture (PIP) capability. By pressing the PIP
button on your trusty remote control, you can watch the Redskins demolish the
Cowboys on alittle box in the corner of the TV while watching the 49ers on the rest
of the screen.

Thisis aprime example of multithreaded programming. The little screen and the big
screen share resources (in this case, the area of the full television screen), but they are
not able to affect one another. In the areas in which the two games collide, one screen
gives way to another.

Threads in Your Computer

In the computer world, multithreaded applications exist similarly to those in the
television world. They share the same area, in our case the television screen, in reality
the physical process in which the application resides and is permitted to execute.
Multithreaded applications are able to execute independent pieces of code
simultaneously. Each of these independently executing pieces of code is known as a
thread.

Threads are implemented differently by different operating systems. In Solaris, for
example, threads are defined and maintained in the user environment. The operating
system maintains responsibility over the process, regardless of what the process
decides to do with itself. In a sense, the operating system treats the process as an
object. The OS only cares about the interface to the process, or how it starts up, shuts
down, begins execution, and performs similar operations. It has no feelings
whatsoever about how the process handles information.

In fact, thisis the fundamental concept of threads. Threads exist as a user-created and
user-managed aspect of a program. The operating system could care less if there are
multiple threads in the executable or if it is single threaded. Furthermore, the
operating system will not help you resolve conflicts. All it cares about is the integrity
of the process, not about what goes on inside it.

Handling Conflicts

Let's say you have a couple of threads prancing along merrily within your application.
Suddenly, they both access the same piece of data at the same time. Thisresultsin
what is known as concurrent access. Concurrent access errors occur as aresult of poor
thread management on the part of the main application.

Access errors occur in everyday life, too. Let's say you've scheduled an appointment
from eleven in the morning to one in the afternoon. Carelessly, you forgot your all-
important staff meeting at twelve-thirty. Obviously, you can't be in two places at once!
The end result is that you've placed yourself in two meetings. The threads within our
applications similarly have accessed identical data at the same time.

When creating athread, the first thing you must determine is what data that thread
will touch. Y ou then have to fence off that data so that only one possible thread can
ever touch it at any given moment. In Solaris, thisis done with a concept called
mutual exclusion. A mutual exclusion lock placed around your data ensures that it
will never be permitted to enter a concurrent access situation.

Imagine arelay team of four people competing at the upcoming Olympics. The first
runner on the relay team is given a baton that must be passed to ateammate before
that teammate is allowed to run. If the teammate runs without the baton, sheis
disqualified. However, if the baton is passed properly, the runner can continue until
she arrives at the finish line or must pass the baton to another teammate.

Likewise, different threads can obtain the lock around the data so long asthe lock is
available. If the lock is unavailable, the thread must wait, effectively suspending itself,
until the lock is available. There are specific settings to alow threads to continue
without waiting, but these settings are beyond the scope of this book. If one thread
grabs alock but never lets go, then it will have deadlocked the entire application.
When your methods obtain athread, make sure that they give it up somehow.
Otherwise, the rest of your application will wait for alock that will never come free.

For more information on threads, consult the excellent Sun Microsystemstitle,
Threads Primer by Bill Lewis and Daniel J. Berg.

Threading in Java

Creating and debugging threads in Javais considerably simpler than doing so in C++.
Deadlocks in Java are much easier to prevent, and aton more intuitive. But
multithreaded applicationsin Java are not as robust or as powerful astheir C++
counterparts. In short, there are tradeoffs to threading in Java, for it is not an all-
encompassing answer to the multithreading question.

What threads in Java do is provide you, the application programmer, with a consistent
interface to the threads of the underlying host environment. Anything that may be
"quirky" in the threads of the hosting operating system will still be there. This
consistency of API isimportant as our target environment is any platform that thereis
aJVM written for, and the consistency helps make our code more portable and
reusable.

Javatreats threads as user-level entities aswell. A Java applet or application runs
within a process space defined in the Java Virtual Machine. The JVM allocates
processes and the resources for each process and allows the applet or application to
define how that process space is used. Java programs that implement threads must do
so using the Thread class or a derivative thereof.

The Thread Class

Java's language hierarchy, which includes the likes of Strings, Integers, and so on,
also contains a powerful, yet incredibly simple Thread object that you can implement
within your programs. The Thread class provides al the functionality necessary for
you to create fully multithreaded and M T-safe applications using the Java language.

NOTE

Two approaches to spawning threads in Java are worth noting, as outlined in the
following sections. Many of our networking examples later on will make heavy
use of one or the other method. As always, there are tradeoffs and benefits for each
architectural decision you make.

Using the Entire Class As a Thread

The first method we could employ involves spawning threads in which an entire class
can reside. For example, we spawn athread and then create a runnable class and
attach it to the thread. Now the entire class exists within the thread and the stream of
execution for that class is maintained by the thread. If the thread is destroyed, the
stream of execution islikewise destroyed.

The biggest advantage to this method is that the class need not know anything about
how it isto be implemented. Take alook at the following example:

public class Animator extends Panel implements Runnable

{
Animator() { .. }

public void runQ) { .. }

}
public class AnimatorManager
{
Animator animations[];
Thread animationThreads[];
AnimatorManager() { .. }
public void createAnimation(
Animatoranim
)
{
// First spawn a thread for the class
// now let the thread continue..
}
}

The AnimatorManager classis responsible for creating a series of Animator objects,
spawning athread for the object to execute in and shutting down, suspending,

resuming, or inquiring about the status of the thread. Note how the Animator does not
know or care whether it will be in athread of execution or in an entire process. It isa
runnable class, meaning that whatever is contained within the run function will be
executed if the parent process or thread allows.

The object is created normally, and our AnimatorManager assumes that the object is
already created. The Thread is created, but the object is passed to it as a parameter.
The corresponding constructor in the Thread class knows that the runnable object will
reside solely within its thread of control.

public class AnimatorManager

{

Animatoranimations[];
ThreadanimationThreads[];

AnimatorManager() { .. }

public void createAnimation(
Animatoranim
)

{

// FTirst spawn a thread for the class
animationThreads[currentThreadCount] = new Thread(anim);

// now let the thread continue..
animationThreads[currentThreadCount].start();

NOTE

Remember that Javais inherently object-oriented, so this kind of thread creation is
quite within the reach of the language. There is no funny business going on here.
A thread is created and an object istold to live withinit. It is actually quite
intuitive in an object-oriented sense. The next method hearkens back to the days of
structured programming.

Inheriting from the Thread Class

The second way to implement threads is to create a class that inherits from the Thread
class. In the first method, we created an object that was a free-standing object in its
own right. In this case, we will create an object that is a Thread object from the
beginning. In essence, the JVM treats both methods as similar and reasonable means
to spawning threaded objects, and both are acceptable from a style perspective.

Inheriting from the Thread class is actually quite simple. Instead of extending from
Panel or Applet, your class simply extends from Thread. In your init method or
constructor, you must initialize the thread as well. Obviously, your class must be
awarethat it isrunning in athread.

The thread code for a class that inherits from Thread isin the Run method. Asin a
class that implements Runnable, inheriting from Thread automatically enables you to
implement the run method. Any code you want to manage the thread should be placed
there. If you need to make the thread sleep or suspend, that's where you should place
it.

The difference, however, between extending Thread and implementing Runnableis
that when you inherit from Thread, your entire classis athread. The thread must be
started and stopped from within the class, unlike the other method in which the thread
controls are outside the class itself (see Figure 1-5).

Figure 1-5. Thread controls are accessed from different locations depending on the
method chosen.

Thread

“._| Object ' ~—— Thread
— .

™ \\'x y 2 \

|

| | Object

/ \ J
\\. _ﬂ/ \\ vy

Inherit from Thread Implement Runnable

Take alook at the following example, and notice how the constructor callsthe start
method or the thread:

public class Animator extends Thread

{
Animator()
{
start();
public void run() { .. }
}

Asyou can see, the classis clearly athreaded class. What happens if you want to use
the class's methodology without using threads? Y ou'll have to create a new class that
doesn't use threads, or you'll have to revert to the first method. Implementing
Runnable and placing your thread controls outside the target class is the preferred way
of using threads, but inheriting from threads can be particularly useful for highly
modular code in which you want to package an entire object that does not rely on
anything else.

Thread Controls

A thread has several control methods that affect its behavior. Simply starting and
stopping a thread's execution are but two of the many tools available to you to
manipulate how programs execute. For example, on several occasions, you will want
to pause athread's execution, and eventually resumeit.

The Thread class offers us arich set of methods for controlling threads:

start

stop

suspend (deprecated in JDK 1.2)
resume (deprecated in JDK 1.2)
sleep

destroy

yield

join

. run

10. isAlive

CoNoOarwODdE

The start method does exactly what it says. It tells the thread that it may begin
execution of all the steps contained in the run method. The run method itself may call
any of the preceding thread controls, but obviously you will want to restart the thread
somewhere if the run method decides to suspend it!

The stop routine terminates the thread and prevents the run method from executing
any further steps. It does not, however, shut down any subthreads that it may have
created. Y ou must be careful and make sure that every thread you create eventually
either terminates on its own or is terminated by its parent. Otherwise, you could very
well have several threads executing and consuming resources long after the applet or
application has terminated.

The suspend and resume routines are pretty self-explanatory. When suspend is
called, the thread ceases execution of its run method until resume iscalled
somewhere down the line. If your parent thread needs to inquire about the current
running status of athread, it may call the isAlive method and find out if the thread is
stopped. Obvioudly, if the thread isn't stopped, and it isn't running, it must be
suspended. Note, in JDK 1.2 suspend and resume are deprecated due to problems
with deadlock situation occurring. When a thread has locked a system resource and is
then suspended, other threads cannot access the resource until the suspend is resumed.
If the thread that is supposed to do the resume first tries to lock the resource, a
deadlock occurs.

The join method causes the currently executing thread to wait until it has stopped,;
the current thread then blocks until:

1. Thecurrently executing thread is interrupted.

2. The currently executing thread is terminated.

3. The specified timeout has expired; if atime is not specified, the thread will
wait indefinitely.

Last, the sleep method tells the thread to pause for a given number of milliseconds. It
is particularly useful for the clock because we want it to "tick" every second.

The state diagram in Figure 1-6 should make clear the thread timing you need to be
aware of. Remember that, before anything can be done to a thread, you must call
start onit. Once you are finished with the thread of execution, you must call stop.

Figure 1-6. The control methods that affect a thread's behaviour.

Suspend

Sleep Resume

AN

—————— Destroy

TN

Start Join

Stop Yield

Synchronized Methods

Conflict handling within Javais implemented using method synchronization. If you
have data that could potentially deadlock between two threads, then you must declare
the functions in which the data is modified as synchronized. Java prevents multiple
threads from entering the synchronized methods and thereby eliminates the possibility
of deadlock.

Creating a synchronized method is actually quite easy. It is simply a matter of
declaring that the function will be synchronized in the method signature, as can be
seen in the following snippet.

public class ThreadClass

{
int data;

6ublic void synchronized addToData(
int addend
)

{

data += addend;

}

There are a couple of important caveats to synchronized functions. Because multiple
threads may require entry to a synchronized function, it is better to keep any function
that is declared as synchronized short and sweet. When one thread enters a
synchronized function, keeping its time spent in the function to a minimum will keep
your programs running smoothly. After al, the idea behind threading is to get your
programs to execute stepsin parallel, not to spawn threads that end up waiting forever
for each other to finish with the data.

yield(), wait(), and notify()

In an application with multiple threads, often you will have many threads competing
with one another for resources. One way to allocate those resources effectively isto
set the relative priorities of each thread. We will discuss that in a moment, but right
now let's discuss some of the specific steps you can take within the thread itself.
Remember that when threads execute, they al share the same process space in which
the application resides. Like a bunch of kids forced to share atoy, the threads compete
and vie for control of the process. Like any good parent, however, you have severa
tools at your disposal to make sure the threads cooperate.

Sometimes you will want to control entry into afunction and label the function as
synchronized. Even though the function is long, you want to yield control of the
function pretty early on. You can call the notify method to tell the parent thread that
you are finished with the synchronized lock.

In order to make athread stand by for anotify message, you must add the wait
method to the thread's execution routines. The notify method is called somewherein
an executing thread. Once notify is called, any thread awaiting execution on await
call automatically proceeds.

Another way to give up the process space in which athread runsisto call theyield
routine specifically. When yield is called within athread, the thread gives up any
scheduling priority, process space, or claim to its current turn in the sharing cycle.

Thread Priorities
TIP

A more elegant, yet more confusing, way to control threadsis by setting their
priority. Obviously, when you set athread to have a high priority, it getsfirst crack
at any processing time and resources. Y ou should be careful and judiciousin
setting thread priorities. Even with the best of intentions, you could very well
defeat the purpose of using threads to begin with should you set every thread at a
high priority.

In Java, threads may have one of three priorities; minimum, normal, and maximum.
Y ou may set the priority using the setPriority method of the Thread class and
retrieve the priority of any thread by using the getPriority method, like so:

Thread threadOne;
Thread threadTwo;
Thread threadThree;

threadOne.setPriority(Thread.MIN_PRIORITY);
threadTwo.setPriority(Thread .NORM_PRIORITY);
threadThree.setPriority(Thread .MAX_PRIORITY);

Because threads are a powerful and underused aspect of most Java programs, thread
scheduling and prioritizing is aflexible and equally powerful way to control how your
applications behave and execute.

Daemon Threads

There are two kinds of threads. So far we have discussed application threads, which
aretied to the process and directly contribute to the running of the application.
Daemon threads, on the other hand, are used for background tasks that happen every
so often within athread's execution. Normally, an application will run until al the
threads have finished their execution. However, if the only remaining threads are
daemon threads, the application will exit anyway.

Javaitself has several daemon threads running in the background of every application.
Java's garbage collection is controlled by daemon threads known in computer science
parlance as reaper threads, or threads that run through an application looking for dead
weight. In the garbage collection thread's case, the dead weight happens to be unused

but allocated memory.

If your application needs to set up a daemon thread, ssmply call the setbaemon
method of the thread, as shown in the following snippet. The application in which the
thread resides will know to ignore that thread if it needs to execute, and program
execution will continue normally.

Thread t = new Thread(myClass);
t.setDaemon(true);

Thread Summary

Threads are one way in which you can affect the behavior of an object. Serializationis
another. Serialization allows you to store your objects as strings. When we use threads,
we do so to change how it behaves when it is running. Serialization does not allow us
to preserve that runtime behavior, only the class's static behavior and characteristics.
Whenever you reconstruct a serialized class, only your class will be reconstituted

correctly, not any of the threads. Therefore, it isimportant that your threads be as
object-oriented as possible so that they can store their state when necessary.

Object Serialization

Serialization is a concept that enables you to store and retrieve objects, as well asto
send full-fledged objects "over the wire" to other applications. The reason
serialization is of such vital importance to Java should be clear: without it, distributed
applications would not be able to send objects to each other. That means that only
simple types such as int and char would be allowed in parameter signatures, and
complex objects would be limited in what they could do. It's sort of like saying you
would haveto talk like a 3-year-old whenever you spoke with your boss. Y ou want to
have a complex conversation, but you are limited in what you can say.

What Is Serialization?

Without some form of object storage, Java objects can only be transient. There would
be no way to maintain a persistent state in an object from one invocation to another.
However, serialization can be used for more purposes than maintaining persistence.
The RMI system uses object serialization to convert objects to aform that can be sent
over a communication mechanism.

When an object is serialized, it is converted to a stream of characters. Those
characters can be sent over the wire to another location. Parameters passed in remote
objects are automatically translated into serialized representation. Once an object is
serialized, it can be safely sent via a communication method to a remote location.

The serialization routines have been incorporated into the standard Java Object class
with severa routines to facilitate the writing and reading of a secured representation.
There are several security concerns that you must be aware of, and we will discuss
those in amoment. Without object serialization, Java could never truly be an effective
Internet language.

Handling Object Relationships

An important consideration of the object serialization facilities is that the entire
process is executed in a manner transparent to any APIs or user intervention. In other
words, you need not write any code to utilize serialization routines. When writing an
object, the serialization routines must be sure to do so in a manner that allows full
reconstruction of the object at alater time. Not only must the class structure be saved,
but the values of each member of the structure must be saved as well. If you had a
class with the following representation:

public class CuteBrownBear
{
Color eyeColor;
float heightlnches;
float weightPounds;

It must be saved so that the values of eyeColor, heightinches, and weightPounds are
preserved and can be restored once the reading functions are invoked. Sometimes,
however, things can become complicated when objects begin to refer to one another.
For example, the following class contains CuteBrownBear as well as several other toy
objects that we must save as well:

public class ToyBox

{

CuteBrownBear bearArray[5];
ActionFigure actionFigureArray[5];

The serialization routines must not only serialize the ToyBox object, but the
CuteBrownBear objects and ActionFigure objects as well. To handle this kind of
situation, the serialization routines traverse the objects it is asked to write or read. As
it traverses an object representation, it serializes any new objects automaticaly. If,
down the line, it finds another object of atype already serialized, it merely modifies
the earlier serialized representation to refer to the new instance. In this manner,
serialized objects are compact and efficient without much duplicated code.

For example, when we need to serialize the ToyBox object, the serialization routines
first serialize CuteBrownBear in array position one. Array positions two through five
are not serialized on their own; rather the original serialized representation is modified
to point to their locations and values. So, the final serialized object has one reference
to the CuteBrownBear object, plusfive sets of datavalues.

The Output Streams

Serialization output is handled through the ObjectOutputStream. Serialization calls
refer to the writeObject method contained within the stream, passing it the instance
of the object to be serialized. The stream first checks to see whether another instance
of the same object type has been previously serialized. If it has, the routines handle it
as we discussed in the previous section, merely placing the new values alongside the
representation. If, however, the object has yet to be serialized, the routines create a
new serialized representation and place the values next to it.

Most serialization is handled transparently. But an object may at any time begin to
handle its own serialization by reimplementing the writeObject method. The
writeObject method is part of every Object class and can be overridden on
command. If you need afiner grained serialized representation, or would like to
include some kind of encryption or other technique between serialization endpoints,
thisis where and how you do it.

As an example, let usinstantiate a CuteBrownBear object and seridizeit:

// create the streams here . . .

FileOutputStream fileOut = new FileOutputStream(''filename'™);
ObjectOutputStream objectOut = new ObjectOutputStream(fileOut);

// instantiate the new bear object
CuteBrownBear bear = new CuteBrownBear();

// serialize the bear
objectOut._writeObject(bear);

Handling Object Webs

An object web isa complex relationship between two or more objects in which
objects refer to other objects that may eventually refer back toit. If you were to
serialize such an object representation, you could potentially be caught in an infinite
loop. Let's say we had a system of roads between three cities, Seattle, Washington,
DC, and San Francisco. We want to take an end-of-summer road trip and visit each
city. The only instruction the auto association gave us was "if you hit one of these
three roads, follow it until it ends.”

Following that logic, we would start at San Francisco, go to Seattle, visit the Redskins,
come back to the Golden Gate, and go to Seattle, and so on (see Figure 1-7).

Figure 1-7. An example of serialization in which you need to store objects that are
linked by a circuitous route.

N
. Seattle | /-

Ve - ____H"‘\\l .] . __-'“‘\
L\%u Franms;fg J \E{VashmgtanC >)

Likewise, if we were to serialize San Francisco, then Seattle, followed by Washington,
DC, and keep following the path back to San Francisco, we would end up following
the same loop an infinite number of times. This lattice arrangement ensures that a
simple tree-based algorithm will not suffice. Java's object serialization routine
accounts for thiskind of structure in the same manner that it handles multiple objects
of the same type in the same stream.

Because of these object webs, any serialization must take into account those objects
that have already been serialized. So, in addition to the serialization methods, Javas
object serialization routines also keep track of the object's serialized state. Moreover,
Java also keeps track of whether object types have been serialized as well. In so doing,
it can keep track of the data contained in the object, not the entire object itself.

Reading Objects

Reading objects is a matter of taking the serialized representation and reversing the
process that created them in the first place. Remember to handle your deserialization
in the same order as your serialization, traversing any treesin asimilar fashion. The
objective isto reconstruct the original object.

The deserialization routines are handled with a corresponding Objectl nputStream and
the readobject method contained therein.

Once again, to obtain control over serialization routines for your object, you need to
override and reimplement the writeObject and readObject routines.

Security and Fingerprinting

Sometimes objects can be serialized surreptitiously by other objects linked in by your
application. If your object does things that you would prefer to keep private and
unknown to the world, then you need to disable your objects. Serialization can be
disabled for an object by adding the private transient tag to the class definition:

private transient class CuteBrownBear

{
}

Or the object itself can override the serialization routines and return a NoAccess
Exception. The NoA ccessException tells any object that attempts to serialize your
implementation that it may not do so. Furthermore, it gives a sufficient debugging
warning to any applications that may reuse your object.

public class CuteBrownBear

{
. . the rest of the CuteBrownBear class goes here. . .
public void writeObject(. . .) throws NoAccessException
{
}
public void readObject(. . .)throwsNoAccessException
{
3
3

Serialization Overview

Java automatically handles its own object serialization for you. However, if you are so
inclined, you may reimplement the serialization routines within your own objects. We
have presented you with several serialization concernsin this chapter. If you are going
to handle the serialization for a given object, make sure you conform to the various

restrictions we have given you. If your objects do not handle their serialization
properly, your entire object system may not be serializable.

Y et another issue of importance to Java programmersis performance. While
serialization ensures that our objects can be saved and restored, performance issues
strike at the very limitations of the language. The greatest programmers in the world
can build the applications seen only in science fiction, but they are prevented from
doing so by limitations in their hardware and the speed with which their software can
be run.

Performance

Performance issues are the primary reason why most major corporations have not yet
begun wholesale revisions of their existing computer systems to use the Java language.
Although many of these issues are real and Java has yet to become the perfect
language in all respects, it is not necessarily true that performance is amajor show-
stopper. Often, the perception is not reality.

Performance Issues

When we speak of performance in Java, we are actually speaking of two very
different problems. The first is the download performance of an applet. Today, your
hard-core applets will often contain upwards of 20 to 30 classes. Incorporate a
mechanism such as Java IDL or Java RMI, and the communication infrastructure may
add up to 100 different classes of its own. In order for the applet to run, each of those
classes must be downloaded in order to be used.

The second major issue behind performance is runtime performance. For both applets
and applications, the speed with which Java computesiis pretty slow. Compared to
comparable statistics for similar applications written in C++, Java does not measure
up. There are severd initiatives and technol ogies becoming available that may render
that issue moot.

Download Performance

For applet writers, download performance is the single most important hurdle to
overcome. While most programmers can create truly artistic programs that can
accomplish awide variety of things, they often meet a brick wall when their customer
tries to download them within a browser. In order to study the download performance
of an applet, we must first discuss how an applet is downloaded to begin with.

Javaincorporates an object called the class loader. The class |loader |ocates the classto
be downloaded, goes about fetching it, and recognizes any other dependent objects
and downloads those as well. The browser does the actual downloading and the class
loader merely tellsit what to do. When the browser downloads an object, it first
establishes the connection to be used (see Figure 1-8). Once the connection is made,
the object is checked to make sure that it has not been downloaded previoudly. If it
has been downloaded before, it is not downloaded, and the connection is closed. If the
class has not been downloaded before, it is downloaded, and then the connection is
closed.

Figure 1-8. Download performance is measured by the time it takes to perform the
steps involved.

\Web ” Establish Connection Web
5 Browser
erver Download File .
Verify File Java

Class
Close Connection

So, the time it takes to download an object is determined by four factors asillustrated
in Figure 1-8:

1. Timeto open a connection.
2. Timeto verify afile.

3. Timeto download thefile.

4. Timeto close the connection.

And most importantly, the same four steps are applied to every single classin your
entire object system. No matter what you do, you will have to spend the time to
download the files. There's no getting around that part because you need those files to
run your applet. However, the time spent establishing and closing connectionsis a
waste because you are essentially doing the same thing to the same location each time.

The brilliant engineers behind Java recognized this problem and created the Java
Archive. It enables you to gather al of your files, stick them in one large archivefile,
and let everything get downloaded in one fell swoop. This means that there need only
be one open connection, one download, and one closure for the entire system of object
files.

Using Java Archivesis arather smple process. You must first use the jar utility,
which UNIX userswill find quite similar to their tar program, to archive your files.
Thisisnot unlike "zipping" abunch of filesinto one. Once completed, you simply
specify the archive in the applet tag in your HTML code:

<applet archive="archivename.jar"
codebase=""../classes/"
code=""PrashantlsCool.class'>

. HTML text here . . .

</applet>

Java Archives greatly improve the download performance of your applets. Without
something like them, applets would be restricted to small, compact programs that
accomplish little more than animating a dancing duke. The trick is that the browser
has to support archives. Currently, Netscape Navigator and Internet Explorer support
ZIPfiles, and both plan to support the jar standard once it is completed.

Runtime Performance

Runtime performance is a different beast altogether. Where download performance
was arelatively simple issue to resolve, runtime performance requires a significant
investment in compiler technology. Thankfully, the Java engineers are ahead of the
curve on thisaswell. They have put together a specification for aJust In Time (JIT)
compiler.

Remember that Javais an interpreted language. This means that the code you develop
isonly halfway compiled into bytecodes. The bytecodes are then translated by your
local virtual machine into native code. Finally, that native codeis run on your
machine. When an application executes, the bytecodes are washed through the virtual
machine, and the result is then executed on your platform. This ensures platform
independence because the bytecodes are translated by the virtual machine into native
code asindicated by the flow diagram in Figure 1-9.

Figure 1-9. Performance of Java using a virtual machine.

Bytecodes Java Virtual
Machine

Java Class

Interpreted Bytecodes

Native Machine

Today, non-Java applications are always compiled for the native machine, meaning
that you are locked into the platform for which you bought the software but can
bypass the virtual machine altogether (see Figure 1-10).

Figure 1-10. Performance of native, non-Java code.

Normal Java Virtual
Application Machine
Runs Native
Native
Machine

When Java came out with its promise of platform independence, people rejoiced
because they no longer had to develop for every computer under the sun. However,
the enthusiasm was tempered by the fact that Java was an interpreted language,
meaning that the extra steps involved in trandlating Java code into native code made

applications significantly slower. Furthermore, the bytecodes generated by the Java
compiler were created with platform independence in mind. This meant that in order
to preserve an adequate middle ground, Java bytecodes were arranged so that no
platform necessarily got an advantage when it came time to trandlate into native code.
The end result was that not only did it take a bit more time to interpret the code, but
also that the code was interpreted from a platform-independent state caused the
resulting native code to execute more slowly.

The JIT compiler solves most of these issues by enabling you to generate native code
from your interpreted bytecode. The native code then performs exactly as it would
have performed had the program been originally programmed in a native language.

Asyou can see from Figure 1-11, the JIT exists as part of the virtual machine, and JT
compilation happens automatically if the compiler isinstalled. Some virtual machines
will allow you to turn off JT compilation, but that should be necessary in only rare
cases. Currently, several vendors including Sun, Microsoft, and Symantec are offering
JT compilersthat either can be purchased as add-ons to a native virtual machine or
are bundled as part of their own virtual machine.

Figure 1-11. Performance of Java using a JIT compiler.

Bytecodes Java Virtual
Machine

Java Class I

JIT Compiler

JIT-Compiled
Bytecodes

Native
Machine

Summary of Performance Issues

Performance is an issue of vital importance to Java programmers. Because of Javas
promise as a platform-independent language, several architectural decisions were
made to create the language. However, some of these decisions have contributed to
Java's faults. Many of these issues have been addressed, namely download and
runtime performance. Further deficiencies in the Java language will be corrected as
time goes on if Javaisto achieve its potential. Ultimately, the growth in applications
using the language will uncover these faults as well as the corrections to them.

With several of the major benefits of the Java language under our belt, we can turn to
finally developing a networked application. Our networked applications will use many
of the techniques we have discussed thus far, as well as several more we will
introduce along the way. Congratulations! Y our first foray into Java networking is
about to begin.

A First Look at Java Networking in Action

So far you have learned the three basic things you need to know in order to write
networked applications in Java:

o Object-oriented design
e Input and output fundamentals
e Threading

A good object-oriented design will allow you great flexibility in creating clients and
servers. Y ou can extend the functionality of awell-designed class very easily. You
can either alter the nuances of the class's architecture in order to facilitate the kind of
communication you desire or publish your classto the "world" so that it can be used
asit wasintended to be used.

Solid input and output fundamental s enable your classes to process data quickly and
efficiently. With a strong /O functionality, your classes can accept, manipulate, and
return data without much hassle. And once again, you can publish your class to the
"world," specifying exactly which data you will accept and streamlining the
processing power of your objects.

Effective threading principles will enable your class to produce fast turnaround times
on object requests (those methods invoked upon your object), make good use of
system resources, and begin to create an entire collection of objects that work together
without affecting system performance. Figure 1-12 illustrates how a server can
effectively handle information by spawning threads to process that information.

Figure 1-12. Threading can prevent servers from being bogged down.

Thread
Server
Input —» Server Result
Class

Good networked applications have three things in common:

o Useful interface definitions
« Pragmatic data definitions
« Efficient processing of data

Hopefully, the treatment of these three topicsin this chapter so far has provided you
with ameans to satisfy the criteria set forth earlier and publish networked Java objects
that take full advantage of the language.

Pulling It All Together

Throughout this book, we will reimplement the following featured application. Our
Internet Calendar Manager is asimple tool designed to enable you to schedule
appointments over a network. Because of Java's platform independence, you will be
able to run this application on both your Windows laptop as well as your SPARC
station. Because the datais held in a central repository with the Internet used as the
communication mechanism between the two, it will not matter where you run the
application because—no matter what—you will be manipulating the exact same data.

Road Map for Success

Your first task isto outline a clear object-oriented strategy to complete your project.
For example, the Internet Calendar Manager was designed with modularity as its most
crucial element. We wanted to be able to remove and replace certain parts of the
program as often as we needed to without affecting the rest of the application. With
that in mind, we created the class structure as shown in Figure 1-13.

Figure 1-13. The class structure of our Internet Calendar Manager was created with
modularity in mind.

Internet

Calendar
Manager
//ljt_ilities
Cvuios D (Sonoau

Asyou can see, changing a component in the Scheduler does not at all affect the
Calendar portion of the application. Each module is entirely separate from the other.
Thisis an example of code reuse and modularity. Furthermore, the Network module
keeps our network interaction limited to one module. All initialization, data exchange,
and remote invocations take place only from within the module itself.

Furthermore, we recognized a series of objects that we would require throughout the
application. Most of these are not specific to the implementation of any module;
rather, they are helper objects that deal with wide ranging things from multimedia
(sounds and pictures) to animation. These objects were placed in the Utilities module
so that they could be used as needed.

Project Planning

Once the project is divided as we did in the previous section, we must define the
interfaces with which objects would talk to one another. In particular, the modularity
of the Network component enabled usto redo it for each section without in any way
affecting the rest of the application. In fact, the entire Network module wasn't even
completed until two weeks before press time. The rest of the application was finished
and working, talking to the Network module, but was never communicating with any
remote objects.

User Interface

The Internet Calendar Manager we created is a stand-alone Java application. We made
it so for ease of use. An applet version of the same application will reside on the Web
site for this book. In any event, the Ul components are the same. A series of buttons
along the top of the application control which of the two tasks you can do: add an
appointment or delete an appointment.

Pressing the Scheduler button takes you to the Add an Appointment section. There,
you can specify the reason for the appointment and the time for which you would like
to schedule it. Pressing the Schedul e button sends the appointment to the Network
module, which, in turn, talks to the server and places the appointment in the data
repository.

The Calendar button takes you to the Calendar application. The Calendar application
allowsyou to view alist of all the appointments scheduled, and the reasons and times
for them. Y ou may also delete appointments from within this application.

The content of the card layout is dependent on which button you press, as shown in
Figure 1-14.

Figure 1-14. The main GUI for our featured application.

E.._i:]jvu Hetwork Programming

Card |
Layout

Finally, the exit button gracefully terminates the connection, telling the Network
module that it wants to exit.

Network Modules

The Network module will be changed from chapter to chapter to reflect the new form
of network communication. However, the APIs will remain the same. The Network
module provides an abstracted layer above the network communication mechanism of
choice. In so doing, we can provide a series of four methods that are of importance to
the user, while keeping the network hidden from the rest of the application:

public class NetworkModule

{
public void scheduleAppointment(

String reason,
int time);
public Vector getAppointments();

public void initNetwork();

public void shutdownNetwork();

Asfar astherest of this application is concerned, the Network module will accept
information and do something with it over the network. Precisely what that something
isis of no concern to the application itself.

Servers

The Network module would be useless without a server for it to talk to. Every server
implements the same exact routines, regardless of whether it is a Java Database
Connectivity (JDBC) server, a Remote Method Invocation (RMI) server, or an
Interface Definition Language (IDL) server. In fact, the server itself isinterchangeable,
enabling us to choose on the fly to which one we want to talk. Simply run the proper
application to take advantage of the communication mechanism of your choice.

public interface InternetCalendarServer

{
void scheduleAppointment();

void getAppointments();

The interface definition in this snippet does not take into account any kind of data
structure in which to store an appointment. The server code implements both of the
foregoing methods, as well as establishes and defines the following data structure:

public interface InternetCalendar Server

{
Appointment Type
String reason;
int time;
}
void scheduleAppointment(
AppointmentType appointment
AppointmentType[] getAppointments();
}

Keep in mind that the interface definitions shown are pseudo-code only. As we will
see later, server definition varies widely between each communication alternative. In
Java IDL we will see how an entire language is available with which to define servers.
In Java RMI we can create servers using Javaitself.

NOTE

In an effort to show you how easy and fun network programming can be with Java,
we have devised a simple application that we will redo every chapter. In one
chapter we will use sockets, in another CORBA. Eventually, you will have six
different applications that do the same thing. With the six applications, you can
compare ease-of-use and performance, as well as figure out what all the hubbub is
about network programming. The next four chapters will explore the basic
alternatives available to network programmers intent on using the Java language.

Chapter 2. TCP/IP Fundamentals

e IntheBeginning...
e |IPAddresses
e Protocols

In the Beginning...

At the very heart of Java networking (and most other internetworking) is TCF/IP
(Transmission Control Protocol and Internet Protocol). TCP/IP is a protocol suite (i.e.,
aset of rulesfor exchanging information) that sits between an application and a
network that enables an application (object) on one node of a network to pass
information back and forth to another application (object) residing on another node of
the network. The approach used by TCP/IP to do thisisto arrange the protocol into
layers of subprotocols that each have their own specific function(s) that, when used
together, provide arich functionality and an orderly approach to data communications.

In many ways TCP/IPisvery similar to other software-based protocols (i.e., protocols
that are "on the wire" protocols like Ethernet, NETBIOS, NETBUI, SNA). The major
difference is the way that TCP/IP was developed: Rather than being a protocol based
on one manufacturer's view of networking and its relation to corporate profitability,
TCP/IP developed out of the idea of "Open Systems.” Open Systems are systems
whose specifications are developed "out in the open” rather than behind closed doors;
as long as a software devel oper implements the specification faithfully, the devel oped
system is an Open System.

The Protocol Stack

One of the things that often confuses programmers who are new to the Internet and
TCP/IPistheideaof a TCP/IP stack or a protocol stack. The confusion comes from
the term "stack”; programmers automatically think of a stack asin the stack data
structure. With relation to TCP/IP, the term stack simply means that a number of
protocols are stacked one on top of the other in a manner that allows information from
one level to be passed from one layer to the next with each layer encapsulating the
information it receives from the previous layer. Moving information down the stack is
analogous to sending, and moving data up the stack is analogous to receiving.

The OSI Stack

In the early 1980s the International Standards Organization (1SO) set out on a path to
develop a set of standards that would ensure interconnectability and interoperability of

disparate computer systems. This effort started and took place mainly in Europe; at
the same time, in the United States, teams of technologists from industry, government,
and the universities were busily exchanging ideas on how to arrive at the same goals
as 1S0 (i.e., interconnectability and interoperability). In 1983 the protocol suite that
has come to be known as TCP/IP was named as the U.S. Department of Defense
Standard and was eventually required on all U.S. government computer systems.

Through the SO work, the Open Systems Interconnection (OSl) reference model,
referred to as the OSl stack, shown in Table 2-1, was developed. Today the OSI
protocol stack remains primarily a European thing; even though the TCF/IP protocol
stack isin wider use than the OSI stack, the OSl reference model (even in the United
States) remains the ideal for modeling communication systems.

Table 2-2 shows a comparison of the seven-layer OSI protocol stack vs. the TCP/IP
four-layer stack. Note that TCP/IP abstracts the top three layers of the OSl stack
(application, presentation, and session) into a single application layer. The bottom two
layers of the OSl stack (link and physical) are abstracted into asingle link layer. In the
OSl model, application logic is handled in the application layer; anything related to
presentation (data conversions [ASCII-EBCDIC, ASCII-UNICODE])) in the
presentation layer; and threading, multiprogramming, and managing client sessions on
the server in the session layer. In TCP/IP all these activities are performed in the
application layer without requiring individual protocol layers for each of the OSI
layers. This abstraction on the part of TCP/IP makes for lighter weight and more agile
applications. The abstraction of the bottom two layers of the OSI model is a"makes
sense" abstraction as the physical layer represents the Network Interconnection Card
(NIC) and the link layer is the driver software that controls the NIC. These layers are
inseparable (i.e., one isn't of much use without the other).

Table 2-1. The OSI Reference Model

Application TELNET, FTP, SMTP, HTTP
Presentation Byte-order, ASCII-UNICODE, COM-CORBA
Session Login session, RPC call, ORB/RMI invocation
Transport End-to-end communication (with possible ack)
Network Host-to-host communication (one hop in a path)
Link Network adapter card device driver
Physical Ethernet, ISDN, PPP, T3, CATV

Table 2-2. OSI Reference Model and the TCP/IP Model

OSI Model TCP/IP

7 Application Application 4
6 Presentation
5 Session
4 Transport Transport 3
3 Network Network 2
2 Link Link 1
1 Physical

Not long ago, OSI, TCP, and UDP were competing network standards; today, TCP
combined with UDP-based IP pretty much stands alone (as TCP/IP) as the primary
Internet protocol. The Internet Protocol (1P) code maintains routing tables to make

sure each | P packet getsto the next hop in aroute toward its destination. Note that one
UDP datagram or one TCP segment may be broken into many P packets. Each IP
packet may take a different route from the source to the destination, and the packets
may arrive in adifferent order than they were sent. UDP sends the received packets
upward toward the application code as soon as they arrive. TCP collects the IP
packets and assembles a TCP segment before sending it upward, so the application
receives pieces of datain the same order it was sent.

One of the more pronounced differences between the OSI model and the TCP/IP
model isin the area of error-handling philosophy. The OSI approach isto require
error checking to be done for each hop (node to node) a packet makes through the
network. This means that for each hop a packet will be error-checked in the network
layer (routers usually only consist of the link and network layers). If a packet makes
10 hopsin getting from point ato point b, the error checking involved will occupy a
significant percentage of the overall transmission time. The TCP/IP approach isto do
error-checking only at the end points; since the whole ideais to move datareliably
from point ato point b, the error-checking is done only once making for much less
overhead and faster end-to-end communications.

The TCP/IP Stack

The TCP/IP stack consists of four layers:

Application|This layer is made up of protocols designed for specific applications. Many TCP/IP
protocol suites come with anumber of client applications that implement some of the
common and widely used protocols like FTP, POP, TELNET. These protocols consist
typically of aset of commands to be issued by the client (instructions to the server to do
something) and a set of command responses (that are passed back to the client).

Information from this layer moves down the stack. In this respect the protocol actually
functions as a queue (i.e., information moves down the stack, from one layer to the next,
to send and up the stack to receive). Each protocol layer will wrap its own header or
header/trailer information around whatever it receives from the previous layer. At the
application layer most protocols are ASCI| text based and have a command structure
made up of keywords and string-based parametric data (check out the command-based
protocols for FTP and POP3).

Transport |Thislayer provides the application with a highly reliable data transmission medium (a
connection is made between two host computers and data transfers between the two are
sized, acknowledged for receipt, check-summed, and timed).

Network [Thislayer isprimarily responsible for moving the packets created in the transport layer
through the network and eventually to their final destination. The workhorse of this layer
isthe Internet Protocol.

Link This layer isresponsible for trandating the | P packets received from I P into the on-the-
wire protocol (Ethernet, Token Ring, ...) and consists of the user's Network
Interconnection Card and software drivers required to control the NIC.

Note: Some authors break the layer into two layers—one for the hardware interconnect
and one for the driver software.

This resembles (at least conceptually) the model shown in Figure 2-1.

Figure 2-1. The TCP/IP protocol stack.

Application

Transport

Metwork

Link

Network

Information starting out in a program running in the application layer is moved down
the stack to the transport layer. In the transport layer the information is broken up into
aseries of smaller, easier-to-handle chunks for transmission. Each chunk of datais
encapsulated with a TCP header containing sequencing and error-detection
information and moved down the stack to the network (IP) layer.

In the network layer each packet is further encapsulated by appending a header
containing network routing information to the beginning of the packet. The network
layer in turn passes each packet to the link layer, whereit is converted to the actual
"on-the-wire" protocol (Ethernet, Token-Ring, ...) for transmission across the
network.

Onitsway to itsfinal destination, a packet usually will pass through one or more
routers. Routers are fairly specialized devices and don't always function with a
complete TCP/IP stack. A router is the network implementation of a multiplexer; i.e.,
one input can be distributed to one-of-n possible outputs. To do this, the router will
have multiple NICs. The main purpose of arouter isto move packets around the
network; to do this, all it really needs to provide are the network and link layers. Asa
packet comes into the router it is received by the NIC and passed up the stack to the
network layer. IP checks the routing information and passes the packet back down the
stack to the correct NIC in the link layer and back out onto the network.

Upon reaching its final destination the packet is again received by the NIC, the NIC
strips off the on-the-wire protocol information (leaving an I P packet) and passes the
resulting information up the stack to the network layer. 1P then removes the routing
information (leaving a TCP packet) and passes it up the stack to the transport layer.
TCP checks the packet for errors, removes the TCP header, and rebuilds the original
application data by accumulating the packets and reassembling the original data
(using the sequence numbers in the TCP header). Once the data has been
reconstructed it is passed back up the stack to the application layer, where it is acted
upon. Thisentire processisillustrated in Figure 2-2.

Figure 2-2. Data movement from one host to another.

Client

Application

Transport

MNetwork

Link

\’

T

_’

Server

Application

Transport

Metwork

Link

T

Now that we understand the general flow of information through a TCP/I P-based
network let uslook at the stack in alittle more detail. We've already said the transport
layer consists of two protocols—TCP and UDP—»but the suite consists of many other
protocols. Figure 2-3 shows the other protocols that make up the suite (application
protocols are indicated at the top of the figure as plain text but are shown only asa

sample and not a complete set).

Figure 2-3. The TCP/IP suite.

ping IracE-noule fip ifip merouted
App App Apgp App App
T
; /
\ TCP uoP /
\ _/ /
ICMP P IGMP
ARP - Link 1 RARP

apphication

IFAMSROT

nerwek

lirik

Also note that there are two common versions of 1P, version 4 (32-bit addressing) and
version 6 (64-bit addressing) and that protocols that use IP also come in both version
4 and version 6 flavors. This being noted, the following is a brief description of what

each of the protocolsisused for.

TCP

Transmission Control Protocol.

TCP can be thought of as the part of the suite that makes IP areliable tool. It guarantees that
datareachesits intended destination and is received correctly and received in atimely manner.
TCPisrelatively application-oriented in that using its socket facilities provides applications
with a bi-directional byte stream between two hosts located at application endpoints.

A connection-oriented service is best for applications that require charactersto be received in
the same order in which thev were sent. such as kevstrokes tvoed from aterminal or bvtesin an

ASCII filetransfer. Usually, the connection is kept open for along time relative to the length of
time to set up the connection (a"handshake" of three | P packets).

Connection-oriented protocols, such as TCP, send an acknowledgment when the dataiis
received, and they retransmit data automatically if an acknowledgment is not received before
the time-out period has expired. Each acknowledgment packet tells the receiving side how
much buffer space is available at the other end. This enables both endpoints to transmit a
"window" of data, perhaps several 8K packets, before stopping to wait for an acknowledgment
from the other end. When the acknowledgment is received, the window size is updated from the
packet header. This enables TCP to throttle data transfer when one side is running low on buffer
space and to increase data transfer when the other side has plenty of room to receive data.

UDP |User Datagram Protocol.

UDP is connectionless and acts more like a broadcast medium. Datagrams sent by UDP are not
guaranteed to reach their destination. UDP is designed for speed, not reliability.

1P Internet Protocol.

The workhorse of the TCP/IP suite, IP takes care of the actual moving of datagrams from point
ato point b. Thisis done by way of 1P's datagram infrastructure. UDP is an application
interfaceto IP.

ICMP|Internet Control Message Protocol.

ICMP handles TCP/IP internally generated error messages and control messages between
routers and host computers. Not used for application layer errors.

IGMP|Internet Group Management Protocol.

IGMP is used for multicasting and will not be discussed in this text.

ARP |Address Resolution Protocol.

ARP maps | P addresses to hardware addresses (every NIC has a manufacturer provided unique
address) for broadcast style wire protocols (Ethernet, Token-Ring) but is not used by point-to-
point wire protocols (SLIP, PPP).

RARP|Rever se Address Resolution Protocol.

RARP maps hardware addresses to | P addresses. RARP is used typically to allow the Bootstrap
Protocol (BOOTP) to aid a diskless workstation (X-Station) to discover its IP address so that its
boot image can be retrieved.

Datagrams

Now that we've used the term "datagram™ quite freely, it's best to explain what it is.
Basically it'sthe unit information used in the IP layer. To understand this better, refer
to Figure 2-4. At the physical level of anetwork (which isn't addressed by TCF/IP),
the transmission medium is usually a piece of wire, fiber optic cable, microwaves, or
some other exotic transmission medium. At thislevel, information travels along as a
serial bit stream where the basic unit of information isabit. Asthe bits leave the
transmission medium and move into the link layer, the unit of information is called a
frame. Asthe frame moves up the stack and the link layer's header and trailer
information is removed, the unit of information becomes a datagram. IP removesits
header from the datagram and passes the result to TCP as a segment. TCP collects the
segments together until it has all that it is expecting and passesiit up the stack to the
application as amessage. Thiswhole process of receiving data can be thought of asa
collecting together of all the pieces.

Figure 2-4. Units of information for the TCP/IP stack.

Application message
Transport segment
Metwork datagram
Link frame
bit

IP Addresses

Now here are afew words about | P addresses. First, they are called 1P addresses
because they are used by the IP (network) layer to route | P datagrams around the
Internet.

Figure 2-5 shows the five classes of |P addresses and how they are structured from a
numbering standpoint. Classes A, B, and C are reserved for private networks and have
the following address spaces:

Figure 2-5. IP address classes

01234 i3 16 24 32

0 netid Host id

Class A

10 imetid Host id

Class B

110 netid

Class C

1110 multicast address

Class D

11110 future use

Class E
Class A 0.0.0.0 127.255.255.255
ClassB 128.0.0.0 191.255.255.255
ClassC 192.0.0.0 223.255.255.255
ClassD 224.0.0.0 239.255.255.255
ClassE 240.0.0.0 247.255.255.255
Protocols

When aforeign dignitary arrives at the White House, certain protocols are observed.
These describe who is introduced and when and with what fanfare. The President is

always introduced last and makes his or her entrance to the tune of "Hail to the
Chief." A protocol ensures that certain formalities are observed when information is
exchanged across networks. Thisincludes the format of the message, the content of
the message, and the type of connection used to send the message. There are several
kinds of protocols, ranging from the time-tested TCP/IP or UDP to the newer Internet
Inter-ORB Protocol.

Some of the application level protocols and applications we will be examining in
more depth in the chapters that follow are mentioned here.

DNS

Something that we haven't discussed yet that is used in every Internet transaction is
the Domain Name System (DNS) and its protocol. The DNS is something that we all
become aware of pretty early on in our use of the Internet but never really understand.
| never thought about it until | was teaching an Internet Programming class one
semester and was explaining the TCP/IP stack and layered protocols. One of the
students asked, "How does | P get the dotted decimal version of the dotted word IP
that we specify to our applications (FTP, TELNET)?"

The DNSisadistributed database used for translating dotted word notation

(http: //mmw.myhome.com) for | P addresses into the dotted decimal version
(128.226.183.11). No single server keeps track of all IP addresses; the address space
is distributed somewhat regionally and arranged in a hierarchy. DNS is commonly
used as follows: Suppose we want to FTP afile from aremote server. Our FTP client
builds a request packet and sends it down the stack to TCP, which adds its header and
pushes the segment down to IP. IP adds an IP header, but before it can it must resolve
the remote host's dotted word address to dotted decimal. Thisis done by IP sending a
datagram request (UDP is used for speed) to the nearest DNS server. If that server
can't resolve it, the request is sent up the DNS hierarchy to the next server. Thisis
done until the addressis resolved and returned to |P where it is translated into a 32-bit
number and added to the | P header.

Many companies and universities that have large intranets for their campuses run their
own DNS servers for performance reasons. On an intranet, most host-to-host
communications are between hosts on that same intranet; they do not need to go out to
the Internet to use a DNS server. It makes sense to keep alocal copy of the nearest
Internet DNS server locally. For private networks (not connected to the Internet), it
makes sense to run asingle DNS server containing only the addresses on the private
network.

HTTP

HyperText Transfer Protocol (HTTP) isa TCP/IP application layer protocol that
provides the connectivity between the client and server for the "killer app" of the
century. HTTP is based relatively closely on an older protocol called Gopher. Gopher
provided atext-based client and server that enabled the retrieval of information from
large collections of research data maintained on mainly university computer systems.
When HyperText Markup Language (HTML) was devel oped for the Mosaic browser
and the Gopher protocol was modified to handle the transmission of graphics

combined with text, the whole face of computing changed. This combination made
the Internet easy to use for nontechnical users. HTTP enabled the development of the
World Wide Web. Javais the next step to advance distributed computing in an object-
oriented direction. HTTP is discussed in Chapter 7, "Web Servers, Server-Side Java,
and More." It isimportant to remember that HTTP is entirely based on TCP sockets.

CORBA and IIOP

The Internet Inter-ORB Protocol (I10P) is an open Internet protocol for
communication between objects residing on a network. 110OP enables network objects
to invoke one another using an industry standard messaging system (CORBA).
Without 110P, objects on the client end would not be able to talk to objects on the
server end without first synchronizing their languages. 110P standardizes the means
clients and servers use to exchange information. It also enables clients and servers
developed using different application programming languages (C, C++, Java) to
interact with one another. Aswe will see later in this chapter, the format of the
messages sent between clients and serversis of the utmost importance. In our daily
lives, we even require a standard message format. If | were to start transposing my
nouns and verbs (such as "were if | transposing to start my nouns and verbs'), then no
one would understand me. Similarly, 110OP enables objects implemented in different
languages to understand one another. When CORBA first came out, its underlying
protocol was based on UDP to optimize performance. As CORBA has matured, [1OP
has switched over to TCP sockets.

RMI

Remote Method Invocation (RM1) is another TCP sockets-based protocol scheme for
the implementation of network objects. The general idea of RMI isthat every network
object consists of aclient piece and a server piece. Wouldn't it be niceif this object
could be treated (from an application's standpoint) just like any local object. RMI
provides an infrastructure that does just that. The main complaint about RMI comes
from the fact that the protocol is not openly developed or published. Because of the
complaints over this, Sun Microsystems has agreed to base client/server
communications on I1OP in some future release of RMI. The current implementation
uses Java serialization APIs and TCP sockets to provide the underlying
communications infrastructure.

JINI

JINI, rather than being strictly a protocol, is atechnology not for client/server
applications but for the interconnection of JINI-enabled devices into impromptu
networks. An example of thiswould be that | go out and buy an XY Z JINI-enabled
color printer. When | take it home and plug it into my whole house Ethernet, the
printer automatically registersitself and its drivers with the network. | turn on my
JINI-enabled workstation and get into my favorite word processor and ask to print in
color (at this point my workstation only knows about my black and white printer). The
print function calls out to the network "is there a color printer out there?' The network
responds and transparently downloads the driver for the color printer so that the word
processor can send data to the printer. Just think, | didn't have to install the drivers (or

even find them); the printer had its own drivers built in and made them available to
the network.

Chapter 3. Java Sockets and URLSs

Sockets and Interprocess Communication
Client/Server Methodol ogy

The Pizza Order Protocol (TPOP)

The TPOP Server

The TPOP Client

Sockets and Interprocess Communication

At the heart of everything we discussin this book is the notion of interprocess
communication (IPC). In this chapter, we will look at some examples using Java
mechanisms for interprocess communication. |PC is afancy way of saying "two or
more Java programs talking with each other.” Usually the programs execute on
different computers, but sometimes they may execute on the same host.

Introduction to IPC

When you call Charles Schwab to check on your stock portfolio, you dial atelephone
number. Once connected, you press some telephone buttons to request various
services and press other buttons to send parameters, such as the numeric codes for
stock symbolsin which you are interested. Y ou may think of your account as an
object with different methods that you can invoke to purchase or to sell stocks, to get
current quotes, to get your current position in astock, or to request awire transfer to a
Swiss bank. You are aclient and the other end is a server, providing the services
(methods) you request.

Of course, the server also provides services to many other clients. Y ou can be aclient
of other servers, such aswhen you order a pizza with a push button telephone.
Sometimes a server can be a client aswell. A medical records query server may have
to send arequest to two or three hospitals to gather the information you request for a
patient. Thus your server becomes a client of the hospital serversit queries on your
behalf.

All these situations are examples of interprocess communication. Each client and each
server reside in different processes. Sometimes you, the individual, are the client;
other times it is a computer. Sometimes the server is an application that listensin on
what you type on your telephone pad and processes the information; other timesit
will be a program, perhaps written in Java as we will do later in this chapter. IPC is
how our applications communicate, but it also refers to the mechanism we use. This
chapter explores the fundamentals of 1PC using something called a socket.

Sockets

The communication construct underneath all this communication is more than likely a
socket. Each program reads from and writes to a socket in much the same way that
you open, read, write to, and close afile. Essentialy, there are two types of sockets:

« Oneisanaogous to atelephone (a connection-oriented service, e.g.,
Transmission Control Protocol)

e Oneisanaogousto amailbox (aconnectionless "datagram” service, e.g., User
Datagram Protocol)

An important difference between TCP connection sockets and UDP datagram sockets
isthat TCP makes sure that everything you send gets to the intended destination; UDP,
on the other hand, does not. Much like mailing aletter, it is up to you, the sender, to
check that the recipient received it. The difference between the two protocolsis very
similar to comparing the differences between using the phone to talk to friends and
writing them letters.

When we call afriend using atelephone, we know at all times the status of the
communication. If the phone rings busy, we know that we haveto try later; if
someone answer's the phone, we have made a connection and are initiating the
message transfer; if the person that answered the phone is the right person, we talk to
them thereby transferring whatever information we intended to deliver.

Had we written aletter, we know that we would have initiated an information transfer
after we dropped it off at the mailbox. Thisiswhere our knowledge of the transfer, in
most cases, ends. If we get aletter back and it starts out with "Thanks for your letter,"
we know that our letter was received. If we never again hear from the person, thereis
some doubt that they ever received our letter.

Sometimes when you use the postal service, your letter becomes "lost in the mail."
When the letter absolutely, positively hasto be there, you may need amore reliable
form of postage. Similarly, your choice between using a datagram or a connection
socket is easily determined by the nature of your application. If all your datafitsin an
8K datagram and you do not need to know if it was received at the other end, then a
UDP datagram isfine. Mailing party invitations is one example where UDP is more
appropriate than TCP. If the length of service warrants the expense of establishing a
connection (three handshake packets), or it is necessary that all the packets be
received in the same order as they were sent, such as transferring afile that is more
than 8K bytes long, then a TCP socket must be used. Likewise, if we were to mail our
important package using something like Federal Express, we would be able to track
the package and know when it arrives at its destination.

Hereis another way to ook at this. Suppose we have a server that is somewhere on
the network but we don't know where. To communicate with this type of server, we
must first announce our presence, listen for an answer, and then carry on the
conversation in lockstep where first one end sends then listens while the other end
listens then talks. Thisislike a student walking into the reserve room of a college
library and, upon not seeing the librarian right away, saying, "Is there anyone here?"
and then listening for a response.

"Good afternoon, I'll be with you in a moment.”

"I'd like the book Prof. Steflik put on reserve for CS-341."
"Hereit is. Please leave your Student ID card.”

We announced our presence and started listening. The server was listening, heard us,
replied with an implied go ahead, and returned to listening. We heard the server's
response, announced what we wanted, and returned to listening. The server (librarian)
heard our request, retrieved the information (the book), and delivered it. This back
and forth type of communication is known as half duplex, where only one endpoint
talks at atime; contrast this with full duplex, where both endpoints can talk and listen
at the same time.

NOTE

A socket is sometimes called a"pipe" because there are two ends (or points as we
occasionally refer to them) to the communication. Messages can be sent from
either end. The difference, as we will soon see, between a client and a server
socket isthat client sockets must know beforehand that information is coming,
whereas server sockets can simply wait for information to come to them. It's sort
of like the difference between being recruited for ajob and actively seeking one.

In this chapter, we will write an online ordering application, using TCP, and a
broadcast communication application, using UDP. These applications will use the
following classes from the java.net package, asillustrated in Table 3-1.

Table 3-1. Java.net.* Types and Their Corresponding Protocol

Mechanism Description

Socket TCP endpoint (a "telephone™)

ServerSocket |TCP endpoint (a "receptionist")

DatagramSocket|UDP endpoint (a "mailbox")

DatagramPacket|UDP packet (a "letter")

URL Uniform Resource Locator (an "address")
URLConnection '::r\’jliztel,\\)/e connection to an Internet object (e.g., a CGI-bin script, a DayTime

What Are Sockets?

At theroot of all TCP and UDP communicationsis avirtual device called a socket or
aport; the terms are pretty much interchangeable. Sockets are a visualization
mechanism for a software buffering scheme that is implemented deep in the bowels of
the transport layer of the TCP/IP stack. The term "socket" actually comes from the
old-fashioned telephone switchboard that Lily Tomlin's character Ernestine, the
telephone operator, uses. The concept is pretty similar: Each socket in the switchboard
represents a person or service that an incoming call can be routed to; when an
incoming call is answered, the operator connects it to the appropriate socket, thereby
completing the connection between the client (the caller) and the server (person being
called). In the telephone switchboard each socket represented a specific person or
service; in TCP/IP certain sockets are dedicated to specific agreed-upon services.

If we wereto look at the packet level, we would see that a socket isreally identified

by a 16-bit number thereby giving us about 65,000 possible sockets. The first 1024
sockets are dedicated to specific agreed-upon services and are therefore called well-
known ports. For each of the services provided on the well-known ports, thereisa
corresponding protocol that defines the manner in which clients and servers using that
port should communicate. The protocols themselves are arrived at through a process
known as the RFC process. Table 3-2 lists some of the more common TCP/IP services,
their "well-known" ports, and their respective RFCs. Every Internet standard starts out
as a"Request for Comment" or RFC. Through an interactive process an RFC, if
"worthy," will be refined and developed by the Internet community into a standard.

Exploring Some of the Standard Protocols

When starting to understand sockets programming, it's always best to start out by
examining the "trivial" protocols first and then move on to the more complex and
finally to our own, application-specific protocols. The trivial protocols are a subset of
Internet protocols that are simple, straightforward, and easy to implement.

Table 3-2. Some Well-Known Port Services

Port Protocol RFC
13 DayTime RFC 867
7 Echo RFC 862
25 SMTP (e-mail) RFC 821 (SMTP)

RFC 1869 (Extnd SMTP)

RFC 822 (Mail Format)

RFC 1521 (MIME)

110 Post Office Protocol RFC 1725
20 File Transfer Protocol (data) RFC 959
80 Hypertext Transfer Protocol RFC 2616
Daytime

The Daytime service isusually provided on TCP and UDP port 13. Assuming that we
have the address of a host that is running the Daytime service, the operation is
straightforward. Using TCP the client connects to the Daytime port (13) on the remote
host; the remote host accepts the connection, returnsits current date and time, and
closes the connection. This can be easily demonstrated using the Windows 95 Telnet
client. Open up the Telnet client and click on Connect and the Remote System. Enter
in the address of your host that provides the Daytime service, select the Daytime port,
and click Connect. Notice that a date/timestamp is displayed in the client area and that
asmall dialog box indicates that the connection to the host has been lost.

Thisexampleistrivia but illustrates two things: First, the Windows Telnet client can
be used to explore standard TCP-based protocols (we'll see this later with other
protocols. Second, we really did demonstrate how the client end of the protocol works;
the client makes a connection to the server, the server sends the timestamp and closes
the connection, and, finally, the client receives the time-stamp. To implement our own
client, understanding what the client needs to do makes the task quite ssimple. A high-
level designis

Create a socket
Create an input stream and tie it to the socket
Read the data from the input stream and display the reult

To create a socket, define avariable for the socket class and initialize it using the class
constructor:

Socket s = Socket("localhost", 7);

"localhost" is the name assigned to address 127.0.0.1 in your hostsfile; address
127.0.0.1 isknown traditionally as your machine's "loop back port," and lets your
machine talk to itself. The line above creates a socket named "s" and connectsit to
port 7 on your loop back port. To connect to the Daytime service on any other host,
just replace localhost with a string containing the dotted decimal name or IP address
of whatever host you want to connect to.

This single instruction will create the socket object and attempt to connect it to the
specified host. Because this has a possibility of failing (throwing an exception—a
connection may not be established), we need to code it in atry/catch construct.

import java.io.*;
import java.net.*;
public class DayTimeClient{
public static final port = 13;
public static void main(String args[])
{
Socket s = null;
String timestamp;
try
{
// create the socket to the remote host
s = new Socket(args[0], port);
// create an input stream and tie it to the socket
InputStream In = s.getlnputStream();
BufferedReader in =
new BufferedReader(new InputStreamReader(in));
// tell user they are connected
System.out._printIn("'Connected to : " +
s.getlnetAddress() + "on port " + s.getPort()) ;
while (true) {
// read the timestamp
timestamp = in.readLine();
it (timestamp == null) {
System.out.printIn('Server closed connection');
break;

}
System.out._printIn(‘'Daytime : ™ + timestamp);

}

}
catch (10Exception e) { System.out.printin(e);}

finally

//force the connection closed in case it"s open
try
{ if (s = null) s.close(); }
catch (10Exception e2)
{1}

The code follows our high-level design pretty closely. Wefirst create a socket and
then create a stream and tie the two together. Notice that all I/O isdonein atry
construct so that all 1/0 problems (socket or stream) are automatically caught as
exceptions. In fact, especially notice that the finally clause of the main
try/catch/finally uses a nested try to catch the fact that if the connection is already
closed so that we can terminate the program gracefully in the null catch statement.

Now that we've mastered the most trivial of the protocols, let's move on to something
alittle more complicated.

Echo

"Well-known port" 7 on most hosts provides a service called echo. Echo is pretty
much a diagnostic service and works as follows (see RFC 862 on the companion
CDROM for afuller description):

1. Theclient connectsto the server on port 7 and proceeds to send data.

2. The server returns everything it receives to the client. This may be done on a
character-by-character basis or aline-by-line basis depending on the
implementation of the server.

Let's start out our examination of echo by first writing a non-sockets-based version of
Echo just to get afeel for what it is that we want to do.

public class EchoTest

{
public static void main (Stringargs[])

{

BufferedReader in = new BufferedReader

New InputStreamReader(System.in));
String line;
while(true)

line = In.readLine();

catch (10Exception e)
{

}

System_err._printIn(e.getMessage());

System.out.printin(line);

}
}
}

The program is quite simple and straightforward. First, we define an input stream and
connect it to the standard input keyboard (System.in); then we define a string for our
only program variable, which will hold the string we read from the keyboard and print
on the Java console. Finally, we put the read and write in ado forever loop.
Remember, in Javait is not only considered good form to provide try/catch constructs
when doing /O it is necessaary.

Y ou can execute the program that we created by doing the following, and get similar
results:

%prompt% javacEchoTest. java
Y%prompt% javaEchoTest

abc input..

abc .output
def input..

def .output
Xyz input..

Xyz .output
~C

%prompth

Moving EchoTest to Sockets

Taking another step toward proficiency using Java sockets, we modify our echo
program to do the following:

1. Read aline from the keyboard.

2. Writeit to a socket connected to TCP port 7.
3. Read the reply from the socket connection.
4. Print the line from the socket to the screen.

A socket object is created as follows:

Socket s = Socket("localhost", 7);

The two arguments to the Socket constructor are hostname and port number. We use
"localhost" to keep it ssimple. The hostname is passed as a String variable, typicaly
from the command line and the port number asan int.

Hereisasimple TCP client written in Java. First, we must create the EchoClient
class and import all the Java libraries that we will use in our program.

import java.io.*;
import java.net.*;

public class EchoClient

{
}

Now, we must create a function in which we will place aloop similar to the one we
created with our Java-only client. Thisloop must have two objects on which to act—
the BufferedReader from the socket from which it will get data and the PrintStream
from the socket to which it will write data. We assumed this was standard input and
standard output for our Java-only client, but we will not make that assumption here:

import java.io.*;
import java.net.*;

public class EchoClient

{
public static void echoclient(BufferedReader in;
PrintStream out)
throws 10Exception
{
}
}

Now, we must get an input stream for the keyboard. For thiswe'll use another
BufferedReader tied to System.in. We will also add the loop here. The loop will first
get input from the keyboard using the stream we just created. Then it will write that
data directly to the socket.

import java.io.*;
import java.net.*;

public class EchoClient

{

public static void echoclient(BufferedReader in;
PrintStream out)
throws 10Exception

{
kybd = new BufferedReader(

new InputStreamReader(System.in);
String line;

while(true)
{

// read keyboard and write to the socket
try

{
line = kybd.readLine();

out.printin(line);

catch (10Exception e)
{

}

System_err._printIn(e.getMessage());

}
}

To finish up, we now read the activity on the socket and stick it on the screen by
writing to the Java console using the System object.

public class EchoClient
{
public static void echoclient(BufferedReader in,
PrintStream out)
Throws I10Exception
{
// make a stream for the keyboard
BufferedReader kybd = new BufferedReader(
new InputStreamReader(
System.in));
Stringline; //for reading into
while(true)

{

// read keyboard and write to TCP socket
try

{
line = kybd.readLine();

out.printin(line);

}
catch (10Exception e)
{

}

// read TCP socket and write to java console
try
{

System.err.printIn(e.getMessage());

line = sin.readLine();
System.out._printin(line);

catch (10Exception e)
{

}

System_err._printIn(e.getMessage());

}
}

Finally, we can create our main application. In our main application, we will create
the socket first and then get a BufferedReader and a PrintStream based on it. This

enables usto read and write to the socket easily, as well as passit on to the function
we created earlier. Once we are finished, we must close the connection to the socket.

CAUTION

Aswe will discuss later, too many open connections are a system liability. If a
connection is not in use, but is still open, other applications may not be able to
connect to the port to which you are connected.

import java.io.*;
import java.net.*;

public class EchoClient

public static void echoclient(BufferedReader in,
PrintStream out)
throws 10Exception

// make a stream for reading the keyboard
BufferedReader kybd = new BufferedReader(
new InputStreamReader(
System.in));
Stringline;
while(true)

{

line=""";
// read keyboard and write to TCP socket
try
{
line = kybd.readLine();
out.printin(line);

}
catch(10Exception e)

{
System._err._printIn(e.getMessage());

// read TCP socket and write to console
try
{

line = In.readLine();
System.out.printin(line);

catch(10Exception e)
{

}

System._err._printIn(e.getMessage());

}
}

public static void main(String[] args)
{

Sockets=null;

try

// Create a socket to communicate with "echo"
// on the specified host
s = new Socket(args[0], 7);

// Create streams for reading and writing
// lines of text from and to this socket.
BufferedReader in = new BufferedReader(
new InputStreamReader(
s.getlnputStream()));
PrintStream out = new(
PrintStream(s.getOutputStream());
// Tell the user that we"ve connected
System.out.printIn(*'Connected to ™ +
s.getlnetAddress() + ":" + s.getPort());
echoclient(in, out);
}
catch (10Exception e)

{
}

// Always be sure the socket gets closed
finally

{

System._err._printin(e);

try

{
if(s = null) s.close();

catch (10Exception exc)
{ ; /* terminate gracefully */}

When we execute our program, we send a message to the Echo socket, read whatever
information comes back on the socket, and then print it. Because the echo socket
merely takes whatever input it gets and bounces it right back to the port, what we get
in return on the socket is exactly what we sent. The output is displayed next. If you
need to connect to another host, substitute its name for local host.

%prompty java EchoClient localhost

Connected to localhost/127.0.0.1:7

abc request..
abc .reply
Xyz request..
Xyz .reply
~C

This service (and most others) can be tested using the Telnet client that is available as
an application with most TCP/IP stacks. In this case, the Telnet program actsin the
same manner as our client, sending information to the port and reading whatever it
gets back.

%prompt% telnet localhost 7
Trying 127.0.0.1..
Connected to localhost.

Escape character is ""]".

abc request..

abc .reply

~C

Xyz request..

Xyz .reply

| control-right-bracket

telnet> quit
Connection closed.

URL and URL Connection

Before we leave the topic of using sockets to connect existing Internet servers, let's
look at using some of the more common and popular services provided on the Internet.
We need to examine a couple of other members of java.net: URL and URL
Connection.

A Uniform Resource Locator (URL) is a string that identifies a resource on the
Internet. RFC 1738 gives an in-depth description of everything you would ever want
to know about URLSs. Table 3-3 isabrief description of the various things that make
upaURL.

Table 3-3. Makeup of a URL

Protocol An identifier (usually an acronym) that specifies the protocol to use to access the
resource

Host name [The name of the host or domain where the resource is located
(www.binghamton.edu, localhost)

Port The TCP/IP port number that the service is being provided on
number

Filename |Path- and filename of resource
Reference [#anchorname

The URL class gives us the ability to construct URL objects and a number of "getter"
methods that let us extract the various parts of a URL. From a networking standpoint,
the methods of getContent(), openConnection(), and openStream() provide us with

some very useful tools that we can use to interface with a number of protocol servers.

Toretrieve afile from aWeb server, all wereally need to know isits URL:

Class GetURL
{
try
{
String host = "watson2.cs.binghamton.edu";
String file = "~steflik/index.html";
String line;
BufferedReader in;
URL u = new URL('http://"+host+"/"+File);
Object content = u.getContent();
System.out.printIn('class: " + content.getClass());
System.out.printIn(‘'content: " + content.toString());
In = new BufferedReader

(new InputStreamReader(u.openStream()));
while ((line = in.readLine() = null)

{
System.out._printin(line);

}

}
catch (MalformedURLException e) {e.printStackTrace();}
catch (10Exception e) {e.printStackTrace();}

All we had to do was create a URL object and then use the openStream() method to
create an InputStream and eventually a BufferedReader that we can use to retrieve the
file. At this point all that is needed is aloop to read the lines out of thefile.

This technigue can be exploited for doing things like populating selection listsin an
applet-based shopping cart application with datafrom a set of pricing files kept on the
Web server. This technique can also be used to run scripts stored on a Web server.

Summary of Sockets

We have shown you what, in the most basic sense, sockets are and how they are used
in Javato build client applications that communicate, using well-defined protocols
with standards-based (devel oped using the RFC process) servers. The subsequent
sections in this chapter build on this material and show you how to create an entire
client/server system using only sockets. The rest of this book showcases several other
Java communication technologies that use sockets as their underlying mechanism to
transfer data across networks. In the large of it, applications use protocols to direct the
way they talk to one another and protocols use sockets as their network interface.

Client/Server Methodology

In the previous section we devel oped client applications for servers that already exist.
Thisisn't the way that we would necessarily approach devel oping a sockets-based
client/server application. In the next few pages we will examine a client/server
application for an Internet-based pizza ordering/delivery service that will be made up
of aclient (that pizzalovers around the community can install on the home computers
to order apizza), a server (running at the store), and a protocol that directs the
information exchange between the client and the server.

Suppose that you are at home with your cronies watching the Super Bowl, and, as
luck would have it, the Washington Redskins are playing. Asinvariably happens,
you've run out of nachos and dip before half time, so you decide to replenish the
nutrition supply by ordering a pizza. Today, when you want to order that pizza, you
pick up the phone and call your favorite pizzariato request a delivery.

A few years ago, a small start-up company in the Silicon Valley called the Santa Cruz
Operation (SCO) developed an Internet pizza-ordering application. By today's
standards, it was quite low-tech, based solely on HTML forms and requiring someone
to read the information manually on the other end viae-mail. The nifty thing about
this Internet Pizza Hut was the idea that you could simply use your computer to

communicate with afaraway place and get a pizza. In this sense, SCO was pretty well
ahead of the game—they were among the first to genuinely use the Internet, not the
corporate intranet, to conduct business with remote users.

In this section, we will develop our own pizza client/server system as an ultra-hip
high-tech alternative to the telephone and publish it to the world. Thistime, however,
we will use Java and implement our PizzaServer using sockets.

The Pizza Order Protocol (TPOP)

To design the protocol we need to examine what information must be passed from the
client to the server and vice versa. If the user interface for our client application is as
shown in Figure 3-1 we can readily see that to constitute an order we need to send the
name, address, phone number, pizza size (small, medium, or large) , and which
topping (Veggies, Meat, or California) isto be added to a standard cheese pizza.

Figure 3-1. A sample GUI for the PizzaTool.

Name:

Address:

Phone number:

O Small O Veggies

O Medium O Meat

O Large O California
‘ Reset ‘ ‘ Submit ‘ Exit

The protocol that is required to place an order is pretty simple, as shown in Table 3-4.

Let us further decide that, since we're in this early part of design, all data exchanged
between the client and the server isto be as plain old text strings (in the true tradition
of the Internet), each of which isto be delimited by the"|" character.

The next decision we need to make is which component we will develop first: the
client or the server. If we choose to develop the client first, we won't be able to test it
until we develop the server and then end up with the possibility of having to use two
untested pieces of software to test each other. Realizing the possible disaster that can
occur if thisavenueisfollowed, let's think about devel oping the server first. If the
server isrunning, we can always test it using our Telnet client. To do this, all wedois
start up our Telnet client, connect to port 8205 of the server, type in the data separated
by "|" characters, and press Enter. The server will process the data, send back the price
information, and, close the connection. This approach helps set us up for success
rather than failure.

Table 3-4. TPOP

Client Server

Start server listening on port 8205

Connect to port 8205 of the server

Accept the connection and spawn a thread to handle the
connection data

Send the order information and
then wait for the price to display

Receive the order, print it out, calculate the price, return
price to client application, and break the connection

Display the price

The TPOP Server
Server Methodology

For every client there must somewhere be a server. In an attempt to make server
creation as ssimple as possible, Java provides a Server Socket class as part of java.net.
Server Sockets, once created, listen on their assigned port for client connection
requests. As requests are received, they are queued up in the Server Socket. The
Server Socket accepts the connection request; as part of this acceptance the Server
Socket creates a new socket, connectsit to the client, and disconnects the connection
on the Server Socket port, leaving it open for more connection requests. The client
and server now talk back and forth on the new socket connection, and the server
listens for connection requests on the Server Socket.

This all sounds pretty simple, but we haven't mentioned anything about threads yet.
One of the basic ideas of client/server methodology is that one server should service
as many clients as possible. To do this there must be something in the recipe that
provides parallelism. That something is threads. The Thread class provides Javawith
aconsistent, operating system neutral way of using the threading capabilities of the
host operating system.

Javathreads, sockets, and AWT components are similar in that the classes
provided are really interfaces to the threads, sockets, and GUI widgets
supplied by the operating system that is hosting the Java virtual machine.
This meansthat if you are on Windows, you are really interacting with the
TCP/IP protocol stack provided by winsock.dll; if you are on a UNIX
platform. vou are most likelv usina Berklev sockets. If vou are on a Sun

Solaris, you are using the threading provided by the Solaris operating system.
If you are on Windows 98 using AWT widgets, you are really using the
widgets provided by Windows. Used this way by Java, these components are
known as peer components or objects. The adding of the Swing components
to Java 1.1 startsto get away from this by providing 100% Java GUI
components.

A typical TCP application opens a "well-known" port to receive connection requests,
and then it spawns a child process or a separate thread of execution to perform the
requested service. This ensures that the server is always ready for more invocations. A
single-threaded server must poll the sockets constantly. When it detects activity, it
must spawn a new process to handle the incoming request. Our multithreaded server
can simply wait for information on a socket and spawn athread to handle incoming
requests.

The PizzaServer that we will implement will hang on port 8205 and wait for
information. When the client sends its bar-delimited request, the server will spawn a
thread to handle the request. The thread reads the information, processes it, and sends

areply.
Setting Up the Server

We must create the PizzaServer object itself. The PizzaServer isastand-alone
Java application with its own application main (on the accompanying CD, two
versions of the server are provided—one with a GUI interface and one without). We
must also create aPizzaThread that inherits from the Java Thread class. This
threaded object will be created every time we detect activity on the port. Aswe
discussed in our Chapter 1 section on threads, it is one of two ways we could have
implemented the server object. We leave the other threaded version as an exercise to
the reader.

import java.net.*;
import java.io.*;

import java.lang.*;
import java.util.*;

public class PizzaServer

{
public static void main(Stringargs[])

{
}

// threaded pizza!
class PizzaThread extends Thread

{
}

Initializing the Server Socket

Inside the main program, we must create a ServerSocket. The ServerSocket isa
Javatype whose sole purpose is to enable you to wait on a socket for activity.
Initialize it by specifying the port on which you want to wait.

import java.net.*;
import java.io.*;

import java.lang.*;
import java.util.*;

public class PizzaServer

{
public static void main(String args[])
{
// initialize the network connection
try
{
ServerSocket serverSocket = new ServerSocket(8205);
catch(Exception exc)
System.out.printIn("Error! - " + exc.toString(Q));
}
}
}

// threaded pizza!
class PizzaThread extends Thread

{
}

Creating the Thread

The PizzaThread object will accept one variable, the incoming socket from which it
gathers information. We need to specify this here because the main server program
has already grabbed hold of the socket, and we don't want to do so twice. We merely
pass the socket obtained by the main program on to the thread. We will also
implement the run method for the thread.

import java.net.*;
import java.io.*;

import java.lang.*;
import java.util.*;

public class PizzaServer

{

public static void main(
String args[]
)

{

// initialize the network connection
try
{

}

ServerSocket serverSocket = new ServerSocket(8205);

catch(Exception exc)

{
}

System.out.printIn("Error! - " + exc.toString(Q));

}
}

// threaded pizza!
class PizzaThread extends Thread

{
// the socket we are writing to
Socket incoming;

PizzaThread(Socket incoming)

{
}

// run method implemented by Thread class
public void run()

{

¥

this.incoming = incoming;

Detecting Information and Starting the Thread

Now, we must wait on the thread until activity occurs. Once we detect some
semblance of information coming across the socket, we must spawn a thread
automatically and let the thread get and process the information. Our main program
merely delegates activity to others.

import java.net.*;
import java.io.*;

import java.lang.*;
import java.util.*;

public class PizzaServer
{
public static void main(String args[])
{
// initialize the network connection
try
{

ServerSocket serverSocket = new ServerSocket(8205);

// now sit in an infinite loop until we get something
while(true)

// accept the message
Socket incoming = serverSocket.accept();

// spawn a thread to handle the request
PizzaThread pt = new PizzaThread(incoming);
pt.start();

catch(Exception exc)

{
}

System.out.printIn(Error! - " + exc.toString(Q));

}
}

// threaded pizza!
class PizzaThread extends Thread

{

// the socket we are writing to
Socket incoming;

PizzaThread(Socket incoming)

{
}

// run method implemented by Thread class
public void run()

{

>

this.incoming = incoming;

Notice also how we must call the start method explicitly on the thread. Aswe
discussed in the Threads section of Chapter 1, if a classinherits from the Java Thread
class, the thread must be started from outside the class.

Gathering Information

Once the thread is running, it needs to go to the socket and get information. To do so,
we must obtain input and output streams to read and write to/from the socket.
Remember that the socket is merely a construct. In order to get information fromiit, it
must be abstracted into an input/output mechanism. We will then be able to read and
write to the socket. Aswe will discussin our client section, the data we are going to
receive isin abar-delimited format. We must use a StringTokenizer object to
extract the information from the message.

import java.net.*;
import java.io.*;

import java.lang.*;
import java.util._*;

public class PizzaServer

{
public static void main(Stringargs[])

// initialize the network connection
try
{
ServerSocket serverSocket = new ServerSocket(8205);
// now sit in an infinite loop until
// we get something
while(true)

// accept the message
Socket incoming = serverSocket.accept();

// spawn a thread to handle the request
PizzaThread pt = new PizzaThread(incoming);

pt.start();
}
catch(Exception exc)
{
System.out.printIn("Error! - " + exc.toString(Q));
}

}

// threaded pizza!
class PizzaThread extends Thread

{
// the socket we are writing to
Socket incoming;

PizzaThread(Socket incoming)

{
}
// run method implemented by Thread class

public void run()

{

this.incoming = incoming;

try
{
// get input from socket
DatalnputStream in =
new DatalnputStream(incoming.getlnputStream());

// get output to socket
PrintStream out =

new PrintStream(incoming.getOutputStream());

// now get input from the server until it closes the
// connection

boolean finished = false;

while(Ifinished)

{

String newOrder = in.readLine();

// convert to a readable format
try
{
StringTokenizer stk =
new StringTokenizer(newOrder, "|');
String name = stk.nextToken();
String address = stk.nextToken();
String phone = stk.nextToken();
int size =
Integer.valueOf(stk.nextToken()).intValue();
int toppings =
Integer.valueOf(stk.nextToken()).intValue();

// no exception was thrown so calculate total
int total = (size * 5) + (toppings * 1);

// send the result back to the client
out.printIn("$" + total + ".00");

// put our result on the screen
System.out.printIn("'pizza for " + name +
" was " + totalString);

catch(NoSuchElementException exc)

{
}

finished = true;

}

catch(Exception exc)

{
}

// close the connection
try
{

System.out.printIn("Error! - " + exc.toString());

incoming.close();
catch(Exception exc)

System.out.printIn("Error! - " + exc.toString());

}
}
}

Note in particular the two lines we actually use for reading information from the
socket and sending information back:

String newOrder = in.readLine();
// send the result back to the client
out.printIn(”$" + total + ".00");

These two lines have the same syntax as they would if they were reading and writing
afile. Infact, as we discussed in Chapter 1's input/output section, to the programmer a
socket is nothing more than afile. We are able to use streams, read and write
information, and save sockets just as we would files. Thisis an important concept to
grasp because the security restrictions that apply to sockets also apply to files. We will
discuss security in greater detail in Chapter 13, "Java and Security."

The TPOP Client

Clients are the end user interface to an application and end up being responsible
mainly for collecting user input and sending it to the server. Servers are the recipients
of that information. Think of a client approaching your restaurant with a pocket full of
money and you the owner, as the server, gladly accepting that money for your product
and services. In this section we begin our discussion of client/server programming by

developing an application that transmits information across a network connection to
another program.

Developing Clients for Servers

ThePizzaTool we are about to create is a stand-alone Java application and will have
afancy GUI interface that you can design yourself. Our GUI code's framework looks
something like this:

import java.awt.*;
import java.net.*;
import java.io.*;

public class PizzaTool extends Frame

{
// AWT Components

. . skip these for now .
PizzaTool ()

{

// initialize the application frame

// create the GUIs
}

public boolean action(
Event evt,
Object obj

if(evt.target == sendButton)

}

return true;

}

public static void main(
String args[]
)

{

PizzaTool pizza = new PizzaTool();
pizza.show();

}

When displayed, our pizzatool GUI will look something like the one shown in Figure
31

We need to modify this working client to send itsinformation over the network to the
other end. To do so, we must create a socket in our application's constructor and
initialize it aswe did earlier. We will use port number 8205 in this application.

import java.awt.*;

import java.net.*;
import java.io.*;

NOTE

Aswill be our practice throughout this book, we show you the completed GUI
rather than showing the code development process for it. There are several GUI
builders on the market, and we hope you will choose one to assist you. If you area
neophyte at Java, we recommend using atext editor and Sun's JDK (Java
Development Kit) until you become proficient at Java. GUI builderslike Visual
Café, J++, and JBuilder are great tools and can really increase productivity; the
problem isthat they really hide alot (especially in building the user interface)
from you. In some cases, the code produced by the GUI buildersis not necessarily
good code, but it is code that will work.

public class PizzaTool extends Frame

{

implements ActionListener

// AWT Components

. skip these for now .
// network components
Socket socket;
DatalnputStream inStream;
PrintStream outStream;

PizzaTool)
{

// initialize the application frame
// create the GUIs
// define Exit button handler

// define Reset button handle
}

public void actionPerformed(ActionEvent e)

// handle the Submit button here, build and send the order
}

public static void main(String args[])

{
// use the constructor to build the GUI
PizzaTool pizza = new PizzaTool();
// show the GUI and wait for an Action Event
pizza.show();

Inside the actionPerformed method, we need to send the information we gather from
our GUI back to the server. The server then makes a cal culation and sends us the total
for the order. First, we must send information across the socket using the outStream
variable we derived from the socket. Then, just as we did earlier, we must turn around
and read information from the same socket using the inStream variable.

import java.awt.*;
import java.net.*;
import java.io.*;

public class PizzaTool extends Frame

{

}

implements ActionListener

// AWT Components

. skip these for now .

// network components
Socket socket;
DatalnputStream inStream;
PrintStream outStream;

PizzaTool)

{

// initialize the application frame
// create the GUIs
// define Exit button handler

// define Reset button handler
resetButton = new Button('Reset Order'™);
resetButton.setBounds(160,270,140,60);
add(resetButton);
resetButton.addActionListener(
new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
instructionField.setText("'SelectPizza");
nameField.setText("");
addressField.setText(*");
phoneField.setText(""'");
}
}
)

public void actionPerformed(ActionEvent e)

{

// handle the Submit button here,build and send the order
// create the socket and attach input and output streams
try

{

}

// open the socket to the remote host
socket = new Socket(*'localhost™, 8205);
in = new BufferedReader(
new InputStreamReader (socket.getlnputStream()));
outStream = new PrintStream(socket.getOutputStream());

catch(Exception e)

{

System.out.printIn(10 Exception: " +e.toString());

// Send the order to the server
instructionField.setText('Sending order');

try
{
outStream.printin(
nameField.getText() + "|" +
addressField.getText() + "|" +
phoneField.getText() + "|" +
size + "|" +
toppings);
catch (Exception e)
{
System.out.printIn("Error: " +e.toString());
ks

// read the price from the server
String totalString = new String();
try

totalString = inStream.readLine();

catch (Exception e)

{
System.out.printIn("Error: " + e.toString());
}
}
public static void main(String args[])
{

// use the constructor to build the GUI
PizzaTool pizza = new PizzaTool();

// show the GUI and wait for an Action Event
pizza.show();

Please check out the bold, italicized text that defined the Reset button and its event
handler. Thislooks alittle strange but really isn't; what you are looking at isan
anonymous inner class being used as the event handler. With the new event model
that came about with JDK 1.1 came some improved event handling. Using an
anonymous inner class, the event handler can be kept right with the code (this aids
maintainability) and eliminates the need for large if/then/el se structures for decoding
what caused the event. This makes the code run considerably faster.

Notice also how we send information to the server. We have created our own protocol
and message format to use to send the three important customer fields, aswell asthe
kind of pizza ordered, directly to the pizza server. The format is delimited by the bar
sign ("|") and, aswe will see in amoment, is interpreted on the server end.

outStream.printin(
nameField.getText() + "|" +
addressField.getText() + "|" +
phoneField.getText() + "|" +
size + "|"+

toppings);

Once complete, our application then is able to publish the information it received
from the server.

NOTE

In order to conserve paper (save some trees), we have not shown you the entire
code listing for both the GUI and the network portion of our application. As
aways, afull, working version of this application can be found on the CD-ROM
that accompanies this book.

Socket programming is at the heart of everything we discussin this book. Every
communication technology involved with computers uses sockets in some fashion.
Often, having control over the format and length of messages between clients and
serversisof great importance. We could just as easily have created our pizza
application using a mechanism found in other parts of this book. However, by using
sockets, we had full control over how the communication (protocol) is implemented.

Clients and Servers in Short

So far we have implemented an application for which we know what is on both ends.
Thisform of point-to-point communication is one way to create a networked
application. We created a message, located the destination for the message, and
shipped it off. While reliable, point-to-point communication is important, we also
want to be able to form a message and broadcast it. In so doing, anyone anywhere can
grab the message and act on it. Thisform of broadcast communication can also be
accomplished using Java sockets and is discussed in the next section.

UDP Client

We have spoken so far about TCP communication, which we have mentioned is a
point-to-point, reliable protocol. Well, what makes an unreliable protocol ? An
unreliable protocol is onein which you send a chunk of information, and if it gets lost
along the way, nobody really minds. TCP provides an infrastructure that ensures a
communication is sent and arrives safely. Another protocol, User Datagram Protocol
(UDP), isa"spit in the wind" protocol. One day, you wake up, spit into the wind, and
hope it will land somewhere. Likewise, with datagrams you can easily form a message,
send it, and hope it gets to the other end. There are no guarantees that it will ever
arrive, so be careful when choosing to use a UDP socket over a TCP-based socket for
your application.

Datagrams

In the last chapter, we referred to datagrams as letters that we send to a mailbox. In
fact, adatagram is a chunk of memory, not unlike aletter—a chunk of paper into

which we put information and send off to a mailbox. Just as with the U.S. Postal
Service, there is absolutely no guarantee that the letter will ever arrive at its
destination.

Here's a sample "receive buffer” datagram:

DatagramPacket packet = new DatagramPacket(buf, 256);

Y ou must give the constructor the name of a byte or character array to receive the data
and the length of the buffer in bytes or characters. Y ou get data as follows:

socket.receive(packet);

where socket is created as follows:

socket = new DatagramSocket();

The batagramSocket classis an endpoint (mailbox) for UDP communication. Like
the Socket class (which uses TCP), there is no need for a programmer to specify the
transport-level protocol to use.

After adatagram is received, you can find out where it came from as follows:

address = packet.getAddress();
port = packet.getPort();

and you can return areply as follows:

packet = new DatagramPacket(buf, buf.length, address,port);
socket.send(packet);

This datagram will go out the same UDP port (akin to a"mailbox"), to the other
process-receiving datagrams on that UDP port number. A UDP server can specify its
service port number in its constructor, in this case port number 31543.

socket=newDatagramSocket(31543);

NOTE

Datagrams are sort of like that old "1 Love Lucy" episode in which Lucy and Ethel
go to work in acandy factory. Asthey stand in front of a conveyor belt, little
candies begin to flow out. Lucy and Ethel are able to wrap and package the
candies as they come out. Soon, their boss speeds up the belt, and the candies
begin to flow out really fast; Lucy and Ethel are unable to keep up. Similarly,
datagrams happen along the port and are picked up by receiver programs that
happen to be listening. Unlike Lucy and Ethel, however, if you miss one, nothing
bad will happen.

Creating a UDP Sender

To pay homage to Lucy and Ethel in our own bizarre, twisted way, let's create a
cookie factory! In our factory, we will be able to build chocolate chip cookies and
specify the number of chips we want in each one. Then we will send them along the
conveyor belt to be packaged and shipped off to some Java engineer turned writer
who isin desperate need of a Scooby Snack.

Real-world implementations of broadcast communication include stock tickers that
constantly publish stock quotes for NASDAQ or the New Y ork Stock Exchange. By
simply plugging your receiver into the port, you can grab that information and do
something with it (like displaying it as a ticker tape message across the bottom of your
screen). Modifying our sample program to similarly broadcast and grab information is
quite simple.

To begin our sender program, we must create a Java application for our
CookieBakery. The application will have a simple GUI in which you can specify the
number of chipsin the cookie using a slider and then simply press a button to send the
cookie to the conveyor belt.

The GUI framework looks like this:;

import java.awt.*;
import java.net.*;

public class CookieBakery extends Frame
// AWT components

CookieBakery() //constructor

{
// initialize the application frame
// build the GUI and event handlers

sendButton = new Button(''Send Cookie");
sendButton.setBounds(10,270,290,60);
add(sendButton);
sendButton.addActionListener(

new ActionListener()

{

public void actionPerformed(ActionEvent e)

{

// determine the number of chips
int numChips = chipsScrollbar.getvValue();
String messageChips = numChips + " chips";

// build the message and send it

// display final result
instructionField.setText(
"Sent Cookie with " +
numChips + ™ chips!™);

}

// all events handled by inner classes, this is required
public void actionPerformed(Event e){;)

public static void main(String args[])
{

CookieBakery cookies = new CookieBakery();
cookies.show();

The GUI itself will resemble that shown in Figure 3-2 with a dlider to select the
number of chips and a button to press so that you can "bake" it.

Figure 3-2. Sample GUI for the CookieBakery.

Number of Chips

Bake Cookie

Exit

Formatting a UDP Packet

In order to send a packet to the server, we must create and format one. Packets are
created using buffers and contain an array of bytes. Therefore, any string message that
you wish to send must be converted to an array of bytes. We will do thisin a moment.

Also, we need to define and obtain the Internet address of the machine on which this
application runs. UDP requiresit as part of its protocol.

import java.awt.*;

import java.net.*;

import java.awt.event.ActionListener;
import java.awt.event.ActionEvent;
public class CookieBakery extends Frame

// AWT components

CookieBakery() //constructor

{
// initialize the application frame
// build the GUI and event handlers

sendButton = newButton("Send Cookie™);
sendButton.setBounds(10,270,290,60);
add(sendButton);
sendButton.addActionListener(
new ActionListener()
{
public void actionPerformed(ActionEvent e)
{
// determine the number of chips
int numChips = chipsScrollbar.getvValue();
String messageChips = numChips + " chips";

// convert the chip message to byte form
int msgLength = messageChips.length(Q);
byte[] message = new byte[msglLength];
message = messageChips.getBytes();

// send a message
try
{
// format the cookie into a UDP packet
instructionField.setText(
"Sending Cookie.."");
DatagramPacket packet = new DatagramPacket(
message, msglLength,
internetAddress, 8505);

// send the packet to the server
DatagramSocket socket = new
DatagramSocket();
socket.send(packet);

catch(Exception exc)

System.out.printIn("Error! - " +
exc.toString());

>
// display final result

instructionField.setText(
"Sent Cookie with " +
numChips + ' chips!");

public void actionPerformed(Event e){;}

public static void main(String args[])

{
CookieBakery cookies = new CookieBakery();
cookies.show();

Sending the Packet to the Server

In order to send the cookie to the conveyor belt, we must create a DatagramSocket.
Then we can send the packet we just created using the send routine.

import java.awt.*;

import java.net.*;

import java.awt.event.ActionListener;
import java.awt.event._ActionEvent;

public class CookieBakery extends Frame
// AWT components

CookieBakery() //constructor

{
// initialize the application frame
// build the GUI and event handlers

sendButton = new Button(''Send Cookie');
sendButton.setBounds(10,270,290,60);
add(sendButton);
sendButton.addActionListener(

new ActionListener()

public void actionPerformed(ActionEvent e)

{
// determine the number of chips
intnumChips = chipsScrollbar.getvValue();
String messageChips = numChips + ' chips";

// convert the chip message to byte form
int msgLength = messageChips.length(Q);
byte[] message = new byte[msglLength];
message = messageChips.getBytes();
// send a message
try
{
// format the cookie into a UDP packet
instructionField.setText(
"Sending Cookie.."");
DatagramPacket packet = new DatagramPacket(
message, msgLength,
internetAddress, 8505);

// send the packet to the server

DatagramSocket socket =new DatagramSocket();
Socket.send(packet);

catch(Exception exc)

{

System.out.printIn("Error! - " +
exc.toString());

}

// display final result
instructionField.setText(
"Sent Cookie with " +
numChips + *chips!');
by
}

public void actionPerformed(Event e){;}

public static void main(String args[])
{

CookieBakery cookies = new CookieBakery(Q);
cookies.show();
by

Now that we have created an application that sends a message containing "xx chips’
to a port, we need something on the other end to receive and decode the message into
something useful. After all, we don't want to waste our delicious chocolate chip
cookies!

Creating a UDP Receiver

The UDP Receiver we will create will listen in on a port and wait for cookies. When it
gets one, our CookieMonster will let us know by printing a"Y ummy, tastes good"
message. As with our CookieBakery, the CookieMonster will listen in on port 8505,
atotally random selection. To start our CookieMonster, first we must create the
CookieMonster object with its own application main containing the packet that we
will read and the socket from which we will get it. Note that we are importing the
Jjava.net.* package once again.

NOTE

We find throughout this book that servers, in this case areceiver, must be
applications, whereas clients very easily can be applets as well. The reason is that
Java's security mechanism will not allow a downloaded applet to have unlimited
access to a port on the machine to which it is downloaded. Because of the Java
security model, you are prevented from devel oping downloadable servers. This
may change with the introduction of browsers that are able to change those
security restrictions.

import java.awt.*;
import java.net.*;

public class CookieMonster

{
public static void main(
String args[]
)
{
// our socket
DatagramSocket socket = null;
// our packet
DatagramPacket packet = null;
}
}

Now we must create and initialize the packet that we will receive. Note that we have
to specify a buffer into which the packet will read the message. A packet by itself is
composed of four elements. The first is shown in the following code.

import java.awt.*;
import java.net.*;

public class CookieMonster

public static void main(
String args[]
)

{

// our socket
DatagramSocket socket = null;

// our packet
DatagramPacket packet = null;

// create a receive buffer
byte[] buffer = new byte[1024];

// create a packet to receive the buffer
packet = new DatagramPacket(buffer, buffer.length);

Once our packet is put together, we need to sit on a socket and wait for someone to fill
it with information. We use the DatagramSocket's receive routine to hang on aUDP
port and get information. We must pass the packet to the sockets receive method so
that the packet knows where to put the information it gets.

import java.awt.*;
import java.net.*;

public class CookieMonster

{

public static void main(
String args[]

)

{

// our socket
DatagramSocket socket = null;

// our packet
DatagramPacket packet = null;

// create a receive buffer
byte[] buffer = new byte[1024];

// create a packet to receive the buffer
packet = new DatagramPacket(buffer, buffer.length);

// now create a socket to listen in
try

{
socket = new DatagramSocket(8505);

catch(Exception exc)

System.out._printIn("Error! - " + exc.toString(Q));
}

// now sit in an infinite loop and eat cookies!
while(true)

// sit around and wait for a new packet
try

{
}
catch(Exception exc)

{
}

socket._receive(packet);

System.out.printIn("Error! - " + exc.toString(Q));

}
}
}

So now we have a cookie in our hands, and we have to somehow eat it. To do so, we
must first extract the cookie from the packet by retrieving the packet's buffer.

CAUTION

Because we specified the buffer size when we created the packet, the
CookieMonster waits until the buffer isfilled before it returns the packet. This
means that if the packets on the sending end are smaller than the packets we are
reading here, we will end up with a packet, plus alittle bit of the packet that comes
down the pike afterwards, causing havoc in our messaging system. If our buffer is
too large on the sending end, we will receive only alittle bit of the message. It is
important that you synchronize both the receiver and the sender so that they
receive and send the same size buffer.

import java.awt.*;
import java.net.*;

public class CookieMonster

{

public static void main(

)
{

String args[]

// our socket
DatagramSocket socket

null;

// our packet
DatagramPacket packet = null;

// create a receive buffer
byte[] buffer = new byte[1024];

// create a packet to receive the buffer
packet = new DatagramPacket(buffer, buffer.length);

// now create a socket to listen in
try

{
socket = new DatagramSocket(8505);

catch(Exception exc)

{
}

// now sit in an infinite loop and eat cookies!
while(true)

System.out.printIn("Error! - " + exc.toString());

// sit around and wait for a new packet
try

socket.receive(packet);

catch(Exception exc)

{
}

// extract the cookie
String cookieString = new String(buffer, 0, O,
packet.getLength());

System.out.printIn("Error! - " + exc.toString(Q));

// now show what we got!
System._out._.printIn(’’Yummy! Got a cookie with " +
cookieString);

Now that we have learned how to create point-to-point and broadcast communication
mechanisms, let's apply our knowledge to implement our featured application. In this
real-world scenario, we must create a mechanism that enables a client to change its
state and to send that information to a server to be stored and retrieved at alater date.
To develop such an application, we need a point-to-point protocol because reliability
is of the utmost premium. After all, we don't want to schedule an appointment and not
know if it actually got on our calendar.

Featured Application

Aswe discussed in Chapter 1, "Advanced Java," we will reimplement the same
"featured application” in this chapter and in each of the next four chapters. We hope
that this gives you an insight into the advantages and disadvantages of each of the
major communication alternatives that we present in this book. Our socket
implementation needs to be preceded by a discussion on how we plan to implement
messaging between the client and the server. Once that is complete, we can implement
the client and the server to exchange information in that format.

Messaging Format

Our messaging format must incorporate the two major elements contained in our
notion of an appoi ntment—the time of the appointment and the reason for the
appointment. Therefore, we will create a message format akin to the Pizza Tool's
message. |n the Pizza Tool we implemented a few sections ago, we delimited our
message with the bar symbol ("|"). Once again, we will use the bar symbol to separate
the time and reason in our message from the client to the server.

From the server to the client, we need a dightly similar but more robust format. When
the server sends information to the client, we will need to string a variable number of
bar-delimited appoi ntments together. The client can then use the StringTokenizer
object to extract the information it needs.

But, the client cannot accept messages without asking for them first. Therefore, we
need a header to the message. When we schedule an appointment (i.e., send a message
from the client to the server), we precede the message by the word "store." When we
merely prompt the server to send the client a message (i.e., the client sends a message
to the server telling it to go ahead and reply), we precede the message with the word
"retrieve.”

Therefore, our message will be in one of the following two formats:

store|Take Fleagle to dentist]1l
retrieve

The retrieve message prompts the server to send a message back with appointments
strung together but delimited by the bar symbol.

Client

Because implementing the client for the featured application is quite similar to the
PizzaTool's client, the code we are about to produce will ook remarkably similar to
the code for the Pizza Tool. In order to plug our featured application socket
implementation directly into the Calendar Manager, we must implement the
NetworkModule that we declared in Chapter 1.

public class NetworkModule

{
public void scheduleAppointment(String reason, int time);
public Vector getAppointments();
public void initNetwork();
public void shutdownNetwork();
}

Specifically, we need to implement the schedulleAppointments and
getAppointments methods. We will also have to create and implement a constructor
to open and establish the socket connection. We will first implement the constructor.
The code is basically cut and pasted directly from the Pizza Tool:

import java.awt.*;
import java.util.*;
import java.net.*;
import java.io.*;

public class NetworkModule
{
// network components
Socket socket;
DatalnputStream inStream;
PrintStream outStream;

NetworkModule()
{
try
{
socket = new Socket("'localhost™, 8205);
inStream = new BufferedReader(
new InputStreamReader(
socket.getlnputStream()));
outStream = new
PrintStream(socket.getOutputStream());

catch(Exception exc)

{
}

System.out._printIn("Error! - " + exc.toString(Q));

}

public void scheduleAppointment(
String appointmentReason,
int appointmentTime)

public Vector getAppointments()

{
}

public void initNetwork()

{
}

public void shutdownNetwork()

{
}

Now we must implement the scheduleAppointment method that goes to the server
with aformatted message containing the new appointment. Notice how we put
together the message so that it conforms to the messaging format we just agreed upon.

public void scheduleAppointment(
String appointmentReason,
int appointmentTime)

{
try
{
outStream.printin(
"store|" +
appointmentReason + | +
appointmentTime + "|');

catch(Exception exc)

{

}
}

System.out.printIn(Error! - " + exc.toString(Q));

Once again, the StringTokenizer comes to our rescue as we begin to decode the
server's message to usin the getAppointments method. In order for the server to
send us a message, we must prompt it to do so. That way, a socket connection is
established, and areply can be sent along the same route. It isn't entirely necessary to
do things thisway, but it is the preferred and time-honored method. Once we get our
string from the server, we must tokenize it, step through each field, and convert it into
aVector.

public Vector getAppointments()
{
// the variable to store all of our appointments in
Vector appointmentVector = new Vector();
// the string to put our appointments in
String appointmentString = new String(Q);
// now get the appointments
try
{

// tell the server we want the appointments it has

outStream.printIn("retrieve|');
// now listen for all the information we get back
appointmentString = inStream.readLine();

catch(Exception exc)

{
}

// tokenize the string
StringTokenizer stk =

new StringTokenizer(appointmentString, "|');
// translate into a Vector
while(stk.hasMoreTokens())

{

System.out.printIn("Error! - " + exc.toString());

// create a variable to stick the appointment in
AppointmentType appointment = new AppointmentType();
// now get the next appointment from the string
appointment.reason = stk.nextToken();
appointment.time =
Integer.valueOf(stk.nextToken()).intValue();
// put the appointment into the vector
appointmentVector .addElement(appointment);

¥
// return the Vector

return appointmentVector;

Server

To implement the server, we will blatantly plagiarize code from the pizza application
earlier in this chapter. Basically, we take all the server code from there, including the
thread portion, and modify it for our needs. First, we need to implement the Store
method. We will store our appointmentsin aVector for simplicity's sake. The code
snippet that follows is from the Run method of the CalendarThread.

NOTE

Y ou could just as easily use some kind of serialization or even afile to keep your
appointments persistent. When the server shuts down, we will lose al the
appointments in our current implementation. Our server keeps datain atransient
state, meaning that it is not maintained between executions.

// convert to a readable format
try
{
StringTokenizer stk =
new StringTokenizer(newOrder,"|'™);
Stringoperation = stk.nextToken();
if(operation.equals(store™))
{
String reason = stk.nextToken();
int time =

Integer.valueOf(stk.nextToken()).intValue();

// no exception was thrown so store the appointment
AppointmentType appt = new AppointmentType();
appt.reason = reason;

appt.time = time;
appointmentVector.addElement(appt);

// put our result on the screen
System.out.printIn(’'stored” + reason + "|" + time);

}

catch(NoSuchElementException exc)

Now we must implement the retrieve function. The retrieve function creates a new
string, delimited by the bar symbol, of course, that contains every appointment in our
Vector. It then sends that information back to the client using the same socket on
which it received the original message.

else

{

String returnValue = new String(Q);
// put together a string of appointments
for(int x = 0; x < appointmentVector.size(); x++)

{
AppointmentType appt =

(AppointmentType)appointmentVector .elementAt(x);
returnvValue += appt.reason + "|" + appt.time + "|";

3

// now write the appointments back to the socket
out.printin(returnvalue);

}
Summary

Sockets are the backbone of any communication mechanism. Everything we talk
about in this book from here on will use them in some way or another. For example,
in the past some CORBA implementations used UDP for their socket infrastructure,
eliminating complex webs of point-to-point connections. This sped up their
implementation because they spent less time routing messages and more time sending
them. When new objects were added to the system, UDP enabled them to be plugged
in with little effort and little impact on the rest of the system. Lately, however, the
onset of TCP-based I10OP has pushed ailmost all CORBA vendors to the more reliable
protocol.

TCPisareliable protocol system that has been used by generations of computer
programmers. We al somehow, somewhere get our start in network programming by
first using TCP/IP and writing to pipes and sockets. In the next chapter, we will
explore Database access using Java Database Connectivity. JDBC is atechnology that
is basic to the concept of enterprise programming (i.e., tying our applications to our
corporate databases). Although hidden from us by the API, at the very heart of JDBC
are sockets. From JDBC we'll examine two examples of network object technologies.
First well look at Java Remote Method Invocation, an all Java approach to distributed

object computing. After RMI welll ook at the Java version of the grandfather of
distributed object computing, CORBA. What we'll see when examining these
technologiesis that the abstractions of the object models entirely hides the need to do
socket level programming; thisis done to simplify how we program. By eliminating
the need to do our own socket programming, the abstractions provided by network
object models provide asimpler programming model for us to deal with.

Chapter 4. Java Database Connectivity

Inside JDBC

Databases and SQL

Retrieving Information

Storing Information

A JDBC Version of the Featured App

Today, nearly all companies choose to store their vast quantities of information in
large repositories of data. These databases are vital to the dissemination of
information via the Internet. Java, as the anointed Internet language, answers the need
to connect information storage to application servers using the Java Database
Connectivity framework.

Aswe will seein these next few chapters, JDBC is a core set of APIsthat enables
Java applications to connect to industry standard and proprietary database
management systems. Using JDBC, your applications can retrieve and store
information using Structured Query Language statements as well as a database engine
itself. Included in this chapter is a brief introduction to SQL and its merits.

Inside JDBC

The guidelines for creating the JDBC architecture all center on one very important
characteristic—simplicity. Databases are complex beasts, and companies that rely on
them generally have an army of personnel ready to administer and program them. As
aresult, transferring that complexity to Javavia JDBC would violate the ethos of the
language. Therefore, the JIDBC architects developed the specification with the idea
that database access would not require advanced degrees and years of training to
accomplish.

Knowing full well that there are a plethora of databases in existence today, the
architectural challenge for JDBC was to provide a simple front-end interface for
connecting with even the most complex of databases. To the programmer, the
interface to a database should be the same regardless of the kind of database to which
you want to connect. Figure 4-1 shows the 50,000-foot view of our JDBC application
model.

Figure 4-1. Basic JDBC application architecture.

Application

JDBC
Driver Driver Driver Driver
DB2 Oracle Sybase Access

Database Drivers

In the world of distributed computing it is easier to understand databases if we think
of them as devices rather than software. First of all, we usually install databases on
separate machines that are network accessible, and second, we almost always access
the database through a standardized driver rather than using native interfaces. If we
think of our database as a device, the idea of a driver makes more sense due mainly to
our preconceived ideas (and experiences) with having to install device drivers every
time we want to add anew card or peripheral device to our workstation.

Standardized drivers for databases came about in much the same way that many other
ad hoc standards get developed; in the case of databases, Microsoft developed Open
Database Connectivity as a standard for Windows applications to connect to and use
Microsoft databases. ODBC became so popular so fast that other database vendors
saw the writing on the wall for proprietary APIs and databases whose interface was
based on proprietary APIsthat they quickly came out with ODBC driversfor their
databases. This allowed anyone's database to be accessed from a Windows application
in exactly the same way that a Microsoft database would be accessed. ODBC was
designed into Windows, and the coupling between it and Microsoft databases was
extremely tight and performance-oriented. Other database vendors took a slightly
different approach to ODBC; they built an ODBC interface that then translated ODBC
into their native API calls. This puts an extralayer between the application and the
database. Thistype of driver isthe reason that ODBC has gotten a bad rap on some
database platforms.

JDBC takes a number of approaches to database connectivity, and it isimportant to
remember that JDBC isreally a published standard interface to databases similar to
ODBC. There are currently four common approaches to database connectivity each
with a corresponding driver type.

Type 1 Drivers.

The JDBC-ODBC bridge driver takes the simple approach of translating JDBC calls
to equivalent ODBC calls and then letting ODBC do all the work. Drivers of thistype
require that an ODBC driver also be installed on each workstation and that some
proprietary libraries (Vendor APIs) that help with the JIDBC to ODBC conversion
must also be installed. Although effective, these drivers provide relatively low
performance due to the extra software layer(s). Thisdriver is handy for putting
together application prototypes for "early on" customer demonstrations; because you
do not haveto install afull blown relational database management system, thisis one
place where MS Access is a perfectly fine tool. Thereis acaveat with using MS
Access databases; Always remember that an .mdb fileisjust that, afile (not a
database management system). The ODBC driver makes .mdb files appear to be
database management systems. Now here is the caveat, the ODBC drive must be able
to find the .mdb file on a mapped drive (i.e., the .mdb file can be anywhere on your
LAN that the ODBC driver [on the machine] you are using as your data server can
find viaa mapped drive). This meansthat, if the database is on a machine that only
has TCP/IP connectivity, you are out of luck. This also meansthat, if you area UNIX
user, you are normally out of luck and must resort to using RDBMs even for
prototypes. See Figure 4-2 for an architectural view of atype one driver application.

Figure 4-2. Type 1 JDBC/ODBC bridge.

Driver JDBC
APP Mgr Driver ODBC DE
Vendor
API

In the case of Microsoft databases like Access and SQL Server, which are designed
around ODBC, the ODBC driver to database connection is direct and the only extra
layer involved is the conversion from JDBC to ODBC. In the case of other vendors
databases that have their own native APIs, there can be an additional conversion from
ODBC to the vendor's native API.

An additional thing we need to remember when programming for the Enterpriseis
that, in the case of Java applets, an applet can only make a network connection back
to the machine (1P address) that it was served from. This requires that our database be
running on the same machine as our Web server. This could have some serious
implications from the standpoint of overall performance for a busy Web site. In most
cases, the best solution to this problemisto not use atype 1 driver. Instead, use
another driver type and pick athree-tier architecture rather than the two-tier approach
of thetype 1 driver.

Type 2 Drivers.

Driversin this category typicaly provide a partial Java, partial native API interface to
the database. Typical of thistype of driver isthe driver provided by IBM for its DB2
Universal Database (UDB). UDB provides a native driver in the form of the DB2
Client Enabler (CAE), which must be installed on each client machine. The CAE
installs arather elaborate set of driver software that allows access to any DB2
database to which the client machine has network connectivity. Along with the CAE
comes aJDBC driver. The JDBC driver is placed in your virtual machine's
CLASSPATH. Once loaded by the JDBC Driver Manager and a database connection
is established your application has afairly high-performance pipe to the database.
Figure 4-3 illustrates this architecture.

Figure 4-3. Type 2 DB2 JDBC driver.

O
AP Mr;er é}[r)igec-:r CAE DB2
TCFIP
Client Machine DB Server

DB2 (and most other modern databases) can be configured to do connection pooling
at the database; this doesn't really constitute athree-tier solution, it is still atwo-tier
(maybe pseudo three-tier) solution.

Type 3 Drivers.

Drivers of thistype are usually called network protocol drivers and convert the JDBC
callsinto a database independent protocol that is transmitted to a middleware server
that translates the network protocol into the correct native protocol for the target
database. The middleware server is usually run on an independent, high-performance
machine and has the ability to convert the network protocol to the required native
protocols for a number of different database vendors products. It also isthe JDBC
driver source for the client driver manager. The middle tier usually uses atype 1 or 2
driver for its connectivity to the database. Because many databases are good placesto
store and retrieve information (but are poor connection managers), the middle-tier
server often has the job of being a connection manager for the databases (i.e., when
started up, anumber of database connections are established and held open; the
middleware then acts as a router, routing database transactions to already open
database connections). The beauty of thisis that the end user never incurs the penalty
of establishing the connection (which is considerable) to the database. Figure 4-4
illustrates this architecture.

Figure 4-4. Type 3 driver.

i Connection Manager DB2
river
AFP Mgr
Driver Database Oracle
Client Tier
Middle Tier Database Tier

Type 4 Drivers.

Last but not least isthe all Java, type 4 driver (see Figure 4-5). These driversrequire
no special software to be installed on client machines and are typically provided by
database vendors or vendors like Intersolv and Hit Software that specializein
database drivers. Solutions that use type 4 drivers are typically two-tier, but with the
connection pooling that most databases currently provide we have that previously
mentioned pseudo three-tier architecture. These drivers are perfect for appl et-based
clients as everything required by the client is self-contained in the client download
from the Web server.

Figure 4-5. Type 4 driver.

Driver JDBC

Mgr Driver DB

APP

TCPIP
Applet-Based Client

In the desktop world, a driver enables a particular piece of hardware to interface with
the rest of the machine. Similarly, a database driver gives JDBC a means to
communicate with a database. Perhaps written in some form of native code but
usually written in Javaitself, the database drivers available for JIDBC are wide and
varied, addressing severa different kinds of databases.

The JDBC AP isavailable for users as part of the JIDK. The JDBCODBC bridge is
supplied as part of the JDK; other drivers are available from the database vendors or
driver specialty companies.

The DriverManager Object.

At the heart of JDBC liesthe DriverManager. Once adriver isinstalled, you need to
load it into your Java object by using the DriverManager. It groups drivers together so
that multiple databases can be accessed from within the same Java object. It provides
a common interface to a JDBC driver object without having to delve into the internals
of the database itself.

The driver isresponsible for creating and implementing the Connection, Statement,
and ResultSet objects for the specific database, and the DriverManager then is able to
acquire those object implementations for itself. In so doing, applications that are
written using the DriverManager are isolated from the implementation details of

databases, as well as from future enhancements and changes to the implementation
itself, as you can seein Figure 4-6.

Figure 4-6. The Driver abstracts the connection, statement, and ResultSet objects from
the application.

Java Application

Drrive Manager

Driver

Connection Statement ResultSet

Database Connection Interface.

The Connection object is responsible for establishing the link between the Database
Management System and the Java application. By abstracting it from the
DriverManager, the driver can isolate the database from specific parts of the
implementation. It also enables the programmer to select the proper driver for the
required application.

The Connection.getConnection method accepts a URL and enables the JDBC
object to use different drivers depending on the situation, isolates applets from
connection-related information, and gives the application a means by which to specify
the specific database to which it should connect. The URL takes the form of
Jdbc:<subprotocol>:<subname>. The subprotocol isakind of connectivity to the
database, along the lines of ODBC, which we shall discussin a moment. The subname
depends on the subprotocol but usually allows you to configure the database that the
application will ook at.

Database Statement Object.

A Statement encapsulates a query written in Structured Query Language and enables
the JDBC object to compose a series of steps to look up information in a database.
Using a Connection, the Statement can be forwarded to the database and obtain a
ResultSet.

ResultSet Access Control.

A ResultSet isacontainer for aseries of rows and columns acquired from a
Statement call. Using the Resul tSet's iterator routines, the JDBC object can step
through each row in the result set. Individual column fields can be retrieved using the
get methods within the ResultSet. Columns may be specified by their field name or
by their index.

JDBC and ODBC.

In many ways, Open Database Connectivity (ODBC) was a precursor to all that JDBC
isintended to accomplish. It adequately abstracts the boring tedium of databases, and
the proprietary APIs to those databases, from the application programmer; it ties many
different kinds of databases together so that you only have to create one source file to
access them; and it isfairly ubiquitous. Recognizing the relative acceptance of ODBC
technology, JDBC offers a JDBC-to-ODBC driver free with the JDK.

With this, JDBC applications can talk to the same database access engine as non-Java
applications. Furthermore, integrating JDBC into your existing business process can
be done fairly easily because the bridge ensures that no additional work is required to
enable Java Database Connectivity.

NOTE

Because of copyright restrictions, we are unable to supply these drivers on the CD-
ROM, but you may visit the IDBC page on the JavaSoft Web site at
java.sun.convjdbc and get the latest information on drivers and the pointers to
them.

Asyou can see, the IDBC application communicates with the database using the same
existing OLE or COM protocol. Furthermore, any administration issues associated
with the database are negligible because the existing administration strategy is still
applicable. Application programmers need know only that the ODBC bridge will be
used and that they should not tailor their application to it.

Installing the ODBC driver for Windows will be discussed in the next section.
Becauseit is a Microsoft product, the process is easy, but the reliability isin doubt.
Keep in mind that most mission-critical applications are run using heavy-duty,
workstation-based databases. These databases are expensive and difficult to
administer but they are more reliable than a Microsoft Access solution. In any event,
we will show you how to write applications tailored for Microsoft because the general
computing populace, and more importantly the audience of this book, will not
necessarily have access to database servers like Sybase, DB2, or Oracle.

JDBC in General

Java Database Connectivity encapsulates the functionality of databases and abstracts
that information from the end user or application programmer. Creating ssimple JDBC
applications requires only minor knowledge of databases, but more complex
applications may require intensive training in database administration and
programming. For that reason, we have chosen several simple and fun examplesto
display the power of a Java solution that will more likely than not be used by mission-
critical applications.

So far we have only addressed the use of JDBC on Windows-based
platforms. We. as application devel opers and architects, shouldn't lose siaht

of the fact that JDBC works on any platform that supports the version 1.1 (or
newer) Java Virtual Machine. Thisincludes many UNIX platforms from

IBM, Sun, and HP to name afew and mainframe computers like IBM's
0S390, VM/CMS and its midrange OS/400-based computers. On all these
platforms JDBC provides a consistent interface to relational databases native
to these platforms. Almost all modern relational database management
systems provide TCP/IP-based access to their data stores via SQL. This gives
us as enterprise application devel opers connectivity from virtually any Java-
based client to any relational database on any host platform.

Databases and SQL

Databases are storage mechanisms for vast quantities of data. An entire segment of
the computer industry is devoted to database administration, perhaps hinting that
databases are not only complex and difficult but also best |eft to professionals.
Because of thislevel of difficulty and of our desireto get you started in linking Java
to databases, we have chosen to implement awidely available, easily administered,
and simply installed database. Microsoft Access can be purchased at your local
software retailer. If you want to get started, it's a good place to start. From there, you
can move on to more complex databases such as Oracle and Sybase.

In this section, we intend to introduce and create a simple database. In the next section,
you will create asimple Java client that accesses the database and gets information
from it. We suggest that further exploration into JDBC be preceded by a serious
investigation into SQL (any of the currently available texts on Relational Database
Management Systems will suffice; check Amazon.com for currently available texts).
The Structured Query Language enables you to create powerful instructions to access
databases. Once you grasp SQL, you will be able to understand the reasoning and
theories behind JDBC.

Creating an Access Database

We will need to first start Microsoft Access so that we can create a database to talk to.
Thisis an important step, but one that those who either do not have access to or who
do not wish to use Microsoft's database can tailor for their own database. After
starting Access.

1. Select "Database Wizard" so Access will help you create a database.

2. Select the "Blank Database" icon.

3. Name the database and then you will get a series of tabbed folders. Go to
"Tables" and click on "New."

4. Youwill get a spreadsheet-like view in which you can enter your data.

5. Enter your data as shown in Figure 4-7 and then select "Save" to store the
table to the database. Name your table Presidential Candidate.

Figure 4-7. Our database entry.

& Microzoft Access

” Flle Edt ¥iew Insert Format Becords |ools swindow Help
|- R &GRY b« & HHU TE | M
gE jdbc : Databasze

E3 Tahles | B Gusries

s%?nl'u'ln

Forrns | L= Peaports | 2 Macros

PresidentialCandidate

B ProsidentialCandidatc - Tablc

Candidate Percentage Electaral

il Clinton 49 370
2 Dole 42 159

3 Perot g 1

Asyou can seein Figure 4-7, we entered the important statistics from the last
presidential election. The percentage is stored as a whole number, not as a decimal.
This allows the application to determine how it will represent the information. We
also store the electoral votes that each candidate received.

Simple SQL

Now that we've put the statistical data about the candidates into our database table, we
can use Access to help us design the queries that we will need for our GUI. To do so,
we need to know alittle bit of SQL. Thisis by no means intended to be the be-all and
end-all of SQL tutorials. Thisis aJava book, and as such we will minimize our
discussion of SQL. Suffice it to say that, for a programming language that has no
program control statements and is completely declarative, it is extremely powerful.

The most often used instruction in SQL is the Select statement. Select enables you to
retrieve a copy of specific portions of a database table. As part of the Select statement,
you must specify both the database table from which you want the information and a
filter for the information (if required). So, when you Select From a table Where the
parameters match your requirements, you get a result back.

SELECT column list FROM myTable WHERE filter

The Where clause of the Select statement may contain what is known as afilter.
Filters are specified as conditionals and enable you to further tailor the match
parameters for a database query. In amoment, we will query a database table for all
the presidential candidates who received electoral votesin the 1996 election. From a
field of three candidates, we will end up with two. Big party politics aside, our query
will return aresult based on the parameters we specify.

In theory, that result always will be a database table of its own. For example, given

the following table of presidential election results and the accompanying SQL
statement, we will receive atable in return (see Figure 4-8).

Figure 4-8. SQL statement can be made to return entire tables.

Candidate | Popular Electoral
Clinton 49 379
Dole 41 159
Perot B 0 . 4

SELECT Candidate, Popular, Electoral
FROM Presidential Candidate
WHERE Electoral > 0

Thistableislike alocal variable. It disappears from memory if we don't useit right
away. Using JDBC, thisresultstable is saved for usto retrieve the results data from
an object called a ResultSet, which will go away (be garbage collected) when the
object goes out of scope. We could just as easily include this SQL statement within
another SQL statement and achieve predictable results. These are called subqueries
and are another powerful tool of which SQL programmers can take advantage.

The beauty of SQL isitssimplicity. Obviously, alanguage of such great importance
has several nuances that database experts have long known, but it is still fairly easy to
start writing SQL statements, as we will discover in this chapter.

Generating SQL.

In order to create the necessary queries for our Access data, we must do the following
steps. Thiswill let us call these super queries rather than being forced to specify SQL
in our Java code. There are advantages and disadvantages to this approach, which we
will discuss in a moment.

Select the "Queries' tab in the main database view.

Select "New."

Select "Design View."

Immediately select "Close" in the "Show Table" view.

Go to the "Query" menu and select "SQL Specific" and then "Union."

agrwbdE

Now we are presented with alittle text input areain which we can enter our query.
Using the limited amount of information we have just learned, we must create three
queries, one for each candidate, that will retrieve the important statistics for us. We
have shown the ClintonQuery in Figure 4-9, and you can see what your database will
look like when all three queries are compl eted.

Figure 4-9. Getting statistics on Bill Clinton from the database.

@, Microsoft Access

|| Ele Edi view Insert Query Took Window Help

B |Gy e s

gl jdbc : Database
[Tables [oueries | EHroms | Brepots | 2

ClintonQuery
[T8 P, ST

@ i=? ClintonQuery : Select Query
SELECT [Percentage], [Electoral]
FROM PresidentialCandidate
WHERE Candidate=""Clinton"";

Note that we have limited the number of queries. Y ou could just as easily create more
complex queries, and if you know SQL pretty well, we encourage you to do so.
Otherwise, it is probably best to get this "proof of concept” example down pat before
proceeding.

Introduction to the ODBC Driver.

Once the database is completed, we must make it available via the database server. To
do so, we must edit the ODBC Control Panel. The ODBC Control Panel assigns our
database to the driver, allowing invocations on the database to pass through the driver
right into the database. Unless the database is made public to the ODBC driver, this
cannot happen because the system will not know about the database's existence.

To assign the database to the driver, select the driver Control Panel. The Control
Panel should have been installed with Access. If it is not there, check your Microsoft
Access installation instructions. Inside the Control Panel, select "MS Access 7.0" and
"Select” the proper database from within the Setup dialog box (see Figure 4-10).

Figure 4-10. Starting the ODBC driver.

Control Panel

| e Edt Miow Go Faveites Help

|+_4,m£3;§'331=?XEE
ek Copy

Up Cut Paste | LUndo | Delebs Fropedies | Views
Address | Corzlooc!
; #TODBC Data Source Administrator Em
'm\‘i] UsetDSN Syotom DSH | Fia DSN | Diivers | Tracing| Conmaction Fooking | Abees | @ L@
Contrc Mame [Criver
. . C.
Caerdat Mierasodt Aeass Dirvel [~ mbl Besrerve I Za =,
ODBC (32bil Ehﬂbuﬂatebm ODBEC Microsoit Access 97 Setup (]
Mairikains 32 ol .
sources and [usts Source Hame: [ElectionD stsbaze 1'% I
Drasciiption: [Predeantial Election
:-1.-:.*1-1 Hor) Cancel I
Technical Sy
Database: o\ avaClvjdbehdatahasehjdbe: mdb Help I
Sebect. | Doeate. | Eepar. | Compect. |
AnODBEL
the indic. ~— Sysbem [stabaze
oy e m
¥ Morg
" Diatabase:

Once completed, the ODBC driver will be aware of the database you have created and
await invocations on it. Aslong as the incoming queries specify the
"ElectionDatabase" database, they will be dispatched to the database and from there to
our SQL queries.

Summary

ODBC isaproprietary database management protocol. It enables you to access
information on databases from within Microsoft Windows. Once ODBC is set up on
our machine, we can get information from the database by creating Java applications
that interface to it.

One thing to make sure that you remember when using Access like thisisthat Access
isapersonal database and not afull blown relational database management system
like Oracle, DB2, and SQL Server. The mdb file that Access uses as its data storage
element isjust afile, it isthe ODBC driver that makesit look and act like a database.

Retrieving Information

At first glance, you probably wonder where the "server" part for this section is. Well,
we created it when we created our database! The database is the server. The beauty of
JDBC clientsisthat they link directly with databases. In client-server terms, thisis
referred to as a "two-tier" model in which the client isthe first tier and the database
itself isthe second tier. In the rest of the book we will promote the three-tier model in
which clients do nothing but look good and interface with servers. The servers contain
all the businesslogic, and the databases only store data.

In JDBC and the two-tier model, the client contains all the businesslogic and is
responsible for contacting and accessing the database. Our JDBC client uses SQL
gueriesto contact our Microsoft Access database. The downside to thisisthe

complexity of the client and the scalability of the system. With potentially hundreds
of clients banging on the same database, the database could get overloaded. With a
three-tier model, the database is queried by only one application—the server—and the
server isresponsible for (and is more capable of) handling hundreds of simultaneous
requests.

In any event, we will present you with a more thorough look at the advantages and
disadvantages of the two- and three-tier modelsin Chapter 14, "Making an
Architectural Decision.” In this section, we show you how to go to a database and get
information. In the next section, we will show you how to put information into the
database.

Creating the User Interface

Our user interface should be ssimple and elegant. Once again, we don't want to confuse
people with what we are trying to do. We will create a button for each candidate.
Upon activation of the button, the client will execute SQL statements on the server
and get information. Then it will display the information in the text fields provided.
See Figure 4-11 for a sample GUI.

Figure 4-11. Sample GUI for the PresidentialElection application.

Clinton Dole Perot

Popular Vote: |

Electoral Vote: ‘

The user interface will enable us to underscore the simplicity of JDBC. We have seen
how it can handle the most complex of cases, but here we once again keep our
examples fun and easy.

Aswe proceed, we will show you how to implement the two important functions in
this application. The Presidential Election application's constructor and its
corresponding action method will initialize and invoke the database, respectively.

public class PresidentialElection

{

Button clintonButton;
Button doleButton;
Button perotButton;

TextField popularField;
TextField electoralField;

PresidentialElection()

{
// create the user interface here
}
public void actionPerformed(ActionEvent e)
{
String arg = e.getActionCommand();
if(arg.equals('Clinton'™))
{
e
else if(arg-equals('Dole™))
{
}
else if(arg.equals('Perot'))
{
e
}

Database Security

Because we are writing an application, handling our own security is not a requirement.
However, if we wanted to write an applet, we would need to use a Security-

Manager t0 set our access to the host database. Because Java applets are able to
connect only to their host machine, our security manager is required to make sure we
have access to the database on the host machine. By setting the security manager, you
can check to see if you have access to the database before a query is executed. Keep

in mind that the security manager deals with security asit relates to Java. Database
access security (userid and password) is handled through the instantiation of the
Connection object.

Using the JDBC Driver

Aswe discussed earlier, we must include the JDBC driver in our application. To do so,
we obtain a Connection object from DriverManager. The DriverManager takes a
URL and trandates it into a handle for an actual database. Then we can invoke our
SQL statements on the database and retrieve information. From the Connection
object, we can retrieve Statement, PreparedStatement, and Cal lableStatement
objects to help us format our SQL queries.

As JDBC gains more acceptance, database vendors will provide drivers for Java
applications to use to contact their databases. Often, there will be some overlap
between these different drivers. Choosing the proper driver can be a difficult task, but
JDBC enables you to create a colon-separated list of drivers through which JIDBC will
search for thefirst available driver.

Here, we will use the standard ODBC driver included with JDBC. Thiswill enable us
to connect to ODBC databases such as the Microsoft Access database we just created.

Aslong as our ODBC driver has been set up to await this kind of query, thiswill
succeed. We will need to load the specific class for the database "manually."

import java.sgl.*;

public class PresidentialElection

{

Button clintonButton;

Button doleButton;

Button perotButton;

TextField popularField;

TextField electoralField;

// the connection to the database

Connection dbConnection;

PresidentialElection()

{
// create the user interface here
// create the URL representation of our database
String url = "jdbc:odbc:PresidentialCandidate™;
// load the database driver
Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver'™);
// make the connection to the database
dbConnection = DriverManager.getConnection(

url, "username'" "password™);

public void actionPerformed(ActionEvent 2)

{
String arg = e.getActionCommand());
if(arg.equals('Clinton™))
{
P
else if(arg.equals('Dole™))
{
L
else if(arg.equals('Perot'))
{
}

}

}

After we created the URL representation for our database, we needed to connect to the
database itself. Once that is done our application islinked to the database and can
make invocations at will.

Creating Queries
Now, we must fill in the actionPerformed so that we can make the query on the

database. Here, we will specify the SQL query right in the executeQuery method. We
could also do this by just executing the queries we created and stored in the database

itself. Since we may be beginners with JDBC, | think it is more meaningful to start
out showing the queries along with the code.

import java.sgl.*;

public class PresidentialElection

{
Button clintonButton;
Button doleButton;
Button perotButton;
TextField popularField;
TextField electoralField;
GubernatorialElection()
{
// create the user interface here
// create the URL representation of our database
String url = "jdbc:odbc:GubernatorialCandidate";
// load the database driver
Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™);
// make the connection to the database
Connection connection = DriverManager.getConnection(
url, "username" "password'™);
}
public void actionPerformed(ActionEvent e)
{
String who = new String('"");
String arg = e.getActionCommand();
if(arg.equals('Clinton™)) who = "Clinton";
else if(arg-equals('Dole™)) who = "Dole";
else if(arg.-equals('Perot')) who = "Perot";
else System.out.printIn("Error'™);
try
{
Statement statement = dbConnection.createStatement();
String s = "'select percentage,electoral " +
"from PresidentialCandidate " +
"where candidate="" + who +"""';
ResultSet result = statement.executeQuery(s);
popularField._setText(who + ™ " + result.getint(l));
electoralField.setText(who + " " + result.getlnt(2));
}
catch (SQLException se)
{
System_out._printIn("’'SQLError: " + se.toString());
}
by
}

In place of the Select statement, we could just as easily have executed the query that
we had earlier stored in the database. As already mentioned, we choose not to help
improve the learning experience.

Database and SQL Overview

Once we are able to interface with the database, we should be able to put information
init. Databases are not static entities. They are ever changing, and in keeping with
that trait, Java provides some pretty cool tools to get to databases and change the data
stored therein.

Storing Information

JDBC also gives you a means to store information in atable. Once again, thisis done
using standard Structured Query Language statements. By using SQL, JDBC makes
sure that its own learning curveis pretty small. JDBC gives you much flexibility in
creating statements.

Let's say that suddenly we discover that Bill Clinton isreally Daffy Duck! The
700,000 people who wrote in "Daffy Duck" on their ballot as their choice for
President of the United States really voted for Bill Clinton. As aresult, the percentage
by which Bill Clinton won the 1996 el ection changed. We need to create a JDBC
query to modify the percentage.

Creating the Connection

The first thing we must do is create the connection as we did before. We will also add
a button to change the percentage of votes for Bill Clinton. We could with adlight bit
more complication and effort create a more customizable change area. It could have
text fields for each entry and a submit button. Using the datain the text field, we
could change the data in the table. For now, however, that is more complex than is
needed.

public class PresidentialElection
{
Button clintonButton;
Button doleButton;
Button perotButton;
Button changeButton;
TextField popularField;
TextField electoralField;

PresidentialElection()

{

// create the user interface here

// create the URL representation of our database
String url = "jdbc:odbc:PresidentialCandidate’;

// load the databasedriver
Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver'™);

// make the connection to the database
Connection connection = DriverManager.getConnection(
url, "username'" "password™);

}

public boolean action(

Event evt,

Object obj
)
L _
if(evt.target == clintonButton)
{
. same as before . . .
else if(evt.target == doleButton)
{
. same as before . . .
else if(evt.target == perotButton)
{
. same as before . . .
else if(evt.target == changeButton)
{
e
}

We also needed to insert event-handling information for the new button. Asyou can
see, there is no change between the connection for retrieving information and the
connection here for setting the information.

Forming a Statement

The burden, in IDBC, is placed on the formation of statements. As database
programmers expect, there is no need to learn anything new or confusing. Javais
treated as nothing more than a container for an SQL statement. The SQL statements
we create here as well as when we stored information are nothing fancy, nothing
special, and no more interesting than anormal SQL statement.

In order to change the information in a database, we need to use the SQL Update
statement. We must specify a column and row to change. But, instead of

encapsulating the SQL statement with aregular JDBC statement, instead we will use a
PreparedStatement. PreparedStatements give you the ability to insert parameters
within the statement itself. The following example contains two parameters,
popularvote and candidate:

UPDATE PresidentialCandidate
SET popularvote = ?
WHERE candidate ?

The popularvote field is marked as field number one, and candidate is field number
two. To set the fields, we use the set methods supplied with JIDBC along with the
number of the field you want to change: setint, setString, etc. To define the fields, use
the question mark.

Now we can create a PreparedStatement. Note, however, that in this chapter we are
not using precreated queries. Instead, we will create the query directly from JDBC. As
we discussed earlier, either approach is completely acceptable. The choice is not one
of effort but rather of programming approach. If your business makes heavy use of
precreated queries, obviously you will choose to invoke them from JDBC. If database
interaction is not as important, then there is really no need to define queries ahead of

time.

public class PresidentialElection

{

Button clintonButton;
Button doleButton;

Button perotButton;
Button changeButton;
TextField popularField;
TextField electoralField;

PresidentialElection()

{

}

// create the user interface here

// create the URL representation of our database
String url = "jdbc:odbc:PresidentialCandidate’;

// load the database driver
Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™);

// make the connection to the database
Connection connection = DriverManager.getConnection(
url, "username'" "password'™);

public boolean actionPerformed(ActionEvent e)

{

String arg = e.getActionCommand();
if(arg.equals('Clinton™))

. same as before .

glse if(arg.equals("Dole™))
{ . same as before .
glse if(arg.equals("Perot'))
{ . same as before .
%Ise if(arg.equals('Change'))

// create the statement
PreparedStatement pstate =
connection.prepareStatement(
"UPDATE PresidentialCandidate " +
"SET popularvote = ? " +
"WHERE candidate = ?');
// set the parameters for the statement
pstate.setlnt(l, 50);
pstate.setString(2, "Clinton');

// execute the statement
pstate.executeUpdate();

Now that we can create a simple system of clients that change information in a
database, we can try to create a client for our featured application that will store and
retrieve its information from asimilar database. By creating this purely two-tier model,
it can be compared to the applications we created in Chapter 3 for using sockets.

A JDBC Version of the Featured App

Aswe have seen in the previous sections, creating a JDBC interface to a database is
fairly easy. The difficult parts involve setting up the database and installing the driver.
Although we won't discuss the finer points of drivers or database administration, we
will create the database as well as the interface to it.

Creating the Database

Once again, we will create the database and associated queries using Microsoft
Access as shown in Figure 4-12. As before, our decision to use Accessis due largely
to its ubiquity and ease of use. We want you to be able to create interfaces to
databases quickly and easily, and Microsoft Access provides a simple means to do so.
Aswith all third-party products, if you require assistance with Access, contact
Microsoft. In any event, if you have access to Sybase, Oracle, or another database,
feel freeto useit. Y ou should not have to modify the code, but you will have to install
adriver for the database you plan to use.

Figure 4-12. Our new database.

im calendar : Databaze HiE=E

[1ables | (P queries | EBFoms | B Reports | 2 Macros | 48 Modues |

schedule s
tew |

We will store our appointments in the database using two keys—the reason for the
appointment and the time of the appointment. This conformsto the interface to the
Network module. In a moment we will discuss how to map the network module to the
database. For now, take alook at the Access table in Figure 4-13.

Figure 4-13. Table for our appointments.

Tahhs|q.m| B roms | B
@ schedule

f schedule - Table

1 Dentist
0 Wake-up

1 Grocery Shoppi
2 Change Oil

2 Supper

We must create our query either within the database or within our program
(NetworkModule) to get appointments to the client interface. My preference, for the
purpose of thistext, isto code it into the program. Thisisn't as efficient from the
standpoint of execution performance, but it keeps everything in the NetworkModule.

SELECT TIME,REASON
FROM SCHEDULE
ORDER BY TIME

We'll use the ORDER BY clause of the SELECT statement to get our appointments
for the morning, afternoon, and evening grouped together like areal appointment
scheduler would.

Mapping the Network Module to Database Queries

Now we need to connect the network module to the database. Remember that adriver
must be installed for the database. Without it the database access queries cannot
function. Our network modul€e's interface looks like this:

public class NetworkModule
{
public void scheduleAppointment(String reason,int time);
public Vector getAppointments();
public void initNetwork();
public void shutdownNetwork();

Obvioudly, we will map the schedul eA ppointment method to a PreparedStatement
query, but we will map the getAppointment method to the GetAppointments query.
We will pass our constructor's code directly to the initNetwork method, and we must
close our connection to the database (the shutdownNetwork method is the logical
place to include that code).

Developing the Client

The majority of our client application was developed in Chapter 3, leaving usto
modify the NetworkModule. Doing soisjust as simple as before. Let'sfirst take a
look at the network modul€'s code without the modifications. We must incorporate the
JDBC classes as well as the classes for the driver.

import java.sql.*;

public class NetworkModule

{

NetworkModule()

{
}

public void scheduleAppointment(
String reason, int time)
{

}

public Vector getAppointments()

{
}

public void initNetwork()

{
}

public void shutdownNetwork()

{
}

Once our client isready, we must fill in the information for each function. First, we
will schedule appointments using the schedul eA ppointment query that we created
earlier. Essentially, the network module acts as a pass-through from the rest of the
application directly to the database. Normally, we would try to incorporate some kind
of middleman to handle the pass-through from our GUI to the database, but for
simplicity's sake we will not develop athree-tier application here. In the future, if you
desire athree-tier application, your middle-tier server would make these calls.

Establishing the Connection

First, we must create the connection to the database and link our network module to it.
This ensures that we have a clear path to the database. Any errors here should be
caught and thrown back. We aso must make sure to load the database driver manually
by specifying its entire class name.

import java.sqgl.*;

public class NetworkModule

{

// create the connection to the database

Connection dbConnection;

NetworkModule()
// init the network connection to db
initNetwork();

}

public void scheduleAppointment(

String reason, int time)

{

}

public Vector getAppointments()

{

}

public void initNetwork()

{
// load the database driver
Class.forName(*'sun. jdbc.odbc.JdbcOdbcDriver™);
// create the URL representation of our database
String url = "jdbc:odbc:Schedule;
// make the connection to the database
dbConnection = DriverManager.getConnection(

url, username'™ "password™);

}

public void shutdownNetwork()

{

hs

}

Making an SQL Invocation

Invoking the database is relatively straightforward and not unlike our earlier
invocation of the Presidential Election database. Here, we substitute our own
invocation. The difference in thisinvocation, however, isthat we will retrieve a
complex type from the SQL query. Asaresult, we must translate the complex type
into the Vector that is expected as a return value for the getA ppointments invocation.

import ava.sql.*;

public class NetworkModule

}

// the connection to the database
Connection dbConnection;

NetworkModule()

{
// init the network

initNetwork();

public void scheduleAppointment(

{
}

String reason, int time)

public Vector getAppointments()

{

// create a vector to pass back
Vector appointmentVector = new Vector();
try
{
// create the statement
Statement statement = dbConnection.createStatement();
String s = "SELECT TIME, REASON " +
"FROM SCHEDULE " +
""ORDER BY TIME";
// get the result
ResultSet result = statement.executeQuery(s));
// walk through the result set for the information
while(result_next())
{
// create a variable to hold the appointment
AppointmentType appointment = new AppointmentType();
// get the next appointment from the results set
appointment.time = result.getint("TIME");
appointment.reason = result.getString(Q);
appointmentVector.addElement(appointment);

}

}
catch (SQLException e)

System.out.printIn("Error: " + e.toString());
}

public void initNetwork()

{

// load the database driver
Class.forName(*'sun. jdbc.odbc.JdbcOdbcDriver™);
// create the URL representation of our database
String url = "jdbc:odbc:Schedule™;
// make the connection to the database
dbConnection = DriverManager.getConnection(

url, username'™ "password™);

public void shutdownNetwork()

{
}

Notice how the current invocation steps through the ResultSet and makesit into a
Vector. When your applications need to handle more complex results from an SQL
query, you will need to do much of the same.

Invoking SQL to Make a Change

Now we must implement the Java side to our setAppointment operation. Our
SetA ppointment query assigns a new entry into the database.

public void scheduleAppointment(
String reason, int time)
{

}

We must first take the reason and time variables and translate them into an SQL
statement. Unlike our previous database modification example, here we must insert an
element, not simply change an existing one. To do so, we need to use the SQL Insert
statement.

INSERT INTO Schedule
VALUES (1, "Meet with marketing®);

We will once again use the PreparedStatement object to put together a statement.

public void scheduleAppointment(
String reason, int time)
{

try
{

Statement insertStatement = dbConnection.createStatement();
String insert = "INSERT INTO SCHEDULE " +
"VALUES("" + appointmentTime + "*, ="
+ appointmentReason + "")";
insertStatement.executeUpdate(insert);

Shutting Down the Connection

In JDBC, we must close the connection to our database. This ensures that the database
management system has sufficient connections for other applications to connect to it.
For high-availability databases, thisis quite an important characteristic. The database
must be available at all times, and even though our connection disappears when the
application shuts down, we must still publish an interface to the database connection
that will allow usto eliminate it.

public void shutdownNetwork()

{
}

Summary

Databases are storage mechanisms designed to enable you to warehouse vast
quantities of data. By linking Java applications to them, you can create programs that
are instantly useful. Today, there are hundreds of applications that interface with
databases using outdated, archaic applications.

In the next two chapters we will explore combining Java, JDBC, and network object
technology to develop enterprise class applications.

Chapter 5. Java RMI: Remote Method Invocation

Distributed Objects

Client

Server

Callbacks

A JavaRMI Version of the Featured App
New in JDK 1.2

Aswe were al growing up, there was always a person (afriend, afoe, or a parent)
who knew just how to push our "buttons” to get a desired reaction out of us,
sometimes good and sometimes bad. The actions we were manipulated into doing
were things that were built into our personalities. Thisidea of pushing someone else's
buttons is exactly the idea behind Remote Method Invocation. Think of yourself asan
action/reaction server and the things you could be manipulated into as your methods;
now think of your antagonist as a client to your server. If the client sends the right
messages, it can get the server to do anything that isin the server's set of known
actions.

Java Remote Method Invocation is asimple, yet powerful, Java-based framework for
distributed object design. Although it shares many traits with its cousin, Java IDL
(Chapter 6), it has distinct advantages over IDL in several key areas, notably usability.
Java RM-based objects can be quickly deployed and managed across networks. It has
severa shortcomings that we will discuss later, but Java RMI is afast and adequate
introduction to Distributed Object Programming.

In this chapter, we will discuss the architectural decisions behind RMI and why they
were made. We will also guide you through the process required to create asimple
client/server system using the Remote Method I nvocation mechanisms.

Distributed Objects

Remote Method Invocation (RMI) is similar to other distributed object technologies;
it, however, enables you to create applications that communicate with one another
without the overhead of CORBA. A remote method invocation is similar to Remote
Procedure Call (RPC) used frequently in C/C++. Instead of creating and instantiating

an object on your local machine, you create it on another machine and communicate
with that object through itsinterface, just asif it were alocal object. This givesthe
effect of creating alocal object that we then take hold of with both hands and stretch
out across the network. We then drop one end on one host (client) and the other end
on another host (server); the two ends are still connected and make up a single object.
Even if we replicate the client part of the object on multiple hosts, we still have only
one object.

So, with the advantages of the Java language, you will be able to create distributed
objects that communicate with one another. Unlike CORBA, your applications must
be written in Java, but that may not be a bad thing in the end. It will be difficult to re-
implement your legacy applications because they must be rewritten in Java. Y et,
being able to write distributed applications without expending any real effort is highly
attractive. If Javais your language of choice, then RMI may be your best
communication alternative.

What Is RMI?

In the good old days of programming, all the things you wanted to do resided in one
program. If you needed afile, you smply opened it. If you needed to optimize your
program, you either reduced functionality or sped it up. Lately, the notion of
distributed programming has taken the industry by storm. Instead of opening afile,
you open another application. Instead of reducing functionality, you farm out the
work to another application and keep tabs on the process by communicating with it.
Figure 5-1 illustrates the differences between local and remote object invocation.

Figure 5-1. Invocations on remote objects appear the same as invocations on local
objects.

Local
Object

Application

Object

Remote
Object
Client

Local Machine Remote Machine

Java RMI enables you to farm out work to other Java objects residing in other
processes, or in other machines altogether. Not only can you execute stepsin paralel
using threads, but you can also farm out work to other processes that will execute
stepsin parallel on a different machine!

Sure, many of the alternatives presented in this book enable you to do the same thing,
but why would you want to do all that work when you can let Java—the same
language you've spent so much free time learning anyway—do all the work
automatically? Where CORBA flaunts its language independence, RMI makes no
effort to hide the fact that you are locked into a Java-only solution.

How Does RMI Work?

When your client invokes your server, severa layers of the RMI system come into
play. Thefirst, and most important to the programmer, is the stub/skeleton layer. The
stubs are Java code that you fill in so that you can communicate with the other layers.
For example, in Chapter 6, "Java IDL: Interface Definition Language,” you will see
how the IDL to Java compiler generates code that we will later fill in and use as the
framework for a distributed application.

Likewise, the Java RMI system automatically enables you to use several helper
functions. By inheriting from the RMI classes, your class implements the stubs or
skeletons. To put it simply, stubs are reserved for client code that you fill in, and
skeletons refer to server code.

Once the stubs and skeleton layers are completed, they pass through the other two
layersin the RMI system. The first of these layersis the remote reference layer. The
remote reference layer is responsible for determining the nature of the object. Does it
reside on a single machine or across a network? |'s the remote object the kind of object
that will be instantiated and started automatically, or isit the kind of object that must
be declared and initialized beforehand? The remote reference layer handles all these
situations, and many more, without your intervention.

Finally, the transport layer is similar to atranslator that takes your RMI code, turns it
into TCP/IP (or whatever communication mechanism is used), and lets it fly over the
network to the other end. Because the RMI system supports a technique called object
serialization, any objects passed as parameters to a remote method, no matter how
complicated, are converted into simple streams of characters that are then easily
reconverted into their original object representation. The real implication of thisis that
only objects that are serializable can be passed as arguments. This can pose problems
at times; for example, at times it would be convenient to pass a stream to a server
object, but streams are not serializable, so we can't.

Asyou can seein Figure 5-2, aclient that invokes a remote server first talksto its stub
code, which, in turn, sends the message to the remote reference layer, which then
passes it through the transport mechanism to the other machine. The other machine
takes what it gets through the transport layer and retransates it into the remote
reference layer representation, which passesit on to the skeleton code where the
request finally makes its appearance at the remote method.

Figure 5-2. Java RMI architecture.

Stubs Skeletons

Remote Reference Remote Reference

Transport

Stub/Skeleton Layer

When your client begins to invoke a server on aremote machine, the APl with which
you, as programmer, are concerned is the stub/skeleton code. By inheriting from the
appropriate RMI class, your object obtains several RMI methods that you are required
tofill in.

When the invocation is actually made, the remote object (depending on how the
server has been designed) could be areplicated object. A replicated object is an object
that has several instances executing at the same time (possibly created by afactory
process). For example, a given application may have several instances of the Java
String class within its threads of execution. If the String class were aremote server
object, aclient that invokes it should not have to worry about its various instances.
The stub/skeleton layer precludes this notion of replicated objects. When you write
your application and code, the necessary tools to talk to a remote object, you need not
concern yourself with the implementations on the remote side.

The stub/skeleton layer also abstracts you from the various transport mechanismsin
the other layers. In short, the stub and skeleton layers both make sure that your
program is platform-independent.

Remote Reference Layer

The reference layer serves two purposes. First, it handles the translation from the stub
and skeleton layers into native transport calls on the hosting architecture. The early
version of RMI was not as platform-independent as it purported to be. The problem
lay in the Java Developer's Kit, and not in the RMI system itself. With the
introduction of the next major revision of the JDK, the RMI system now functions
properly. The RMI system is truly platform-independent as it, and the Java language,
were meant to be.

The reference layer also isin charge of carrying out remote reference protocols. These
protocols may be point-to-point communication (i.e., local object to remote object
invocations). Or, the reference protocol may refer to replicated objects. The RMI

system ensures that, when you invoke a remote object that happens to be replicated,
all the replicated instances will hear the same message. The replication strategy is
customizable, but we refer you to the RMI System Architecture section of the RMI
specification.

There is a corresponding server-side reference layer that accepts the client-side
instructions and retranslates them into programmer code. It ensures that the
invocations are made reliably, and that the RM1 system knows about any exceptions.
Exceptions are thrown from this level for any problems in establishing connections,
fulfilling invocation requests, or closing connections.

Basically, the reference layer is responsible for bridging the gap between programmer
code and network communication. It is a go-between of data, taking what you want to
do, and making sure it can be done using the network.

Transport Layer

When the first miners found gold in California, they exclaimed "Eurekal" Well,
Eurekal Thisiswhere the action is. Even though you are not able to manipulate these
routines yourself, it isimportant to understand how the transport is implemented.
From here, you will understand the limitations of RMI and be able to make an
architectural decision based on them.

The transport layer is responsible for setting up connections, maintaining them,
alerting applications of problems, listening for connections, and shutting them down.
The transport layer consists of four components: the objects, the space between local
and remote address spaces, the physical socket, and the transport protocol. Figure 5-3
illustrates a simple transport model.

Figure 5-3. The transport layer is responsible for all connections-related functions.

Client Server

/-— Channel

I \

Transport
Endpoint

The objects, or endpoints, are the beginning and end of an invocation. Between one
object's transport endpoint to another's transport endpoint resides the entire
communication mechanism on which RMI is based. The channel between the address
spacesisin charge of upholding the connection and monitoring for signs of trouble,
say the loss of an object or maybe the loss of the physical connection itself. The
socket connection is basically the same kind of socket we saw in Chapter 3. Aswe
mentioned before, sockets really are the basis for all communicationsin Java. Finaly,
the transport protocol is the language in which sockets talk to one another.

Local vs. Remote Objects

So, what are the semantic differences between local and remote objects? All along we
have stressed that at the heart of the entire system is the notion that to the client
programmer, everything looks exactly like normal, nonremote Java code. In fact, even
Java IDL's client applications look no different than local Java code.

Java Remote Method Invocation is quite interesting in a semantic sense. Indeed, the
very ideathat instantiating an object that happens to be on another network is
interesting in and of itself, but to add to that the caveat that the remote object exhibits
all the properties of alocal Java object adds a certain amount of usefulness to the
whole matter.

What kinds of characteristics do Java objects exhibit? Well, most importantly, they
are easy to implement. They are garbage-collected, meaning that once your program
has no use for them, they are automatically dereferenced and their resources returned
to the system. We discuss remote garbage collection in the next section.

Java objects are, of course, platform-independent, as are Java RMI objects. When you
make a remote method invocation in a non-Java language, chances are you must learn
not only the nuances of the communication mechanism of your own machine but that
of the machine you are talking to as well. Imagine being a Solaris programmer who is
trying to talk to a Windows 95 machine! It's hard enough to master Solaris
Interprocess communication without having to learn the esoteric Windows 95
communication layers as well!

Java RMI frees you from that morass, just as Java frees you from recompiling your
code for multiple architectures. When you invoke a RMI method across different
platforms, the RMI system adjusts its communication layers automatically; and
because those layers are abstracted from you, the programmer, you never have to
concern yourself with that confusing network code.

Garbage Collection

One of the biggest advantages to Javais that there are no pointers. Thereisno
memory to deallocate, and you never have to deal with memory storage schemes.
Java's platform independence mantra wouldn't allow it anyway, but if you were to
develop for multiple platforms, you would need to be concerned with the nuances of
memory management for each architecture, which, like mastering multiple transport
layers, is adaunting task.

Java RMI is no exception to the rule. In fact, it contains a complicated garbage
collection scheme based on Modula-3's Network Objects concept of object reference
counters. RMI places an object reference counter into each object. Every time another
object talks to the remote object, the object reference counter isincremented, and once
the object no longer needs the remote object, the counter decrements.

There are many protective layers around the garbage collection algorithm that prevent
premature object deallocation. Most of RMI's distributed garbage collection farms off
the work to the local Java Virtual Machine's garbage collection algorithm. Thus, RMI

does not reinvent the wheel, so to speak.

For example, when our local object begins a conversation with a remote object, we
begin to talk through the RM1 system's layers. As part of the remote reference layer,
our local object creates a"network” object. On the other end, at the remote machine,
the remote reference layer creates another network object that converses with the
remote object. The remote virtual machine realizes that the remote object should not
be deallocated and holds off garbage collection as long as the remote network object
isreferring to it (see Figure 5-4). Thus, the remote object is not blown away.

Figure 5-4. The creation of network objects during object communication prevents
Java's garbage collection from interrupting the conversation.

Client Server
Local Object Local Object

L J
Remote reference ————» Remote reference

Network Object

Metwork Object

Virtual Machine Virtual Machine

Back at the local machine, when we are no longer using the remote object, the remote
reference layer removes all references to the local network object. Once the local Java
Virtual Machine realizes that the local network object is no longer used, it garbage-
collectsit. As part of itsfinalize routine, the local network object sends a message to
the remote network object through the reference layer that it should let go of its
reference to the remote object. In so doing, the remote network object causes the
remote Java Virtual Machine to garbage-collect the remote object.

Security

When you instantiate alocal object from within a Java applet, security is not a
concern. The applet security mechanism has already cleared your applet, and you are
free to allocate and deallocate your objects.

However, security is very much a concern for remote objects. When you try to
instantiate a remote object, you must have permission to do so. The Applet class
loader that isin charge of getting every class your application requires may or may
not be able to instantiate the remote object. As aresult, RMI in appletsislimited to
invoking methods on classes that are already in existence. Y ou are not allowed to
create aremote object because the applet class |oader will not let you.

Applet vs. Application

Currently, RMI servers must be created as Java applications. Servers cannot be
embedded within a Web page. There are several reasons why, most notably that the
applet security mechanisms prevent it; but, for the time being, the RMI system does
not support applet servers. We will discuss the callback alternative as implemented in
RMI in afew sections.

Dynamic Method Invocations

RMI enables you to invoke a server without knowing anything about what methods
are contained within the server. It's like going into a restaurant and ordering without
ever seeing the menu. If you know you'rein an Italian restaurant, chances are pretty
good that they offer spaghetti and meatballs. Likewise, if you know what kind of
server you are talking to, you can invoke it without actually knowing anything about
the methods it implements.

Overview of RMI

Java's Remote Method Invocation system is asignificantly easier and lighter weight
approach to distributed objects than Java IDL. Contained completely within the Java
language, RMI is an extension to the language itself, whereas Java IDL is alanguage-
independent Java implementation. RMI is simple, fast, and effective for lightweight
distributed systems. As your applications become more complex, JavalDL may be
your best alternative.

Nevertheless, client and server programming is quite simple with RMI. Aswe will see
in the next two sections, creating clientsin RMI is anatural extension to creating Java
objects.

Client

In order to create a distributed system, one part of your objects must be a client, and
the other must be a server. Sometimes servers can be clients as well, but in this
section we will discuss the simplest case. RMI was designed with the idea that, with
minimal effort, you will be able to create complex distributed systems with al the
advantages of Java and none of the detriments of other distributed designs. In fact,
with the addition of asingle linein your code, you can make an object a distributed
object instead of alocal one.

The beauty of RMI isthat even though your code gives theillusion of normal, single-
process applications, it isin fact adistributed system. When you get overloaded at
work, you begin to delegate to others. Likewise, Java RMI says rather than
overloading an application, why not delegate to other applications?

RMI Client Methodology
Let's say you call up Penney's and decide to order one of those fancy toaster covers

from their catalog for your mother's birthday. The operator greets you and asks for
your order number. Because the client is always right, you decide to amuse yourself

and annoy the poor person taking your order. Instead of being cooperative and
actually having an order number, you simply tell him that you want the "toaster oven
cover with the purple polka dots and a portrait of Heath Shuler on the side.”

Clearly amused, the operator goes to his catalog database and asks for the "toaster
oven cover" with the appropriate description. What he getsin return is the order
number and so he is able to process your order.

Similarly, in RMI you have to go to a catalog of objects and ask for the object by its
commonly known name. Once you have the object you can continue to process your
application. The steps you need to take in order to create aclient are:

1. Get the client object from the Naming Service.
2. Process the object and ready it for invocation.
3. Invoke the object.

RMI Remote Classes

RMI's Remote classis a standard interface that you must extend from your server in
order to export functionality to an RMI client. All remote objects inherit from the
Remote class, and your client needs to know what it'stalking to. It's kind of like
knowing the language you are going to talk before you converse with someone from
another country.

Once your server inherits the remote object, it can be instantiated upon and invoked
on by remote objects. In the example in this section, we are implementing a simple
RMI client that will make remote method invocations to an RMI server to retrieve
statistical datafor agiven NFL team. The StatsServer implements three functions that
we will implement in our RMI servers section. We want our clientsto be able to get
the total running yardage, the total passing yardage, and the total number of turnovers
for ateam that we specify by a string. We start by including RMI in our file, and
defining the client classitself.

package rmi.Statsl;

public class StatsClient

{
}

The Remote classes also implement remote versions of the standard Java exceptions.
Inheriting from Java's exception mechanism, RemoteExceptions can do everything
that Java exceptions can do. The only difference between the two is that remote
exceptions refer to problems with remote objects rather than local Java errors.

TIP
The RemoteObject class extends the Java Object class. So, if you were to create

two versions of an application—one that talks to remote objects and one that refers
only to local ones—it would simply be a matter of changing the inheritance.

RMI's Naming System

Aswe discussed earlier, the RMI system provides a ssimple naming system that allows
you to refer to objects as special kinds of strings, rather than as special words. In order
to use aremote object, you must first retrieve it from the Registry. The Registry
ensures that an object is available for use. It binds the object reference to asimple
string and provides routines for accessing an object by the string under which it is
stored.

In order to use the Registry, you must first start it up on some machine on your
network; for our purposes this will be your local machine. The Registry clingsto a
predefined port (becauseit is not awell-known port and the stubs and skeletons hide
all the protocol from you, you don't need to know; but if you'rereally curiousit is
1099) on your machine and funnels TCP/IP messages between clients, servers, and
the Registry on that port. Embedded within the code for the RMI system isthis
specially assigned port, enabling the RMI system to always be able to access a
running Registry. The Registry is a stand-alone Java application, so starting it is pretty
simple:

Y%prompt®h rmiregistry & (on UNIX systems)

D:\start rmiregistry (on Windows systems (95, 98 or NT))

To start up the registry on some port other than the default, smply follow the
command with the desired port.

D:\ start rmiregistry 12345

Getting an object from the Registry is actually pretty simple. Y ou can get an object
and begin invocations on it immediately by invoking one of the Registry's three
functions for binding objects to strings, unbinding objects, and retrieving objects:

package java.rmi;
public class StatsClient

StatsClient()

{

// get the remote object from the Registry

String url = "//localhost/STATS-SERVER";

StatsServer remoteObject = (StatsServer)Naming.lookup(url);
}

Remote Invocations

The object that isretrieved is a remote base object. We need to transform that generic
remote object into a specific StatsServer object. In geek termsthisisreferred to as
narrowing. We can narrow our remote base object down to a StatsServer object by
performing a simple cast operation, giving us access to all the functions within the
StatsServer:

package java.rmi;

public class StatsClient

{

StatsClient()

{
// get the remote object from the Registry

RemoteremoteObject=Naming. lookup(*'STATS-SERVER™) ;

//narrowtheobjectdowntoaspecificone

StatsServer statsServerlinterface;

if(remoteObject instanceof StatsServer)
statsServerinterface = (StatsServer) remoteObject

Finally, we are ready to invoke methods on our remote server. Remember that we
have three possible functions to choose from. Creating a user interface for the client is
atrivia task and should be integrated into the application just as you normally would.
Here, we invoke al three functions and return the data to the user on the standard
output device:

package java.rmi;
public class StatsClient

StatsClient()
{
// get there mote object from the Registry
Remote remote Object = Naming.lookup(**'STATS-SERVER™);

// narrow the object down to a specific one

StatsServer statsServer Interface;

if(remoteObject instanceof StatsServer)
statsServerinterface = (StatsServer) remoteObject

// make the invocation
System.out.printIn(""Totalyardageis:"+
Stats Server
Interface.getTotalRunningYardage("'Redskins'™));

}
}

Catching Exceptions

So far we have done nothing in the way of error checking. In order for our client to
handle every possible contingency during a remote invocation, it needs to catch any
exceptions thrown by the server. During a normal remote invocation, the exceptions
can be anything from user-defined exceptions within the server to standard RM|
transport exceptions. In any event, you can catch either generic Java exceptions or
specific RMI ones.

RMI client invocations should catch one of seven different exceptions. The Remote-
Exception classisthe parent class of all exceptions thrown by the RMI system. Other
exceptions include Registry-thrown exceptions, such as Al readyBound-Exception
and NotBoundException. RMI object invocations themselves throw four kinds of
exceptions:

StubNotFoundException
RMISecurityException
NoSuchObjectException
UnknownHostException

APWDNPRE

Using the standard Java methodol ogy for adding exceptions to a program, we catch
the RMI exceptions as follows:

package java.rmi;

public class StatsClient

{
StatsClient()

// get the remote object from the Registry
try
{

Remote remote Object = Naming.lookup(**'STATS-SERVER™);

catch (Java.rmi.NotBoundException exc)

{

System.out.printIn(*"Error in lookup()"+
exc.tosString());

}

// narrow the object down to a specific one

Stats Server stats Server Interface;

if(remote Object instanceof StatsServer)
statsServerinterface = (StatsServer) remoteObject

// make the invocation
try
{

System.out.printIn("'Total yardage is:'"'+

statsServerlinterface.getTotalRunningYardage("'Redskins'™));

}

catch (Java.rmi.RemoteException exc)

{

System._out.printIn("Errorininvocation’+
exc.toString());

Handling Security Constraints

Because we dynamically load classes from the file system within our client, we must
set up a corresponding Java security manager within our client. The client's security
manager prevents the client from abusing any privileges granted by the server. For
example, our server may have unrestricted access to the local file system. In order to
keep the client honest and prevent it from having the same unrestricted access to the
server's host, the client security manager monitors the loading process of the remote
class and sets the appropriate file access permissions, as required by the client's host
machine.

In our StatsServer example, our client loads the remote StatsServer and begins
invocations on it. The StatsServer could very well get its datafrom alocal file or
database. In order to do so, the StatsServer would have permission to read and/or
write the local file or database. To keep our client from abusing this right, we set the
security manager so that the client inherits the restrictions of its machine. If the client
were in abrowser, it would inherit the security restrictions set in the browser. If it
were a stand-alone application (asis the case in this example), it would be given the
access permissions of the stand-alone application.

Adding and setting the security manager is asimple matter of inserting alinein the
client. We will discuss RMISecurityManager in the next section as we design the
server for this client.

package java.rmi;

public class StatsClient extends Remote

{

StatsClient()
{

// set the client security manager
try
{

}

catch(Java.rmi.RMISecurityException exc)

{

System._set SecurityManager(new RMISecurity Manager());

System.out.printIn(*'Security violation"+
exc.toString());

// get the remote object from the Registry
try
{

Remote remoteObject = Naming.lookup("*'STATS-SERVER™);

}
catch(Java.rmi.NotBoundExceptionexc)
{
System.out.printIn("Errorinlookup()"+
exc.toString());
by

// narrow the object down to a specific one

StatsServer statsServerlinterface;

if(remoteObject instanceof StatsServer)
statsServerinterface = (StatsServer) remoteObject

// maketheinvocation
try

{
System.out.printIn("'Total yardage is:"+
statsServerinterface.getTotalRunningYardage("'Redskins'™));

catch(Java.rmi.RemoteExceptionexc)

{

System._out._printIn("Error in invocation'+
exc.toString());

Client Overview

Asyou can see, designing aclient in RMI is apretty straightforward process. Once
the client isfinished, you must create a server to which to interface. Wewill dosoin a
moment, but we should keep in mind that the client portion of our client/server system
changes most often. Therefore, we highly advise that you create your clients with a
strong modular design. In so doing, you can build software components that are easily
replaced. Furthermore, the user interface aspects of your application will most likely
affect the client and should not play a part in server design.

Server

Servers enable other objects to connect to your local object asif they actually resided
on the requesting machine. To the client nothing is different, but the server requires
some added functionality to support TCP/IP processing and communication.
Furthermore, a server needs to include al the underlying garbage collection
mechanisms that enable it to behave as a normal Java object that will disappear if itis
no longer used.

RMI Server Classes

In order to get the Java tools necessary to develop an RMI server, you need to make
sure your classes inherit from the RemoteServer class. The RMI system provides
severa different versions of the RemoteServer class, but as of now RMI givesyou
only the UnicastRemoteObject class.

The RemoteServer class extends RemoteObject, which gives you all the functionality
you had in aclient. If your server will eventually be a client as well, you need not
inherit the client code again. Furthermore, the RemoteObject superclass also makes
sure that you have access to the entire RMI system. The RemoteServer class extends
the RemoteObject to provide utility functions getClientHost and getClientPort, which
enabl e clients to determine the proper port to open in order to talk to your server.

The extended class UnicastRemoteObject is aform of a RemoteServer. Eventually,
Java RMI will give you several different versions of communication. The Unicast
server has the following three characteristics:

1. The server cannot be started remotely. It must exist already and the reference
lasts only for the life of the process.
2. TCP/IPisused underneath.
3. An object stream is used to pass parameters and invocations from client to
server.

Once your class inherits from UnicastRemoteObject, you can create your server using
the two constructors provided with the class. The first constructor forces you to create
an object on the default port, and the other allows you to specify the port.

Creating a Server Interface

RMI isdriven by the notion of interfaces. Asyou will recall, interfaces enable you to
separate the method signatures you publish to the world from the way those methods
are actually implemented. For example, | can tell you that your computer comes with
amouse. Y ou will know how to useit, how to clean it, and how to feed it cheese. In
other words, all mice share acommon interface. If | were then to add that you were
getting alaser mouse like the ones supplied with Sun SPARC stations, you would not
have to make a huge shift in thinking to use the new kind of mouse. Y ou still know
how to use it, how to clean it, and how to feed it.

In our StatsServer example, we need to create a simple interface with three different
methods that can be invoked on it, like so:

public interface StatsServer extends Remote
{
int getTotalRunningYardage(String teamName)
throws RemoteException;
int getTotalPassingYardage(String teamName)
throws RemoteException;
int getTotalTurnovers(String teamName)
throwsRemoteException;

Implementing a Server

The interface defines the contract that you must now fulfill. In order for your client's
invocation to map onto the server's actual implementation, you need to make sure that

your server's methods signatures match the interface signatures exactly. Y our server
implementation must implement the UnicastRemoteObject class we spoke of earlier,
aswell as extend the Stats| nterface we created:

import java.rmi.*;

public class StatsServerlmpl extends UnicastRemoteObject
implements StatsServer
{

}

First we need to implement the constructor for the server. Because the server will be a
stand-alone application (RMI does not yet support applet clients or servers), we need
to make sure that all our initialization is done in that constructor. RMI requires a
constructor to be present. In order for the RMI system to complete its own
initialization, the constructor must be invoked and must throw a Remote-Exception in
case something goes wrong. Our constructor should also call the super class's
constructor:

import java.rmi.*;

public classS tatsServerlmpl extends UnicastRemoteObject
implements StatsServer

StatsServer() throws RemoteException

{

// call the super class®™ constructor
super();

Now you need to implement the three methods we had defined interfaces for:

import java.rmi._*;

public class StatsServer extends UnicastRemoteObject
implements StatslInterface

{

StatsServer() throws RemoteException

// call the super class®™ constructor
super();

public int getTotalRunningYardage(String teamName)
throws RemoteException
{

if(teamName.equals("'Redskins'™))
return43z2;

else
returnl29;

by

// we implement the others as above..

Asyou create interfaces and methods, keep in mind that the methods themselves need
not be concerned that they reside in an RMI server. In fact, the objects you create as
RMI servers should be in line with the RMI philosophy. These are objects that could
just as easily belocal objects. The fact that they are remote should not affect the
actual implementation of the methods themselves.

RMI Registry Classes

Asyou can see, creating an RMI server isjust as easy as creating a Java object. We
define our interface, implement the interface, and now we need to publish the
interface to the world so that any client can access and use our StatsServer. Aswe
mentioned earlier, the RMI Registry keeps track of objects using asimple string. In
our client we retrieved an object by the name of STATS-SERVER. In order for this
server to be retrieved in that instance, we need to use the same string here as well.

Typicaly, RMI Registry procedures are implemented in the main routine of your
stand-alone application. In the future, when RMI supports applets as well, these
procedures will be placed in the init method:

import java.rmi.*;

public class StatsServer extends UnicastRemoteObject
implements StatslInterface
{

StatsServer() throws RemoteException

// call the superclass®constructor
super();

public int getTotalRunningYardage(
String teamName
) throws RemoteException

{
i f(teamName.equals(*'Redskins'™)
return432;
else
returnl29;
}

. . we implement the others as above .
public static void main(

String args[]
)

{

// create a local instance of our object

StatsServerimpl statsServer = new StatsServerimpl();

// put the local instance into the Registry
Naming.rebind("'STATS-SERVER",statsServer);

RMI Server Security Constraints

As we discussed when we designed the client for this object, we need to specify a
security manager. The manager we implemented in the client is the Java RMI -
SecurityManager.

NOTE

The RMISecurityManager should be used when the server requires minimal
security restrictions. If you require a security system to provide more robust access
control, feel free to substitute your favorite security manager in its place.

In any event, the security manager should be set with the System class's
setSecurityManager method. If you do not specify a security manager, then the RM|
system loads only those classes specified in the Java CLASSPATH environment
variable.

CAUTION

RMI usesthe CLASSPATH as adefault security manager to prevent unexpected
and potentially dangerous results from RMI objects.

Adding a security manager is as simple as it was with the client. Remember that the
client's security manager prevents downloaded objects from modifying the local file
system. The server's security manager prevents the server from doing harm to the host
machine. This kind of control is not necessarily meant to control the server itself, but
to prevent any client from using the server in a malicious manner.

import java.rmi.*;

public class StatsServerlmpl extends UnicastRemoteObject
implements StatsServer
{

StatsServer() throws RemoteException

{

// call the superclass”constructor
super();
}

public int getTotalRunningYardage(String teamName)

throws RemoteException

{
i f(teamName .equals('Redskins™)
return432;
else
return 129;
¥

. we implement the others as above .
publlc static void main(String args[])

{

// set the security manager
try
{

System.setSecurityManager(new
RMISecurityManager());

// create a local instance of our object

StatsServerimpl statsServer = new
StatsServerimpl();

// put the local instance into the Registry
Naming.rebind(*'STATS-SERVER",statsServer);

}

catch (jJava.net._MalformedURLException me)

{

System.out._printIn("’'MalformedURL:""+me.toString());

catch(RemoteException re)

{

System.out.printIn("’'RemoteException:*+re.toString());

}

Generating Stubs and Skeletons

Once theinterface is completed, you need to generate stubs and skeleton code. Stubs
are sort of like backup quarterbacks. They stand in for the starter when he is not
available. Sometimes the actual Java object could reside in another virtual machine.
Stub code is generated to stand in for the remote class that cannot be accessed in order
to provide a successful compile. The RMI system provides an RMI compiler (rmic)
that takes your generated interface class and produces stub code on its behalf:

Y%prompt% javac Statslnterface.java
Y%prompt% javac Stats Server.java
Y%prompt% rmic StatsServer

Once the stub code is compiled and linked in, your RMI application may be
completed and installed in the Registry. Once the RMI application resides in the
Registry, it isavailable for the client to invoke as we did in the previous section.

Once the stubs and skeletons are completed, you must start the RMI Registry by hand.
RMI objects are not started automatically upon invocation. Therefore, because the
RMI Registry isan RMI object in its own right, it must be started by hand:

D:\ start rmiregistry

Once the Registry is started, the server can be started and will be able to store itself in
the Registry. If the server is available through the Registry, the client can invoke it.

D:\ java - Djava.security.policy=C:\advjavacd\rmi\Statsl\policy.all
rmi .Statsl.StatsServer

Thisall looks rather complicated, so let's take it apart and look at what we are saying:

Java We are asking the Java virtual machine to run something.

-D Set a system property to some value. In this case set java.security.policy to
whatever isin the file C:\advjavacd\rmi\Statsl\policy.all (because of the
finer grained security model in Java 2.0you must set up a security policy for
RMI).

rmi.Stats1. StatsServerl mpl | Since we created our client and server in a package and my classpath is set
to C:\advjavacd, we must fully qualify the class we want to run.

Needless to say, if you put the \advjavacd\rmi\statsl directory in your class path and
started the server up from that directory, this could be reduced to

D:\ java -Djava.security.policy=policy.all rmi.Statsl.StatsServerimpl

Because thisis alittle lengthy and complicated, it is best to put it in a script or bat file
(see the R.BAT filein the rmi\statsl directory on the accompanying CD).

Later on when we compare JavaIDL and Java RMI, we will discover that location
independence and automatic startup are vital to mission-critical applications. For now,
take note of the differences as you formulate the alternative more suited for your
applications.

NOTE
Asyou can see, creating an RMI server is not adifficult task. Infact, itis

amazingly similar to Java IDL in many respects. Thisis not an accident. Both Java
IDL and Java RMI share the same lineage within Sun Microsystems. The

architects of RMI and the brains behind Java IDL both come from the same
distributed object projects. As aresult they have created Java-based distributed
object systems that share the same characteristics.

Server Overview

So now that we can create serversin RMI, we can publish services to the rest of the
world. Clients anywhere can use our servers asif they were remote objects. But, what
if we wanted every client to use a different instance of the remote server? If we used
our current paradigm, we would have to make sure our clients created their own

server somewhere else. But, we want them to all use the same server process remotely,
just use different instances of the server itself. We can accomplish this with the notion
of factories. Factories enable clients to create servers on the fly, all of them contained
within the factory's process. That way, if two clients are banging on the same kind of
server, what one does won't affect the execution of the other.

Callbacks

When we last spoke of callbacks, we used them as a means to get around the
limitation of having no servers within an applet. It enabled us to create a method that
would allow a C++ object to invoke our Java applet embedded inside a Web page.
While we sacrificed by not having control over the initialization or startup of the
callback applet as we would have had with a CORBA server, we were satisfied that
our applet would be able to act as the recipient of data.

Java RMI has similar limitations with its servers. Unfortunately, a Java RMI server
cannot be embedded within a Web page, so we have to implement similar callback
mechanisms inside our servers and clients.

Why Callbacks?

Let's say that clients of our StatsServers wanted to display new dataasit arrived to the
server. Rather than routinely pinging the server for information and creating a
network backlog, we would like our client to change its on-screen state information
only when the server has new information to report.

Just as we used the callback mechanismin Java IDL to support this kind of dynamic
update, we will implement a server-driven event mechanism that will enable our client
to passively update live information. Our solution should be scalable, meaning that it
should work just as efficiently for afew clients asit should for several thousand
clients. It should be easy to implement, and it should solve the problem without hassle
to the client programmer.

Creating the Callback
Because our callback object essentially will be an RMI object, we need to create a

new client interface. Asyou can seein the following code, we need to create a method
that the server will invoke when it senses a change in itsinformation.

In order to set up this client interface, we must create a new public interface file
similar to the ones we created for the StatsServer itself:

public interface StatsCallbacklnterface

{
void statsChanged(
String teamName,
int passingYards,
int rushingYards,
int turnovers);
}

We also must modify the StatsServer itself so that it can register for these callbacks.
Remember that we need to tell the server that it has to send us information back when
it gets a change. In order to do so, we have to send it an object on which it can invoke
the callback. Because our client will implement the StatsCallbacklnterface object, we
should pass an object of that type to the registration function:

//new file.
public interface StatsServerlInterface extends Remote
{

int getTotalRunningYardage(
String teamName);

int getTotalPassingYardage(
String teamName);

int getTotalTurnovers(
String teamName);

Void addCallback(
StatsCallbackInterface statsCallbackObject);

Implementing the Callback Client

Now that we have created the proper interfaces to our callback client and changed the
server to use callbacks, we need to modify the client appropriately so that it will
register for a callback as thefirst step in its own initialization phase. Remember that,
whenever the server gets changed, the client makes a call to the statsChanged function,
so we need to add that function to our client class. In addition, we need to make sure
that the client implements the StatsCallbacklnterface interface; otherwise, it will not
be able to send itself to the server and be registered for an update.

package java.rmi;

public class StatsClient extendsStatsCallbacklnterface

{

public void statsChanged(
String teamName,
int passingYards,
int rushingYards,
int turnovers

tatsClient()

A S AN

. same as before .

Filling in the Callback Method

Now, we need to do something with the information we receive when a callback is
invoked. For now, we'll write our results to the standard output device, but keep in
mind that we could just as easily have a user interface handle our display routines.

package java.rmi;

public class StatsClient extends StatsCallbacklInterface

{

public void statsChanged(
String teamName,
int passingYards,
int rushingYards,
int turnovers

)

{ _ _ _
System.out.printIn("’'Receive dynamic update: ');
System.out._printIn(’'Yards passing: " + passingYards);
System.out.printIn(’'Yards rushing: " + rushingYards);
System.out.printIn("'Turnovers: " + turnovers);

by

StatsClient()

{

. same as before.
by

Registering Callbacks

After we've completed the Callback method itself and modified all the interfaces, we
need to have the client add itself to the server's callback list. The server then will be

able to go down the list whenever it gets a change and invoke the statsChanged
method on all of the clients. However, the server will not be aware of the client unless
the client registersitself for updates.

package java.rmi;

public class StatsClient extends Remote

{

public void statsChanged(
String teamName,
int passingYards,
int rushingYards,
int turnovers

System.out._printIn("'Received dynamic update: ');
System.out.printIn(’'Yards passing: "+ passingYards);
System.out.printIn(’'Yards rushing: "+ rushingYards);
System.out.printIn(’'Turnovers: "+ turnovers);

b
StatsClient()

{

// set the client security manager

try

{ _ _
System.setSecurityManager(new RMISecurityManager());

}

catch (Java.rmi.RMISecurityException exc)

{
System.out._printIn(''Securityviolation " +

exc.toString());

ks

// get the remote object from the Registry

try

{

Remote remoteObject = Naming.lookup("*'STATS-SERVER™);

catch (Java.rmi._.NotBoundException exc)
{
System.out._printIn(’Errorinlookup() " +
exc.toString());

}

// narrow the object down to aspecific one

StatsServer statsServerlinterface;

if(remoteObject instanceof StatsServer)
statsServerinterface = (StatsServer) remoteObject

// register thecallback right here

try

{

}

catch (Java.rmi._.RemoteException exc)

{

statsServerlInterface.addCal Iback(this);

System.out.printIn("Error in lookup() " +
exc.toString());

TIP

Note how we removed the initial invocation on the server from the previous listing.
With callbacks added, we do not have to go to the server to get information, the
server will come to usto give usinformation. Wouldn't it be nice if the BMW
dealer came to you to give you a car instead of the way they do things now?

We must now modify the server to add the callback to itslist. Like Santa Claus, it
checks to see if everything is naughty or nice and make sure you are signed up for
your gift, in this case a series of updates to the server. Our server keeps track of each
callback object in avector so that it is easy to traverse the list when the time comes to
provide an update.

import java.rmi.*;

public class StatsServer extends UnicastRemoteObject
implements StatsServerlnterface

// the list of callback objects
Vector callbackObjects;

StatsServer() throws RemoteException

{

// call the super class”constructor
super();

}

public void addCallback(
StatsCallbackInterface statsCallbackObject

)
{
// store the call back object into the vector
callbackObjects.addElement(statsCal lbackObject);
}

public int getTotalRunningYardage(
String teamName

)
{
if(teamName.equals('Redskins™)
return432;
else
returnl29;

. . we implement the others as above .
public static void main(

String args[]
)

{

// set the security manager
try
{

System.setSecurityManager(new RMISecurityManager());
}

catch (Java.rmi._RMISecurityException exc)

{

System.out.printIn(''Security violation " +
exc.toString());

}

// create a local instance of our object
StatsServer statsServer = new StatsServer();
// put the local instance into the Registry
Naming.rebind("'STATS-SERVER",statsServer);

Invoking Callbacks

Note that our server in its current state does not have any methods with which it will
accept changes in the information it sends back. Y our servers more than likely will
include a method or something similar to setPassingY ards. We have created afake
setPassingY ards method, which follows, that gets the team name and the passing
yardage for that team as a parameter. See how we actually invoke the callbacks from
within this function:

import java.rmi.*;

public class StatsServer extends UnicastRemoteObject
implements StatsServerlnterface
{

// thelistofcallbackobjects
Vector callbackObjects;

StatsServer() throws RemoteException

{

// call the super class®™ constructor
super();

public void addCallback(
StatsCallbacklInterface statsCallbackObject
)

{

// store the callback object into the vector
callbackObjects.addElement(statsCal lbackObject);

}

public void set PassingYards(String teamName, int
passingYards)

{

// do everything that needs to be done to set the
variable

// internally.

// now go down the vector and invoke on

// each callback object

for(int x = 0; x <callbackObjects.size(); x++)

{

// convert the vector Object to a call
backobject

StatsCallbackInterface callback =

(StatsCal lbacklInterface)
callbackObjects.elementAt(X);

//invoke the call back
callback.statsChanged(teamName, passingYards,
rushingYards, turnovers);

}

public int getTotalRunningYardage(
String teamName

)
{

i f(teamName.equals(*'Redskins'™)
return43z2;

else

return 129;
}

. we implement the others as above . . .

public static void main(
Stringargs[]

// setthesecuritymanager
try
{

System.setSecurityManager(new RMISecurityManager());
}

catch (Java.rmi._RMISecurityException exc)

{

System.out.printIn(''Security violation " +

exc.toString());

}

// createalocalinstanceofourobject
StatsServer statsServer = new StatsServer();

// put thelocal instance into the Registry
Naming.rebind("'STATS-SERVER", statsServer);

Callbacks in Short

Callbacks are important tools for developers of high-availability servers. Because
servers can easily be inundated with invocations from clients, the logical step isto
defer those invocations until atime that is both convenient and proper. By setting up
callbacks, you can engineer your server to process and accept invocations more
efficiently by enabling servers to make invocations when they are ready.

With a suite of tools that enable us to create simple clients and servers to more
advanced factory servers and callback servers, we can go about implementing our
calendar application once again. With sockets, we were able to define our own
application messaging system. Now, with Java RMI we will find that creating a server
for our featured application isjust as easy as creating a regular Java object.

A Java RMI Version of the Featured App

The advantage of Java-only systemsis the language itself. Java's simplicity and gentle
learning curve give RMI itself an appearance of smplicity. Java-centric applications
do not, however, have the advantages of Java IDL, namely language independence
and implementation hiding.

We will start by first rewriting the public interface for our server. After that stepis
complete, we can go about writing clients to talk to the interface and server that will
subsequently implement the interface. The RMI system is easy, and finishing the
Internet Calendar Server using it isequally so.

RMI Interface

Remember that our interface must extend the RMI system's Remote classes. Aswe
discussed earlier, the Remote classes provide the functionality for our server interface
to talk to the remote reference layer of the RMI system. Without this kind of
"tranglator,” we would never be able to receive invocations within our server. So,
following the instructions we outlined earlier, we must declare our interface as
follows:

public interface CalendarServerlinterface extends Remote

public void scheduleAppointment(AppointmentType appointment);

AppointmentType[] getAppointments();

Note in the interface that the getA ppointments method returns an array of
AppointmentType objects. AppointmentType is a separate class that has no method
defined for it and has only adefault constructor. The classis used more as a data
structure than as a Java class.

public class AppointmentType

{
String reason;
int time;

}

RMI Client

Once our interface has been defined, we can create our client and then talk to the
server. Remember that we will simply reimplement the NetworkM odule class so that
we can have a seamless interaction with the rest of the Calendar application. After all,
we are changing only this module; we never want to touch any other parts of the code.

public class NetworkModule

{

public void scheduleAppointment(String reason, int time)

{1}
public Vector getAppointments(Q{}

{}
public void initNetwork()

{}
public void shutdownNetwork()

{12

Since our network connection to the server will be by way of RMI rather than our
own sockets connection, we can get rid of the initNetwork and shutdownNetwork
methods because they are no longer needed (we will need some of their functionality,
namely the database connection and shutdown because we will be moving the
database part of the application to the RMI Server).

Our client will first initialize the RMI system in its NetworkModul e constructor. The
constructor not only will get the RMI system, but it will aso initialize the remote
object variable. When we retrieve the remote object from the RMI Naming server, we
will also have to narrow it down to a specific CalendarServer object.

public class NetworkModule

{
CalendarServerinterface calendarObject;
Public NetworkModule()
{
// install a Security Manager
System._setSecurityManager(new RMISecurityManager());
// First get a handle on the object
calendarObject =
(CalendarServerlinterface)Naming. find(""CALENDAR™) ;
}
public void scheduleAppointment(String reason, int time)
{
¥
public Vector getAppointments()
{
}
¥

After we have completed the constructor information, then we must fill in the rest of
the methods. Once again we need to trandlate the array of AppointmentType variables
into a Java vector. The rest of our application does not need to know how we are
storing the appointments, just that they can retrieve the appointments at will.

package rmi.calendar;

// import Java
import java.awt.*;
import java.util._*;

// import RMI
import java.rmi.*;

public class NetworkModule

{

CalendarServerinterface calendarObject;
NetworkModule()

{
try
{
// FTirstgetahandleontheobject
calendarObject =
(CalendarServerlinterface) Naming.lookup("*CALENDAR™);

catch(Exception exc)

System.out.printIn("Error! - " + exc.toString(Q));

public void scheduleAppointment(String reason,int time)

AppointmentType appointment = new AppointmentType();

// First create the appointment
appointment.reason = reason;
appointment.time = time;

try

{

// now send the appointment to the server
calendarObject.scheduleAppointment(appointment);

catch (RemoteException e)

{
System.out.printIn(''RemoteEcceptionl: " +
e.toString());

}

public Vector getAppointments()
{

// the variable to store all of our appointments in
AppointmentType appointments[] = null;
try

{

// now get the appointments
appointments = calendarObject.getAppointments();

catch(RemoteException e)

{

System.out.printIn(‘'RemoteExceprion 2: " +
e.toString());

}

// translateintoaVector

Vector appointmentVector = new Vector();

for(int x = 0;x< appointments.length; x++)
appointmentVector.addElement(appointments[x]);

// return the Vector
return appointment Vector;

Once again, we do not have to initialize the network because the RMI system handles
all the underlying mechanismsfor us. RMI objects are location transparent.

We do not care where or how these objects are implemented, only that they are
available for our use. The network sockets, protocols, and connections are handled for
us by the RM1 system; therefore, we need not concern ourselves with them.

Now we must set our security mechanism so that the client application we have
created will have access to the server. Later on, our server will set its security
manager so that clients cannot access the local machine on which the server is hosted.
Here, we conform our security manager to that of the server so that we can have
access in the first place:

package rmi.calendar;

//import Java
import java.awt.*;
import java.util._*;
//import RMI

import java.rmi.*;

public class NetworkModule

{

CalendarServerinterface calendarObject;
NetworkModule()

{
try

{

// set up the security manager
System._setSecurityManager(
new RMISecurityManager());

// FTirst get a handle on the object
calendarObject =
CalendarServeriInterface) Naming. lookup("*CALENDAR™);

catch(Exception exc)

System.out.printIn("Error! - " + exc.toString(Q));

}

public void scheduleAppointment(String reason,int time)

{

AppointmentType appointment = new AppointmentType();

// Tirst create the appointment
appointment.reason = reason;
appointment.time = time;

try

{

// now send the appointment to the server
calendarObject.scheduleAppointment(appointment);

catch (RemoteException e)

{

System._out._printIn(''RemoteEcception 1: " +
e.toString());

}
public Vector getAppointments()

{

// the variable to store all of our appointments in
AppointmentType appointments[] = null;
try

{

// now get the appointments
appointments = calendarObject.getAppointments();

catch(RemoteException e)

{

System.out.printIn(''RemoteExceprion 2: " +
e.toString());
}

// translate into a Vector

Vector appointmentVector = newVector();

for(intx = 0; x< appointments.length;x++)
appointmentVector.addElement(appointments[x]);

// return the Vector
return appointmentVector;

RMI Server

The server we create will need to inherit from the interface we defined earlier. We
will then implement each method in the server, starting with the constructor. The
constructor will establish the object's presence on the RMI system and ready it for
Invocations:

public class CalendarServer extends UnicastRemoteObject
implements CalendarServerlnterface
{

CalendarServer() throws RemoteException

{

// call the super class®constructor
super();

public void scheduleAppointment(
AppointmentType appointment
)

{
}

public AppointmentType[] getAppointments()
{

}

We must now fill in the methods of our server so that we can process information. As
with the previous implementations of the server, we will not concern ourselves with
the specifics of how the data will be stored. Rather, we will leave those
implementation details for later.

//import Java
import java.awt.*;
import java.util.*;
import java.net.*;
import java.io.*;
importjava.sql.*;

// import RMI
import java.rmi.*;
import java.rmi._server.*;

public class CalendarServer extends UnicastRemoteObject
implements Calendar Serverlnterface
{

// create the database connection object
Connection dbConnection;

CalendarServer() throws RemoteException

super();

public void scheduleAppointment(AppointmentType appt)
{

try
{ int appointmentTime;
String appointmentReason;
AppointmentTime = appt.time;
AppointmentReason = appt.reason;
System.out._printIn(Inserting new appointment’);
Statement insertStatement =
dbConnection.createStatement();
String insert="INSERT INTO SCHEDULE " +
"VALUES(™" + appointmentTime + "*,6="
+ appointmentReason
LD BF
System.out.printin(insert);

insertStatement.executeUpdate(insert);

}

catch(Exception e)

{

System._out._printIn(''schedAppt Error: " +
e.toString());

}

public AppointmentType[] getAppointments()
throws RemoteException

// the variable to store all of our appointments 1in
AppointmentType[] appointments = new AppointmentType[20];
try

{

Statement statement = dbConnection.createStatement();
String s = "SELECT TIME, REASON " +

""FROM SCHEDULE "'+

"ORDER BY TIME";

ResultSet result = statement.executeQuery(s);
For (int i=0; result.next(); i++)

{
// create a variable to stick the appointment in
AppointmentType appointment = new AppointmentType();
// now get the next appointment from the string
appointment.time = result.getint("TIME");
appointment.reason = result.getString("'REASON™);
appointments[i] = appointment;
by
¥ _
catch(SQLException exc)
{
System._out.printIn("'NetworkModule Error 4: ™ +
exc.toString());
}

//return the Vector
return appointments;

}
private void initNetwork()
{

try

{

// load the data base driver

Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™);
//create a URL object for the database

String url= "jdbc:odbc:Calendar";

// connect to the database

dbConnection = DriverManager.getConnection(url,”™","™");

catch(ClassNotFoundException e)

{

System._out.printIn(""initNetworkError: ™ +
e.toString());

catch (SQLException se)

{
System._out._printIn("initNetwork SQL Error: ™ +
se.toString());

}
by
private void shutdownNetwork()
{

try

dbConnection.close();

catch(Exception e)

{

}
}

System.out._printIn(’'shutdown Exception: " + e.toString());

Because RMI servers are Java applications, we must add a main function to our class.
The main function will not only launch the application code but also bind our
application to the Naming server under a given name. The name we used in the client
section was "CALENDAR," so that is the name under which we must store our server:

// import Java
import java.awt.*;
import java.util.*;
import java.net.*;
import java.io.*;
import java.sqgl.*;

// import RMI
import java.rmi.*;
import java.rmi._server.*;

public class CalendarServer extends UnicastRemoteObject
implements CalendarServerinterface
{

// create the database connection object
Connection dbConnection;

CalendarServer() throws RemoteException

{
super();

public void scheduleAppointment(AppointmentType appt)
{
try
{ int appointmentTime;
String appointmentReason;
AppointmentTime = appt.time;

AppointmentReason = appt.reason;
System.out.printIn(’Inserting new appointment');
Statement insertStatement =
dbConnection.createStatement();
String insert = "INSERT INTO SCHEDULE " +
"VALUES(""" + appointmentTime +

+ appointmentReason
+ III)II;
System.out.printin(insert);

// insert the new appointment
insertStatement.executeUpdate(insert);

catch(Exception e)

System.out.printIn("'schedAppt Error:"+
e.toString());
}
}

public AppointmentType[] getAppointments()
throws RemoteException
{

// the variable to store all of our appointments in
AppointmentType[] appointments = new Appointment
Type[20];
try
{
Statement statement =
dbConnection.createStatement();
String s = "SELECT TIME, REASON"+
"FROM SCHEDULE"+
"ORDER BY TIME";
ResultSet result=statement.executeQuery(s);
for (inti=0; result.next(); i++)
{
// create a variable to stick the appointment in
AppointmentType appointment = new

AppointmentType();
// now get the next appointment from the string
appointment.time = result.getint("TIME™);
appointment.reason = result._getString("'REASON™);
appointments[i] = appointment;
}
catch(SQLException exc)
{

System.out._printIn("'NetworkModuleError4: "+
exc.toString());
ks

// return the Vector
return appointments;

}

private void initNetwork()

{
try

// load the database driver
Class.forName("'sun.jdbc.odbc.JdbcOdbcDriver™);

// create a URL object for the database

String url = "jdbc:odbc:Calendar™;

// connect to the database

dbConnection =
DriverManager.getConnection(url,™,"™");

catch (ClassNotFoundException e)

{

System.out.printIn("initNetworkError: "+
e.toString());

by
catch (SQLException se)

{
System._out._printIn("'initNetwork SQL Error: "+
se.toString(Q));
}
3
private void shutdownNetwork()
{
try
dbConnection.close();
catch(Exception e)
{
System.out.printIn(‘'shutdown Exception:
"+e._toString());
}
public static void main(Stringargs[])
{
try
{

//create the local instance of the CalendarServer
CalendarServer svr = new CalendarServer();
System._out.printIn("'GothereOK™);
//put the local instance into the registry
Naming.rebind("'CALENDAR", svr);
CalendarServerinterface csi =
(CalendarServerlinterface)
Naming. lookup ("*CALENDAR") ;

System.out._printIn('Serveriswaiting..');
svr._initNetwork();

catch(Exception exc)

{
}

System.out._printIn("Error! - " + exc.toString(Q));

}

Now, we need to set our security manager so that we can limit the client's access to
our host machine. Even though our application is rather innocuous, we don't want
harmful clients to come aong and maliciously wound our host machine. Thisisthe
Java security mechanism at its best:

// import Java
import java.awt.*;
import java.util_*;
import java.net.*;
import java.io.*;
import java.sgl.*;

// import RMI
import java.rmi.*;
import java.rmi.server.™;

public class CalendarServer extends UnicastRemoteObject
implements CalendarServerlInterface
{

// create the database connection object
Connection dbConnection;

CalendarServer() throws RemoteException

{
super(Q);

public void scheduleAppointment(AppointmentType appt)
{
try
{ int appointmentTime;
String appointmentReason;
appointmentTime = appt.time;
appointmentReason = appt.reason;
System.out.printIn("Inserting new appointment');
Statement insertStatement =
dbConnection.createStatement();
String insert="INSERT INTO SCHEDULE " +
"VALUES(""'+ appointmentTime + " ,="
+ appointmentReason
£
System.out.printin(insert);
insertStatement.executeUpdate(insert);

catch(Exception e)
{
System.out.printIn(''schedAppt Error: " +
e.toString());

}
}

public AppointmentType[] getAppointments()
throws RemoteException

// the variable to store all of our appointments in
AppointmentType[] appointments = new AppointmentType[20];
try

Statement statement = dbConnection.createStatement();
Strings = "SELECT TIME, REASON"™ +
"FROM SCHEDULE™+
"ORDER BY TIME";
ResultSet result = statement.executeQuery(s);
for (inti=0; result.next(); i++)

// create a variable to stick the appointment in

AppointmentType appointment = new AppointmentType();

// now get the next appointment from the string
appointment.time = result.getint("TIME™);
appointment.reason = result.getString("'REASON™);
appointments[i] = appointment;

}

}
catch(SQLException exc)
{
System.out.printIn("'NetworkModule Error4: "'+
exc.toString());
by

// return the Vector
return appointments;

}

private void initNetwork()

// set up the database connection and load the drivers
try
{

// load the database driver

Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™™);

// create a URL object for the database

String url = "jdbc:odbc:Calendar™;

// connect to the database

dbConnection = DriverManager.getConnection(url,™","™");

catch (ClassNotFoundException e)
{
System.out.printIn(""initNetworkError: "+
e.toString());

by
catch (SQLException se)
{
System.out.printIn(""initNetwork SQL Error: "+
se.toString());
he
by

private void shutdownNetwork()
{ // close the database connection

try
dbConnection.close();
}
catch(Exception e)
{
System.out._printIn(''shutdown Exception: " +
e.toString());
}
}
public static void main(String args[])
{
try
{

// setthesecuritymanager

System.setSecurityManager (newRMISecurityManager());
//createthelocal instanceoftheCalendarServer
CalendarServersvr=newCalendarServer();

System.out.printIn(''GothereOK");
//putthelocalinstanceintotheregistry
Naming.rebind(""CALENDAR",svr);
CalendarServeriInterfacecsi=

(CalendarServerlInterface)Naming. Iookup('‘CALENDAR™) ;
System.out.printIn(’'Serveriswaiting...");
svr.initNetwork();

catch(Exceptionexc)

{
System.out.printIn("Error!-"+exc.toString());

}
}

We must now generate the skeleton and stub code. Remember that the RM1 system
provides an RMI compiler, rmic, which we can use to generate those stubs from Java
classfiles. Unlike the iditojava compiler supplied with Java IDL, Java RMI's compiler
generates its skeleton code from precompiled Java classes:

%prompt% javac InternetCalendarServerlinterface.java
%prompt% javac CalendarServer.java
Y%prompt% rmic CalendarServer

New in JDK 1.2

RMI in JDK 1.2 has two major new features—activatable objects and the ability to
use a secure transport, like SSL, for RMI.

Activatable Objects

Since the introduction of RMI in JDK 1.1 the programming model included the RMI
Registry; a server implementing the UnicastRemoteObject interface that could be
started on some remote host. It would then register itself with the Registry and sit and
walit for clientsto instantiate it remotely. Clients could do this aslong as the server
was up and running all the time. The idea of the server having to be running all the
time was a bitter pill to swallow (especially for CORBA devel opers who were not
under this restriction). Two things have been added to JDK 1.2 to help aleviate this
problem: first, the introduction of the java.rmi.activation.Activatable classand,
second, the creation of an RMI daemon (rmid). The introduction of these two items
enables usto write and deploy an RMI server that can be created and run on demand.
The RMI daemon provides a JVM from which other JVM instances may be spawned.

The general process for doing this follows:
1. Makeour client as normal.

2. Build our remote interface server by extending java.rmi.remote implemented
by Activatablelmplementation.java (our server, the classto be activated).

3. Build asetup program that will register the server (but not instantiate an
instance of it) with the Registry and the RMI daemon.

4. Run the setup program.

5. Usetheclient as normal; the daemon will start up the server as needed.

Detailed instructions, atutorial, and sample code for doing this are provided with the
JDK 1.2.n distribution and should be referred to (see
jdk1.2.1/docs/guide/rmi/index.html).

Custom Socket Factories

InJava 1.l it was possible to install your own custom RMI socket factory and use
other than TCP-based sockets for RMI client/server communications. Doing so gave
you the ability to use your own custom sockets, but you were then stuck with using
that socket type for all your RMI objects. With Java 1.2 you can, on an object-by-
object basis, create and use different types of sockets within the same application.

Summary

Java RMI is a powerful aternative to sockets programming for client/server
applications. RMI provides us with atool that eliminates the tedium of low-level
sockets programming and lets us focus more on the business logic of our applications
than on the communications required for the client and server to pass information
back and forth. In the next chapter we'll examine CORBA IDL and how we can use it
to create network objects for client/server implementations.

Chapter 6. Java IDL: Interface Definition
Language

CORBA

The Interface Definition Language
Language Mappings

CORBA Clients

CORBA Servers

CORBA Callbacks

A Java DL Version of the Featured App

The Common Object Request Broker Architecture (CORBA) is an industry standard
that has been around since 1991, it defines how applications can communicate with
one another no matter where they are located, or what programming language they are
written in. Before Java, creating CORBA-based objects was a difficult and time-
consuming process. With Java, much of the pain associated with it has been limited or
removed altogether. Along with Java's simplicity and elegance, the CORBA
framework gives your applications the underlying machinery necessary to produce
large-scale mission-critical applications that are distributed across platforms,
machines, or networks.

By the end of this chapter, you will have a strong understanding of what CORBA is,
how to create your own CORBA clients and servers, and why CORBA is still around

after spending so many yearsin the ivory tower of computer science. CORBA may
well be the cog that finally makes Java the true Internet programming language.

Once again, we will reimplement the Internet calendar from the previous chapters,
thistime using Java Interface Definition Language (IDL). Our application will use
CORBA for its communication protocol rather than sockets or RMI. In so doing, we
can compare the performance, reliability, and ease of development of the three.

By the end of this chapter, you should have afirm grasp of CORBA aong with
enough fundamentals of distributed object design to help you make informed
architectural decisions on your own.

CORBA

CORBA is astandard developed by the Object Management Group, the world's
largest computer consortium. It is not a product; it isnot avision; it is not vapor ware.
Many companies have chosen to implement CORBA, most notably lona Technologies
and SunSoft. The CORBA community is by far the more academic of the various
communities behind the other communication alternatives we cover in this book.
Indeed, their academic nature is both a benefit and a detriment to the average
programmer.

Like all academic projects, CORBA has become a kitchen sink standard. Everything
you could possibly want is covered in the specification, if not actually implemented
by the various CORBA vendors. Much of what CORBA hasto offer isintended to be
hidden from the programmer. The programmer APIs are not defined; rather each
vendor is charged with creating itsown API.

In this chapter, we refer to the ORB as an entity, not as a concrete product. Much of
our codeis from SunSoft's NEO product, chiefly because it is the project the authors
actually work on. However, we have created objects for which we will always specify
the object's definition, with the idea that any ORB can be used.

CORBA-Style Communication

Let's say that your Aunt Fran calls you from South Dakota. When she dials your
number, the phone eventually rings on your side. Y ou pick up the phone, have a
conversation, hang up the phone, and terminate the connection. Y our Aunt Fran isthe
requester, or client, and you are the called party, or server. Aunt Fran doesn't care
where your phoneisin your house. She doesn't careiif it's a cordless phone. She
doesn't careif it's aconventiona phone or acell phone. All she knowsisthat she dials
anumber, you answer, you talk, and you hang up. In other words, Aunt Fran does not
care how the call isimplemented; she only cares that the call goes through.

If Aunt Fran wereto dial using the socket paradigm, she would have to dial the
number, specify which phone to ring, specify who should answer the phone, and it
would be a shot in the dark. If the call doesn't go through, she won't be told why.
She'll probably wait and wait and wait for a phone to ring even though it never will.

Remember also that CORBA does not specify how something will be implemented.
Aunt Fran should be just as happy using a satellite phone as she would be using a
regular phone. Javais the only language you can use to create a networked object with
most of the alternativesin this book. Even though Java may be the greatest thing since
the fork-split English muffin, many large-scale distributed systems are still writtenin
C++, C, or, heaven forbid, COBOL. CORBA enables you to use those legacy systems
without having to rewrite everything in Java.

The CORBA Vision

As an example, let's say your beanbag has a beautiful interface. Y ou can employ a
few operations on it: you can fluff it and you can sit on it. Do you care what goes on
underneath? If someone were to come by one day and replace your cloth beanbag
with avinyl beanbag, would you still know how to useit? Y es, because the interface
didn't change; only the implementation did.

The beauty of CORBA isthat you can create a number of interfaces that are
implemented in avariety of different ways. If you want to talk to an object, you have
the interface: in essence a contract that states what you will give the object and what
you will get from the object in return. Because of that, objects are interchangeable so
long as they share the same interfaces.

For the Internet, this means that we can deploy an object and tell people what they
must do in order to useit. Later on, if we discover an enhancement to the object, we
can merely swap the old inferior object with my new enhanced one, and no one will
ever know or care. One of the ways we do this at Sun iswith our support feedback
tool. Our customers can submit problem reports for our products using a Java
interface that communicates over the Internet with an object. From time to time we
upgrade or fix the object, but our customers never know. To them, the interface
remains the same. Figure 6-1 shows a graphical representation of how object
implementations are different from their interfaces.

Figure 6-1. Clients only care about interfaces, not implementations.

Object
Impl 1

Client Object Object
Interface Impl 2

Object
Impl n

In geek terms, thisisreferred to as "three-tier client/server computing.” The first tier
isyour client, whether it is a Java applet or a Windows 95 OLE client, and it
communicates with the second tier. The second tier is the object you implement in
CORBA using the IDL. Finally, the third tier is your data source, perhaps a database
or other implement. Information is passed through the three tiers with the idea that
changes may be made to any tier, and no effect will be seen on any of the other tiers.
Figure 6-2 shows how the data is kept separately from the client by using object
servers as the middleman.

Figure 6-2. The three-tier client-server architecture consists of a client, an object, and a
data source

Object
Impl 1

Client Object Object
Interface Impl 2

Object
Impl n

Communication with CORBA

Similarly, when you request information from a CORBA object, you don't care how it
isimplemented; you only care that your request goes through and that the object
responds. CORBA, the Object Request Broker (ORB), specifically, ensures that your
request gets there, and if it doesn't, you will find out. Moreover, the ORB will start up
aserver if oneisn't already running.

CORBA ensures reliability of communication. If arequest does not go through, you
will know about it. If aserver isn't there, it will be started up, and you will betold if
there is a problem. Every possible communication contingency is covered in the
specification. In general, CORBA can be referred to as communications middleware.

But this kind of reliability does not come without a price. CORBA provides aton of
functionality to devise object schemes that work. CORBA programming is far from
easy, but as a tradeoff you receive significant benefits for your effort.

Separation of Interface and Implementation

Just as Java objects are defined as collections of operations on some state, CORBA
objects are defined similarly. Unlike Javaitself and Java RMI, CORBA enables you
to define your interface definition separately from your implementation. As you can
seein Figure 6-3, splitting the interface from the implementation enables you to create
multiple objects from the same interface, each handling the method signatures
differently. In the end, however, the greatest advantage to the split is that your
interfaces are likely to remain static, while your implementations will change
dramatically over time.

Figure 6-3. Programming language becomes irrelevant when you define the interface
separately from the implementation.

Interface

Implementation

N

C++ Java

Software architects will spend considerable time and energy creating objects and their
interfaces, leaving the implementation up to their staff. The interface implementers
will code their objects in the programming language of their choice. Once the objects
are finished and registered with the ORB, they are ready to be invoked. One of the
few advantages to C++ over Javaisthiskind of separation between implementation
and interface, and CORBA allows you to have the same kind of functionality.

A client that invokes on an object knows only the interface definition. The
implementation of the object is of no concern to the requester, who cares only that the
object request getsto the server and that aresponse is sent back. Theoretically, client
programmers and server programmers don't need to know any of the details of each
other's implementations. The interfaces are defined using the Interface Definition

Language. The IDL enables us to know what methods can be invoked on an object. A
typical CORBA object lifecycle requires the most time in developing the interfaces.
Once you are satisfied with the interface, you move on to the implementation.

In the business world today, a great push toward Java is taking place. Because of its
tremendous advantages over C++, many organizations are planning an eventual move
to Java programming with the idea that several of the language's drawbacks will be
addressed appropriately in subsequent revisions. If these organizations had taken a
CORBA-like approach to their original software design, then the migration would
hardly be an issue. Because each CORBA object has an interface that is published and
well known, changing its implementation does not involve changing the
implementations of any other object that talksto it. Asyou can seein Figure 6-4,
objectsin CORBA talk to interfaces, while objects not written using CORBA talk
directly to one another.

Figure 6-4. Objects talk to interfaces, not to implementations.

Without CORBA With CORBA
Object | o Object Object Object
A " B A B
Interface Interface

CORBA objects can be written in any language for which alanguage mapping is
specified. Therefore, the implementation can vary between objects, but the client
should not care. The language mapping is defined by the OMG, and the various
vendors then choose to implement the mapping. NEO, for example, does not
implement the Smalltalk mapping but has created its own Java mapping. Language
mappings are discussed in detail in the next section.

Different Vendors, Different ORBs

What if you create a client that accesses your chosen ORB and another object comes
along, written in another ORB, and you would like to talk to it? In the early days of
CORBA, you would have to rewrite your client—no small task considering that
clients are where the pretty stuff is. Y ou'd have to redo all your pretty graphics and
recompile your client for the new ORB. For that reason, ORB consumers often stayed
aone-ORB shop. If their servers were created in Orbix, their clients generally were as
well.

In the new CORBA world, al objects and clients speak to one another using the
Internet Inter-ORB Protocol, or 110P. 11OP (usually pronounced "eye-op") ensures
that your client will be able to talk to a server written for an entirely different ORB.
Note how this takes advantage of the client abstraction we spoke of earlier. Now, your
clients need not know what ORB the server was written in and can simply talk to it.

Furthermore, the ORB is the only fully native portion of the entire CORBA system.
The ORB is specific to the platform on which it runs. Orbix, lona Technologies entry
into the CORBA market, runs on just about every platform imaginable because they
have made the effort to port Orbix to every platform imaginable.

SunSoft's NEO, on the other hand, runs exclusively on Solaris but does so better than
any other CORBA option.

NOTE

Because Orbix's ORB was written with quick portability in mind, it tends to offer
less power than NEO does and also has significant problems with scalability.
Again, thisis atrade-off issue, and one that must be evaluated on a case-by-case
basis. With the universal acceptance of 110P, there is no reason why your CORBA
objects need to be written in one ORB only.

Advantages of CORBA

CORBA is an example of Distributed Object programming. If you were to create two
objects, say a Character object and a String object, you would be splitting up
functionality across different objects. Y our String object would instantiate several
Character objects, and all would be happy in your plain vanilla object-oriented world

(see Figure 6-5).

Figure 6-5. Objects are composed of other objects.

String

Character Character Character

If, however, you were to take things one step farther and have your String object
instantiate its Character objects on a different machine, you would be entering the
distributed object world and al the insanity that revolves around it (see Figure 6-6).
When instantiating objects across multiple machines, certain precautions and
measures must be taken to ensure the proper routing of messages. If you were to use
CORBA asyour basisfor creating these objects, all those situations would be
addressed aready.

Figure 6-6. Distributed Objects allow objects to be composed of other objects residing
on other networks.

String

Character Character Character

CORBA gives you the tools you need to distribute your objects across multiple
machines running on perhaps severa different networks. Y ou need only to instantiate
your object before using it just as you normally would use alocal object.

As mentioned already, CORBA makes a big distinction between interface and
implementation. The interface is the list of methods with which you will communicate;
the implementation is how those methods are created. Let's say | want to print a
document that | just wrote. | know that there is a printer application checked into the
same ORB | "'m checked into. | only have to know how to call the printer application
(theinterface). | don't care how it actually prints my file (the implementation). | do
careif it printsit or not, and using an ORB gives me this advantage.

Common Object Services

When you programmed in C++, chances are you used a class library of some sort. The
famous Rogue-Wave class libraries give you a great number of classes and objects
that you can reuse in your code, ranging from the sublime String classes to the vastly
more complex Hash Tables.

Likewise, part of the CORBA specification deals with a set of distributed class
libraries known as the Common Object Services. The Common Object Services refer
to specific types of objects that are beneficial to programmersin a distributed
environment, including transaction objects, event service objects, relationships objects,
and even lifecycle objects.

Perhaps the most useful of all the Common Object Servicesis the Naming Service.
The Naming Service provides you with a directory-like system for storing and
organizing your objects so that other programmers can access and invoke them. In
Figure 6-7, we map the string "Object One" to the physical object "1," but are able to
map "Object Two" to the physical object "3." The Naming Service allows usto also
change that on the fly. In fact, the Naming Service, and all Common Object Services
for that matter, are nothing more than CORBA objects. Therefore, if you can get the
interface to the Naming Service, you can create a client that modifiesit yourself.

Figure 6-7. With the Object Naming Service, every string is mapped to an object.

Object One
Object Two

Object Three
Object Four

TIP

Some CORBA customers even use the Naming Service as a sort of versioning
system, creating a new directory in the Naming Service for each new version of
their object system. If you can do it with a directory, you can do it with the
Naming Service.

Object Administration

One of the biggest obstacles to distributed computing is the management of objects
across multiple platforms and multiple networks. Though the CORBA specification
does not specify an administration scheme, several vendors have created
administration tools you can use to manage your entire system.

Tasks that run the gamut from server startup and shutdown all the way to machine-
specific parameters are addressed in these tools. Often the tools are written in the
same CORBA implementation that they manage, and many even have Java interfaces.
Most of the tools address the issue of object registration and invocation. When an
object isregistered, it is stored in alocation called the Interface Repository. Accessing
objects from the Interface Repository is often quite difficult, has great overhead, and
requires a significant knowledge of the OS. The Naming Service addresses some of
these concerns by creating a user-friendly front end to objects that are stored in the
Interface Repository. But in order to manipul ate objects directly within the Interface
Repository, you need object administration tools.

NOTE

Because the object administration tools vary widely among CORBA vendors, we
will not address them in detail. The OMG, as a matter of fact, does not even
specify the kinds of administration tools that are required to support an object
system; that determination is left to the vendors. NEO includes afull suite of Java-

based tools to manipulate your objects, and Orbix has similar tools available from
the command line.

Clients and Servers and Networks, Oh My!

Client programming in CORBA is significantly easier than creating a server. Because,
in the simplest sense, al you are doing is instantiating a class that just happens to be
on aremote machine, it is quite intuitive as well. When you instantiate aclass in
CORBA, you specify not only the name of the class but the location aswell. The
location can be a specific machine or a specific server, but is usually determined by
referencing the Naming Service.

The Naming Service contains a find method that enables you to retrieve an object by
using a string name that you specify:

ﬁyFirstObject = NamingService.resolve("'MyFirstObject');
myFirstObject.myFirstMethod();

Once an object isretrieved, invoking it is exactly the same asinvoking alocally
instantiated class. In fact, underneath the covers, alocal classisinstantiated. Let's say
that you get an object called MyFirstCORBA from the Naming Service and invoke
myFirstMethod on it. In reality, the local copy of MyFirsCORBA mapsthat call to a
method that invokes across the ORB to the remote object, asillustrated in Figure 6-8

Figure 6-8. Objects invoke an remote objects via the Object Request Broker.

Client Server
Object Request Broker 4I

Writing a server is much more complicated, and many vendors do not yet support full
Java server capability. In later parts of this chapter, we will discuss full Java server
capability and what it means for the future of C++ objectsin CORBA. Needless to say,
the ease-of-use aspects of Java help to minimize overhead and the learning curve of
CORBA in general. Yet, Javaisthusfar not as capable of the performance numbers
generated by identical C++ applications.

Local

Remote
Object

Object

What CORBA Means for You

CORBA is perhaps the single most developed of all the various communication
alternatives that we discuss in this book. Without much effort, you will be ableto
create clients that you can publish on the World Wide Web and make available to
anyone who wishes to take advantage of your objects. With a significantly greater
investment of time and energy, servers can be generated that take full advantage of
client/server computing over the Internet. While the learning curve is greater
compared to other alternatives, the payoff is also potentially greater. Even though
CORBA may be difficult for you to grasp, once you learn it you will agreethat it is
the best of any alternative presented in this book, or potentially available in the Java
industry.

The Interface Definition Language

Aswe discussed in Chapter 1, "Advanced Java," one of the most important concepts
of object-oriented programming is implementation hiding. In CORBA, the
implementation can be any number of things, ranging from different programming
approaches to different programming languages altogether. In light of this, the OMG
created the Interface Definition Language to help make clear the separation between
interface and implementation.

The IDL does exactly what it says: define interfaces. IDL contains no implementation
details. The IDL, as the nameimplies, is alanguage in and of itself, but there are no
assumptions made as to how (or if) an object will be created. Rather, the IDL specifies
what the object will look like from both a client and a server perspective. IDL defines
an object's attributes, parent classes, exceptions, typed eventsit emits, methods it
supports (including input/output parameters and their datatypes). In this section, we
will examine closely the basics of the IDL. Subsequent sections will explain how you
can implement the interfaces you create here in Java. Keep in mind, however, that we
choose to implement our objectsin Java because thisis a Java book, but you could
just as easily implement your objects in any language for which alanguage mapping
exists.

Interfaces
Interfaces are the backbone of the IDL. In an object-oriented language, you can create
interfaces as well as implementations, but here we are allowed to specify only the

method signatures and the variables associated with them. For example, if we were to
create an interface to our television, it would look something like this:

interface TelevisionSet

{
Long currentChannel;
void changeChannel (longnewChannel);
void increaseVolume();
void decreaseVolume();
}

Asyou can see, we do not imply either that thisis the 50-foot giant screen TV in our
break room or the 13-inch TV in our kitchen. Rather, we mention only the common

interfaces to both. 1t will be up to the implementer to define how his interface will
behave. Note also that we have not included any kind of method for powering the set
on or off. In fact, the underlying CORBA mechanisms take care of that for us.
Remember that merely invoking an object instantiates its implementation and readies
it for further use. Not using the object for awhile has the reverse effect. After a
specified time-out period, the object will shut itself down, not unlike the new Energy
Saver computer monitors!

Modules

Let's say we now want to model all the appliances in our home using the IDL. The
first step isto create an interface for each appliance (we've done afew in this section)
and then to implement each as we see fit. After that, we need to group the appliances
together in amodule. A moduleis essentially a name space for a group of interfaces
or alogical unit. It enables each interface to have a common name when referred to in
code, as evidenced in the following snippet.

module Appliances // a logical unit
interface TelevisionSet // a CORBA class
{
}
interface Radio
{
string currentBand; // can be "am" or "fm"

long currentStation;

void changeBands(); // interface
void stationUp();
void stationDown();

. many more as well . . .

Asyou can see, modules are highly logical extensions to object-oriented interface
design. In fact, the module itself could be enclosed in yet another module, alowing
groups of modules to be grouped together. In order to call the Radio object's
stationUp method, you would probably make a call like:

Appliances.Radio.stationUp(Q);

Keep in mind, of course, that the syntax of this call is entirely language dependent,

and that the IDL makes no assumptions whatsoever about language use. Notice that
Appliancesis set as the parent object for Radio, as it would be for TelevisionSet as
well.

Interface Inheritance
There are several situationsin which we would like our interfaces to inherit from one

another. Just as we did with Java objects, we can define language-specific inheritance
that is translated through the language mapping down to the implementation.

interface TelevisionSet

{
b
interface EnhancedTelevision : TelevisionSet
{
void activatePIP();
void deactivatePIP();
3

In this example, EnhancedTelevision inherits from TelevisionSet, getting all of the
features from our initial TelevisionSet object, as well as adding afew of its own.
When you instantiate EnhancedTelevision, you get not only the features you added,
but the TelevisionSet properties as well, integrated by the language mapping with the
EnhancedTelevision object asif they were part of the EnhancedTelevision to begin
with. Any client that uses EnhancedTelevision has no ideathat it is an inherited object.

Because the IDL is an interface language, inheritance does not imply implementation
inheritance. When you inherit methods from another object, you do not get the
implementations that go along with that method. Remember, the IDL does not care
what kinds of implementations you create for an interface. In keeping with that, IDL
does not link implementations together for inherited objects. In order to enact your
own implementation inheritance, you need to create within your server client code
that contacts the object implementation you want to use.

Variables and Structures

When you include variables within an interface, you have to be careful. Are those
variables matters of implementation (you do not want to start creating counter
variables, for example) or are they a matter of interface definition (the current channel
isvital for the operation of the TelevisionSet object)? In the previous examplesin this
section, we showed you several examples of variables including type enumerations,
simple variable types, and parameter values. There are afew simple types available
for use within the IDL, asyou can seein Table 6-1.

But the IDL also gives you a means to create complex datatypes in containers known
as structures. A structure is, essentially, a class with no methods. The IDL makes the
distinction because some languages make the distinction. C++, for example, gives you
the benefit of structures as alegacy from its C ancestry. Java, however, does not
provide structures and forces you to make the more logically object-oriented choice of
classes. A complex datatypeis, by definition, agroup of simple data types. In the
following example, AnsweringMachineMessage is a complex data type composed of
abunch of strings:

struct AnsweringMachineMessage

{ stringdateStamp;

stringtimeStamp;

stringmessage;
}

Table 6-1. Available Types Within IDL
Type Explanation

long Integer type ranging from -231 to 231
short Integer type ranging from -215 to 215
float IEEE single-precision floating point numbers
double IEEE double-precision floating point numbers
char Regular 8-bit quantities
boolean TRUE or FALSE
octet 8-bit quantity guaranteed to not be changed in any way
string A sequence of characters
any Special type consisting of any of the above
Methods

In order to manipulate your IDL-defined servers, you need to declare methods. In the
previous TelevisionSet example, we defined several methods such as changeChannel
and increaseV olume. Each method may have a series of parameters, asin the case of
changeChannel. These parameters may be simple types or complex types, or a specia
IDL-defined type called Any.

The Any typeis aspecial type that is most often used within method declarations
(athough it is permissible to use them as variables as well). In C or C++, Any is
mapped to avoid pointer (void *), while in Javait is mapped to an Object (remember
how everything in Javainherits one way or another from type Object). Asin the
implementation languages, you would use Any to represent an unknown (at interface
design time) quantity.

Parameters may be passed in one of three ways. If you pass a parameter as an input
(in) parameter, the parameter will not be sent back from the method in a modified
state. Parameters passed as output (out) parameters cannot be accessed from within
the method, but can be set inside the method. Finally, input/output (I/0O) parameters
can be sent back both modified and accessed from within the method itself.

Constructed Data Types

Besides structures, there are afew more kinds of constructed types. A unionisaform
of astructure, but the members of a union, unlike a structure, can vary from instance
to instance. Let's say you had two cars, aBMW Z3 convertible and a VVolvo station
wagon. For trips to the grocery store, you would use the Volvo because the Z3 has no
trunk space. But, for fun trips to the Santa Cruz beaches, you would definitely take
your Z3. The kind of car you drive depends on your situation.

The last structured type supported by the IDL is the enumeration. An enumeration is
similar to an array except that its contents are determined beforehand and cannot be
changed. In our radio example earlier, we had a variable called currentBand. The
currentBand was set using a string, but in reality it can have only two values, AM or
FM. The IDL enables us to define the enumeration as follows:

module Appliances

{
interface TelevisionSet
{
}
interface Radio
typedef enum_RadioBand {AM_BAND, FM_BAND} RadioBand;
RadioBand currentBand;
long currentStation;
void changeBands();
void stationUp();
void stationDown();
}
. manymoreaswell . _ .
}
Exceptions

Asin Java, exceptions are a great way to propagate errors back through your objects.
Y ou define exceptions using the exception keyword in the IDL. The Java Language
M apping trand ates those exceptions into Java exceptions that you can then use in
your applications. In the following example, the exception Rotten is thrown whenever
someone tries to eat an apple that happens to be rotten.

interface Apple

{
exception Rotten { };

void eatApple() throws Rotten;
}

Overview of the IDL

The Interface Definition Language is a powerful tool both for CORBA programming
and for software architecture. Although it is primarily the foundation on which you
can create CORBA objects, it can just as easily be used to define entire object systems.
For this purpose aone, the IDL warrants further study. If you are a masochist and
enjoy scintillating beach reading, check out the CORBA specification from the Object

Management Group. If you prefer aless technical tome, Thomas Mowbray's Essential
CORBA s, well, essential.

Now that we have learned about IDL, we can define interfaces using it. Eventually,
those interfaces need to be tranglated into code. Thisis done by mapping every
construct in the IDL to constructs in the language of choice. While we will only
discuss C++ here, CORBA objects defined in IDL can be developed in any language
so long as alanguage mapping exists. Thisis the greatest benefit to CORBA. Y our
language independence allows you to spend time intelligently creating interfaces and
worrying about implementations later. Today Javais the hot potato; tomorrow it could
be a new language altogether. By defining good interfaces, you can protect yourself
from being torn in the winds of change.

Language Mappings

Because CORBA is independent of the programming language used to construct
clients or servers, severa language mappings are defined to enable programmers to
interface with the CORBA functionality from the language of their choice. The
OMG's member organizations are free to propose mappings that must then be
approved by the rest of the consortium. Needless to say, getting the likes of DEC,
Hewlett Packard, and Sun to agree on something small is difficult enough without
having to introduce an argument like a language mapping.

L anguage mappings are vast, complex things that underscore the different ways of
doing the same thing from within alanguage. The beauty of a programming language,
and what keeps programmers employed, isthat there are often several waysto
accomplish the same thing. Indeed, one approach to a problem affects portability,
while another has an impact on performance. No two approaches are the same;
therefore, no one approach is ever "better” than another. It may be better in a
particular context, but often that overused term "tradeoff" is bandied about to reflect
why one OMG member prefers its mapping to another.

What Exactly Are Language Mappings?

A language mapping in CORBA refers to the means necessary to trandlate an IDL file
into the programming language of choice. Currently, the OMG specifies mappings for
C, C++, Smalltalk, and Java. Because of its wide acceptance and object-oriented
nature, C++ is the language most often used by CORBA programmers. Since the
introduction of Java, however, the CORBA community is excited over the use of
Sun's language to eliminate many of the pitfalls of the C++ mapping.

C++'s greatest problem so far is not its difficulty—that is enough of abarrier asit is—
but its painful memory management requirements. In a distributed paradigmin
particular, memory management becomes a significant issue. Let's say you instantiate
alocal String class, passing it an array of characters. In C++, you can easily define
which object, the parent object or the child String object, will be responsible for
deallocating that memory. If you expand the situation to instantiating a String object
on aremote computer, then you begin to deal with memory on two different machines!
Y ou alocate an array on your local machine, pass that array to a String class on

another machine, and end up with a quandary. Which machine's object will deallocate
the memory?

Once again, Java comes to the rescue. Because it is a garbage-collected language,
memory deallocation is of ho concern to you. Let's say you wrote the preceding
situation in Java code. Neither the remote object nor the local parent object needs to
worry about memory because, once the memory is no longer used, Java automatically
returns it to the system. Because of this and countless other problems with the C++
mapping, and with the use of C++ in general, the OMG is beginning to consider Java
language mappings from its member consortiums.

Because the authors of this book are Sun employees, we show a definite bias toward
the Sun Microsystems Java I DL language mapping. We apologize for our behavior in
advance, but we believe that the Java IDL mapping designed in our own office
building is much better than that of anyone else. To be fair, we recognize that some of
what we have to tell you may differ from other companies' efforts, and we will make
every effort to point out such nuances as they occur.

The Sun Microsystems Java Language Mapping
NOTE
The language mapping described in this section isin a state of flux. Because of the
fast-moving Javaand CORBA communities, Java IDL is awaystrying to stay in

step with Javasoft and CORBA. Naturally, the language mapping may change
dlightly from month to month, but, in general, it remains the same overall.

Sun Microsystems bundles a program called idltojava that actually does the mapping
and generates the necessary files. The Sun approach to CORBA filesisto create
several user-level filesthat are directly modified by the programmer, and several stub
filesthat are not intended to be modified, but instead provide the mapping
functionality.

Interfaces, Modules, and Methods

The mapping takes every IDL-defined module and trandlates it into a Java package.
For example, the IDL module Appliances, as follows:

module Appliances

becomes the following in the generated Javafiles:

package Appliances;

public class

{
}

Interfaces map directly to Java classes because IDL modules are, as discussed earlier,
name-scoping mechanisms. The corresponding Java name-scoping mechanism is the
package. For every interface in amodule (if thereisamodule at al, for modules are
not required), a Javaclassis generated in the code:

module Appliances

{
interface TelevisionSet
{
}

}

becomes the following:

package Appliances;

public class TelevisionSet

{
}

Asfor parameters, Java maps them, as we will discuss in upcoming sections on
simple and complex types. However, Java does not support pass-by-reference
variables because it is a pointer-free language. Thereis no way in the Java language to
pass a parameter that can be modified in the method and sent back to the calling
function. Asaresult, the IDL out and inout parameters cannot be supported in Java
without some special workarounds.

The Sun mapping supports the notion of holdersin order to circumvent the lack of a
pass-by-reference model in Java. A holder contains not only the variable itself but
methods to modify that method as well. So, when avariable is passed by reference,
Java passes a class instead.

Interface Inheritance

Inheritance is adifficult task to take on in the Java language mapping because IDL
interfaces support direct multiple inheritance while Java classes do not. In order to
make classes multiply inheritable, they must be first declared as interfaces and then
implemented as classes. While it sometimes becomes counterintuitive because
inherited interfaces do not follow the norm for regular interfaces, it isthe only way to
complete the language mapping on the inheritance subject.

For example, the following multiply inherited class:

module Appliances

interface Speaker

{
}

interface Listener

{
}

interface Phone : Speaker, Listener

{
}

becomes the following collection of interfaces and classes in Java:

package Appliances;
public interface SpeakerRef

{

PO _

public interface ListenerRef

{

}:

public interface PhoneRef extends Appliances.SpeakerRef,
Appliances.ListenerRef

public class Speaker

{
}

Variables and Structures

Table 6-2 outlines each of the simple types supported by the IDL and their resulting
Java representation.

Table 6-2. IDL Types and their Java Representations

Type Java Mapping
long Java int
short Java short
float Java float
double Java double
char Java char

boolean Java boolean

octet Java byte

string Java's language module's String class (java.lang.String)
any Special type consisting of any of the above

The Sun mapping does not support unsigned types, however, because Java has no
corresponding manner in which to represent an unsigned type. The Sun mapping
leaves the implementation of unsigned types up to the user. When you try to interface
with an unsigned type in one of your programs, you need to provide the logic that
converts the negative values into their corresponding positive representation.
Eventually, when Java supports unsigned typesinside its java.lang.Long and
java.lang.Integer objects, the Sun Java mapping will follow suit with proper unsigned
support.

Constructed Data Types
IDL structures are mapped directly to a Java class consisting of each member variable
aswell as two constructors. One constructor is for initializing each member variable

to astatically defined value, while the other can accept data upon instantiation. So, the
following IDL:

struct PhoneNumber

{
1/ xXxXxX-xxx-xxxxFormat
string areaCode;
string prefix;
string suffix;

};

becomes:

public class PhoneNumber

{
public String areaCode;
public String prefix;
public String suffix;

}

IDL sequences and arrays are equally easy to map into their Java counterpart. Every
sequence is mapped directly into a Java array. Every Java array consists not only of
the array values but also of infrastructure to supply the length of the sequence as well.
Furthermore, IDL arrays are directly related to Java arrays and, therefore, fall in suit
with sequences. The extra array subscripting features provided by IDL sequences also
were not originally intended to be included in IDL arrays. Because no harm can come
from including the extra details in the array mapping, the decisions make sense. The
end result isthat if both your client and server implementations are going to be written
in Java, then thereis no real difference between sequences and arrays.

sequence <Phone> allThePhoneslInMyHouse;

Thus, the preceding IDL declarations map to reasonably straightforward Java
counterparts:

Phone allThePhonesinMyHouse[];

The Enumeration and Union constructed IDL types are much more complicated.
Because Java supports neither enumerated types nor variable classes, several layers of
additional Javainfrastructure must be provided to implement the details of the IDL

types properly.
Exceptions

Java supports an exception capability very similar to both IDL and C++. Asaresult,
the mapping between the IDL and Javais extremely obvious. Furthermore, CORBA
C++ programmers will find that the helper methods provided by Java exceptions are
much more intuitive and easier to use than their C++ counterparts. In the end, the Java
exception and the IDL exception are perfect partners in object-oriented error tracking.

Java and CORBA Together

Because CORBA is designed as an all-encompassing standard designed to provide
answersto most, if not all, object-oriented programming questions, it does not quite
fit into the Java philosophy. Java was designed as the exact antithesis to C++. Both
Java and C++ are object-oriented languages, however, Java does not attempt to, nor
doesit, satisfy C++ and CORBA's insatiable need to be everything to al people.

But, for al their differences, Java and CORBA can be made to work well together. As
we have seen in this section and we will see in the next few chapters, CORBA
provides aton of functionality. Most of it will never be required by the average
programmer, and thus it can become quite a burden. Meanwhile, Javais accessible to
all programmers, both beginner and highly experienced. Java actually makes CORBA
manageabl e because CORBA provides the plumbing, while Java gives you, the
programmer, a means to access the plumbing without knowing how it works. After all,
you don't care how your car works, you just care that it does. Similarly, no one
(outside of geeks who desperately need alittle bit of sun) really cares how CORBA
works.

Once you are comfortable with language mappings, it is time to move on to actually

developing client/server applications using CORBA. We will usethe IDL, and its
corresponding Java language mapping, to develop aclient and server.

CORBA Clients

Writing a CORBA client is pretty simple, if you can grasp the nuances of the
language mapping. After you obtain the interface (usually by looking at the IDL) for
the server you wish to contact, you have to generate Java stubs. Java stubs contain all
the underlying functionality needed to make a call across a network to a server in an
unknown location. Remember that your server will not be in any definite location; in
fact, the beauty of the Naming Service is that the corresponding string name can point
you to any object at any time.

With that in mind, the last thing you want to concern yourself with is network code.

L et the ORB deal with all of that, and you can concentrate on creating a client that
works for you. Your client will be mostly a User Interface. The few instancesin
which it needs to make a network call are usualy to relay information from the Ul
back to the server, and to refresh information on the Ul with data stored on the server.
In client/server parlance, thisis called a"thin client,” meaning that the functionality of
the client related to the server isminimal.

Designing a User Interface

Since the beginning of the "Javarevolution,” an enormous number of GUI builders
have been released, all with cute coffee-related names that were devised by a marketer
in acold sweat. In this section, we assume that every client is athin client, choosing
to concentrate the hard work on the server side and leaving the fun, cool stuff on the
client. Clients are sort of like your starving artist little sister, they're beautiful and fun,
but they don't do much work.

With that in mind, we have chosen not to endorse any one GUI builder. We believe
that there isno single tool out there that could possibly be al thingsto al people.
Which GUI builder you choose is of no consequence to the rest of this chapter. Rather
than step through the Java code for designing a GUI, we will let you just design the
GUI as we describe in this section and then we'll move on.

Defining the Problem

One of the things that Prashant liked best about working at Sun was their incredible
break rooms. Every break room has a nifty little water cooler. Now, the first time you
look at it, you'll say to yourself, "Gee, big deal.”

But, wait, there's more! That little water cooler also spits out warm and hot water!
When you first gaze upon this marvel of technological prowess, you will be stymied
and get the urge to write an applet to unveil your discovery to the world. Thisis
precisely what we intend to do.

Typicaly, you will have some information that needs to be published to the outside
world. In the realm of client/server computing, thisis done by creating a server to
publish that information. Clients are then able to access that information through the
server. In our example, we want to publish information about our water cooler, and
we will do so by creating a client to access that information followed by a server to
provide it.

The Cooler Interface Definition

We need to model the interface definition so that it isintuitive. For example, our IDL
will need three operations, one for each of hot, warm, and cold water. We need three
data accessors to get the level of each kind of water. With that in mind, the interface
definition would look something like the following:

interface Cooler

{
int getHotWaterLevel();

int getWarmWaterLevel();
int getColdWaterLevel();

int getHotWater();
int getWarmWater();
int getColdWater();

We will also need to track errorsin invocation, just in case there is no water to get:

interface Cooler

{
int getHotWaterLevel();

int getWarmWaterLevel();
int getColdWaterLevel();

exception NoMoreWaterException { };

int getHotWater() throws NoMoreWaterException;
int getWarmWater() throws NoMoreWaterException;
int getColdWater() throws NoMoreWaterException;

The Cooler User Interface

Our user interface will display three buttons, one each for hot, warm, and cold water.
By clicking on the Hot Water button, you will diminish the level of hot water in the
cooler; clicking the Warm Water button will diminish the level of warm water, and so
forth. The server will store the current level of each one and make sure we don't take
out water when there's none there. So, the Ul for the Cooler client is pretty obvious
(see Figure 6-9), and you can draw it in just about any of the GUI tools.

Figure 6-9. The user interface for our water cooler example is a basic three-button
display.

w3 Applet = [=] E3
Applet

The Water Cooler

Warm Water |

Cold Water

Applet started.

We should also create another client that watches the server and shows the level of all
three water sources at any given moment. Thisway, if we stick the applet on the Web,
people al over the world can see how much water we Sun employees actually drink.
The Monitor client also will have a button to reset the water source whenever we feel
likeit (see Figure 6-10).

Figure 6-10. Our second client displays the level of water in our example cooler.

R=3 Applet _ O] x
Applet

Water Levels

Applet started.

Once we are finished, we have two clients banging on the same server. One client will
modify the server, the other will only do queries to the server to get information. For
terminology's sake, we will call our Water Cooler applet the supplier and our Monitor
applet the consumer (see Figure 6-11).

Figure 6-11. Our two clients operate with the same server to continually update our
interface.

Cooler Monitor

_/

N ¥ 7

Server

The full source code for the client is on the CD-ROM that accompanies this book, but
there are two methods that we need to implement here for demonstration purposes.
The Init method will initialize both clients, just as you would any normal Java applet.
We also need an action method to handle button events when they arrive.

CAUTION

The source code we show you for Java IDL is practically pseudo CORBA code.
Because we do not want to endorse any one ORB, we have decided to show you
the methodol ogy for developing CORBA applications. The featured app at the end
of the chapter isimplemented using Imprise's Visibroker ORB. When you attempt
to execute the other examples on your own, you will need to consult the
documentation for your ORB, be it NEO, Visibroker, or Orbix, to be absolutely
correct in your syntax. The source code included on the CD-ROM for the cooler
project is NEO code. If you think thisis aproblem, you are correct. The
proliferation of ORBs, and the impact they could very well have over the course of
the next few years, leads us to believe that someone, somewhere, needs to come up
with a standard language mapping. This source code portability would ensure that
everyone's CORBA implementation looked the same. After al, the IDL isthe
same among all of them; why can't the source code for that IDL be the same as
well?

public void init(Q)

{
//do any of the Ul stuff you need to do here..
}
public void actionPerformed(ActionEvent e)
{

String arg = e.getActionCommand();
if(arg.equals(hotWaterButton))

{

else if(arg.equals(warmWaterButton))

{

he
else if(arg-equals(coldWaterButton))

}

return true;

}

Once your Ul worksto your satisfaction and you are able to generate events, run
within a Web page, and do all of the other fun stuff that makes Java so wonderful, you
are ready to move on to the next step.

Initializing the Client ORB

At this point, you need to take your client and plug it into the ORB system. The actual
stepsinvolved in doing so are pretty ssimple and are outlined in the next few sections.
The first, and most important, step is to actually import the ORB into your files:

import corba.*;

Once the ORB isincluded, you can have your applet class extend the ORB:

public class Cooler extends CORBAApplet
{

}

Y ou then have to initialize the ORB so that your Applet is prepared to talk to the ORB
itself. Because we extend the ORB to begin with, all we have to do iscall theinit
method for the super class:

public void init(Q)
{

}

super.init();

Finally, your init method needs to obtain a reference to the remote object with which
you would like to talk. Let's assume that we have stored the object in the Naming
Service under the name "Cooler":

public void init()
{

super.init();

cooler Object = NamingService.find('Cooler™);

Now that we have areference to the object, we can communicate with the remote
object just asif it were alocal object. Aswe will see, the Java syntax |ooks exactly as
it would were the remote object alocal object.

Invoking a Remote Object

Now that we have the object and know that the server is ready to be started, we can go
about the process of talking to the object itself. Up until now we have communicated
only with the Naming Service in order to get the object; thiswill be our first
invocation of the object. Note that even if the server has not been started, the ORB
will alow usto talk toit. Thisis because the underlying CORBA mechanism makes
sure the object has started and that it is ready to be invoked. Sometimes the latency
between a client call and a server responseislong, usualy because the ORB isin the
process of starting and initializing a server in order to handle the request.

public void actionPerformed(ActionEvent e)

{
String arg = e.getActionCommand();

if(arg.equals(hotWaterButton))
coolerObject._getHotWater();

else if(arg.equals(warmWaterButton))
coolerObject.getWarmwWater();

else if(arg-equals(coldWaterButton))

coolerObject.getColdWater();
}

return true;

In this example, our invocations are pretty obviously triggered. For every button that
is pressed, we will make aremote call to an object. The call will block the client until
the server lets go of the invocation. If we wanted asynchronous communication rather
than synchronous communication, we would need to take some stepsin our IDL file
to specify that a certain method should not block when invoked. For example, we
could spawn athread instead of making a direct invocation. For smplicity's sake, we
have chosen not to do this. However, if your server side code is complicated and takes
some time to execute, you may want to spawn threads to handle invocations for you.

Tracking Errors

Java's exception-handling mechanisms will enable usto track and report errors when
they arrive. Furthermore, the exception handlers will prevent our program from
crashing in the event a server encounters a problem somewhere down the line. If this
were amission-critical application, the client side would not experience any problems
should the server flake out for some reason.

In order to make the most effective use of the exception handlers, you need to declare
your own exceptionsin the IDL file. After doing so, your servers must throw those
exceptions when necessary. This enables us to obtain a specific exception for every
error rather than ageneric "an error has occurred” message.

public void actionPerformed(ActionEvent e)

{
String arg = e.getActionCommand();

if(arg.equals(hotWaterButton))
try
coolerObject.getHotWater();
catch (NoMoreWaterException exc)

// error handling here.

}

else if(arg.equals(warmWaterButton))

{
try

{
coolerObject.getWarmwWater();

catch (NoMoreWaterException exc)

// error handling here..

}

else if(arg-equals(coldWaterButton))

try

{
coolerObject.getColdwater();

catch (NoMoreWaterException exc)

// error handling here.
}
}

return true;

Asyou can see, exception handling enables us to protect our clients from server
malfunctions. It also gives us the benefit of the doubt when making invocations that
could be deemed risky (i.e., invocations across multiple networks, firewalls, and so
forth). It is precisely those special conditions that gives CORBA the most fits when
dealing with network traffic.

Implementing the Monitor

The monitor is aclient in the same way that the cooler we created previously was a
client. However, the monitor client is also required to routinely obtain the levels for
each kind of water so that it can display each level graphically. In order to implement

this pinging effect, we need to pop athread within which the monitor will query the
server every second:

public class Monitor extends Applet implements Runnable
{

Thread monitorThread = null;

public void start()

if(monitorThread == null)

{
monitorThread = new Thread(this);
monitorThread.start();
be
by
public void stop()
{
if(monitorThread! = null)
{
monitorThread.stop();
monitorThread = null;
}
by
public void init(Q)
{
super.init();
coolerObject = NamingService.find('Cooler™);
}

Asyou can see, we simply invoke and create a thread. Now we need to add the run
method inside of which we will ping the server every second. Whilethisisavery
brutish approach to retrieving information at a steady rate from the server, it will have
to suffice. In our section on callbacks, we will modify this client so that it obtains
information from the server only when the information has changed.

public class Monitor extends Applet implements Runnable

{

Thread monitorThread = null;

public void start()

{
if(monitorThread == null)
{
monitorThread = new Thread(this);
monitorThread.start();
}
}
public void stop()
{
if(monitorThread! = null)
{

monitorThread.stop();

monitorThread = null;

}
3
public void init()
{

super.initQ;
coolerObject = NamingService.find('Cooler');

public void run()

{

// prioritize the main thread
Thread.currentThread() .setPriority (
Thread .NORM_PRIORITY - 1);

while (kicker! = null)

{
// get the water level

coolerObj .getHotWaterLevel ();
coolerObj .getWarmWaterLevel () ;
coolerObj.getColdWaterLevel ();

//pause the thread
try

Thread.sleep (pause);

catch (InterruptedException e)

{
}

break;

}
}
}

Shutting Down Your Connection

The final step to coding your client is to release the object reference. In Java, thisis
not as much aconcern asit isin C++, for any memory management issues are of no
concern. This does not mean, however, that object references are "free" in Java. On
the contrary, the ORB keeps track of each object reference out there. If multiple
clients possess object references, then the server will hunt down the necessary
resources, allocating and deallocating memory as it seesfit, in order to keep the server
functioning smoothly. By preventing multiple unused object references from being
allocated, your server can function properly and to its utmost ability.

Client Overview

In this section, we have constructed a simple client. More complex clients will follow
the same model: Create the user interface first, then fill in the CORBA details. As
your clients begin to get more and more complicated, your user interface and CORBA
modules will begin to intersect. To make debugging and performance tuning much
easier, it is highly recommended that you consider splitting your code as we did in the
featured application that we described in Chapter 1 and that we will implement using
IDL in afew sections.

Now that you're familiar with creating and implementing CORBA clients, let's turn
the tables and see what's involved with setting up CORBA servers. In order for usto
split our processing appropriately between the client and the server, the server should
be the focus of all our attention. The client should do nothing more than funnel
information back and forth between the user and server. Y ou should limit the amount
of processing you do in your client. Save al the hard work for your server.

CORBA Servers

One of the beauties of CORBA serversisthat they are started up automatically by the
Object Request Broker. When we used sockets and RMI, we had to start our servers
manually, but here we simply create our server, register it with the ORB, and forget
about it. Every time aclient invokes the server, the server will start up (if it isn't
running aready), initialize itself, and ready itself for invocations. To the client, all of
this happens seamlessly and with no additional work needed.

Defining an Interface and Generating Code

In the previous section, we defined our interface as follows:

interface Cooler

{
int getHotWaterLevel();

int getWarmWaterLevel();
int getColdWaterLevel();

exception NoMoreWaterException { };

int getHotWater(Qthrows NoMoreWaterException;
int getWarmWater()throws NoMoreWaterException;
int getColdWater()throws NoMoreWaterException;

Now we need to implement the interface. The first thing we need to do isto generate
all our stub code. The stub code provides the underlying CORBA functionality to our
server so that we can concentrate on developing the server logic itself. Because we
generate code, we don't need to know the nuances of how CORBA works.

Java IDL includes an iditojava compiler that translates IDL code into Java code. The
IDL file that we defined earlier gets six generated analogs that handle the CORBA
plumbing for us. First, the Holder classis generated. As we discussed previoudly, a
Holder allows us to pass a CORBA object as inout and out parameters to CORBA
methods. We also get an Operations class that defines a simple Javainterface from
which the other files can inherit.

The meat of the generated server code lies in the Servant, Skeleton, and Stub code.
The client uses a Skeleton to obtain a basic framework for the object to which it
desires to communicate. The Skeleton is sort of like aroadmap. Using it, you can get
agood idea of where you are going, but you will get no information as to the scenery

along the way. A Skeleton enables the client to know what is possible, but not how
that is accomplished.

Both the Skeleton and the Servant use the Stub code to handle the interaction of the
Server code with the ORB itself (see Figure 6-12). While the Stub does all the work,
the Skeleton and Servant are what we actually see.

Figure 6-12. The generated components for a Java IDL server.

Your Client Your Server
Skeleton Servant
Operations
Stubs
Holder, Ref

Asyou can see from the diagram in Figure 6-12, the Stub is the foundation of the
entire CORBA server. The other classes use the Stub to obtain information about how
they will implement the IDL. We will see in amoment how Java RMI classes are
generated after we create the server file. Java DL works very differently. Whereas
RMI works on generated classes, IDL generates code based on the IDL file. Aswe
have noted before, interfaces defined using the IDL are inherently language
independent. We could just as easily have created a C++ server as a Java server.

When we use the iditojava compiler on our Cooler.idl file, we get the following six
classes:

CoolerRef
CoolerHolder
CoolerOperations
CoolerStub

PODPRE

5. CoolerServant
6. CoolerSkeleton

Aswe discussed previously, each of these classes plays an integral role in how our
server behaves under the CORBA umbrella. It is highly recommended that you not
modify these generated files.

Creating the Server Implementation

Once we generate code, we need to create a class that will contain the routines we
want to provide when a method isinvoked. Unlike RMI, we create our server after we
generate the underlying code functionality for it. The skeletons, stubs, and servants
are, as their names imply, placeholders. We must supply the logic for our methods; it
just doesn't appear out of mid-air. By convention, our server class's name contains the
name of the IDL object, followed by the "Impl" descriptor. Keep in mind that we don't
have to name our class Coolerlmpl, but we do because that is the genera CORBA
convention.

Thefirst step in creating our server isto include all the generated code:

import Cooler.*;

Once we have done that, we create a Coolerlmpl class that implements the Cool er-
Servant we generated earlier. In so doing, our Cooler server obtains the CORBA
plumbing provided by the generated code.

import Cooler.*;

public class Coolerlmpl implements CoolerServant

{
}

Now, we need to fill in the names of the functions we must implement in order to
fulfill our contract with the IDL definition and create a constructor:

importCooler.>;

public class CoolerlImpl implements CoolerServant

{
Coolerimpl O

super();

public int getHotWaterLevel ()

{
}

public int getWarmWaterLevel ()

{
}

public int getColdWaterLevel()

{
}

public int getHotWater() throws NoMoreWaterException

{
}

public int getWarmWater() throws NoMoreWaterException

{
}

public int getColdWater() throws NoMoreWaterException

{
}

Finally, we need to fill in each of the functions so that they do what they are intended
to do.

import Cooler.*;

public class CoolerlImpl implements CoolerServant

{

private int hotWaterLevel;
private int warmWaterLevel;
private int coldWaterlLevel;

Coolerimpl)

super();
hotWaterLevel = 0;
warmWaterLevel = 0;
coldWaterLevel = 0;
T
public int getHotWaterLevel ()
{
return hotWaterlLevel;
}
public int getWarmWaterLevel()
{
return warmWaterlLevel ;
3
public int getColdWaterLevel()
{
return coldWaterlLevel;
3

public int getHotWater(Q)throws NoMoreWaterException

if(hotWaterLevel >;= 10)

hotWaterLevel -= 10;
else
throw new NoMoreWaterException;
}
public int getWarmWater() throws NoMoreWaterException
{
if(warmWaterLevel >;= 5)
warmWaterLevel -= 5;
else
throw new NoMoreWaterException;
}

public int getColdWater()throws NoMoreWaterException

{
if(coldWaterLevel >= 3)

coldwaterLevel -= 3;
else
throw new NoMoreWaterException;

Die-hard CORBA veterans will attest to the charming simplicity with which thisis
donein Java. C++ servers contain the same steps, but can be drastically more
complicated than they need to be. We have now completed the creation of our server
implementation.

Creating the Server Executable

The code we created in the previous section is known as servant code. A servant isthe
physical process in which your server executes, and the server implementation is
contained therein. A server isthe set of interfaces and methods published in the IDL.
The interface definition is the contract that the server fulfills and the servant executes.

That said, we must now create the server for our Cooler. The server must do three
things:

1. Startitself upinaphysical process.
2. Create aservant instance to reside in the process.
3. Binditself to anamein the Naming Service.

All thisis analogous to an ordinary table lamp. There are several table lampsin your
home, all of which implement the same interface—namely "turn on" and "turn off."
Just because they all implement the same interface doesn't mean that they all must be
the same lamp. Indeed, you need many lamps; otherwise, you would trip on your
shoes as you went to bed. So, once we create several different lamps, we need to put
them in their designated locations and plug them into the socket. Likewise, once we
create a servant, we need to put it inside a server and plug it into the ORB.

To do so, first we must create the class so that the server can begin executing in its
own process space. After we create a class, we need to supply it with a main routine

and link up with the ORB. If we do not link up with the ORB here, subsequent
invocations that create the stubs, skeletons, and servants will be unable to work

properly.

import Cooler.*;

public class CoolerServer

{

// private variables
private CORBA corba;

public static void main(
String argv[]

)

{

// link up with the ORB
corba = new CORBA(Q);

Next, we need to create an instance of the Coolerlmpl servant class that we created in
the previous section. We also need to use the CoolerRef container class to support our
servant instance. Remember that clients don't want servants to talk to, they want
servers. With servers, they get a sketch of the contract provided for in the IDL. With
servants, they get all the legal mumbo jumbo in the contract itself. Clients don't need
to know that stuff.

import Cooler.*;

public class CoolerServer
{
//private variables
private CORBA corba;
private CoolerRef coolerRef;

public static void main(
String argv[]
)

{
//1ink up with the ORB

corba = new CORBAQ);

//create the servant class
Coolerimpl coolerimpl = new Coolerimpl();

//create the container class
coolerRef = CoolerSkeleton.createRef(
corba.getORB(), coolerlimpl);

Finally, the server must take the CoolerRef instance and bind it to a unique name in
the Naming Service.

import Cooler.*;

public class CoolerServer

{
// private variables
private CORBA corba;
private CoolerRef coolerRef;
public static void main(
String argv[]
)
{
// link up with the ORB
corba = new CORBAQ);
// create the servant class
CoolerImpl coolerlmpl = new Coolerimpl();
// create the container class
coolerRef = CoolerSkeleton.createRef(
corba.getORB(), coolerimpl);
// bind this server to the Naming Service
corba.rebind(""Cooler",coolerRef);
}
e

Note how the name we have bound to is the same name that we referred to in the
previous section on clients. After compiling all our code, we have aworking server
that the clients in the previous and next chapters can talk to.

Registering with the ORB

Finally, the CORBA server we have created must be placed inside the Interface
Repository, the location of all objects known to the ORB. When the ORB receives an
invocation from aclient, it looks in the Interface Repository for the proper object and,
if it isfound, starts the object up and readies it for invocation. Consult your CORBA
vendor's documentation on how to register an ORB with the Interface Repository. For
example, in NEO, registering an ORB is as simple as typing:

Y%prompt% make register

Server Overview

Aswedid for our client, we created asimple CORBA server that accepts invocations
and passes back results. This server is, in essence, no different from the most complex
CORBA servers. The stepsinvolved in creating servers remain the same:

Define your object using the IDL.
Generate stubs and skeletons from the IDL.
Fill in the code.

Create the server container object.

Register the object.

agrowNE

In so doing, any object server you create will run efficiently, will be very reliable, and
will have the flexibility to be changed often.

Sometimes, you do not want your Java IDL application to be a full-fledged server. For
example, servers cannot be embedded within an applet and, therefore, cannot exist on
aWeb page. If you still require dynamic updates to your server, the only way to get
them isto use a callback, which well discuss in the next section.

CORBA Callbacks

Let's say you've been pestering your Aunt Fran about the details for her latest wedding.
You call her every day, and sheis getting sick of it. Finally, she tells you that she will
call you "only when something happens."”

In essence, the two of you are setting up callbacks between one another. When Aunt
Fran gets an event that you should be aware of, you will get acall. Otherwise, her
phone will be silent, and she will not be bothered.

Java Callbacks

Java IDL enablesyour client object to send itself to a server, setting up areference
bridge to the client object. Whenever the server must tell the client something, it will
make calls on the client objects it stores. In this manner, aJava DL server can keep
track of all the clients that are speaking with it and funnel information back and forth
between the objects.

For example, if every member of the wedding party, not just you, were pestering Aunt
Fran, she could tell them all that she will call when something happens. Aunt Fran
will then be annoyed only when an event occurs. She would probably make alist of
all the people she needs to call and go down the list when the time comes.

Likewise, aJava DL server keeps track of all its clients and prevents an overload of
the system. The alternative to callbacksis for each client to routinely ping the server
every few seconds or so to get information. Although this methodology may work for
one or two clients, when several clients start harassing the same server, the server and
the network begin to get unnecessarily burdened. With callbacks, the network traffic
is high only when an event occurs, and never at any other time. In geek terms, thisis
referred to as scalability. Callbacks are scalable because they work just as efficiently
for several thousand objects as they do for only afew.

Creating a Callback

In order to use callbacks, you must create and define a callback object within your
IDL file. The client that needs to set up a callback must first contact the server. In

order for it to be allowed to call the server and set up a callback, the client must have
access to amethod defined for that purpose. Because the server is the one that will
register client objects and call them back, the server must have that method as part of
its suite of possible invocations.

interface CoolerCallback

{

void waterLevelChanged(
in long hotLevel,
in long warmLevel,
in long coldLevel);

interface Cooler

{
int getHotWaterLevel();

int getWarmWaterLevel();
int getColdWaterLevel();

int getHotWater();
int getWarmWater();
int getColdwWater();

// public method for the callback
long registerCallback (in CoolerCallback coolerCB);
void unregisterCallback (in long callbacklID);

Notice how the registerCallback function contains a CoolerCallback object as a
parameter. Y our Java client will implement the CoolerCallback object. When the Java
client sendsitself as the parameter for the registerCallback invocation, it is essentially
telling the server, "I'm the guy that you need to call when you get achange!" The
register function also returns an integer specifying the ID of the object. If the object
ever wants to unsubscribe to callbacks, it can give the server its ID number and the
server will remove it from its callback list.

Furthermore, the client should implement callback methods just aswe did in the
server section. In essence, the callback will implement server methods without server
infrastructure. The end result is that your client can be invoked by a server asif it
were a server, but the client need not be burdened by the overhead of being a server

(see Figure 6-13).

Figure 6-13. Clients must first register themselves with the server before the server will
be able to call them back.

Register Callback
/ Server

Client

3 «
Client * ’
Callback R ,/ Server
Object Infrastructure

Invoke Callback

Registering a Callback

In order for the server to invoke a callback on aclient, the client must first register
itself with the server as a callback object. Thisisdone in the init function. We need to
remove the code having to do with threads from our non-callback client, and instead
place the following invocation in our init method. We may also remove the Run
method because we need not bother with actually making invocations on the server. In
addition, our client should implement the callback object:

public class Monitor extend sCORBAApplet implements CoolerCallback

{
public void nit(Q)

{

super.init();

coolerObject = NamingService.find("'Cooler™);

int callbackID = coolerObject.registerCallback(this);
by

Notice how we pass the Register method a copy of our own object, as we discussed
earlier. The Monitor client is now ready to be invoked by the server. Later on we will
implement the actual callback function that enables us to process the data we receive.

The Java IDL server should then keep track of the client object in some kind of
storage mechanism. None of this is automatic; the programmer must code it al. In the
following example, we store the client object in a Vector because efficient searching

Is not required. We only need to call them all back sequentially. The two functionsin
the following code should be added to your server definition from the previous section:

import Cooler.*;

public class CoolerImpl implements CoolerServant
{

private int hotWaterLevel;

private int warmWaterlLevel;

private int coldWaterlLevel;

//our callbacks
private Vector callbacks;

Coolerimpl
{

super(Q);

hotWaterLevel = O;
warmWaterLevel = 0;
coldwaterLevel = 0O

callbacks = new Vector();

}

public int getHotWaterLevel ()
{ return hotWaterlLevel;

}

public int getWarmWaterLevel ()
{ return warmWaterLevel;

}

public int getColdWaterLevel()
i return coldWaterLevel;

public int getHotWater() throws NoMoreWaterException
{
if(hotWaterLevel >= 10)
hotWaterLevel -= 10;
else
throw new NoMoreWaterException;

}

public int getWarmWater() throws NoMoreWaterException
{
if(warmWaterLevel >= 5)
warmWaterLevel -= 5;
else
throw new NoMoreWaterException;

}

public int getColdWater() throws NoMoreWaterException

{
if(coldWaterLevel >= 3)

coldWaterLevel -= 3;
else
throw new NoMoreWaterException;

}

public int registerCallback(
CoolerCallback coolerCallback
)

{
}

public void unregisterCallback(

callbacks.addltem(coolerCallback);

int callbackID

N

callbacks.removeltemAt(callbacklID);

Once the callback is registered, the server can continue with its execution until an
event istriggered to which it must respond. When Aunt Fran suddenly discovers that
her husband turns out to be the Chia Pet she dated five months before, she can go
down her list of wedding people and call each of them back. In the same manner, we
will be able to look at our table of callback objects and respond.

Receiving and Handling a Callback

In order to receive a callback, you need to set up a callback function. Thisis
analogous to giving Aunt Fran your phone number. When she needs to tell you
something, she will have a specific place to call you. Likewise, your callback
recipients need to let the server know whereto call.

When the server gets an event, it invokes a remote procedure call on the callback
function, passing any parameters as necessary. Y our callback function accepts and
processes the data given to it by the server. Figure 6-14 offers an illustration of this
process.

Figure 6-14. The callback registration and invocation process

Callback

Table
Register —\
Client | | Server

Callback Invoke
Function

TIP

Remember that callbacks are an option to servers. Y our callback recipient is acting
like aserver, but it isnot quite a server. It cannot be instantiated on its own by a
remote object. Each individual function must be set up with the call-back server,
and the flexibility you had with full-fledged serversis completely lost. On the
other hand, your applet can receive events from a CORBA server without much
overhead, it can be used within a browser, and it is easier to implement than a
server.

Because our callbacks actually implement the CallbackObject interface, they
automatically inherit the waterL evel Changed method. Our client should process al its
datain the waterL evel Changed function:

public class Monitor extends CORBAApplet implements CoolerCallback

{
public void InitQ)

{

super.init();

coolerObject = NamingService.find("'Cooler™™);

int callbackID = coolerObject.registerCallback(this);
}

public synchronized void waterLevelChanged(
int hotLevel,
int warmLevel,
int coldLevel

)
{
System.out.println (“receivedacallback!™);
. handle the Ul stuff you need to .
}

Y our callback function will merely receive the water levelsfor al three kinds of water.
Y ou can then effect the GUI however you please. Notice how we never actually
invoke a method on the server after we register. Instead, we sit back, drink our
martinis (shaken, not stirred), and wait for the server to call us. Asthey say in
Hollywood, "Hey babe, don't call me, I'll call you."

To that effect, the server will contain within it the code necessary to invoke the
callback itself. Here, we have chosen to invoke on all the callbacks whenever the
water level is changed in any way:

public int getHotWater() throws NoMoreWaterException

if(hotWaterLevel >= 10)

{
hotWaterLevel -= 10;

for(int x = 0; x > callbacks.size(); x++)
{
// get the callback object
CoolerCallback cb =
(CoolerCallback) callbacks.itemAt(X);

// invoke on the callback object
cb.waterLevelChanged(
hotWaterLevel,

warmWaterLevel,
coldwaterLevel);

}
}
else
throw new NoMoreWaterException;

A similar method will be employed for the getWarmWater and getColdWater
functions.

Callbacks in Short

In order to process invocations from multiple clients efficiently, a server should
ideally set up a mechanism with which it can control how invocations are handled.
Because the server does the bulk of the work, it should get to call the shots. With
callbacks, we can do what corporate management has never figured out. The people
who do all the work get to make all the decisions. What a novel idea!

A Java IDL Version of the Featured App

Now that we know how to create full IDL and CORBA servers along with the clients
that accompany them, let's put our talents to use. The Internet calendar manager we
discussed in previous chapters is divided into two parts. the Network client module
and the Calendar server with which the module will communicate. First, we will
create the client and then we will create the server. But before that we need the
interface definition of the server itself.

Unlike the version of this application in the first edition of this book the Calendar
application has been modified to use a Microsoft Access Database to store
appointment data. JDBC is used on the server to interact with the database. The
loadDB method of the server iswhat initializes the Database.

The example that follows was made using JDK 1.3, JDBC 2.0, and the
Imprise Visibroker ORB.

Server Interface

The following IDL outlines the method signatures of the remote calendar server
object. The server may reside anywhere and, as we discussed earlier, can be retrieved
through the Naming Service. For demonstration purposes, we'll store our calendar
server in the Naming Service under the name " CalendarObject.” Notice how we have
enclosed our object within a module. The module will act as a holder for all of our
calendar-related objects. For example, in order to access the AppointmentType object
from within Java, you would have to specify Calendarl DL.AppointmentType. Aswe
discussed in our earlier section on language mappings, modules get translated into
Java packages.

module CalendarlIDL

struct AppointmentType

{
string reason;
string time;
}:
interface Calendar
{
void scheduleAppointment(
in string reason,
in string time);
void loadDB();
typedef sequence <AppointmentType> AppointmentList;
AppointmentList getAppointments();
}:
}:
NetworkModule

Asyou will recall, the NetworkModule has a simple set of methods with which we
can change the server. It isinstantiated by the client and takes the high-level data
structures given to it by the rest of the client and sends it off to the server. Our server
will then process information and maintain state. We have incorporated several
methods that will enable usto access the information on the server. Hereisthe
original code for the NetworkModule. Note the addition of the import statement to
include al the calendar's IDL server files. In so doing, we do not have to specify the
entire package name for the calendar's files.

import CalendariIDL.*;

public class NetworkModule

{
public void scheduleAppointment(

String reason,
int time);

public Vector getAppointments();

public void initNetwork();

public void shutdownNetwork();

public void startCorba(org.omg.CORBA.ORBorb);

We will now implement the constructor for this object. The constructor initializes the
connection to the CORBA server and sets up the remote IDL object for use by the
other routines. We will keep track of the remote object with the calendarObject
variable:

public class NetworkModule

//make a calendar object
Calendar calendar;

NetworkModule()
{
org.omg.CORBA.ORBorb = org.omg.CORBA.ORB.init(args,null);
calendar = CalendarHelper_bind(orb, " CalendarObject™);
calendar.loadDB();
}
public void scheduleAppointment(
String reason,
int time)
{
}
public Vector getAppointments()
{
}
}

We now need to fill in the functionality of the NetworkModule. Because we've
already initialized the remote object, we can feel free to use it and communicate with
the server. In the getAppointments method, we will need to trandate the array of
AppointmentType objects to a Java Vector. We do this so that the rest of the
application will not need to be aware of the implementation details of the server itself.

public class NetworkModule

{

CORBAServer calendarObject;
NetworkModule()

Sstring[] args;

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init(args,null);
calendar = CalendarHelper_bind(orb, "CalendarObject');
calendar.loadDB();

public void scheduleAppointment(
String appointmentReason,
String appointmentTime)

{
calendar.scheduleAppointment
(appointmentReason,appointmentTime);
}
public Vector getAppointments()
{

// the variable to store all of our appointments in
Vector appointment Vector = new Vector();
CalendarIDL.AppointmentType[] appointment;
it (calendar !'= null)
{

appointment = calendar.getAppointments();

if (appointment.length != 0)

for (int i=0; i < appointment.length; i++)
appointmentVector.addElement(appointment[i]);
by

// return the Vector
return appointmentVector;

}
}

Note how we need not implement the initNetwork and shutdownNetwork methods. In
Java DL, all the underlying network functionality is handled for us automatically.
CORBA objects are location transparent, meaning that we don't care where or how
they are implemented. Because we use the Naming Service to get to the objects, we
don't have to worry about initializing connectionsin our client. The Object Request
Broker handles al the networking mess for us with easy-to-use programmer APIs.

Calendar Server

Aswe have seen in our previous section on CORBA servers, implementing a server
can be atricky process. Now, we need to apply the language mapping and develop
code for what the server interface is going to look like in Java. We've already shown
you what the IDL for the server looks like, so hereisthe Javaresult for it. Note that
we are including the Calendar objects by using the module name.

import corba.*;
import java.util._*;
import CalendariIDL.*;

public class Calendarimpl implements CalendarServant

{
public void scheduleAppointment(

String reason,
int time)

{

}

public void loadDB()

{
}

public AppointmentType[] getAppointments()

{
}
}

Now, we need to fill in the schedul eA ppointment and getA ppointments method. In
schedul eA ppointment, we will store our appointments transiently in aVector. The
Vector needs to beinitialized in the constructor for our implementation object.

import corba.*;
import java.util.*;

import CalendariDL.*;
public class Calendarlimpl implements CalendarServant

{

public void scheduleAppointment(String reason, int time)

{
try
{
Statement insertStatement =
dbConnection.createStatement();
String insert = "INSERT INTO SCHEDULE ™ +
“"WVALUES("" + time + "","" + reason + "")";
System.out.printin(insert);
insertStatement.executeUpdate(insert);
dbConnection.commit();
catch(Exception e)
{
System._out._printIn("’NetworkModule 3 Error: ™ +
e.toString());
}
¥
public void loadDB()
{
}
public AppointmentType[] getAppointments()
{
}

The loadDB method does all the database initialization:

import corba.*;

import java.util._*;
import CalendarIDL.*;

public class Calendarimpl implements CalendarServant

{

public void scheduleAppointment(String reason, int time)

{

try

{ _
Statement InsertStatement =

dbConnection.createStatement();
String insert = "INSERT INTO SCHEDULE "'+
"VALUES("" + time + "","" + reason + "")";

System.out.printin(insert);
insertStatement.executeUpdate(insert);
dbConnection.commit();

}

catch(Exceptione)

{

System._out.printIn("'NetworkModule 3 Error: ™ +

e.toString());
}
by

public void loadDB()

{
try

// load the database driver

Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver'™);

//connecttothedatabase

dbConnection =
DriverManager.getConnection(dbPath, ™ ,"");

catch(ClassNotFoundExceptione)

{
System.out.printIn("'NetworkModulelError:"'+
e.toString());

catch(SQLExceptionse)

{
System.out.printIn("'NetworkModule2SQLError:"+
se.toString());
}
public AppointmentType[] getAppointments()
{
}

Our getAppointments method will return an array of AppointmentType variables.
Unlike in our sockets implementation in Chapter 3, and unlike our subsequent
implementations for RMI and JDBC in chapters 4 and 5, here we do not need to
define our own AppointmentType. Because we declareit in the IDL, the code for it
automatically gets generated.

import corba.*;
import java.util._*;
import CalendariIDL.*;

public class Calendarlimpl implements CalendarServant

{

public void scheduleAppointment(String reason, int time)

{
try
{
Statement insertStatement =
dbConnection.createStatement();

String insert = "INSERT INTO SCHEDULE " +

"VALUES(™" + time + "","" + reason + "")";
System.out.printin(insert);
insertStatement.executeUpdate(insert);
dbConnection.commit();

catch(Exception e)

{

System.out.printIn("'NetworkModule 3 Error: " +
e.toString());

}
}
public void loadDB()
{
try
// load the data base driver
Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver'™);
// connect to the database
dbConnection =
DriverManager.getConnection(dbPath, " ,"");
catch (ClassNotFoundException e)
{
System._out._printIn("'NetworkModule 1 Error: ™ +
e.toString());
}
catch (SQLExceptionse)
{
System.out.printIn("'NetworkModule 2 SQL Error: "+
se.toString());
}
}
public AppointmentType[] getAppointments()
{

Vector v = new Vector();
int numberOfRows;
AppointmentType[] appointment = null;

try
{
// creating a scrollable Result Set
Statement statement = dbConnection.createStatement(
ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);
String s= "SELECT TIME,R EASON FROM SCHEDULE" +
" ORDER BY TIME";
ResultSet result = statement.executeQuery(s);

// determine the number of rows in the Result Set
result.last();

number OF Rows = result.getRow();
result._beforeFirst();

numberOfRows = (numberOfRows > 0) ? numberOfRows: 1;
appointment= new AppointmentType[numberOfRows];

// corba hates null values,check very carefully for
// any uninitialized values

int i=0;
while(result.next())

{
if (numberOfRows > 1)

{
appointment[i] = new AppointmentType();

String tmpOne = ", tmpTwo = "";

appointment[i]-time = ;

appointment[i].reason = ""';

if ((tmpOne = result.getString("'TIME™))
I= null)

appointment[i]-time = tmpOne;

if ((tmpTwo = result.getString("'REASON'"))
I= null)

appointment[i].-reason = tmpTwo;

i++;

}

// make sure every single index of the array have
// its time and reason initialized
while (numberOfRows > i+1)

{
appointment[i] = new AppointmentType();
appointment[i]-time = "";
appointment[i].reason = "
i++;
}
}
catch(SQLExceptionexc)
{
System.out._printIn("'NetworkModuleError: " +
exc.toString());
}

// fTinal check against null variables

it (appointment != null)
return appointment;

else

{
appointment = new AppointmentType[1];
appointment[0]-time = "";
appointment[0].reason = "";
return appointment;

We must now create a server process for the servant to exist inside. We do thisjust as
we created the server for the Cooler example earlier in this section. Inside the
application main, we will initialize CORBA and rebind to a unique name in the
Naming Service, in this case "CaendarObject.”

public class CalendarServer {

public static void main(String[] args) {
// Initialize the ORB.
org.omg.CORBA.ORB orb
// Initialize the BOA.
org.omg.CORBA.BOA boa =

((com.visigenic.vbroker.orb.ORB)orb) .BOA_init();
// Create the calendar object.
CalendariIDL.Calendar calendar = new
Calendarimpl(*'CalendarObject', "jdbc:odbc:Calendar'™);

// Export the newly created object.

org.omg.CORBA.ORB. init(args, null);

boa.obj is ready(calendar);
System.out.printIn('Calendar server is ready.");
// Wait for incoming requests
boa.impl_is_ready();

We will then need to register the server. Y ou will once again need to consult the
documentation for the ORB vendor you have chosen to find out how to do this. Once
registered, you can run your client and never again be late for an important meeting.

Different Vendors, Different Problems

Because one of the biggest drawbacks to CORBA isthat there are several
disparate vendors for JAVA IDL, the OMG created a complex protocol with
which objects can communicate.

The Internet Inter-ORB Protocol, or 10OP (pronounced eye-op), isthe
"language" used by objects to exchange information. It is based on TCP/IP,
as opposed to UDP, and forms a common base for all CORBA clients and
servers to communicate.

Y ou, the application programmer, will never see [10OP, and you will never
know that 11OP is going under the covers. However, the Object Request
Broker uses I10OP to funnel information to other ORBs. In so doing, a
Visigenic ORB and an lona ORB can talk the same language, so to speak,
when communicating with one another.

So, 110OP addresses one major issue, the interoperability of objects written for
different ORBs, with different CORBA implementations. However, one more
major problem still exists.

CORBA applets often have serious download performance problems.
Because an ORB must exist on every platform with a CORBA client or
server, CORBA applets must include, as part of their implementation classes,
the entire ORB. In so doing, a CORBA applet must download 400 or so Java
classes that constitute the ORB. Aswe discussed in our Chapter 1 section on
"Performance,” 400 classesis amajor datatransfer as far as Java applets are

concerned.

To solve this problem, the Netscape browser includes, as part of LiveConnect
and as part of the Netscape classes.zip file, the entire Imprise Visibroker
ORB. Thiswill alow the browser to refrain from downloading the entire
ORB in a CORBA applet, creating a great performance boost for CORBA

applets.

However, what if the CORBA applet was written in anon-Visibroker ORB?
Well, at that point, Netscape has no choice but to download the entire ORB
as it would have done without the presence of Visibroker. neaatina anv

performance boost.

Even though 110OP addresses interoperability on a protocol and
communication level, no CORBA vendor has yet to agree on interoperability
on an object source level. As of this book's publication, many of the vendors
were still negotiating on the exact contents of that so-called "Java IDL" that
would then be incorporated as part of the Java Developer's Kit.

Summary

CORBA is quickly becoming an industry standard. With industry giants Sun/Netscape
Alliance firmly behind the technology, it may soon make an appearance in our regular
programming diet. Even though Java begins to negate some of CORBA's difficulty,
CORBA is gtill along way from being standard fare on everyone's desktop because of
staunch competition from its Java-only brother, Java RMI.

Chapter 7. Web Servers, Server-Side Java, and
More

Insidean HTTP Server

Common Gateway Interface and CGI Scripts
Servlets

Dynamic Documents

A Servlet Version of the Featured App

Java Server Pages

Multipurpose Servers

What if your normal Web server was capable of providing dynamic network content?
If it could go out and connect to other distributed objects, using solutions from earlier
in this book, it would be able to funnel information to a client without the client even
once knowing of the machinery behind the scenes. So far we have discussed
alternatives that have brought networked computing to the client side while creating
specific client applications to accept that information. With the Java Web Server, a
servlet, in essence a server-side applet, can funnel information back to a Web browser
as astandard HTML file. The browser need not know anything about object design,
internal machinery, or even what aservlet is.

In this chapter, we will explain the basic functionality of an HTTP server, followed by
abrief tutorial on servlets and how to modify servlets to be an object server, like
CORBA or RMI, at the same time. The Web servers and the servlet architectureis an
exciting use of the Java language that we have come to know and love. The examples
in this chapter are designed to bring that excitement and fun back to you.

Inside an HTTP Server
Aswe will seein amoment, Java Web Server is nothing more than an enhanced Web

server product. The fact that it iswritten in Java does not distinguish it from
Microsoft's own BackOffice Web server or Netscape's Commerce Server. Java Web

Server provides dynamic content without having to employ the cumbersome tools that
we have seen thus far.

But, what isan HTTP server anyway? What does it do, and what purpose does it serve?
Web Server Architecture

At its most bare bones and most basic level, an HTTP server smply listens for client
request messages on the "well-known" HTTP port (80) and returns results. The
interaction between the client (browser or application) and the HTTP (Web) server is
governed by the Hypertext Transfer Protocol (RFC 1945 HTTP/1.0, RFC 2616
HTTP/1.1). It does so by clinging to the predesignated HTTP port and awaiting
requests. HTTP requests are typically of the form "GET filename." When presented
with such arequest, the HTTP server will search its document tree for the requested
document and return it to the requesting client. The general public's perspective of
what is going on is "they're on the Web" and haven't the faintest idea that they are
participating in client/server computing.

The portion of the Web server that listens for file requestsis called an HTTP daemon.
A daemon, as we discussed in a Chapter 1 section on threads, is a specia process
whose entire role is to hang around with no distinct startup time and no distinct
shutdown time. It has a specific role that it plays, in this case to fetch files and return
them across a network, but does so without any specia hoopla. More often than not, a
Web server will handle multiple requests simultaneously (see Figure 7-1). These
requests can be from the same client (browser) asin the case of the delivery of an
HTML file and the graphics that are embedded in it or from multiple clients.

Figure 7-1. Web servers handle requests for multiple files.

Document Tree

Browser]
// File
Port | HTTP File — | File

Browser 80 | Daemon Getter
T File
Browser \ File

Once the daemon gets a request, it will go and get the file and return it to the requester.
Aswe discussed in our chapter on sockets, thisis a pipe, or two-way connection
between the client and the server.

The HTTP Protocol
So far we've been using the HTTP acronym pretty freely without really understanding

what it isor how it works. HTTP is arelatively straightforward client/server protocol
made up of client requests and server responses. It is also "stateless’ meaning that

from one request and reply to the next there is no preservation of state (asin program
state between the client and server).

Remember that the primary goal of an HTTP client request isto retrieve all the
resources (text, formatting and layout instructions, and graphics) needed to present a
Web page to the client user. Each client request requests one and only one thing from
the server; this means that getting everything needed by the layout and presentation
engine in your Web browser may take many requests.

The basic HTTP request is made up of two parts: arequest header and the actual data
request. The request header includes information about your browser and operating
environment. The actual datarequest is made up of acommand (GET, POST, or
STAT) and a Uniform Resource Locator (URL, RFC 1738, RFC 1808). HTTP URLs
are alittle more complicated than the simple URL s that we've seen previously in this
book. An HTTP URL consists of the protocol (http, ftp, mailto, Idap), the host name,
the domain name, the port the Web server is listening on (the well-known port for
HTTPis port 80), the path to the resource being requested, and any parametric
information that the resource might need.

Upon accepting a client connection, the Web server receives the request header and
stores the client environmental information; it then receives the actual request. The
server then shuts down the connection on port 80, spawns a thread, and opens another
connection back to the client on a non-well-known port (>1024) to return the data on.
Thisis done to minimize the time that port 80 istied up and to maximize its
availability to receive other client requests. The same thing happens in every instance
of the thread; the server searches its document tree for the requested resource
(typically afile) specified in the URL. In responding to the "GET," the Web server
builds aresponse header (server environmental information and status of the overall
transaction) and sends it back to the client immediately followed by either the
resource from the document tree or an error indication.

Using a Web Server

Today, we use a Web browser to get static document content. The server getsa
request from the browser, finds the file it islooking for, and returns it to the calling
browser. Thisisthe way the Web works today.

More than likely, the Web will shift to more dynamic data. Data (essentially HTML
files) today is created beforehand, placed on a server, and downloaded by clients.
Eventually, the Web will move to a point where the information is never created
beforehand, but generated on the fly. It will facilitate small, efficient programs that
create dynamic content for you and help to prevent the timely distribution of data.
How many times have you gone to a Web page and found the link unattached or the
file outdated? With dynamic data, you can assure that the file is generated today rather
than five or six months ago.

Asyou can seein Figure 7-2, the shift to executable rather than static content on the
Web is actually pretty easy to do. The next few sections will outline the Java answer
to this particular Web server question.

Figure 7-2. The World Wide Web moves to executable content.

Browser
Stalic Jlava Servlets,

HTML IV Java Server Pages

XML ool CGI Scripts,
Dynamic Web C, Perl,VB

avafpplets Server ColdFusion, ASP
JavaScript Plug-ins :
Plug-ins g PHP, Net.Data
Activex :

Static

COM Documents

Advanced Web Server Features

The Web servers of today also incorporate several advanced features such as security,
performance enhancements, and administration. Security is discussed in detail in
Chapter 13, "Java and Security," and, indeed, many of the Java security concerns that
have cropped up over the last few years stem from concerns over the Web server itself.
Will secure electronic transactions actually work over the Web? These are issues that
will be dealt with by the Web server community far before they are incorporated into
Javaitsalf.

Performance enhancements are created due largely to smarter multithreaded
environments, faster hardware, and more capable network connections. Often, a Web
server is performance tuned by spawning athread for every HT TP request.

Finally, network administration is an issue in and of itself, but Web network
administration embodies more than that of its traditional father. Network
administration deals largely with local area networks. With Web servers, the network
administration issues are expanded on awider scale, over Wide Area Networks. What
happens when machinesfail, or when HTTP servers get overloaded? As advancesin
hardware failover technology and Java Network Management are unveiled, the Web
administration will continue to get easier, but at the same time more complex.

HTTP Server Overview

The HTTP server is the most common means normal people use to harness the power
of the Internet. But even the tried and true HTTP server is moving away from the
simplicity of serving static data. The Web as awhole is moving toward executable
content. Servlets give us away to program the server side of an HT TP connection.
Today, we have several alternatives ranging from Web browsers to FTP clients that
allow usto plug in to the network. What's been lacking is the server-side connection
to that interactive content.

Common Gateway Interface and CGI Scripts

Digging back into the history of the Internet alittle bit, we find that before the Web
and Web browsers and graphical content there was something called Gopher. When
the primary users of the Internet were the universities and the research community a
purely text-based World Wide Web existed. Thisweb allowed users (using a Gopher

client or for the real geeks a simple Telnet client) to search for and retrieve textual
documents from large text-based repositories al over the world. Since the advent of
the graphical Web browser and definition of HTML, Gopher has taken a back seat to
HTTP, but in many universities (especially in the far East and third world) Gopher is
still alive and well.

The way that Gopher allowed usersto search these large text repositories was to
provide the Gopher servers with a mechanism through which a user could regquest the
server to run a program as a child process of the server. To provide a defined interface
between the server and the application to be run, the Common Gateway Interface
specification was devel oped (see http://hoohoo.ncsa.uiuc.edu/cqi/ for the
specification).

Basically CGlI defines a set of environment variables made up of the environmental
information contained in the request and response headers exchanged by HTTP clients
and servers. As a set of system environment variables, thisinformation is available to
any application written in any programming language that is supported. Quite often
these programs are written in one of the UNIX shell languages, and they became
known as CGlI scripts. Today, it is common to hear any program that is run by the
Web server called a CGI Script or CGI Program.

CGl isavery important tool in our Web programming toolkit. Once you understand
the information provided in the interface and can envision what you could use it for, it
becomes apparent how your name got on so-and-so's e-mail list after you visited so-
and-so's Web site. Interrogating the HTTP_USER_AGENT from our CGI program
allows us to determine on a request-by-request basis the browser being used by the
end user and allows us to customize dynamic content to best exploit features
supported by specific browsers.

Table 7-1. CGI Environment Variables

SERVER_SOFTWARE Name and version of the server software
SERVER_NAME Server's host name, DNS adlias, or |P address
GATEWAT_INTERFACE The version of CGI being used (CGI/1.1)
SERVER_PROTOCOL Name of and revision of
protocol rEquest wasreceived as (HTTP/1.1) SERVER_PORT
REQUEST_METHOD Port number being used by the server
PATH_INFO The request method "GET", "HEAD", "POST"
PATH_TRANSLATED The path portion of the request
SCRIPT_NAME Normalized version of the PATH_INFO
QUERYSTRING Virtual path to the script
REMOTE_HOST Parametric information attached to the URL
REMOTE_ADDR IP address of REMOTE_HOST |Hostname of the requesting host
AUTH_TYPE Type of client authentication provided

If server supports authentication and the script is
REMOTE_USER protected, thisis the username they have

authenticated as

Remote username from the server if it supports
REMOTE_IDENT REC 031 PP
CONTENT_TYPE Usually the MIME type of the retrieved data

CONTENT_LENGTH Length (in octets/bytes) of the data being returned

HTTP_ACCEPT MIME typesto be accepted by the client

HTTP_USER AGENT Client browser name and version

Before Java Web Servers and Web servers with built-in Java support, a Java program
could be run asa CGI program in aslightly roundabout way as long as there was a
Java Virtual Machine available on the Web server's host machine. The way it was
done was to create a short script that would load the VM and then run the Java
application on the VM. For instance, on an NT platform that had the VM in the
system path, the script (.bat file) would contain the single statement:

"Java myprog"

Typicaly, when a CGI programisrun as a child process of the Web server, anything
written to "sysout” is captured by the Web server and returned to the client. In Java
then, to create dynamic HTML to be returned to the client, all we need to do is use the
System object to write our content.

System.out._printIn('<html><head><title>My CGI</title></head>");
System;out.printIn(''<body>. . .jdbc query
results . . .</body></html>");

This method of running Java on the server side was crude and rude and suffered the
same problem as CGI scripts written in C, C++, or scripting languages (i.e., as child
processes of the Web server they are extremely wasteful of machine resources).
Having to load the JVM each time the .bat file was executed also meant that
performance was also pretty bad...but it did work.

The new Web servers address this with support for servlets; i.e., server-side Java
applications that dynamically produce HTML, do database queries, and integrate the
two.

Servlets

Until now, an HTTP server has functioned solely to provide the client with documents.
The documents, usually written in HTML, perhaps with embedded Shockwave or

Java functionality (in the form of applets), have been statically created days, weeks,
even months before the client actually fetched it. If you want to create dynamic
document content, you must use the Common Gateway Interface. CGI scripts were a
hack designed to provide two-way communication via the World Wide Web. Servlets
replace the need for CGlI scripts and give you a much cleaner, more robust alternative.

What Is a Servlet?

Servlets are Java applications that reside on the server side of an HTTP server. More
likely than not you created several Java objects designed to be used by the client.
Typicaly, these Java objects are restricted by security constraints that challenge your
ability to use files and networks on awhim. Servlets are not subject to artificial
security restrictions and enable you to extend the easy nature of Java programming to
the server side of an HTTP connection (see Figure 7-3).

Figure 7-3. Servlets create documents on the fly rather than getting documents that
were already there.

Client Client
HTTP Server HTTP Server
T
HTML
HTML \ 4 T
Servlet
Conventional HTTP HTTP Servlet
Request Request

Servlets can be used to create dynamic HTML documents. The documents generated
by a servlet can contain data gleaned from other sources, including remote objects,
databases, and flat files. Aswe will seein alater section, servlets also can be
integrated with your existing RMI or IDL server. Furthermore, the investment of time
required to learn servlet programming is negligible because knowing Java
automatically ensures that you will "know" servlets.

So, why don't we just use RMI17? Normal Java objects have well-defined public
interfaces that can be used by avariety of clients, including Web pages, other applets,
even CORBA servers. These Java objects are conventional objects that are
instantiated every time one is needed. In the end, if you create an object, you very
well could have five or six copies hanging out there being used by object requesters.

Servlets, on the other hand, have no defined interfaces. They are facel ess Java objects.
The Java Web server ssmply maps a request onto a servlet, passing it the entire URL

call. The servlet then does what it is programmed to do and generates dynamic content.
Servlets cannot have an interface as we know it. Instead, all its functionality is
restricted to one function within its class hierarchy.

The Servlet API

The Servlet API maps each servlet to a specific HTTP request. Most currently
available Web servers support the Servlet API. Thisis done in much the same way
that the Web server supports CGI programs. In the Web server administration, thereis
an option that you set to indicate that you are going to use servlets; thiswill have the
Web server start up the Java Virtual Machine as part of its startup process. Elsewhere
in the administrative portion will be a place where you can identify where you wish to
locate the "magic" /serviet/ directory.

The Web server isresponsible for taking the mapping and invoking the proper servlet.
Servlets can beinitialized, invoked, and destroyed depending on the request. The Java
Virtual Machine being run by the Web server makes sure that the servlet carries out
itsinstructions correctly.

Furthermore, because servlets are implemented in Java, they are platform-independent
and architecture-neutral. As with normal Java objects, servletsrequire avalid Java
Virtual Machine to be present on the machine on which it runs. In addition, the servlet
requires aWeb server that is compliant with the Servlet API specification.

Most Web servers have a number of "magic” directories that are used for
specia purposes. The magic directory "cgi-bin" can be physically located
anywhere on the Web server machine (D:\executables\perl) but will be
relocated to /cgi-bin/ by the Web server; the servlet directory is another
"magic" directory, the Web server administration client will allow usto map
any directory we like to /serviet/. In addition to the "magic" directories of
"cgi-bin" and "servlet," Web servers also support afeature called Additional
Document Directories; this feature allows us to set up our own name to
directory mappings. For instance you might find it useful to set up your own
"magic" directory called /javascript/ to store all of your embeddable Java
script files.

The concept of directory mapping becomes more important as we make more
and more of our Web pages dynamic and our databases interactive. With
more dynamically created pages on our Web sites, we need more servers. If
our Web servers are also clients to our Local Area Networks or shared file
systems (like the Andrew File System—AFS), we can have multiple Web
servers serve our application objects from the same shared "magic”
directories. This ensures that all users are getting the same versions of the
objects and is part of an overall configuration management scheme.

NOTE

The servlet API is currently part of the JDK 1.2 and considered a part of Java 2.0.

Objects that want to be dynamic information providers should implement the servlet
interface shown in Figure 7-4. In the diagram in Figure 7-4, those objects that provide
the functionality defined in the servlet interface are capable of handling
ServletRequests.

Figure 7-4. The Servlet class hierarchy gives you easy access to input and output
streams for dynamic documents.

Client

Servlet Request Servlet Response

HTTP Server

f

HTML Dynamic Document

v 1

Servlet Servlet Context

The ServletRequest object contains the entire HT TP request passed to the servlet by
the Java Web Server. The ServletRequest is also capable of extracting parameters
from the HTTP request itself. For example, the following URL contains four elements:

http://watson2.cs.binghamton.edu/servlet/steflik._html?courses

First, the request defines the protocol being used. Here, we use the hypertext transfer
protocol. The HTTP request is fairly ubiquitous on the Web these days, but as new
protocols such as the Lightweight Directory Access Protocol (LDAP) become more
prevalent, this portion of the request will become more and more important.

We then see the domain name for the request. In this instance, we access the Web site
watson2.cs.binghamton.edu, presumably to check what courses Steflik is teaching this
semester. Obviously, this portion of the address varies widely from software

development oriented domains like java.sun.com to education oriented domains like
http: //binghamton.edu.

Finally, we access the document and its parameters. The Java Web Server maps the
steflik.html document request to a servlet, passing the parameter courses as part of the
ServletRequest data structure. Keep in mind that the physical document steflik.html
does not actually exist; it will be generated on the fly by the servlet.

Responses are sent back to the requesting client via the ServletResponse object. The
Java Web Server tranglates the ServletResponse object into a dynamic document of
some kind. We will see later how we can generate dynamic applets, but we will till
pass the data back through a ServletResponse instance.

Why Not CGI Scripts?

CGlI scripts are language-independent. They can be written in everything from C++ to
PERL to AWK. Scriptsimplementing the Common Gateway Interface simply pass
environment variables to one another all the while generating dynamic documents.
They can provide aton of functionality, as we have seen with the explosive growth of
the Web. Certainly without CGI scripts the Web could never have become a two-way
form of communication that was readily accepted by the general public.

CGil scripts have two major drawbacks, however. First, they suffer from horrible
performance. They are turtle slow and are not scalable. Multiple CGI requests on the
same server end up creating new processes for each request. The end result is that
CGlI processes do not cooperate with one another as threaded applications would.
Instead, they hog system resources and slow not only the scripts themselves but the
HTTP server that hosts it aswell.

CGil scripts are al'so completely platform-dependent. Although the language with
which they are written can vary, they cannot be transported from a Windows machine
to a Macintosh. They are written once, and used in one place.

The Java Servlet interface provides an alternative to this morass. Because they are
written in Java, servlets are platform independent. They can be moved between
machines with ease and without recompiling. Servlets also can take advantage of
clever threading mechanisms and provide fast turnaround and efficient processing of
data. One other thing about CGlI isthat it is easy to hang up a Web server with a script
that has not been well written and tested; because servlets run as athread of the VM
and not as a child process of the Web server, they are safer.

Servlets Overview

These days, HTTP servers are commodities to be had in much the same way as a pair
of Nike Air Jordans. Y ou can get HTTP servers from Netscape, from Microsoft, even
for free viathe World Wide Web. Companies whose sole product is a Web server are
doomed to failure. In an effort to provide a new kind of Web server to the Web
surfing public, Sun Microsystems has created the Java Web Server architecture.

Servlet-compliant Web servers generate dynamic documents through normal protocol
requests. Java objects known as servlets create the dynamic documents. Aswe will
see in the next two sections, servlets are both easy and fun to write. Without much
effort, you can create a dynamic document server that will render your CGI scripting
techniques of the past obsolete.

Dynamic Documents

We spoke earlier about the Java Web Server trand ating document requests into
servlet callsthat, in turn, create and pass back a document corresponding to the
request. The servlet must be capable of accepting different parameters from the client
and also be able to formulate a response quickly and efficiently. By using servlets, we
would not have to create those documents days, weeks, perhaps even monthsin
advance. Rather, we simply create a program that, given a set of parameters, can
generate a document at the moment of the request. In so doing, we generate up-to-the-
minute information without resorting to software hacks like CGI scripts.

Creating the Servlet

All servlets need to inherit from the Servlet or HTTPServlet base classes. The
difference between these two classesis that the Servlet classis more generic and can
be used with RMI and CORBA objects as data sources, whereas the HTTPServlet
focuses on HTTP and interfacing with Web servers. The base class creates al the
functionality required to map Java Web Server requests onto a physical servlet
process. The servlet processis started automatically by the server if it isn't yet running.
Any subsequent requests on the servlet process can either be queued until the servlet
isready to processit or transferred to another serviet where it can be started up and
processed. These are administrative tasks that we will discussin a moment.

Meanwhile, we need to implement the servlet architecture to retain arequest, process
data, and send documents back. Let's say we want to make a servlet that will accept a
request from our favorite Web browser and echo back to us a Web page containing
some of the information contained in the HTTP Request Header. This exerciseis
informative not only about writing our first servlet but also about what information is
included in the request header and how we can extract it.

We start by creating the GetBrowserDataServlet object that extends the HTTP-Servlet
base class. As we mentioned before, the HTTPServlet base classis required for al
servlets and implements the underlying HT TP to servlet mechanisms.

public class GetBrowserDataServlet extends HTTPServiet

{
}

Handling Java Web Server Requests

Every object that inherits from the HTTPServlet base class must implement the
service function. The service function has two parameters, an HttpServletRequest

object and an HttpServletResponse object, and can throw one of two exceptions,
either the ServletException or an |OException. The HttpServletRequest object gives
us information about the request sent to us, particularly what kinds of parameters we
arereceiving. In this simplest of cases, we are not dealing with parameters, but we
will in amoment. The response object enables us to set the proper stream to which we
can write our dynamic document.

public class GetBrowserDataServlet extends HTTPServilet

{
public void doGet(HttpServletRequest rgst,

HttpServletResponse resp)
throws ServletException, 10Exception

Setting Headers and Defining Content

Once we implement the service function, we can fill in the details. We must set our
response parametersfirst. In order for the Web server to pass back a dynamic
document, we need to tell it what kind of document we are sending back. Isthisa
Quicktime movie or an HTML file? In browser parlance, the Content Type field of the
response header specifies the type of file; thisis usually the files MIME type. If you
were to start Netscape or Internet Explorer and play around with the settings, you
could farm off content types to different helper applications. For example, al .mov
Quicktime files sent to a particular browser could end up starting a Quicktime Movie
Player and start the animation. In much the same way, we need to specify what kind
of document we are sending back by setting the content type. Thisis done by using
the setContentType method of the HttpServletResponse object.

public class GetBrowserDataServlet extends HttpServiet

{
public void doGet(HttpServletRequest rgst,

HttpServletResponse resp)
throws ServletException, I0Exception

// set up the response
resp.setContentType("text/html'");

Creating the Document
Now, we need a standard output stream to which we can write our dynamic document.

Aswe discussed in the first chapter, streams are wonderful things that have numerous
purposes. Here we take a regular response object and obtain an output stream for it:

public class GetBrowserDataServlet extends HttpServiet

public void doGet(HttpServletRequest rqgst,
HttpServletResponse resp)
throws ServletException, 10Exception

{
// set up the response
resp.setContentType("text/html™);
// get the dynamic document®s output stream
ServletOutputStream out = resp.getOutputStream();
}

In order to send information back to the client, we must create an Html Page object
that will handle much of our HTML formatting. Now, we can generate our dynamic
document simply by writing HTML strings to the output stream we just defined. In
effect, this sends the data we write directly back to the client browser viathe Web
server.

public class GetBrowserDataServlet extends HttpServiet
{
public void doGet(HttpServletRequest rqgst,
HttpServletResponse resp)
throws ServletException, I0Exception

// set up the response
resp.setContentType("text/html™);

// get the dynamic document®s output stream
ServletOutputStream out = resp.getOutputStream();

// get the data for the HTML page

String browserAddr = rgst.getRemoteAddr();

String userAgent = rgst.getHeader(“'user-agent');

IT (userAgent == null) userAgent = "Unknown browser";
String method = rgst.getMethod();

String path = rgst.getServletPath();

String server = rgst.getServerName();

Int port = rqgst.getServerPort();

// build the HTML

out.printin('<html><head><title>Remote User Information"
"</title></head><body>"

+ "<p>Remote IP Address: "+ browserAddr

+ "
Remote Browser: " + userAgent

+ "
Request Method: "™ + method
+
+

+

"
Servlet: " + path
"
Server: " + server
"
HTTP Port: ' + port);
out.printin('</body></html>"");

+

The following isthe static HTML produced by the GetBrowserDataServlet after | did
aSave Asin my browser. | doctored it up alittle bit in my favorite text editor. The

reason that | needed to doctor it up was to put in some line feed so it would be
viewable. If you notice, in the code there are no carriage returnsin the stream of data
that goes to the output stream. The browser's layout engine receives this continuous
stream of characters and formats it according to HTML layout rules; remember that
carriage return characters are just one more character that has to be parsed and then
discarded.

<html><head><title>Remote User Information</title></head>
<body><p>Remote IP Address: 127.0.0.1

Remote Browser: Mozilla/4.5 [en] (Win98; U)

Request Method: GET

Servlet: /servlet/GetBrowserDataServilet

Server: localhost

HTTP Port: 8080

</body></html>

ThisHTML, after laying out by the browser, produced the layout shown in Figure 7-5.

Figure 7-5. GetBrowserDataServilet output.

Remote User Information - Netscape

File Edit View Go Communicator Help

i Bsck Fuusd Reload Home Seach Netscspe Pt Secuiy I
| Bockmarks i Location: [rtp://locahost:8080/senviet/GetB v (0™ What's Related
%l Instant Message ‘WebMal Contact People YelowPages Download

Eemeote IF Address: 127.0.0.1

Remote Browser: Mozilla/4.5 [en] (Win98, U)
Request Method: GET

Servlet /servlet!GetBrowserDataServiet
Server: localhost

HTTP Port: 8080

o == |

Now a Few Words on Servlet Testing and Deployment

Web servers are pretty amazing creatures, the people who create and nurture these
software entities fill them with features that make them very useful and above al as
fast as possible. We all know that our browsers use caching techniques to help
performance; they will not go back to the server if apageis cached in the local store.
To help servlet performance, Web servers cache servlets so that they are always
readily available in memory if needed. Thisis a nice performance feature and,
coupled with a high performance Java Virtual Machine, really helps make serviets as
fast as possible. Now comes the hitch; because servlets are cached as soon as they are
loaded, testing becomes complicated. As soon as we compile a new version of our
servlet and want to test it, we must first copy it to the Web server's "magic” /serviet/

directory and then click on the reload button of our browser. Lo and behold, the old
version of the servlet isrun. To test the new version of the servlet, we must get the
Web server administrator to "cycle" (turn off, then on) the Web server to clear the
cache so that it will load the new version of the servlet. Doing this frequently can
make areal enemy of your normally mild-mannered Web server administrator. In a
production environment, we want to make sure that servlets are extensively tested
before they are put into production, so that once put into production only one cycling
of the Web server is necessary.

Enter the servletrunner, a piece of software that is distributed as part of Sun's Java
Servlet Development Kit (JSDK). The servletrunner allows you to test serviets on
your own Windows-based workstation. Servletrunner is a special-purpose Web server
that you can configure and run on your own workstation. Y ou will still have to go
through the hassle of having to stop servletrunner to clear the cache to test your new
version of aservlet, but that is preferable to alienating the Web administration staff.

Servlets and HTML Forms Processing

The biggest use of servletstoday isin the dynamic creation of HTML-based forms
and processing the data returned by a client browser to the Web server from the form.
Being Java programmers, we are all familiar with building user interfaces using AWT
and Swing to create applets for delivery to aWeb browser. Plain old HTML provides
us with amuch thinner client that can be created very quickly by a servlet and sent to
the client browser much more quickly than an equivalent Java applet. (I hate to say it,
because | really like the stateful behavior of an applet, but having to wait for the class
loader to do al of its security checks while the applet is loading really makes me
dread the "Applet starting” message on the browser's message line.)

HTML's data entry widgets (tags) provide a set of data entry objects sufficient for
most data entry applications. Let's review the HTML set of data entry objects.

Form Tag.

To send data from aform to the Web server requires a minimum of asingle
<form>...</form> tag set. Web pages may contain multiple forms, each being
logically independent of the other.

<form name=name method=GET/PUT action=/serviet/myservlet>. . .</form>

The <form> tag has no associated layout implications for the browser; its only
implications are processing oriented.

The name attribute of the form can be anything we wish as long as it contains no
embedded blanks and is unique to this particular form (within the current Web page).

The method attribute of the tag is used to indicate to the browser how data from the
form is to be sent to the Web server. There are two possible choices: GET or POST.
GET instructs the browser to use an HTTP GET or an HTTP POST request header. A

GET will attach all the datafrom the form to the URL sent to the server (thiswill be

available to your servlet viathe getQueryString or getParameterValues method).
Setting the method attribute to POST instructs the browser to send the data as part of

the request header where it will be made available to the servlet either by reading the
Servletinput Stream or viathe getParameterV alues method.

Depending on your choice of the GET or POST method, your servlet will haveto
overload the doGet or doPost method of the HTTPServlet base class. In the
GetBrowserDataServlet, the execution of the serviet was kicked off by the implied
HTTP Get of just requesting the servlet's URL; thisis why we overloaded the doGet
method in the servlet.

Input Tag

The <input> tag is a multipurpose tag and is really quite versatile. We'll ook at each
of the variations of the <input> tag individually.

As a Text Input or Password Field

<input name=nnn type=text size=m maxlength=n value=p>

name—assigns a name to the field
type—provides text for atext input field password for a password field
size—indicates the width (characters) of the displayed widget

max|ength—indicates the maximum numbers of characters to be typed
in

value—provides theinitial value to display in thefield

Text input fields are the workhorses of the data input widgets and are used for
collecting both textual and numeric data. The only differentiation between text,
numeric, date,..., information is the context in which it is used. Enforcement of data
type checking isleft to the user either by including Javascript data type checking
functions in the Web page or by having the data-handling servlet check the data for
correctness and post error messages back to the browser as special Web pages. The
general feeling isthat including Javascript to do thisis preferable to having the servlet
do the checking as it localizes the checking to the client, places no extra processing
load on the Web server, and cuts down servlet size.

Password fields are the same as text input fields except that, when typed into, the
typed characters will display as* characters; when submitted, the name/value pair will
contain the text as it was typed.

As a Check Box

Check boxes are little square boxes that, when clicked on, display a small check mark.
If abox isaready checked, clicking will remove the check mark. Check boxes are
convenient for allowing a user to choose a set of options.

<input name=nnn type=checkbox value=p checked>

name—a form unique name for the field
type—must be checkbox
value—a value to be sent to the server if the box is checked (A
name/value pair will only be sent is the box is checked when
submitted.)
checked—if present, indicates to display the box asinitially checked
As a Radio Button
Radio buttons are a metaphor for the one-of-many kind of selection device we have

on automobile radios. When you press one, it cancels out any previously selected
choice.

<input name=nnn type=radio value=p checked>

name—a form unique name for a group of radio buttons
type—must be radio

value—the value associated with this button (This value will be sent to
the server with the name/value pair if it is selected at submit time.)

checked—display this button as initially selected

Thiswidget alows you to have multiple widgets with the same name. This allows
grouping buttons into one of n devices. For example,

<input name=car type=radio value=Chevy checked>Chevrolet

<input name=car type=radio value=BMW>BMW

<input name=car type=radio value=Subaru>Subaru

will display three radio buttons vertically, each followed by the car brand. If the
BMW button is selected and the form is submitted, the name/value pair to be sent to
the server will be car=BMW. Figure 7-6 illustrates uses of the <input> tag.

Figure 7-6. Sample radio buttons and checkboxes.

#% Cars - Netscape

Fie Edt Yew Go Communicator Help

Pick a Car Pick the cars you want
T Chevrolet |IT Chevrolet

C Chevwrolet | [T BIWOW
& Subaru | Subaru

i == | Document: Done S e 32 @ 2 | 4

As a Submit Button

Submit buttons are the widget that initiates the transfer of datafrom aform to the
Web server.

<input name=nnn type=submit value=text>

name—the name of this button; if not included, the default text will be
" Submit Query"

type—must be submit

value—the text to be displayed on the button face and sent to the server
as the value of the name/value pair when clicked on

A form may have many submit buttons all with the same name; only the name/value
associated with the clicked button will be sent to the server. Thisgivesusa
convenient mechanism to use to decode which button was used as the submit button.

If a submit button has no name or value associated with it, no name/value pair will be
sent to the server. A submit action will take place.

As a Reset Button

Reset buttons are used to clear all the data that has been set in aform. The reset action
happens locally to the browser and sends nothing back to the server.

<input type=reset value=text>

type—must be reset

value—the text to be displayed on the button face

As a Hidden Field

Hidden fields are nondisplayable text fields and are used as a convenient way to hide
program state data (remember that the nature of the Web isthat it is stateless) in a
manner in which it will not be overly noticeable by the browser user (unless they use
the "view source" capability of their browser).

<input name=nnn type=hidden value=text>

e name—the name of this button

e type—must be hidden

o value—thetext to be sent to the server as the value of the name/value pair
when the form is submitted

As a File Name Field

Thisfield is atext-input field with an associated Browse button. Clicking on the
Browse button causes the system File Dialog to be displayed. Y ou can then select a
file on your file system by double-clicking on the file or selecting it and clicking on

the Open button. Thiswill close the dialog box and place the name of the selected file
in the text input portion of the control. This widget is not supported on all browsers.

<input name=nnn type=Ffile value=text size-s maxlength=m accept=a,b,c>

name—the name of this button

type—must befile

value—the text to be displayed on the button face when afileis
selected from the file dialog and sent to the server as the value of the
name/value pair when clicked on

size—same as for text input field

max|ength—same as for text-input field

accept—a comma separated list of MIME file types to be used by the
file dialog to determine which file typed to display

Select Tag

The <select><option></select> allows us to present selection lists as a drop-down list,
aone-of-n scrollable selection box, or an m-of-n scrollable selection box.

<select name=nnn size=n multiple>

<option value=v selected>text</option>
</select>

name—the name of thislist
size—number of visible options, if omitted default is one
multiple—if present, the list will be m of n; otherwise, one of n

value—the value submitted for the name/value pair for one of n;
multiple name value pairs will be submitted for m-of-n lists

selected—if present, indicates presel ected value(s)
See Figure 7-7 for an example of the <select> tag.

Figure 7-7. Sample drop-drown list.

- Lists - Netzcape
File Edit “iew Go Communicator Help
P
m-of-n
Cne-ofn
DropDown Cat -
ICat 'I Doy |
Farrat j
i (== |

Textarea Tag
The <textarea></textarea> tag set is used to give our form a multiline text-input area.

Initial text data can be supplied to the field by placing it between the opening
<textarea> and closing tags </textarea>.

<textarea name=nnn cols=m rows=n wrap=virtual>
</textarea>

name—the name of thislist
cols—width, in characters, of the input area

rows—height, in characters, of the input area

wrap = virtual—if present, will enable text wrapping at the right border;
if absent, areturn key isrequired to move the cursor to the next line

The following HTML produces the textareain Figure 7-8:

Figure 7-8. A sample textarea.

% Cars - Netscape
Fie Edit “iew Go Communicator Help

Foeiiiiiiiddidd _/).:J."/I.ll:l'/

v

Tewtarea:

Now i= the time for all -
good students to come to

come to the aid of their
teachers
=

=l
i (e | Document: Done e 33 AP [N2 | s

<html><head><title>Cars</title></head>
<body><form><center>

<p>Textarea:

<textarea name=tarea rows=4 cols=25 wrap=virtual>

Now is the time for all good students to come to come to the aid of
their teachers
</textarea></center></form></body></html>

That pretty much takes care of our 5-minute HTML refresher course. All we have | eft
to understand is how the information is read from the screen and something called
URL-encoding.

Reading the Form Screen

When a user clicks on a submit button the browser builds alist of name/value pairs,
the ordering of which is determined by the placement of the fields on the screen.
Scanning is done left-to-right and top-to-bottom; whatever isfound in that path is
placed in the list in the order it is found.

URL-encoding is a scheme devised for attaching parameter liststo URLs. The last
character of a URL isthefirst blank character encountered after the beginning of the
URL. To ensurethat all forms datais sent to the Web server, we must make sure that
there are no blank (space) charactersin the data. To do this, the browser does some
character substitutions as it builds the list of name/value pairs. Spaces are replaced
with "+' characters, and any special characters like punctuation are replaced by a %'
character followed by the hexadecimal value of the character in the ASCII code set.
Finally the ampersand character (‘& ") is used to separate name value pairs.

A Servlet Version of the Featured App

Aswe have done in previous chapters, we will re-examine our featured Appointment
Calendar application. In doing so, we will borrow a few programming techniques
from CGI programming and apply what we've already learned about servlet
programming.

Because our Appointment Calendar will now have avery thin client presented to the
end user that will be purely HTML, thereislittle that we can reuse from the client
interface that we developed for the other chapters. We have done pretty well on reuse
so far; in each implementation, we have only had to modify the NetworkModule.java
file and write anew server (except in the case of the JDBC implementation). In
looking at what we might consider reusing, we can easily reuse the AppointmentType
class because it is pretty straightforward. In examining the NetworkModule for the
JDBC version, we notice that we can use it as our server-side interface to the access
database we created.

Figure 7-9 shows the user interface for the Calendar and the appointment forms we
have decided to use. Notice that we have made the time more granular so asto be
more realistic.

Figure 7-9. Appointment calendar user interfaces.

¢ Calendar - Metzcape % Calendar - Netscape
File Edit View Go Comeunicator Help Fi= Edit View Go Communicator Help
=T ;,'l..-_fj ;:.;fr .J.:--_.f |3 :|:|-.:|.-:|::-_.J“h.':|.-'.""1 .:|':-f
Appointment Add an Appointiment
Calendar
B:00 AM Wake-up = I
9:00 AM ning am 0200 AM C 01.00 PM
9:00 A Dentist 0900 AM 0200 PM
10:00 AM Change Qil .
11:00 AM Car Inspet “> 10:00 A8 3 0200 PAE
12:00 AM noan time © 1100 AM 04:00 PM
12:00 AM lunch wifloe = 12:00 Noon € 05:00 PM
3:00 PM three oclock =
300 PM Pick up kids Calendar | Insert |
4:00 PM four oclock |
Add Appointment |
o == [E R) s ol] [= A

Before we go too much farther, let'slook at what the overall architecture of our servlet
will be. Our servlet will be made up of four methods. doGet, getA ppointments,

newA ppointmentForm, and insertNewA ppointment. doGet is our required overload of
the doGet method of the HttpServlet base class. We chose GET instead of POST as
our forms submission method so that you could see the URL-encoding of the forms
data in the location box of your browser. Normally we would use a POST so that the
user couldn't see the submitted URL.

The function of doGet isto act like atraffic cop and analyze the input from the
submitted URL and decideif itisto:

1. Display the appointment list by invoking getAppointments, which in turn uses
the getAppointments method of our previously written NetworkModule.
(That'sanicelittle bit of reuse.)

2. Display the add an empty appointment form by invoking the
newA ppointmentForm method.

3. Insert a new appointment into the database by invoking
insertNewA ppointment method, which in turn uses the schedul eA ppointment
method of a NetworkM odule object.

It looks like Figure 7-10.

Figure 7-10. Calendar Servlet.

Calendar Servlet

empty — Querystring
|

submit="Calendar"
submit="AddAppointment"

GetAppointments AddAppointments

We'll start out with a skeleton view of our application's architecture:

Public class CalendarServlet extend HttpServilet

Public void doGet(HttpServletRequest req,
HttpServletResponse resp)
Throws ServletException, 10Exception
{
}

public void getAppointments() throws I0Exception

{
}

public void newAppointmentForm() throws 10Exception

{
}

public void insertNewAppointment() throws I10Exception

{

Looking at each of the methods individually, we can analyze what is taking place one
thing at atime. The entirelisting for the servlet will appear at the end of this section.

doGet()

public void doGet(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException, 10Exception

String values[];
out = resp.getOutputStream();

// add standard HTML header
resp.setContentType('"text/html'™);
out.printin("<html><head><Title>Calendar</title></head>");
out.printIn('<body><form method=GET
action=/servlet/CalendarServiet>");

// if querystring is null this is the initial call
String s = req.getQueryString(Q);
if (s == null)

this.getAppointments();
3
else
{
// not initial call decode the submit button value
String submit = "";
values = req.getParameterValues('submit'™);
if (values !'= null) submit = values[0];
// check for add an appointment
if (submit.equals ("Add Appointment'™))
this.newAppointmentForm();
// check for display appointment form request
else if (submit.equals(Calendar™))
this.getAppointments();
// check for insert a new appointment
else if (submit.equals("Insert™))
{
// get the appt data and add it to the database
String reason = "";
int time = 0;
values = req.getParameterValues('reason');
if (values !'= null) reason = values[0];
values = reqg.getParameterValues('time'™);
if (values !'= null)
time=Integer.parselnt(values[0]);
// go insert the data
this. insertNewAppointment(reason, time);
¥
ks
// standard trailer
out_printIn('</body></html>");

Thefirst few lines of code just reserve a string array for parameter handling, attach an
OutputStream to our globally defined ServletOutputStream, and use the stream to
write a standard HTML prolog to the client.

The outermost if statement checks the QueryString for null; thisisan old CGlI trick

used to determineif thisisthe initia invocation of a script. If we invoked our servlet
from an anchor tag on another HTML page like:

Appointment Calendar

The submitted URL, when clicked on, would be:

http://someserver.com/servlet/CalendatServiet

Submitting this URL will invoke the servlet, but the QueryString will be empty
because there is no parametric data attached to the URL.

In this case doGet passes control to the getAppointments method to finish building the
form. At this point the servlet is done.

If thisisn't the first invocation, then there must have been some parametric
information (name/value pairs). Because all our forms have at least one submit key,

all we have to do to decide what to do next is decode the value of the submit key. If
the key was the submit key for inserting a new appointment into the database, there
will be additional parametric information in the QueryString so we retrieve it and pass
it to the insertNewA ppointment method.

getAppointments()

public void getAppointments() throws I0Exception
{
try
{ _ _
AppointmentType appt = new AppointmentType();
Vector v = new Vector();
out._printIn('<h3>Appointment
Calendar</h3>");
out_printIn('<p><select name=item size=10 >');

// create a NetworkModule object to talk to database
NetworkModule nm = new NetworkModule();
Vv = nm.getAppointments();
int temp = 0 ; String ampm = '"*';
for (int i =0 ; i <v.size() ; i++)
{
appt = (AppointmentType) v.elementAt(i);

}

}

//close the selection list & add a submit button

(o}

out_printIn('<p><input type=submit name=submit

if (appt-time > 12)

{ temp = appt.time - 12 ; ampm = "PM";}

else
{ temp = appt.time ; ampm = “AM "';}

out_printIn(<option>" + temp + ":00 "+ ampm +

appt.reason);

ut.printin('</select>");

value="AddAppointment">"");

catch (10Exception e)

The getA ppointments method first creates an AppointmentType object (reuse here ..
to hold the appointments retrieved from the database and a vector to hold the
AppointmentType objects returned from the database by the NetworkModule. We
then create a NetworkM odul e object and invoke its getA ppointments method; this
places the appointments into the vector we created previously. The for loop iterates
through the vector and formats each AppointmentType object into the <option> part
of an HTML selection list. Notice in Figure 7-9 that the appointments are sorted by
time; thisis done by the NetworkM odul €'s select statement (sort by clause).

{
}

System.out._printIn(""10Exception: " + e.toString());

newAppointmentForm()

public void newAppointmentForm() throws I0Exception

{

out.
out.
out.

out.
out.

out.

out.

out.

out.

out.
out.

out.

out.

out.

printIn("'<h3>Add an Appointment</h3>');
printIn('<table><tr>");
printIn(<td align=center>
<input type=text name=reason
maxlength=20>"");
printIn('<tr><td>");
printIn("<input type=radio name=time
value=8 selected>08:00 AM"™);
printIn("
<input type=radio name=time
value=9>09:00 AM™);
printIn('
<input type=radio name=time
value=10>10:00 AM");
printIn("
<input type=radio name=time
value=11>11:00 AM™);
printIn(’
<input type=radio name=time
value=12>12:00 Noon');
printin("'</td><td>");
printIn("<input type=radio name=time
value=13>01:00 PM');
printIn(’
<input type=radio name=time
value=14>02:00 PM");
printIn("
<input type=radio name=time
value=15>03:00 PM");
printIn("
<input type=radio name=time

)

value=16>04:00 PM");
out.printIn(*'
<input type=radio name=time
value=17>05:00 PM');
out.printin('</td><tr>");
out_printIn('<td align=center>"
+ "<input type=submit name=submit
value="Calendar">");
out.printIn('<td align=center>"
+ "<input type=submit name=submit
value="Insert">");
out.printin('</td></tr></table>");

This method is pretty straightforward and just uses the ServletOutputStream to build
the empty "add a new appointment” page. If we were to add a Modify Existing
Appointment button to the Appointments main screen, we could modify this method
either to display an empty screen for adding a new appointment or to display the field,
filled in with the parsed information from the main appointment selection list.

insertNewAppointment()

public void insertNewAppointment(String reason, int time)
throws 10Exception
{

// create a NetworkModule object to talk to the database
NetworkModule nm = new NetworkModule();

//add the appointment
nm.scheduleAppointment(reason,time);

redisplay the Appointment list

this.getAppointments();

Finally the insertNewA ppoinment method creates a NetworkM odul e object to talk to
the database and invokes the NetworkM odul €'s schedul eA ppointment method to place
the appointment information into the database; once safe in the database, the
getAppointments method is invoked to redisplay the main form. Y ou can now see the
appointment that was just added.

Java Server Pages

A recent addition to our toolbox of Web application devel opment tools are Java
Server Pages. To explain what a JSP is, think about what it was that we actually did
with servlets, smply put, we wrote a Java application that, asits output, created (on
the fly) HTML with embedded data that were returned to the requesting browser. This
isvery CGl-like and, as natural asthisfelt 10 years ago, isnot avery natural way to
create dynamic Web pages. Our other server-side technologies like Microsoft's ASP,
Allaire's Cold Fusion, and PHP take the approach of developing an HTML page and
then adding scripting instructions to the HTML to give the page a dynamic nature.
Let's examine, very briefly, these technologies and then look at JSP. Now, remember
that these are all server-side technologies.

Microsoft Active Server Pages (ASP)

In the case of ASP, you include avery Visual Basic-ike scripting language that
allows database interaction via ODBC and interaction with other Windows APIs, in
line with your HTML code. Thefiles are typed as .asp files rather than .html. The
Web server is set up to automatically process .asp files differently than .html files;

the .asp file type causes the |1S Web Server to process (resolve) the embedded
scripting to static HTML with embedded data. This capability is built into the 1S Web
Server and comes with NT Server.

PHP

PHP takes the same approach (i.e., an embedded [unique to PHP] scripting language
that is resolved by a Web server plug-in that isinstalled separately from the Web
server itself). PHP isfreely downloadable from the PHP Web site and, due to its price,
IS very popular with many smaller I1SPs; it is aso popular with many I1SPs asit runson
LINUX, which is also popular with 1SPs.

Allaire Cold Fusion

Cold Fusion takes a dlightly different approach in that it has created a set of what
looks like additional HTML tags and uses a Web server plug-in to resolve the .cfm
filesinto plain old HTML to be delivered to the browser. The plug-inisnot a CGI but
an actual server that runs alongside of your Web server. Cold Fusion is currently
available for both NT and Solaris (code portability is pretty good, although there are
some problems, which we won't elaborate on here). To allow the user to extend the
tag set, Cold Fusion supports a"custom" tag extensibility that allows new tags to be
created in Cold Fusion, C/C++, or Java.

Allaire recently purchased Live Software, which sells a server-side product called
Jrun. Jrun is a server-side plug-in that lets you add a servlet compliant VM to Web
serversthat either don't implement the serviet API or don't implement it completely or
correctly. The JRun server is also compliant with the JSP specification. One last thing
about Jrun isthat it supports atechnology called <CF_Anywhere>, which will run
Cold Fusion applications anywhere that Jrun will run—almost every major platform.

On to JSP

Java Server Pagesis atechnology that is still in active development. The current
version of the reference release by Sun isversion 1.0 and can be downloaded from the
Sun Java devel oper's site.

Java Server Pages starts out as an HTML page. This lets us start out a project with a
set of prototypes that are made entirely using a high-productivity HTML GUI
interface tool like Macro Media's Dreamweaver. Once we've used the prototypes to
sell management or a customer on the project, we can go and turn those static pages
into active pages using JSP.

JSPiscurrently initsinitial release from Sun Microsystems. The JSP 1.0 approach is
similar to Cold Fusion's approach of using special tags, but that is where the similarity

ends. To the standard HTML tag set, JSP adds a handful of JSP Action tags (six tags)
including:

e Directivesfor the JSP engine

e In-line expression evaluation

o Scriptlets (small in-line scripts for gluing things together or supplying
functionality not included in base tags).

This make a JSP page a combination of HTML and JSP directives, scriptlets, and
expressions.

Java Server Pages must be run on a Web server that is compliant with the servlet
specification. The JSP engine is similar in function to the Cold Fusion server in that it
iIsaserver running alongside your Web server. When the Web server gets a request
for aURL for a JSP (file type .jsp), the request gets handed off to the JSP engine,
which now resolves, on the fly, all the JSP tags and information into a Java servlet
and then runs the servlet. Remember that once a servlet-compliant Web server runs a
servlet, the servlet is maintained in cache for subsequent use.

Sounds pretty nedt; it is. Let's go alittle farther and look at the JSP components.

JSP Directives

Directives are used to pass information on processing the page to the JSP engine; this
includes things like "included” files, custom tag libraries available, language for
scripting (currently v1.0 supports only a Java-like scripting language but | would
expect Javascript as an option in future rel eases).

JSP Tags

JSP tags will do the mgjority of your JSP processing. The base tag set is made up of
five tags, as shown in Table 7-2.

Scriptlets and Expression Evaluation

Scriptlets are snippets of Java code that you use to "glue” the parts of your JSP
together.

Table 7-2. JSP Tags

Tag Use
jsp:useBean |Declares the usage of a JavaBean component
jsp:set Property Sets a property of a Bean
jsp:get Property Retrieves a Bean property
jsp:include Replaces this tag with the contents of the specified file
jsp:forward Forwards a client request to another jsp, an HTML page, or a servlet

To include a scriptlet in your JSP, place the Java code inside a set of scriptlet
delimiters. Use <%...%> to identify the beginning and end of your scriptlet.

To evaluate an in-line expression and have its result placed in line with your HTML,
place the expression inside <%-=...%>. Essentially the result replaces the <%= exp
%>.

NOTE

Expression evaluation tags (<%-=...%>) cannot be nested inside a scriptlet
(<%...%>). The scriptlet must be terminated (as shown). In alike manner, HTML
tags cannot be nested inside a scriptlet; the scriptlet must be terminated (as shown).

The following excerpt from the featured A ppointment Calendar illustrates the use of
both of these. This section of code includes two scriptlets, an HTML <option> tag,
and two expression evaluations. The top cell in the following box is the first scriptlet
and is not a complete piece of code; it is only afragment, but it contains the code to
retrieve the list of appointments from the database via the Appointments bean.

=l
lry
[& buld the options tags lor the select
Yecor v = new Vecton();
v = appl.getAppointmentsi);

for(inti=1071< v.size(): i++)
[
Appointment a = (Appointment) v.elementAL(ik
L =
oplionz<f%= agelTime() %> <%= agetleason() %=

<l
|
i
catchiBException e)
[
System_out printin(e woSiring()):

i

G

The second box contains the HTML <option> tag and two expression evaluators to
get the time and appointment text from the list of appointment objects retrieved in the
top box. The third box contains the code needed to complete (syntactically) the Java
code in the top box.

The Featured Application as a JSP

To give you a better idea of the power of Java Server Pages, we have made a JSP
version of the Internet Appointment Calendar, our featured application. To do this, we
have simply made two Java Server Pages, one for the Appointment List, which will be
retrieved from the Access Database (using JDBC) when the application is started. The
second JSP isfor the data entry screen for the Add A New Appointment function. To
take the place of the NetworkModule from the previous versions of the application,

we have rewritten the NetworkModule as a server-side Java Bean to take advantage of
the JSP facilities for defining and using Java Beans. The workings of the
Appointments Bean will be explained in the component models chapter (Chapter 8)
where the topic of Java Beansis addressed. Figure 7-11 shows the architecture of our
application.

Figure 7-11. Architecture of JSP version of the featured app.

/_/Jx — — f’Jﬂa

, , o
etAppointments ; , ,
M_Q ppoi J {\Rnawﬁ.ppc-lntmﬂntFDf/ QsertNewAppﬂlnlmEﬂl
— -\._____'_'_'_,_ —

Keep in mind as we go through this that the first time a browser requests the
Calendara.jsp or the Appointments.jsp page that they will be linked to the
Appointments Bean by the JSP engine and turned into a servlet that will be
immediately compiled and run (and cached on the Web server) and returned to the
client browser asan HTML forms page. If the user clicks on the AddA ppointment
button, the server will run the cached servlet, which will decode the button click and
chain (forward) to the AddA ppointment.jsp. The AddA ppointment.jsp will now go
through the same process and end up as a cached servlet and returned to the client
browser asan HTML version of the Add A ppointment Page. When a user clicks on
the Add button, the cached Add Appointment will use the Bean to insert the
appointment into the database using JDBC. Now that both of the JSPs are cached as
servlets, any other users requesting the JSPs will get the compiled versions.

The Calendara.jsp

The following HTML page is the basis for the main page of our appointment calendar
application; it is completely static and ready to be made dynamic by adding JSP tags
toit.

<html>
<head><title>Appointment Calendar</title></head>
<body bgcolor="white">
<form name="myappt"” method="'get" action=""Calendara.jsp'>
<h3>Appointment
Calendar
JSP Version</h3>
<select name="‘appts" size="10">
<option>
</select>

<input type="submit" name="'submit"
value=""Add Appointment">
</form>
</body>
</html>

Thefirst thing we add is a JSP page directive. Thisis an instruction to the JSP engine
that identifies the scripting language to be used (currently only Javais supported) and
any packages that need to be imported. This belongs right at the beginning of the page.
In general, the JSP engine parses through all the code that gets collected together,
resolves all the JSP tags, and converts HTML tags to Java stream output statements.
When everything has been parsed and converted, the entire collection becomes the
source code for a Java servlet, which isfinally compiled and run by the server.

The JSP tag is the next line we add to identify a Java Bean class that we wish to use.
Thistag assigns an identifier to the instantiated Bean and generates the Java code that
will actually instantiate the Bean.

The next code to be added is between the <body> tag and the <form> tag; this
scriptlet retrieves the value of the submit parameter from the request header. By
testing the value of submit, we can determine whether thisisthe first time into the JSP.
A value of null indicates that submit is not defined; the only time submit is undefined
ison theinitial entry to the page.

The next scriptlet to be added is after the <select> tag, and it is used to build the
<option> tags for the <select> statement. To do this, we create a vector to hold the list
of Appointment objects returned from the database by our Java Bean. Once they are
retrieved, we iterate through the vector retrieving each Appointment object, using its
getter methods to obtain the time and A ppointment text for each appointment.

The scriptlet following the creation of the <option> tagsis required to syntactically
complete the code from the first scriptlet.

Following the last of the HTML (</html> is a short scriptlet with just an "else”
statement). Thisisfor further decoding of the submit parameter; in this case, it allows
us to forward control to the AddA ppointment.jsp page. It also gives us an if/then/else
structure that we could use for decoding other requests. For example, were we to add
Modify and Delete buttons to the main form, we could decode them here and pass
control to the appropriate JSP Page.

<Il-- Calendara.jsp -->
<%@ page language=""java" import="Calendar.* " %>
<jJsp:useBean id="appt"” scope="'session’ class="Calendar.Appointments"
/>
<html>
<head><title>Appointment Calendar</title></head>
<body bgcolor="white">
<%
String submit = request.getParameter(*'submit');
it (submit==null)
{
%>
<form name="myappt' method="get" action="Calendara.jsp">
<h3>Appointment
Calendar
JSP Version</h3>
<select name="'appts" size="10">
<%
try
{ // build the options tags for the select
Vector v = new Vector();

v = appt.getAppointments();
for (int i =0 ; i < v.size();i++)

{
Appointment a = (Appointment) v.elementAt(i);
%>
<option><%= a.getTime() %> <%= a.getReason() %>
<%
e
catch(Exception e)
{
System.out.printin(e.toString());
by
%>
</select>

<input type="'submit" name="'submit"
value=""Add Appointment'>
</form>
</body>
</html>
<%
}
else
{
%>
<jsp:forward
page=""AddAppointment.html?submit=Add+Appointment'/>
<%
}

%>

The AddAppointment.jsp

The AddA ppointment page is very similar to the Calendar page functionally because
they both use the Appointments Bean to accomplish their database interactivity. They
start off with the same page directive and useBean tag. Upon entry to the page from
the Calendar page, the empty data entry form for adding an appointment is displayed.
The user action of clicking on the Add New A ppointment button causes the JSP (now
aservlet) to be re-entered with the submit parameter now set to Add New
Appointment. Thiswill cause the decoding structure to follow the lone "else"
statement and the scriptlet to retrieve the time and reason parameters from the request
header and then pass them to the Appointments Bean, which will pass them to the
setAppointment method of the Bean. Pretty ssimple, huh?

<I-- AddAppointment.jsp -->
<%@ page language="java" import="Calendar.*"%>
<jJsp:useBean id="appt" scope="'session"
class="Calendar .Appointments" />
<%
// decode the submit parameter to know what to do
String submit = request.getParameter(*'submit');
if (submit.equals('Add Appointment'™))
{ // make the data entry form
%>
<body>

<form name="add" method="GET" action="AddAppointment.jsp''>
<h3>Add An Appointment
JSP Version</h3>

<table><tr>

<td align="'center'>

<input type=""text" name="reason” maxlength="20" >
<tr><td>

<input type="radio" name=""time" value="8" selected>08:00 AM

<input type="radio” name="time" value="9">09:00 AM

<input type="radio” name="time" value="10">10:00 AM

<input type="radio” name="time" value="11">11:00 AM

<input type="radio" name="time" value="12">12:00 Noon
</td>

<td>

<input type="radio’ name=""time" value="13">01:00 PM

<input type="radio” name="time" value="14">02:00 PM

<input type="radio" name="time" value="15">03:00 PM

<input type="radio" name="time" value="'16">04:00 PM

<input type="radio” name="time" value="17">05:00 PM
</td></tr>

</table>

<input type="'submit" name="'submit"

value=""Add New Appointment''>
</form>
</body>
</html>
<%

else // submit must = "Add New Appointment"

{
// get the forms data and add to the database

String reason = request.getParameter(‘'reason');
int time = Integer.parselnt(request.getParameter(''time'));
appt.setAppointment(reason,time);
%>
<hl>Appointment added</h1>
<%

%>

Dynamic Documents Overview

We've shown how servlets and Java Server Pages can be made to create documents
dynamically and supplant the universal acceptance of a Web browser. What if we
were able to take the power of IDL or RMI solutions and bring them to the Web as
well? Servlets and JSPs alow us to merge the server-side programming ability of
Web servers with the widespread acceptance of tools such as CORBA or Java RMI.

Multipurpose Servers

What we've created so far isthe Java code to alow our HTTP server to be ableto
serve dynamic data. Aswe've seen, the server routes requests from normal HTTP
clientsto Java servlets that return HT TP-conformant requests. We've also created
several Java servers that promote the distributed object paradigm. What if we were
ableto create a Java server that was a servlet at the same time that it was a CORBA
server?

What servlets give you is the ability to access your serversin many different ways.
Today, if abusinessisa CORBA shop and chooses to implement all their distributed
processing using an ORB, they will often have to create another component altogether
to allow Web-based clients to access their data. In the three-tier model, this means
that the middle tier has several objects, al handling multiple types of requests and
trandating them into data storage and retrieval actions.

By incorporating a servlet alongside a CORBA or RMI server, the server can accept
Web requests directly. Once again, the determination of which approach you may
wish to take could end up being a philosophical one. By splitting the Web server
component from the distributed object server as shown in Figure 7-12, you can
achieve a highly modular middle tier. If the Web server has abug, you can swap in a
new servlet without affecting the rest of the system. However, if performance and a
fast development cycle are at a premium, combining the servlet with the object server
(see Figure 7-13) may be an excellent solution. By keeping redundancy to alimit you
can speed up the time it takes to deploy a new server. Administration of your
combined object system may be easier simply because there are fewer parts that can
go wrong.

Figure 7-12. Servlet calling RMI objects directly.

Web Browser
RMI Client @ Database

Figure 7-13. Servlets and RMI objects merged as one executable application

Web Browser

Combined Serviet

D
and BMI Server atabase

RMI Client

Summary

Servlets are a great way to bring the ease of use and power of the Java language to
Web servers. Rather than creating a hacked solution that adds complexity to your
existing software development process, why not merge the Web server with Java?
Most major Web servers today accommodate the Java servliet API. With al major
application platforms having Java support (including mainframes), we are able to
serve up Web pages containing interfaces to our large legacy corporate databases with
little to no trouble at al. If we have Java and TCP/IP support on a platform, we can
run a Java-based Web server to allow access to data sources like DB2, Oracle, IMS,

and VSAM. The JavaWeb Server isaWeb server in its own right, meaning that the
ability to access static documents is definitely not lost. However, with alittle
additional work, you can create executable content for your Web pages and begin to
truly harness the power of the Internet by making it a place where applications are run,
not simply downloaded.

Chapter 8. Java Beans

Component Models

Overview of the Java Beans Component Model
Java Beans

Making a Bean

Using Java Beans

Server-Side Java Beans

Enterprise Java Beans

COM/DCOM and ActiveX

Java Beans, Microsoft COM/ActiveX, and the newly announced CORBA Component
Model support the notion of an application component model. A component model
enables software parts from several different programmers to work together. In the
Internet world, we refer to everything from Java appl ets to parts that directly interface
to databases or desktop applications as components that we can reuse. By developing
reusable components, you can preserve the effort you place into software
development by packaging them in modules that you can publish to others.

A Bean isaclass that follows a specific naming convention for its methods, can
handle its own persistence, and is packaged in away that makes it easy to distribute
and use. By placing our componentized Beans in one place, with a well-defined
interface, we can easily assemble applications by picking our components and wiring
(connecting) them together using events and some additional Java code as glue. This
isthe same way that digital engineers build hardware systems; logic chips are
componentized into families by technology type (TTL, CMOS, ECL,...). Aslong as
we stay within alogic family, assembling a system is like programming in hardware.
If we understand the function(s) to be provided and understand the functions provided
by our components, designing and building a system is reduced (maybe simplistically)
to plugging everything together in the right order. Of course, we have to worry about
"timing" and "leading and trailing edge triggers,” but it's not much different than
worrying about things like "pass by value," "pass by reference,” and "side effects.”

Java Beans technology is currently in wide use both in client- and server-side
applications. Whether you realize it or not the Abstract Windowing Toolkit (AWT)
and Swing components (ala JDK 1.2) we use for building user interfaces for our
applications are implemented as Beans. A Java component industry, like the after
market VBX/OCX component industry created by the popularity of Microsoft's
Visual Basic, has begun to spring up and, while slow in coming, will blossom as more
and more enterprise business moves to the Enterprise Java Beans component model.

Component Models

As an example of a component-based system, think of your home entertainment
center. It consists of a number of components (pieces) each having awell-published
interface that has been agreed upon by the manufacturers in the home entertainment
industry. Each component has a set of properties and controls that govern the way
each operates. In much the same manner, Beans are software components with
properties and methods (controls) that govern the way they work. Beans also have a
well-published interface for interaction by means of the Java event model (see Figure
8-1).

Figure 8-1. Your home entertainment center is composed of several different

components.
Turntable AM/FM Tuner CD Player
Cassette Deck Stereo Amplifier DVD Player
Speaker Television Speaker

Component models are not necessarily examples of network programming. Instead,
component models provide a means to assemble several networked components under
one umbrella. One of the components in alarge application may be a network
component in charge of talking to remote objects. When you group it with other non-
networked objects, that one component makes all of the components networked.

The Competition

Sun's Java Beans and Mi crosoft's Component Object Model and Distributed
Component Object Model (COM/DCOM) are component models competing for what
they feel istheir fair share of the Internet. Today, the Abstract Window Toolkit and
Swing classes provide a static component model that promotes interaction between
components within the same applet or application. It does not address the issue of
many kinds of Internet parts within the same page. Instead, it defines interaction
between components within an applet or application.

In this chapter, we focus on the Java Beans component model and will spend alittle
time looking at COM/DCOM. As the owner and progenitor of the Javalanguage, Sun
Microsystems has a competitive edge over Microsoft in the Internet arena. Even
though Microsoft will continue to dominate the desktop, new Java technology will
emerge the fastest and the most reliably from Sun and its partners.

Overview of the Java Beans Component Model

In conceptual terms, a component model is a definition of how different parts interact
with one another within one granular space. Trandlating the big picture definition into
Java APIsisamore difficult task. A component model becomes both an overall
architectural plan aswell asaset of individual APIsthat enable programmersto
realize the vision.

Every component, referred to as a Bean, should provide each of five services designed
to promote interaction between Beans:

Interface Publishing
Event Handling
Persistence

Layout

Builder Support

agrowdNPE

At itssimplest, Java Beansis a set of naming conventions, a method for packaging a
Bean and the simple requirement that a Bean handle its own persistence.

Interface Publishing

In order to enable one Bean to make another Bean do something, the Beans must have
a published set of methods that follow a simple naming convention and a published
set of events that are generated. The naming convention is straightforward; if a
method is to allow the setting of an attribute, then it must start with the characters
"set"; if it isto be used to retrieve the value of an attribute, it should start with the
characters "get". For example:

class Simple Bean implements Serializable{
private String myName; // attribute
public String getName(){
return myName; }
public void setName(String n){
myName = n; }

When several Beans join together, they form a Java Beans application. In order for a
Bean application to function properly, its constituent Beans must be able to
communicate with one another.

The component Beans must publish their interfaces to the container Bean application
so that any Bean within the application can acquire a reference to a component. Other
components may then invoke the Bean and use it as it was intended. For example, if
we were to create a Java Beans application to catalog all our toys, we would create
severa individual Beans and then link them together. One of the Beans may talk to a
database that keeps track of our toys; another Bean may display and handle a user
interface. In order for the user interface Bean to get to the database, it must use the
database Bean. The database Bean must publish an interface to itself in order for it to
be used.

Event Handling

Inthe AWT, you can create a user interface with a button and atext area. When the
button generates an event, it can trigger a event in the text area. The end result is that
the event is handled and passed on to another object.

Similarly, Beans must be able to pass events to one another. Java Beans applications
need not be unified under one user interface. In fact, a Java Beans application may
have several different applets contained withinit, all of which have their own user
interface. When something happens in one applet, the other applets may want to know.
In our toy catalog example, we want to have two different applets. One applet lists
every toy; the other displays a picture of each toy. If you select "Buzz Lightyear
Action Figure" from thelist, the list sends a message to the display Bean to show a
picture of the toy. We can model our Java Beans application to use each applet and
unify them.

In much the same way, Bean components can be made to talk to one another and
trigger eventsin each other. The powerful component model on top of which Java
Beans was devel oped promotes the idea of object separation. Remember that you are
really creating separate objects that could exist in their own right without a Beans
container. The fact that you are combining each of these separate components under
one roof says a great deal about the highly object-oriented nature of the Java language.

Persistence

Aswe discussed in the Chapter 1 section on object serialization, persistence of objects
isavery important topic. Persistence moves us from a session-based paradigm in
which objects are started, exist for alittle while, and then disappear, to alifecycle-
based paradigm in which objects are started and exist for alittle while. Thistime,
however, instead of the object disappearing off the face of the earth, it is saved,
restored, and allowed to exist again. Java Beans supports persistence primarily
through object serialization. Y ou may, however, attach aJDBC or INDI application to
your Bean and store your Bean in arelational database or directory server. Java Beans
will let you handle your own persistence if you choose not to take advantage of its
own brand of object storage. Even if you choose to do this, it is still an interface and
you need to follow the get/set naming convention for methods.

Layout

Earlier we spoke of Java Beans applications whose components each have their own
distinct user interfaces. The Beans framework provides a set of routinesto lay out the
various parts effectively so that they don't step on one another. The layout
mechanisms also allow the sharing of resources. Let's say your two different user
interfaces both used afancy picture button. Y ou could share the picture button class
across each component, saving download time and improving the efficiency of your
application. Java Beans applications assist agreat deal in improving the performance
of large applications.

The Java Beans layout mechanisms allow you to position your Beans in rectangular
areas. The programmer is left to decide whether the regions overlap or maintain a

discrete layout space. Beans makes no effort to provide a complex layout manager,
choosing instead to implement the standard Java managers.

Builder Support

One other areain which you might want to invest significant design time is builder
support. Builders are applications that allow the creation of user applications by
selecting various Beans and graphically connecting them together by their events.
Most notably, builders take the form of GUI builders such as Visual Cafe, JBuilder,
J++, and Visual Age for Java. Chances are that other programmers who desire to take
advantage of your hard work could reuse your Bean. Packaging your Beansin such a
way that GUI builder applications can access them may be beneficial to you.

A GUI builder could obtain a catalog of methods used by your Bean application, as
well as the proper means to access each individual Bean. That way, the builder can
graphically represent the Beans application and provide connections into the
application from outside. The end result is that your Bean application could be used
by another application.

Distributed Beans

Because Beans are written in Java, they are fully portable and can take complete
advantage of the write-once-run-anywhere principle. Furthermore, Java Beans ensures
that no matter how small your constituent components, it will not in any way
overburden them. This allows full distribution of applets and applications wrapped in
Java Beans containers. Y ou will not have to make trade-off decisions on whether or
not to use Beans, and you will have complete freedom to use Java Beans.

Java Beans also does not interfere with the communication mechanisms we described
earlier in this book. It exists peacefully alongside both Java IDL and Java RMI. Just
because your applications want to communicate with the network does not mean that
Java Beansis off limitsto you.

Why Use Beans?

If you've ever tried to create a series of applications on a single Web page, no doubt
you've discovered the limitations of the applets themselves. Y our applets cannot
communicate with one another, and an event in one cannot trigger an event in another.
Java Beans proposes a solution to that limitation. Beans, at its essence, is nothing
more than a giant Tupperware container for applets and applications. By sticking all
your applets within the same container, you can effectively have them communicate
freely, so long as they do not leave the container.

But, Beans adds several more capabilities than does a simple container class, many of
which we've discussed in this section. Java Beansis Java; Java Beansis easy; Java
Beansis fun. Most importantly, however, Java Beans is a flexible way to group Java
applets and applications under a unified umbrella.

Java Beans

Java Beans provides alot of functionality for alow price. When you use the Java-
endorsed component model, you are ensured a language-compliant implementation
that does nothing to violate the spirit of the Javalanguage. The same security model,
application interaction model, and event model are used throughout Java Beans.

In fact, the creators of Beans intended their component model to be an extension to
the process of learning the language itself. They didn't want anything to be too hard,
or too ineffective. Often, sacrificing ease of use for functionality leads projects to
failure. However, the oppositeis also true. Making a project so easy to use will often
leave it devoid of any usefulness. Java Beans avoids both pitfalls and provides a more
than adequate middle ground.

Component Interaction

Asyou can seein Figure 8-2, a given Java Bean supports three levels of interaction.
Each Bean exhibits certain properties, can be invoked by several methods, and can, in
turn, trigger events in other Beans. This component interaction model lends Beansiits
great flexibility. Simply by publishing the APIsfor itself, a given Bean can tell every
other Bean about its properties and methods and trigger events based on other
published APIs and invocations on its own method library.

Figure 8-2. Each Java Bean supports three interaction levels:properties, methods, and
events.

Methods

Bean

Properties Events

Properties are discussed in detail abit later, but they are essentially the internal
representation of a Bean. Imagine that you have a vase filled with an assortment of
flowers. In thisinstance, the vase is the Bean; it can hold a certain amount of water
based on its size, but it can also hold a maximum number of flowers, based on the size
of the throat of the vase. Properties are the basic things about an object that describe it
at some point in time, its state variables.

Methods are those things that can be done to a Bean. Can you add flowers or remove
flowers from avase? Can your vase aso be filled with water? In that case, water isa
property, and filling with water is a method, or something that is done to one of the
properties.

Let's say your flowers give off awonderful scent that everyone appreciates. These are
events triggered by the vase and pushed out to the rest of the Beans within the same
component model.

Network Communication

A key element of effective distributed design is deciding where to split the local
computation and the remote computation. When we created the Internet Calendar
Manager discussed in the previous chapters, we had to determine where we were
going to split the local processing of appointments from the remote storage of the
appointments. We decided to create the Network module that would handle that
situation for us. The module receives raw data from the network and tranglatesit into
usable data structures for the rest of the application (see Figure 8-3).

Figure 8-3. A set of Beans can use a network Bean to connect to the network.

Bean Bean

Bean \ Bean
MNetwork /

Bean

We recommend that Java Beans be used in much the same way for networked
communication. Create a Bean whose sole purpose is to funnel information to and
from remote processes. With this kind of modular design, your Bean can act as a go-
between to network resources, saving precious computation cycles.

As of now, the Java Bean product road map callsfor JavalDL, Java RMI, and JDBC
support. Further revisions of the Beans specification will implement other network
mechanisms as they are created.

User Interface Issues

Java Beans was designed with the idea that Beans can be integrated very easily into
GUI builders. GUI builders need access to each component that they play with, so the
Beans APIs were designed accordingly. Every standard Bean supports the notion of
introspection. Each Bean can be looked into, in much the same way we could look
into awindow (see Figure 8-4). We don't see the whole picture, and we certainly don't
see what exactly is going on, but we can see a snapshot of what is possible.

I ntrospection enables us to see the APIs for a given Bean, and more importantly, for
an application builder of some kind to plug into the Bean and hook other components
toit.

Figure 8-4. The notion of introspection supported by each standared Bean enables GUI
builders to see inside the Bean and access components needed.

Methods

Properties | Introspector

Ewvents

Introspection services come in two types: low level and high level. Low-level
introspection allows trusted applications, like GUI builder programs, a very low level
of access to a Bean'sinternals because that iswhat is needed to be able to hook Beans
up to one another. The higher level introspection is provided for application
interfacing and only provides information about public properties, methods, and
events.

TIP

Java Beans also supports Uniform Data Transfer (UDT) between components. The
UDT mechanism alluded to in the Beans specification declares that data can be
transferred between Beansin avariety of easy-to-implement ways. Choosing
between drag-and-drop, cut-and-paste, keyboard, and other methods is a matter of
Bean implementation.

Java Beans also supports the notion of GUI merging. In GUI merging, child Beans
can pass their user interface properties up the hierarchy tree to their parent. In so
doing, the parent Bean can set up a consistent look and feel for a GUI, and child
Beans can add components to the GUI. The classic example is a menu bar. The parent
Bean provides the general appearance of the bar. Child Beans then add entries to the
bar (File, Edit, View, and so forth). Thisway, the child Bean has total and complete
control over what a GUI is, whereas the parent sets a general policy for what it will
look like.

Persistence

Beans should also be able to save their internal properties between invocations. For
example, if we were to instantiate a Bean, change its state, and then shut the Bean
down, in some instances we'd want the data we changed to return when the Bean is
started up again. Thisisreferred to as a persistent state; in other words, the values are
not reinitialized every time.

TIP

Persistence can be implemented in several ways, but in the end you have the
choice between automatic, Bean-provided persistence and self-managed
persistence. When you manage your own persistence, more than likely you will
want to do so using the network. Y our Bean can store its internal properties on a
remote database, and you can access and store the changes using JDBC. Or you
may want to use RMI or IDL to handle your storage techniques.

Events

Java Beans provides an AWT-friendly event notification mechanism. If an event is
triggered in your Bean, you should be able to pass that event on to other Beansin your
component model. Sometimes events will come in over a network. In these cases, you
should handle them as if they were coming from alocal Bean.

Properties

Because Beans are nothing more than Java classes, you can create whatever member
variables you desire. Furthermore, Beans can contain other Beans within them. In our
earlier vase of flowers example, our vase Bean could very easily be contained within a
"living room" Bean, which could be contained within a"house" Bean, which could be
contained within..., well, you get the picture.

Beans in a Nutshell

Beans enable you to harness the power of object-oriented programming and take it to
anew level. Instead of publishing libraries of classes, you can now publish entire
objects that can be used, abused, imported, delegated, or whatever else you choose to
do with them. Beans could just as easily be applicationsin their own right, but instead
are there to help you.

This book only glosses the surface of what Beans can do for you. Trust us, there will
be much, much more written on this fascinating and exciting topic. To whet your
appetite, however, let's create a simple Bean that models our National Pastime.

Making a Bean

Making aBean isrelatively straightforward. We need to make sure that the Bean
implements the serializable interface and that we follow the Java Beans naming
convention for the Bean's getter and setter methods. Getters and setters are the Bean
methods that are provided to get and set the values of the Bean's properties. The
naming convention is simple and requires that setter methods are named starting with
the characters "set" (e.g., setVolume, setHeight) and that getter methods start off with
the characters "get" (e.g., getVolume, getHeight). By using these prefixs for our getter
and setter functions, the introspection facilities can easily identify the methods that
can set and retrieve property values.

The following example illustrates the creation of a simple Bean that contains no GUI
components.

class GasTank implements Serializable{

private double capacity;

private int percent_full;

public void setCapacity(double pounds){
capacity = pounds;}

public double getCapacity(){
return capacity;}

public void setPercent_full(int p){
percent_full = p; }

public int getPercent full(){
return percent_full;}

We've fulfilled our minimum requirements for the Bean (i.e., it implements
Serializable) and we've followed the getter/setter naming convention. By
implementing Serializable, we've enabled our Bean to be a serializable object that our
application can make persistent by writing and later reading to/from afile using an
ObjectOutputStream. This allows us to create an object as a matter of the operation of
an application and to save a "state" object just before we shut down our workstation
for the day. When we come in the next morning, the application loads the state object
as part of startup and we're right where we left off, asif we never shut down the
workstation. The following code snippet illustrates this:

import java.io.*;

public MyApp

{
public static void main(String[] args)

// as the app runs the State object gets modified
State currentState = new State();
loadState();

saveState();

}
public void loadState()
{
FilelnputStream fis = null;
ObjectlInputStream ois = null
try
{
fis new FilelnputStream(State.ser);
ois new ObjectlnputStream(Ffis);
State currentState = (State)ois.readObject();

}

catch(ClassNotFoundException e)

{

System.out.printin(e.toString);
}

public void SaveState()
{
FileOutputStream fos = null;
ObjectOutputStream oos = null;
try
{
fos new FileOutputStream(State.ser);
00s new ObjectOutputStream(fos);
oos.writeObject(currentState);

catch(l10Exception e)
{

}

System.out.printin(e.toString;

}

Thisillustrates the "almost” creation of a Bean. To complete the process, we must
package the Bean in an appropriate manner. Beans are packaged in Java Archive files
or JARs for short. The JAR utility comes with the latest version of the JDK and also
with the latest download of the Beans Development Kit from Sun (BDK1 1).

Using Java Beans

The basic principle underlying Bean development is that you create the constituent
parts just as you normally would. Every applet, every document, every component in
the Beans application should be developed, tested, and ready by the time you get to
the Beans stage. Once the components are available, you can use one of two methods
to bring them together. As we mentioned earlier in this chapter, the Beans
specification calls for easy manipulation of a Bean by a GUI builder. GUI builders
like IBM's VisualAge for Java or the BeanBox that comes with Sun's BDK can be
used to connect Beans together using a simple drag-and-drop type interface. We will
discuss that scenario in a moment.

Creating a Java Beans Application

Before a Java Beans application can be devel oped and deployed, you must first
understand the underlying principles of the Beans. Every application consists of the
various components as well as two critical base objects that handle the flow and
storage of information.

Events are exchanged among Beans through the EventListener and EventSource
objects. The EventListener object is created to look for certain kinds of events within
the application. Each Bean creates alistener for itself if it wants to receive events. In
essence, it subscribesto alist of specific events. A Bean may also create for itself an
EventSource to create and publish events for other Beans within the application.
Figure 8-5 shows how events can be triggered between Beans.

Figure 8-5. An EventSource can trigger events to EventListeners turned in to the
proper event.

EventlListener EventListener

Bean Bean

EvenySource EventSource

A Simple Example

If we were going to model a baseball game, we would first need to create a container
for the whole game to fit inside. For simplicity's sake, we will include only a pitcher
and a catcher. Our pitcher object will throw an event, similar to a baseball, and the
catcher object will catch the event later on.

Our baseball game must be configured to listen for eventsfired by the pitcher. We
will have to create an interface called PitchListener for the pitchesto be sent to. The
PitchListener object is a user-created extension to the AWT standard EventListener
object. We simply add a method called throwPitch to the Pitch-Listener. Our

Baseball Game object will implement throwPitch, but we will define the PitchListener
interface here and implement the throwPitch method when we are ready to connect all
our Beans.

public interface PitchListener extends EventListener

{
public void throwPitch(

String pitch);

We must then create a Baseball Game object that will listen to all of the other objects
and fire the events that it catches to each of its constituent components. In order for it
to listen in on the other objects, it must implement the PitchListener base class.

public class BaseballGame extends Applet implements PitchListener

{
Pitcher pitcher;

Catcher catcher;

Now, the Pitcher and Catcher must be created within the Baseball Game applet. We
will do this as we normally would for any other Java object.

public class BaseballGame extends Applet implements PitchListener

{
Pitcher pitcher;

Catcher catcher;

Basebal 1Game()
{

// set our layout
setLayout(new GridLayout(2,1));

// create the pitcher
pitcher = new Pitcher();
add(pitcher);

// create the catcher
catcher = new Catcher();
add(catcher);

Finally, we must add the Baseball Game object as alistener of the Pitcher object.
Remember that in our simple game of catch, the pitcher is going to fire events and the
catcher is going to do nothing but receive them.

public class BaseballGame extends Applet implements PitchListener

{
Pitcher pitcher;

Catcher catcher;

BaseballGame()
{

// set our layout
setLayout(new GridLayout(2,1));

// create the pitcher
pitcher = new Pitcher();
add(pitcher);

// create the catcher

catcher = new Catcher();

add(catcher);

// add the game as alistener to the pitcher
pitcher.add Listener(this);

Instantiating Components

Y ou create the EventSource and EventListener objects within a component object
much as you would a String or Hash Table. They are merely member variables within
the object. The difference isthat they are fully capable of talking outside the

component to the Java Beans container application. So, our constructor for the Pitcher

object will initialize the data as well as create the event objects:

public class Pitcher implements Serializable

{

private Vector my Listeners;

private Button fastball;
private Button curveball;
private Button slider;

Pitcher(Q

// set our layout
setLayout(new GridLayout(1,3));

// initialize the buttons

fastball = new Button("fastball™);
add(fastball);

curveball = new Button(curveball™);
add(curveball);

slider = new Button(“'slider™);
add(slider);

// create the listener vector
myListeners = new Vector();

The pitcher must implement methods to add and remove listeners.

public class Pitcher implements Serializable
{

private Vector myListeners;

private Button fastball;

private Button curveball;

private Button slider;

Pitcher(Q

// set our layout

setLayout(new GridLayout(1,3));

// initialize the buttons

fastball = new Button('fastball');
add (fastball);

curveball = new Button(“curveball'™);
add(curveball);

slider = new Button('slider™);
add(slider);

// create the listener vector
myListeners=new Vector();

public void addListener(
PitchListener listener
)

{
}

public void removelListener(
PitchListener listener
)

{
}

myListeners.addElement(listeners);

myListeners.removeElement(listeners);

And finally, we must add code from within our event handler to pass the event back
up to al our listener objects. Remember that our listener is a PitchListener object and
that we need to cast our vector result to it.

public class Pitcher implements Serializable
{

private Vector myListeners;

private Button fastball;

private Button curveball;

private Button slider;

Pitcher()

{
// set our layout
setLayout(new GridLayout(1,3));

// initialize the buttons

fastball = new Button('fastball™);
add(fastball);

curveball = new Button(curveball™);
add(curveball);

slider = new Button(“'slider™);
add(slider);

// create the listener vector
myListeners = new Vector();

public void addListener(
PitchListener listener
)

{
}

public void removelListener(
PitchListener listener
)

{

myListeners.addElement(listeners);

myListeners.removeElement(listeners);

public boolean action(
Event evt,
Object obj

NN

// do this only for button events
if(evt.target instanceof Button)

// create a pitch to throw based on the button pressed
String p = new String((String) obj);

// go through each vector and push the event up
for(int x = 0; x < myListeners.size(); x++)

PitchListener listener=
(PitchListener) myListeners.elementAt(x);
listener._throwPitch(p);

The catcher object is nothing more than a normal Java object. It need not implement
any specia Java Beans code. Rather, the listener will push events onto the catcher as
if they were normal button events. The catcher will then respond to them accordingly.

public class Catcher extends Panel

{
TextArea pitchArea;
Catcher()
{
// set our layout
setLayout(newGridLayout(1,1));
// create the area where the catcher tells us what he got
pitchArea = new TextArea();
add(pitchArea);
}
public void catchPitch(
String pitch
)
{
pitchArea.addText(""Andthepitch is a .." +pitch);
}
he

When the listener calls the catcher's catchPitch method, the catcher can then do
something with it. Our hierarchical structure could very easily be implemented
without the Beans infrastructure. But, once again, thisis the beauty of Beans as
opposed to ActiveX or OpenDoc. Java Beansis Java.

Connecting Beans Events

Now that we've created a Baseball Game container, Catcher Bean, and Pitcher Bean,
we need to connect them so that events fired by the Pitcher are caught by the
Baseball Game and passed down to the Catcher. In fact, we need only call catchPitch
on our Catcher instance within the Baseball Game object:

public class BaseballGame extends Applet implements PitchListener

Pitcher pitcher;
Catcher catcher;

Basebal 1Game()

// set our layout
setLayout(newGridLayout(2,1));

// create the pitcher
pitcher = new Pitcher();
add(pitcher);

// create the catcher
catcher = new Catcher();
add(catcher);

// add the game as a listener to the pitcher

pitcher.addListener(this);

public void throwPitch(

{
}
)
}
}

String newPitch

// tell the catcher to catch my pitch

catcher ._catchPitch(newPitch);

So, in the end, we have three networked components talking to one another using the

Java Beans infrastructure, as shown in Figure 8-6.

Figure 8-6. Component interaction is simple using the Java Beans infrastracture.

Baseball Game

PitchListener

throwPitch

Pitcher

Bean Introspection

catchPitch

Catcher

Aswe have mentioned, introspection is the ability of your Bean to be probed from
another outside, or introspecting, class. The introspecting class surveys the contents of
your Bean and keeps track of what services are available within it. After introspecting
a Bean, the outside class can then go about creating its own methods to interface with

your Bean. Typically, introspection will occur on behalf of object builders that will
know nothing about the implementation of a Bean, only being able to survey its
internals.

These GUI builders could have a suite of Beans aready existing locally. It can then
allow you to create your own Bean by tying in the functionality of other Beans. This
can be displayed graphically. GUI builders that take full advantage of Beans
introspection will soon be available. In addition, the Bean Developer's Kit will include
all the tools and Java classes necessary to develop your own Beans and Beans-based
applications.

Server-Side Java Beans

Server-side Java Beans are Beans that, rather than being part of the client, live out
their lifecycle on the server. Newer server-side technologies like Servlets and Java
Server Pages are users of server-side Java Beans. On the server side, Beans can be
simpler than on the client side because they typically don't have avisual component
nor must they be placed in a JAR file. They can just be used as a compiled Java class,
which in itself makes them simpler to use than the client-side Beans.

As promised in the section on JSP in the Web server chapter, the following is the
Appointments Bean developed for the featured Internet calendar application. Asyou
look over the code, you'll notice that it looks more than vaguely familiar. It is
essentially the same code from the code used previously for the JDBC, RMI, and
servlet implementations of the calendar application; it isjust packaged alittle
differently.

//| -
// File: Appointments. java

// What: A Server-side bean that will handle all interaction
// with the database.

// Who: Dick Steflik (steflik@binghamton.edu)

//

// -

package Calendar;

import java.beans.*;

import javax.servlet.http.*;
import javax.servlet.*;
import java.util_Hashtable;

import java.awt.*;
import java.util.*;
import java.net.*;
import java.io.*;

import java.sqgl.*;

public class Appointments

{
// create the database connection object
Connection dbConnection;
// constructor to make network connection
public Appointments()
{

initNetwork();
>
// empty method for getting a single appointment
public void getAppointment()

{
}

// method to add an appointment to the database

public void set Appointment(String appointmentReason,
int appointmentTime)

{

try
{
Statement insertStatement =
dbConnection.createStatement();
Stringinsert="INSERTINTOSCHEDULE "+
"VALUES(""'+ appointmentTime +"",""
+ appointmentReason
+ e " .
System.out.printin(insert);
insertStatement.executeUpdate(insert);

catch(Exception e)

System.out.printIn("'NetworkModule 3 Error: " +
e.toString());

}

}
// methods to get list of appointments

public Vector getAppointments()
{
// the variable to store all of our appointments in
Vector appointmentVector = newVector();
try
{
Statement statement = dbConnection.createStatement();
String s ="SELECTTIME,REASON " +
"FROM SCHEDULE " +
"ORDER BY TIME";
ResultSet result = statement.executeQuery(s);
while(result.next())
{
// create a variable to stick the appointment in
Appointment appointment = new Appointment();

// nowgetthenextappointmentfromthestring
appointment.time = result.getint("TIME"™);
appointment.reason = result._getString("'REASON™);
appointmentVector.addElement(appointment);

catch(SQLException exc)

{
System_out._printIn("'NetworkModule Error 4: "+
exc.toString());
by
// return the Vector
shutdownNetwork() ;

return appointmentVector;

// empty method to set multiple appointments
publicvoidsetAppointments()

{
}

private void initNetwork(Q)

{

shutdownNetwork() ;

try
{
// load the database driver
Class.forName("'sun. jdbc.odbc.JdbcOdbcDriver™™);
// createaURLobjectforthedatabase
String url="jdbc:odbc:Calendar™;
// connect to the database
dbConnection = DriverManager.getConnection(url,”™","™");

catch (ClassNotFoundException e)

{

System.out.printIn("'NetworkModule 1 Error: "+
e.toString());

catch (SQLException se)

System.out.printIn("'NetworkModule 2 SQL Error: "+
se.toString());

¥
}
private void shutdownNetwork()

{
try

dbConnection.close();

catch(Exception e)

{
System.out.printin(e.toString());

}
}
}

Enterprise Java Beans

The Enterprise Java Beans component model is the next logical extension of the Java

Beans component model. Enterprise Java Beansis a server-side technology that

allows the creation and deployment of Java components that are designed to runin an
EJB-compliant application server environment. It isimportant to note that Enterprise

Java Beansis a specification and not a product. Many application server providers
recogni ze the importance of the specification and are in the process of making their
application servers and associated devel opment frameworks compliant with the
specification.

Application servers will be covered separately in Chapter 9.Sufficeit to say
that application servers are entire server environments designed to provide
high performance, massively scaleable, and highly reliable application
deployment environments.

Application server products typically provide their own tools for the assembly of
applications from components at deployment time and also provide the tools
necessary for building the components. EJB provides a framework for developing
enterprise-class applications that allow the developer to focus on the business logic of
the problem rather than the environmental issues.

EJB Goal

A primary goal of Enterprise Java Beansisto take the concept of "Write Once Run
Anywhere" (WORA) to the level of Enterprise class applications. This means that not
only can a component run on any platform, but it will interface with any vendor's
EJB-compliant application server. Portability is the order of the day and is made
possible by the Enterprise Java platform and its standard infrastructure APIs like
JDBC, JNDI, RMI, JavaIDL, Servlets and Java Server Pages, IM S (Java M essaging
Service), and JTS (Java Transaction Service); most of these have been covered in
previous chapters of this book. These APIs attempt to make applications vendor
neutral and, therefore, very portable.

EJB Services

The Enterprise Java Beans framework relieves the application programmer of the
tedium of having to manage a number of programming issues that are really
environmental in nature rather than business logic related. These include:

1. Lifecycle

The EJB container manages process allocation, thread management, object
activation, and object destruction and cleanup.

2. State Management

The EJB container automatically maintains state persistence for contained
Beans.

3. Security
Enterprise Java Beans do not have to worry about authenticating users or
validating the level of access; the EJB container performs all security checking
on behalf of the component Beans.

4. Transactions
The EJB container has the ability to "start,” "commit," and "roll back"
transactions submitted to transaction-oriented systems on behalf of member

Beans.

5. Persistence

The EJB container can manage the storage and restoration of persistent state
data for member Beans, thereby relieving the Beans of having to manage their
own persistence.

The EJB server must provide containers for the Enterprise Java Beans that are to be
deployed. The EJB container provides all the environmental services described earlier
for the enterprise Beans that it holds.

Session and Entity Beans

The EJB specification make provisions for two types of Beans. persistent and
nonpersistent (transient). Persistent beans are called entity Beans, and transient Beans
are called session Beans because they are usually associated with only the current
client/server session.

Entity Beans are maintained in permanent data storage such as arelational database,
an object store, or adirectory server. Entity Beans are fully recoverable after a system
crash due to their persistence.

A session Bean performs operations for the client such as database access or
calculations. Session Beans can be stateless or stateful for the session but will not be
persistent across sessions like an entity Bean. Because they are only stateful for the
current client/server session, session Beans are not recoverable in the event of a
system crash.

In the EJB 1.0 specification, the implementation (by OEMSs) of entity Beansis
optional, and the implementation of session Beansis required.

The EJB Container

Just as when we used our client-side Java Beans to build an application, we need a
container in which we can build our EJB applications. The EJB container is provided
by an application server and provides all the environmental services mentioned earlier.
Application servers can take many forms (TP Monitors, Web servers, and database
management systems to name a few).

Summary

The magical world of Java Beansis only the beginning of the "component race." As
corporations look to streamline the all-important software devel opment process, they
will look more and more to the theories of object-oriented programming and
component models. Java Beans is but one of the many component models seeking the
hearts and minds of software engineers and their bosses. Not to be left out of the
software development race, Microsoft has its own answer, which is highlighted in the
next section.

COM/DCOM and ActiveX

Let's say you want to create a Web page with your company's sales figures on it. Y our
sales department maintains all its information in a Microsoft Excel spreadshest.

Rather than creating a graph in some kind of paint program and putting a GIF on your
Web page, you want to do something dynamic, something that requires no additional
effort on your part. If you remember anything from this book, remember that anything
and everything is possible in the Internet.

What Is ActiveX?

ActiveX isn't exactly anew product from Microsoft. In fact, it's been around for
severa years under different monikers and within different parts of the Microsoft
Corporation's organizational structure. ActiveX controls, for example, are nothing
more than Visual Basic's OCX controls. Nevertheless, the hype and hoopla
surrounding ActiveX's "introduction” caused quite a stir within the Internet
community.

Today, you more than likely fiddle with your Microsoft Word documents, saving
them on your local disk. You create and link in some Excel spreadsheetsto illustrate
points within your Word documents. Y ou might even link the whole shebang into a
PowerPoint presentation. Thisis called Object Linking and Embedding, or OLE. The
object part refers to each component of your presentation, everything from the Word
document to the Excel spreadsheet. Objects are linked into other Microsoft products
and embedded within the documents, presentations, spreadsheets, or databases that
you create. Thismodel isillustrated in Figure 8-7.

Figure 8-7. Today,you can link various Microsoft components into one "package" using
Object Linking and Embedding, or OLE.

[$)Ete gt vew Insert Foms

Al ll =1
A B c
4 111
2
3
4
W Microzoft Word - Document]
he time for all good
Programfmers to write clean
Code
1M 222
333 444 l
555 333 = Microsoft PowerPoint - [Presen

=] Fle Edt view Insert Format

PowerPomt

Hioow i the tim & fxr allgood

Progrummers towrite ¢lan
Code
m s
333 EERS
555 333

ActiveX takes everything one step farther. Let's get back to our original proposal. Our
fictitious company wants to stick the data within the spreadsheet onto the Web
without any effort. ActiveX letsyou link and embed objects into Web pages. Wait just
adarned minute! As shown in Figure 8-8, your Web page will now display
spreadsheets, graphs, and data created within Excel. The actual living, breathing
spreadsheet isinside your Web browser! Pretty cool, huh?

Figure 8-8. ActiveX does for Web pages what OLE did for desktop applications.

ET Microzoft PowerPoint - [Prezen

| @] ple Edt View [nsert Fomat

PowerPoint

Hoor s the tig) e for allgood
Lerie < ban

ﬂ Metcenter - Intemnet Explorer

Ele Edit Miew Go Favoites Help

- e b i/

o Stop Refresh Search

e |]

PoweyP ot

Hiowr i fhe tim « i allgood
oy amm ere Lo narite ¢ kan
Code

1 Xz
L | Al

Weéll, there's one catch. This only works on Microsoft Windows machines. Y es, for
better or worse, the operating system from Redmond is required to view ActiveX
documents. Moreover, ActiveX works only within Microsoft's own proprietary
browser, Internet Explorer. Granted, Microsoft provides an ActiveX plug-in for its
archrival, Netscape Navigator, but you can't really expect them to put the same effort
and functionality into a Netscape version, can you?

To make things even more Microsoft-centric, ActiveX documents that embed
Microsoft objects do so in a pretty clever manner. The object that isinside the Web
pageis quite literally an Excel spreadsheet. It'sjust atad bit smaller than a usual
Excel spreadsheet. Because that Excel object isareal Excel spreadshest, it actually
uses the Microsoft Excel executable program to drive it. This means that in order to
see the object, you must have Microsoft Excel installed on your system so that the
Web browser can use the Excel executable. That's right, go out and buy some more
Microsoft software. The rea problem hereisthat the "thin client” Web interface that
we originally started out with has gotten alittle fatter by using Java applets but now
has become afull-fledged "fat client” by requiring usersto install native applications
just to be able to view things that have been embedded in a Web page.

ActiveX Controls

An ActiveX control isacomponent in the same sense that a Java Bean is. Where we
created Java Beans to enable different parts of a dynamic document to talk and work
with one another seamlessly, we can use ActiveX controls. Both Beans and ActiveX
communicate with OLE, enabling Java Beans to do the same fancy document editing

that ActiveX allows. Nevertheless, with Java Beans six months behind ActiveX,
Microsoft finally has what it has wanted: the chance to be ahead in the Internet race.

With ActiveX, your controls are free to make several computations so long as they
reside within an ActiveX container. A container is the boundary of the ActiveX
control. Each control needs a parent OLE component. Microsoft's Internet Explorer
serves as an ActiveX container. With Microsoft's plug-in, Netscape Navigator also
actsasan ActiveX container.

Once the ActiveX control is contained, it can begin to go about its work in the same
way that a Java Bean does. For example, | could have several ActiveX controls
embedded within the same Web page. One could be a Java applet, one could be a
spreadsheet, and another could be an ActiveX button. The spreadsheet and button
could be made to talk the OLE protocol, enabling each of them to compute and
exchange data as they wish. The Java applet could gather the information and,
because it is fully capable of talking TCP/IP, send the information across the Internet.

ActiveX controls can also start the applications that created them. For example, we
created a spreadsheet using OLE and then stuck it inside an ActiveX control. When
you view the ActiveX control inside your Web page, or directly on your ActiveX-
enabled desktop, the native application will literally be running within the confines of
the control.

ActiveX and Java

Part of the hype surrounding ActiveX concerns the future of Java. Anyone who has
ever used the language (and we assume that because you are reading this book, you
fall inthat category) will agree that it is easy, fun, and exciting to finally enjoy
programming again. The aternatives of the past (namely C++ and C) were frustrating,
difficult, and involved a very steep learning curve. When Java came around with its
promise to make computers fun and easy again, most people jumped on the
bandwagon instantly.

Sun, in arare stroke of marketing brilliance, made Java freely available to anyone
who wanted it. Asaresult, in the course of the past few years, Java has become the de
facto Internet programming language. ActiveX is not a programming language; it isa
component model. Therefore, ActiveX does not threaten Java; it actually improves it!
Even though it may seem illogical that Microsoft may improve a Sun product, it
brings credibility to alanguage perceived by some intellectuals as a "toy language.”

ActiveX and Javaform avery unusual partnership. Nevertheless, ActiveX and Java
are complementary technologies. There is nothing wrong with mixing ActiveX and
Java especially when the "shop" you aworking in is aMicrosoft only shop, meaning
that you are going to deploy to Microsoft desktops and browsers (such as on an
intranet). In cases like this, you might want to use the Microsoft Java Virtual Machine
implementation to best take advantage of the special hooks built in the VM for
Windows. To use the underpinnings of the Windows environment using the Standard
Java Virtual Machine, one should use the Java Native Interface (INI, not to be
confused with Jini).

Of course, the problem with all of thisisthat we are using a"closed,” not an "open,"
technology. If we ever plan on deploying our applications on the Internet or on an
intranet with a mixture of Mac, UNIX, Linux, and Windows desktops, we will have a
problem.

Java Native Interface (JNI)

Including the keyword "native" in the Java L anguage Specification and subsequent
development of the Java Native Interface is an admission on the part of Sun
Microsystems that the goal of "100% Pure Java" is not always possible or necessarily
desirable. When you write applications, there will always be times when you must
determine the requirements for a set of users who will, for one reason or another, be
forever working on Windows-based machines. For these users and for situations
wherein performance-oriented requirements exist (that just can't be met by Java), we
need to have another option.

There are four options for getting at Windows native code. The JDK 1.0 interface that
would let a Java application (no applets) access DLL functions, Netscape's Java
Runtime Interface (JRI), Microsoft's Raw Native Interface (RNI), and Sun's Java
Native Interface. Of these options the NI is the only one that provides binary
compatibility across multiple versions of the VM.

If you find yourself in a situation that requires access to Windows binaries, refer to
Rob Gordon's excellent book Essential NI from Prentice Hall PTR.

Summary

ActiveX and Java Beans will compete toe to toe for a place on every Windows
developer's platform. Even though Microsoft locks you into the Windows
environment, Beans is an open, more flexible Java-based aternative. While the
component models from the "big two"—Microsoft and Sun Microsystems—contend
for being the components model of choice for the Internet, the Object Management
Group (OMG) has announced its own component model for CORBA.. The plot
thickens.

Summary

The software war among Apple, Sun, and Microsoft, which was alluded to in the first
edition of this book, isal but over, OpenDoc all but disappeared after the alliance of
companies at its core fell apart a couple of years ago. With the demise of OpenDoc
the "CyberDog," these efforts never came to fruition. What led to this? One of the big
factorsis the growing popularity of the eXtended Markup Language (XML). XML is
the heir-apparent to HTML and will bring alevel of functionality to browser-based
GUIsthat will be unparalleled. Because XML is based on Standard General Markup
Language (SGML), it would not surprise me in the least to see aflavor of XML that
will parallel the Dialog Tag Language (DTL) that IBM had originally embedded in
0S/2. One of my favorite parts of OS/2 was DTL because it was way ahead of itstime;
it allowed the definition of user interfaces for desktop applications via a tag language.
When the Web and HTML became popular, the vision of DTL appeared in the form

of the HTML form tags. It will only be a matter of time before we will use XML to
define our Java Beans and to compile the XML into the Beans byte codes.

It isinteresting to note that in the current JDK 1.2 release all the AWT and Swing
components are implemented as Java Beans.

Chapter 9. Application Servers

e How Did We Get to Here?
e What Isan Application Server?
e Some Explanations

Examining what is happening in the information systems (1S) shops of corporate
America, we see amove away from the deployment of traditional client/server
applications and a large shift towards multitier, Web based computing. Delivery of
application functionality in the form of desktop-based, fat client toolsis being dumped
in favor of server-generated, lightweight HTML-based user interfaces that derive their
presentation layer from the lowly Web browser (that is already installed on almost
every desktop in corporate America). The browser used as an application presentation
engine and user input collection device (rather than a processing engine) coupled to a
powerful server architecture that provides processing power and a multitier approach
to data connectivity provides avery powerful and versatile application delivery
vehicle.

How did we arrive at this point? The answer is through the evolution of Web-based
computing. In the early days of the Web (i.e., the not too distant past) we started to
devel op applications that used the Web browser as the application presentation layer
speaking viathe HyperText Transfer Protocol and the Common Gateway Interface to
programs being run on the Web server at the request of a browser page. Voilal Our
Web server had become an application server; now instead of delivering content to a
Web browser, the Web server was delivering an application.

Many of the early Web-based applications were pretty simple, consisting usually of an
HTML form and a script run by the Web server (these came to be known as CGlI
scripts) to read data returned to the Web server and act on it. Astime progressed and
applications became more sophisticated, we became quickly aware of the limitations
of using the stateless HTTP and came up with a number of mechanisms (hidden
variables, cookies,...) that allowed us to make our applications more stateful and take
on the guise of traditional client/server applications without having to resort to the
heavyweight client model.

Ahhh, life was good and computing was even better. As the Web became more
popular and we (corporate America) decided that we needed to take commercial
advantage of the new application deployment platform, we began to notice that there
were some flaws in our new paradigm. First, applications that operated well for afew
users didn't do so well when we tried to scale them to thousands and tens of thousands
of users. Second, there was this ever-present pain-in-the-neck of state preservation
problem. Determined not to let happen to Web computing what happened in

client/server computing, we started to examine our new environment and make
improvements where needed.

One of the first things that we noticed was that the CGI scripts that we were using to
add the processing power to our Web pages was a pretty bad way to do it. There were
anumber of options to increasing the throughput. We could get rid of those shell and
Perl scripts and move that processing to a compiled language (C or C++) that would
run faster and free up processor horsepower; or we could take the tried-and-true
approach to automotive repair philosophy and "jack up the radiator cap and drop in a
new car" (i.e., if our current machineistoo slow, save the software and buy a bigger,
more powerful machine).

Both of these approaches have severe flaws. Replacing the scripts with compiled
versions only masked or postponed the real problem and actually introduced afew
problems of its own. The real problem was in the way that the scripts were being run
(i.e., every time a script was called for, the Web server started up a new process to run
the CGI program on, and we quickly ran out of system resources). Another problem
was that, if we weren't religious about memory management and 1/0 programming, it
was relatively easy for a hacker to figure out how to overload an I/O buffer and get
the process to crash hard enough to bring down the entire site or accidentally give
over control of the machine to the hacker.

Along comes Java and server-side programming, and devel opers recognize that,
because of the Java security model and its lightweight nature, it would be an ideal tool
for doing server-side programming.

Servlets are born. Thefirst servlets showed up as .BAT files and scripts that |oaded the
Java Virtua Machine and ran the Java code as a CGI program would be run. The
performance and scal ability of these servletsis pretty bad due to having to load so
many copies of the JVM, but the stage was set for the serviet API. It wasonly a
matter of time until the release of the all-Java Web server and the integration of the
JVM into OEM Web server products like Netscape's Enterprise Server that true
server-side servlet computing came on the scene.

Aswe looked more serioudly at the Web as an application deployment platform, a
new type of program called an application server started to appear. The application
server started out as an application that could be run in conjunction with our Web
server and would do things like state management and legacy system access. Little by
little, the application server architecture took on the general functionality shown in
Figure 9-1. Currently there are more than 40 products on the market that all claim to
be application servers.

Figure 9-1. General application server architecture.

Thin Java -'"'-ng:’:;irm Tra nsac:’::nn_f‘mccssing
Based Client pnitors
CORBA
ORB
Web Se
& MVEr Dev. ERP Systems
Services
Browser Based HTML State i
Client Sarylets Maint. Enterprise Java Beans
cal Connection
Pooling Legacy Applications

Database

The following common threads run through all the application servers currently on the
market and should be a help when comparing marketing information from the various
vendors:

1. Inclusion of a high-performance Web server or the ability to integrate any of
the popular currently available commercial Web servers easily.

2. Integrated development environment or the ability to integrate any of the
commercialy available development IDEs.

3. The ahility to interface with Enterprise Resource Planning (ERP) systems
especially SAP, BAAN, or PeopleSoft.

4. The ability to interface with Transaction Processing (TP) monitors.

5. Support for stateless and stateful database connections.

6. Connection pooling of database connections.

7. Accessto legacy applications and legacy databases.

8. Massive scalability through hardware replication and load balancing.

9. Automatic fail-over capability in the case of a processor failure.

10. Support of the Enterprise Java Beans Specification.

Thisis shown in Figure 9-1.
High-Performance Web Servers

Web servers have aways played a central role in Web-based computing. In the past
they were used to serve content to users and provide the capability to run CGI scripts
to create dynamic Web pages with database connectivity. Newer Web servers have
integrated JVMs and support the full servlet API, making the use of CGI
programming unnecessary. This new breed of Web servers aso support remote
administration via a Web-based GUI interface and even the administration of multiple
servers through the same GUI

Integrated Development Environment

Because the environment provided by application serversis so rich and supports so
many APIs, OEMs all provide Integrated Development Environments to help the end

user create applications that are timely and supportable. Included with the tools are
source control and configuration management systems.

Interfacing to Enterprise Resource Planning Systems

Today the darling application of the corporate IS shop is the ERP system. One of the
things that was painfully (and expensively) pointed out to IS Managers over the last 3
years (Y 2K preparation) was how terribly dependent corporations were on old legacy
systems written 20 and 30 years ago in COBOL and PL/1. One of the options to
becoming Y 2K compliant was to move the corporate computing model away from the
hodge-podge of legacy applications and databases that had grown up with the
corporations that fostered them and toward arelatively standardized model that had
been developed relatively recently under the guise of ERP systems.

ERP systems, like SAP, BAAN, and PeopleSoft, are based on alarge database model
of the entire corporation. After al, most corporations have a similar make-up (i.e., an
accounting organization, accounts payable, accounts receivable, payroll, personnel,
manufacturing, planning, etc.). If all these functions could share a common database
and a common set of processes and procedures, the corporation could run more
effectively and efficiently.

Since one system can never meet all possible needs, application servers provide
certified tools that allow interfacing with ERP systems in such away that application
server-based programs will be well behaved and supported even through new releases
of the ERP system software.

Ability to Interface with Transaction Processing Monitors

One of the applications that was developed during the client/server paradigm of
application development was a program called a Transaction Processing (TP) Monitor
(BEA Tuxedo is the most notable of these). TP Monitors are systems that handle high
transaction-rate-based jobs like airline reservation systems, banking systems, and such.
To be able to interface with these systems from the Web is crucial to e-Commerce.

Support Stateful Applications

One of the hardest things about programming the Web has always been how to make
stateful applications. In our attempt to do this, we have tried every trick we could
come up with from cookies to hidden variables. Application servers take a more
rigorous approach by actually maintaining state databases of our applications. In most
cases, databases are maintained in two forms: a state that can be recovered after a
reboot (persistent viaa DBMYS) and a state that cannot be recovered after areboot (in
memory data caching).

Connection Pooling of Database Connections
One of the lessons we learned from the two-tier client/server model of database

programming is that databases are not good connection managers and that making the
initial connection to the database in many cases takes longer than the actual database

activities we are trying to perform. To help improve overall database performance, the
application server will open anumber of database connections at startup and then
manage those connections for the various applications that are using the database(s).
Thisway the cost (time) of establishing the database connectionsis only incurred
once (at startup). Once opened, the connections are never shut down; instead, they are
shared by the applications. After all, aconnection is a connectionisa
connection...and Web-based applications do not usually need a connection for more
than the current query.

Access to Legacy Applications and Legacy Databases
There are anumber of ways to provide access to legacy system applications.

e Oneistoincorporate aterminal emulator in the form of a Java applet as one of
the client interfaces provided by the application server and actually alow the
end user to interact with the legacy system.

e Another isto provide a screen scraper that allows the data portion of alegacy
screen to be scraped out and placed in adynamic HTML form or a Java applet.

e A more common way isto place a CORBA wrapper around the legacy system
and provide anew CORBA (Javaor C++) client for the user to interface with
the application through.

For access to alegacy database, the approach is somewhat dependent on the database
and the hosting operating system. In many cases, we are looking at IBM mainframes
and DB2, VSAM, and IM S databases. Because these databases are based on IBM's
proprietary SNA (System Network Architecture) connectivity scheme rather than
TCP/IP, one requirement is the installation of a gateway between the two systems
(TCP/IP and SNA) that is responsible for the protocol conversion between the two
systems. Because DB2 is arelationa database, JDBC drivers can beinstalled on client
workstations; they will allow normal JDBC accessto DB2. VSAM (Virtual
Sequential Access Method) isan older, flat file data structure in which many legacy
databases are maintained. In many cases, these databases should have been moved to
DB2 years ago, but the "if it isn't broken don't fix it" mentality prevailed. IMSisa
database model from the 1970s that viewed a database as a hierarchical structure and
provided its own database programming language to support it. For VSAM and IMS
databases there are tools from IBM and companies like Intersolv and Cross Access
that allow these databases to be treated as relational tables. Because of the number of
gyrations that these have to go through to make everything look like atable, the
performanceis limited.

Scalability Through Load Balancing

Scalability isthe ability of a system to meet the performance demands of an
increasingly larger user community. A single processor, no matter how fast, can only
service afinite number of user requests with some degree of performance. Adding
multiple processors to a box can buy some additional performance but not really
increase the overall scalability of the overall system. To increase the scalability of the
system in ameaningful way requires the introduction of additional processing units
(boxes), one of which isto be used as an HTTP dispatcher. All requests will comein
to the dispatcher, and the dispatcher will direct the request to the least busy box in the

cluster of processing units. Many Web sites today handle more than a million requests
aday using old hardware (66-MHz 486s and 100-MHz Pentiums) and by running
large clusters of them (20-25).

Automatic Fail-Over

To add some redundancy to the system and eliminate a single point of failure,
dispatchers can be set up on multiple machines and deployed so that if one dispatcher
dies the other dispatcher will take over the load of both until the failed processing unit
can be put back in service.

Support of the Enterprise Java Beans Specification

The latest set of acronyms added to the list of things that application servers do and/or
comply with are Java 2 Enterprise Edition and Enterprise Java Beans. Java 2
Enterprise Edition is the latest release of the Java Platform from Sun Microsystems
and contains all the previously missing pieces of Javato make it a serious contender
for Enterprise-class applications. Things like the new security model, INDI (Java
Naming and Directory Interface), JDBC 2.0, and RMI-I10P to name a few, complete
the suite of tools that make Java capable of fulfilling the goals of Enterprise
applications devel opment.

Summary

Although not strictly a Javatopic, application servers are playing and will continue to
play alarge part in the development and deployment of large, scalable applications for
the enterprise. Many of the application server vendors are taking the all-Java route
and are doing well (the Silverstream Application Server and the BEA Weblogic
Application Server are examples of all-Java application servers). As more and more
functionality has been built into the application server, it is no longer something to
add to aWeb server but something that has had a Web server added to it and taken on
an identity of itsown.

Chapter 10. Jini: Sun's Technology of
Impromptu Networks

Examples of Jini

Where Did Jini Come From?

Our Working Jini Example

Basic Jini Concepts: "Discovery, Join, and Lookup Oh My!"
Getting Started with Jini

L ets Get to the Code!

The introduction of the iMac was no small factor in Apple's rgjuvenation. It was also a
revolutionary computer. The iMac's success came from its appeal to regular folk,

those ordinary people who cared less about the size of its hard drive and more about
the color of the case. In short, the iMac was marketed (and purchased) as an appliance.
People could buy it, bring it home, plug it in, and it just worked. It worked right out of

the box, no hassles, and no complicated instructions. That concept iswhat Jini is all
about.

Jini is Sun's solution for creating common, everyday, networking appliances that just
"plug and work." | use the word "appliances" instead of "application” because an
appliance is a simple piece of technology that everyone can use. An application, on
the other hand, is atechnology that often requires development of a skill set in order
to useit productively. Few people would consider the ability to start a dishwasher a
skill set.

Examples of Jini

So what is Jini? Jini is a paradigm for how the service providers and service
consumers should interact on anetwork. It isalayer of architecture that is dependent
on avariety of other pieces of architecture as described in Figure 10-1. Sun's current
implementation of Jini, Jini 1.0, iswritten completely in Java, but not all pieces of the
Jini architecture must be. The best way to introduce Jini is to describe the technology
in use. Sun's promotional literature isfull of interesting examples, and examples of

the technology aren't hard to dream up. The most common example is that of a printer.

Figure 10-1. The layers of architecture needed by Jini.

£ Jini

B Java RMI*
@ Java (2.0+)
O JVM

B OS

[0 Network

“The Jini specification does not require RMI; Sun's implementation of
Jini does. Technically, Jini is a specification and doesn't require Java at
all. The only available implementations of Jini use Java, however.

ABC Industries recently doubled the size of its office staff from 12 people, to 24.
Laura Cogswell, ABC Industries office manager, noticed a situation brewing over the
limited printing resource of their single laser printer. The lines were long, and the
printer never seemed to stop spitting out paper. It was obvious that ABC Industries
simply needed an additional printer.

Lauratook atrip down to the local office supply depot where she casually purchased
an additional name brand laser printer. Getting it back to the office, Lauratook it out
of the box, plugged in the power chord, plugged in the networking cable, and
switched it on. Within moments, the printer cameto life and began printing out
reports. The two printers continued to work side by side satisfying the printing needs
of ABC Industries. Several members of the office staff were impressed to find the
new printer, which they hadn't even known existed there when they clicked the print

icon, had automatically printed their reports. How was this possible? Both the printers,
and the PCs of ABC Industries, were "Jini Enabled.”

What's important about the last example? Well, the first and foremost thing is that
Lauraisnot an IT specialist. She's an office manager. The same person who might
arrange to purchase copier paper, afax machine, or even break-room supplies. She
treated the printer problem the same way she might have treated a problem with a
refrigerator that was too small, or a coffee machine that didn't make enough coffee.
She went out and got another one, plugged it in, and went about her business. She did
not have to deploy a set of drivers across the company's computer system
(incidentally consisting of UNIX boxen, Macintoshes, and Windows machines), nor
did anyone have to set up the new printer on hisor her PC.

Therest of the chapter is dedicated to explaining the basics of Jini and alittle about
how Jini can make this possible. This chapter is, by no means, meant to be an in-depth
study of Jini, but it isintended to provide an introduction to the technology and a
glimpse at how to get started with it.

Where Did Jini Come From?

Jini is Sun's continued dedication to the founding principles of alanguage called Oak.
Oak was intended as a platform-independent, simple, object-oriented approach to
working with "smart appliances,” like set top boxes, clocks, microwaves, cell phones,
you name it. The problem was that companies in the smart appliance market found
themselves spending lots of time and money supporting amyriad of software
environments. It seemed that each appliance they developed used different hardware
that either had its own software environment or was different enough from the
"standard” programming environments to require individual attention.

Oak was intended to help companies deploying different smart appliances concentrate
on the appliance itself and not on the overhead of the software environment. Oak was
supposed to be write once, run anywhere. Sound familiar? It should because out of
Oak came Java. Java gained its popularity because it offered platform independence
for application developers on personal computers. Y ou can write an application on a
Mac and have the exact same code run on a Windows machine, or a UNIX box. Over
time, Java technology has become more robust and mature. Sun never abandoned its
roots in the smart appliance market. Instead, they are redefining what people think an
applianceis, and bringing the full weight of Java (both its strengths and weaknesses)
to bear on the genre. Sun's reference implementation of Jini is a software architecture
layer that makes extensive use of Java RMI, which makes possible the concept of a
"plug and work™ network appliance.

Our Working Jini Example

For the rest of this chapter, we will discuss Jini in terms of a single example, that of a
Morse code printer. The Morse code printer itself isasmall black box out of which
come two cables, one for the Ethernet network, and one for power (some networking
solutions use standard 60-Hz ac power lines as their medium rather than Ethernet
cables. In that instance, we would only need one cable, the power cord!). Also affixed
to the box are two large LEDs, one red and one green. Inside our little network printer

isacomplete VM with al of the appropriate Java 2.0 and Jini 1.0 libraries. The
printer works by translating messages sent to it into "dashes"' and "dots" flashed out
by the green LED according to the standard Morse code protocol. In thisway, a
message consisting of "SOS" would cause the green light to pulse three times quickly,
three times slowly, and then three times quickly again.

Morse code was invented over a century ago and wasn't originally conceived of for
use as a Jini-based print server (although it does work surprisingly well for this).
During the course of a message trandation, it is possible that a situation could arise
that Morse code is unable to account for. In this case, the red LED will flash,
indicating that an error has occurred, and the printer will skip the untranslatable
characters and continue on.

In our example we will assume that a standards organization has blessed a particular
Javainterface to network printers and that thisinterface is well known. Any entity
wishing to use the services of the network printer can do so by utilizing this well-
known interface. In our example, an ambitious Java programmer has created a simple
client utilizing this interface in the hopes of communicating with our network printer.

Theidea, of course, isthat someone can walk into aroom, plug the "Jini'fied Morse
code printer” into the network, go over to acomputer that was already running and on
the network, activate the client application, and be able to immediately print to the
new printer. How could this happen? Let's look at Jini's basic infrastructure.

Basic Jini Concepts: "Discovery, Join, and Lookup Oh My!"

In any Jini community, sometimes called a Djinn, federation, or collectives, there
exist three main elements: a service, in our example the Jini'fied Morse code printer; a
client that consumes the desired service, like our Java PrintClient application; and a
Jini Look Up Service (JLUS) that acts as a coordinator to help the Jini client find the
Jini serviceit islooking for. To see how these three Jini el ements interact with each
other, let's look to our example.

Server

In the beginning, we plug our patented "Jini'fied Morse code printer” into the network
and switch it on. At first, it is unaware that anything else on the network exists.
Luckily, Jini has a protocol for getting in touch with other Djinn; it's called Discovery.
In our example, Discovery takes the form of a message broadcast to our entire local
network asking for any available JLUSs to identify themselves. Each JLUS that hears
this broadcast responds by giving our network printer a representative of the JLUS.
This representative takes the form of a ServiceRegistrar object. The ServiceRegistrar
object works as a proxy to the JLUS. Any work that we want to do with the JLUS we
can do by invoking methods on the registrar object.

Figure 10-2 illustrates the concept of Jini Discovery. Here the service finds the local
JLUS and obtains an object that functions as an interface.

Figure 10-2. Jini Discovery.

£ , ‘

Jini Jini Jini
Service Service Look Up
(Morse Service
(Morse Code
Code : Printer) (On local
Printer) - , : network)
Service |
) Registrar |
|) P
"-’ N k
o etwor 'S
O O

Any Jini
Look Up Service

To simplify things, only one JLUS responds to our printer's discovery effort. In reality
there could be multiple JLUSs out there, or none at all! (In the last case, we could
include in our service implementation code that would create its own JLUS. For now,
we just assume that there will be at least one.)

Next we want to tell JLUS all about the great service our Jini'fied Morse code printer
offers so that others can take advantage of our printer's availability. This processis
referred to as the Join protocol.

In order to join a Djinn, our service has to do two things. First, it must create and
provide a proxy object. A proxy, in general, is an agent through which someone or
something interacts with another, a go-between. Here, the proxy object is exactly its
namesake. It provides the mechanism through which an interested client will
communicate with our printer.

The proxy can be any Java object! It could be a full-blown Java GUI application using
TCP/IP sockets to "talk™ to its server, or it could be an object implementing asimple
Java RMI interface. The actual protocol used between the service and the client
depends upon the particular implementation of Jini. The interface is defined by
whatever the proxy object is. In our example, our printer will use Java RMI to
communicate with any interested clients, so the proxy object will be something that
implements PrintServicel nterface.

The second thing we should do as part of the Join process is define the set of attributes
that our service possesses. These could be anything from defining the name of the
printer, or the location of the printer, to expressing all the classes that our proxy
implements. Why do this? Well, by providing more information about our service,
prospective clients have more information from which to say why our service may or
may not be the best for them.

Both pieces of information are packaged up and sent to the JLUS by providing them
as arguments in one of the ServiceRegistrar's methods. The JLUS receives these items
and stores them for later. Thisis shown in Figure 10-3.

Figure 10-3. Jini Join.

______ - A (
Jini /| Service ltem Jini Jini
i / i Lock Up
Service Service Service
(Morse Froxy Morse (On local
Code { T Code nerwark)
Printer) ir CAuribute) Printer) (o]
Service 1 — Service {_F.-;.?Ig_-
Registrar =54 L . 0 — Registrar D | r:_’_:L::_"J
i. - ui | _ /‘
Metwork. .
Connection Netwark Connection

In Jini Join, as shown in Figure 10-3, our service first constructs a service item
describing itself as JLUS and then gives that service item to the JLUS, thus officially
joining the local DJinn.

Thisisall well and good, but what happens if our Jini'fied Morse code printer gets
"accidentally" kicked across the room by afrustrated red—green color-blind user?
WEéll, in its battered, disconnected state it certainly isn't available to print messages
anymore. How does the JLUS know that our printer isn't available?

One possible methodol ogy would be for the JLUS to continuously poll the service to
seeif it's till alive. The greater the frequency of polling, the smaller the period of
uncertainty about the status of a service and the quicker the response of the Djinn asa
whole in dealing with the loss of a service. This approach, however, puts a great ded
of burden on the JLUS and aso creates quite alot of network traffic.

As Figure 10-4 shows, the Jini Service continually tracks time elapsed on its lease and
renews each |lease cycle before the expiration of the lease.

Figure 10-4. Jini Lease Renewal.

— Y e) —
Jini Jini Jini
Service Service Look Up
Service
(Morse (Morse om o)
Code Code network)
Printer) Printer) Prowy |
 Service [[] Service D i
Registrar 4 Registrar | o]
Network
Network Connection
Connection _
Lease Time Lease Time
Clock Clock

/ D "

" __/

Jini actually deals with this by assigning a "lease time" to a service. In an abstract
sense, a Jini lease is an agreement between the JLUS and the Jini Service that
guarantees that the Jini Service will be up and available throughout the duration of the
lease. Jini puts the burden of renewing the lease squarely on the Jini Service, not on
the central JLUS. When the lease time period expires, the JLUS will simply remove
the information it has about the subject service from availability to the Djinn. It will
not, of its own accord, inform the subject Jini Service that the lease has expired. It is
up to the Jini Service to enquire about the lease time granted to it by the JLUS. It is
also the responsibility of the Jini Service to track the amount of time transpired and to

renew its lease when appropriate.. Thisis sort of afeed forward system. The Jini
Server pushes the lease renewal effort. Thisisillustrated in Figure 10-4.

Client

Now that our printer is plugged in and participating in the Djinn, let'slook at Jini from
a service consumer's perspective. Remember that right now, in our example, a service
item describing our Jini‘'fied Morse code printer exists on the JLUS. Also remember
that the service item contains a proxy object for our Jini-enabled printer.

For the purposes of demonstrating Jini, we have a client whose only job isto find the
Jini'fied Morse code printer and send messagesto it. The client doesn't haveto be a
stand-alone Java program, however. It could just as easily be part of an operating
system. Such integration would provide our plug-and-work Jini printing capabilities to
every application running on that operating system. For the purposes of our example,
we will just consider the stand-alone application case.

When the client isrun, it has to find the JLUS, just like the service did. It goes
through exactly the same Discovery process the service did, eventually obtaining a

ServiceRegistrar object for each JLUS that responds. Again, in our example, only one
JLUS exists and responds.

Next, the client has the task of using the JLUS to find the desired service. To do this,
the client describes the desired service in any one of several ways. The general
method is shown in Figure 10-5. The client provides a template against which the
JLUS can stack up potential services and find the one that's a match. This template
describes desired server characteristics including attributes that services may have
defined, such as their name or location, and interfaces that services must match. Our
client could try to look up the service by the "well-understood" PrintServicel nterface
it should implement. In our example, however, the client actually looks for a match by
name. It fills out the appropriate attribute in the template, and givesit to the JLUS by
invoking a method on the ServiceRegistrar object. Again, the service registrar isthe
interface to the JLUS for the client as well asthe service.

Figure 10-5. The Jini Client constructs a template identifying the desired service, and
the JLUS matches this template against all registered service items and returns the
proxy object from the matching service item.

Service
lemplate
i
- - !’f . M .
Jini Jini Jini Jini
Client Look Up Client Look Up
Service Service
(On local (On local
network) Prﬂxj’ e network)
T E
Service Service
Registrar Registrar I Il

Metwork MNetwork
Connection Connection

The JLUS then uses the template to find potential matches, which it doesin our
example. It then takes the proxy object from the matching service item and returns
that as the search result to the client. Had the search been unsuccessful, it would have
returned a null instead.

The client receives the proxy and then uses it to communicate directly with the service,
leaving the JLUS entirely out of the picture at this point. All future communication
between the client and service can now happen directly. In our example, the proxy
object given to the client smply uses Java RMI to remotely invoke the print method
on our service. We could have chosen as our proxy to have alittle program that would
simply have streamed data to our print service through a TCP/IP socket.

The user makes the client send the message "SOS" and watches as the dots and dashes
get flashed out on the Jini'fied Morse code printer.

It isinteresting to note, however, that the JLUS itself follows a similar protocol. Both
the client and the service received a ServiceRegistrar object through which they
communicated with the JLUS. The ServiceRegistrar object isthe JLUS's proxy!

Getting Started with Jini

Before you can delve into making your own Jini services, clients, or even look-up
services, you must overcome afew preliminary hurdles before you set up your
development environment. These hurdles are neither overwhelming nor are they
trivial, however. They often represent an initial challenge to getting started with Jini.

Obtain the latest Java SDK for your OS (should be 2.0 or higher).

Install the Java SDK.

Set up your Java environment as appropriate.

Test your Java environment to make sure it works.

Obtain the latest Jini SDK (should be 1.0 or higher).

Install the Jini SDK.

Adjust your classpath as appropriate.

Test the Jini installation to make sure it works.

Keep the Jini Service and Jini Client environments independent from each
other during development. This avoids accidental and invalid dependencies on
resources that otherwise wouldn't be shared.

The Javaand Jini SDK are available by download directly from Sun
(http://java.sun.com). These both include some setup instructions and example
applications, which you can run to make sure everything is working. It's just good
common sense to make sure you have aworking initial setup before you start writing
and trying to debug your Jini code.

The last point is not so much a setup step as a development consideration. Keep in
mind that, when you develop for Jini, you're developing for a distributed computing
environment. When the Jini Service isfirst brought online, it will be completely
unaware of the client. Likewise when the client isfirst brought up, it is unaware of the
service. These two entities make initial contact through a JLUS and, before this, can
have no shared resources (data files, code snippits, whatever) that aren't supposed to
be explicitly built into both.

The resources mentioned at the end of this chapter can lend considerably more helpin
dealing with these issues than any discussion possible in the space allotted here. |
encourage you to peruse them.

Let's Get to the Code!
The following code only looks at the Jini portions of our examples. The Java code

comprising the LED device driver and Morse code tranglation system are not central
to understanding how Jini works and aren't presented here. Those interested in further

exploring these pieces of software can obtain the original source online at
http://watson2.cs.binghamton.edu/~steflik/jini or on the accompanying CD-ROM.

Implementing the Jini Server

One of the first stipulations we made about our Jini'fied Morse code printer was that it
implemented an agreed-upon well-known interface. In practice, thisis currently the
most difficult part of Jini's promise. There have been ads showing Jini-enabling
digital watches to communicate with toasters and other currently brainless home
appliances. The problem here (besides understanding why you would want to do such
athing in the first place) isthat this means all the people who make digital watches
and all the people who make toasters have all agreed on what their equipment's
interface will be. At the time of thiswriting, there are efforts underway to define such
well-known interfaces for printers and what not, but they have not come to a
conclusion, so for our purposes, we will assert that such awell-known interface
already exists and looks like this:

import java.rmi.*;
import java.io.*;

public interface PrintServicelnterface extends Remote {
public boolean print(String printString) throws RemoteException;
}

This code is standard Java RMI. It defines an interface called PrintServicel nterface
that defines the relationship between the client and the service. The client can invoke
the method print on any object implementing this interface and pass to that object a
string. The object is alowed to pass back to it a boolean or throw a remote exception,
that is, the whole interface. The idea, of course, behind thisinterface is that the object
implementing this interface will be the proxy from our printer and that it will take the
string passed to it and flash it out in Morse code. If it is unable to do so, for some
reason, our printer should inform the client that there was an error by passing afalse
back as the return value from the method. Hopefully, however, it will be successful
and pass a true value as the return value from the method call.

Let'slook at the Service code:

*/

import java.io.*;

import java.rmi.*;

import java.rmi.server.™;

import com.sun.jini.lookup.*;
import net_jini.core.entry._*;
import net._jini.core.lookup.*;
import net.jini.core.discovery.™;
import net.jini.lookup.entry.>;
import com.sun.jini.lease.*;

public class PrintService extends UnicastRemoteObject
implements PrintServicelnterface, ServicelDListener, Serializable

LightDriver 1d;
MorseTranslator mp;
// Print Service Constructor
public PrintService() throws RemoteException

{
super();
try
{
Id = new LightDriver(); // create light
driver
mp = new MorseTranslator(ld); // connect
translator to driver
¥
catch (Exception pse) { pse.printStackTrace();
System_exit(0);
}
}

// This method is what satisfies the
PrintServicelnterface ,
// requirement it is through RMI that the client
remotely calls
// this method to deliver a string to the server.
public boolean print(String printString) throws
RemoteException
{
try
{
System._out._print(""PRINT SERVICE, Printing: ™ +
printString + " Length= " +
printString.length());
mp.doTranslation(printString); // morse print
message
return true; // return success

}
catch (Exception pe) {pe.printStackTrace();

return false; // return failure
}

}

// This satisfies the ServicelDListner interface
public void servicelDNotify (ServicelD id)

{
}

public static void main(String[] args)

{
// this will define our service to the JLUS
Entry[] serviceAttributes;
// this object handles discovery & join
JoinManager joinManager;
// this becomes our server proxy
PrintService printService;
// holds the ID given to us by an JLUS
ServicelD mylD;
try
{

// This creates a security manager, allowing our
service to go

// to tp remote sources for code. This is the
same as In Java

// RMI. We need this to download the JLUS
ServiceRegistrar

// Object.

System._setSecurityManager (new
RMI1SecurityManager());

//Setup to perform the Jini Discovery and Join
Process

printService = new PrintService();

serviceAttributes = new Entry[1];

serviceAttributes[0] = new Name("'Jinified Morse
Code Printer');

//Create the JoinManager object, which
automatically Discovers

// and Joins Jini Look Up Services.

jJjoinManager = new JoinManager(

printService, // proxy object
serviceAttributes,
printService, // ServicelDListner
new LeaseRenewalManager() // auto-renews leases
)
}
catch (Exception me)
{
System.out._printIn(""PrintService main(): Exception ');
me.printStackTrace();
}
} // EndMainMethod
} // End PrintService Class

A Walk Through the PrintService Code

So what's happening here? Well, what do we know about a Jini Service so far? We
know that a Jini Service must go through the Discovery processto find aJLUS. We
know that once it's found the JLUS it must go through the Join process to make its
services available to the Djinn. We aso know that as part of the Join process the
service has to provide a proxy object and somehow describe itself to the JLUS so that
it can be found by interested clients. Does all this happen here? Yes, let's dissect the
code alittle.

After theinitial includes, we can see that our constructor instantiates a LightDriver
and aMorseTranglator object. These two objects simply provide the mechanics of
making a message flash out in Morse code; as mentioned before, we won't discuss
them in detail here. What's important is that our service constructor initialize the
mechani cs necessary to implement the service. No big deal yet.

The next thing we stumble upon as we traverse the code is the Print method. Ahal
Thisisthe method that our well-known interface said we had to have; indeed, if we
jump back a couple of lines, we see that our class doesin fact implement that interface.
Examining the message reveals that basically all our service doesis pass the string

argument to a method on our MorseTranslator object and then pass back atrue.
Ideally, we should have some way to determine whether our message was printed or
not and pass back atrue or false accordingly; nonetheless, we satisfied the
requirements of the interface. OK, but that's only useful once you are actively
participating in the Djinn. We haven't gotten to that code yet, so now what?

Continuing through the code we bump into an empty little method entitled service-
IDNotify. It doesn't do anything, so we must need it to satisfy an interface, and sure
enough we see that our class also implements the Servicel DListener interface. What's
that for? Thisis a piece of the Discovery process as well seein a moment.

Next we hit the main of our PrintService class. The next significant thing we do here
isinstantiate an RMI security manager. Thisis done so that we will be able to
download remote code and use it locally. Why would we do that? We need to do that
in order to obtain the ServiceRegistrar object from the JLUS.

Next we have to do afew things to explicitly set up for Join the discovery process.
We create our proxy object, an instantiation of our PrintService class, and we create
an array of Entry objects, although we only hold a single element. These entry objects
are used to describe our service. In the very next line we define a name object, which
we set equal to what we're calling our service. In our example, thisiswhat is going to
be used to identify our service by the client. We'll talk more about that later. For now
we have proxy object, and we have our service description.

Finally, we instantiate a JoinManager. What is this guy? Well for us, it's the lazy
coder's (and simplest) way to handle all the service's basic Jini responsibilities. Let's
look at this.

It takes four argumentsin its constructor: a proxy object, the Service Item, a Service-
IDListener, and a LeaseManager. There's alot of powerful stuff all packed into one
class! We passit our brand-new PrintService object as the proxy, which makes sense.
We then hand it our attributes, which we knew we had to do, but for the third object
we pass our PrintService again. What is a Servicel DListener anyway?

Weéll, in Jini, all services are assigned an ID when they first register withaJLUS. The
ID that is given to your service is guaranteed to be completely unique. There shouldn't
be another service in the whole world that has that same ID. The ideais that your
service is supposed to remember this 1D and passit as all the other JLUSs that it may
register with as time goes by. In that way, there is a single common way to recognize
a specific service regardless of what JLUS aclient finds it on. The method for passing
this 1D back to a service isthrough a Servicel DListener. Each Servicel DListener has
to implement the Servicel DNotify method, which ours does. In redlity, thisis ssimply
an RMI callback from the JLUS saying, "Thisisyour servicelD." For our example,
we don't do anything with thisID. In general, you will.

That leaves only the final argument. Here we create something called a L ease-
RenewalManager. As you can guess by the name, that classis al we need to keep our
lease fresh and our service part of Djinn. Y ou can see that in one single object we've
delegated Discovery (it downloads and utilizes the ServiceRegistrar object), Join, and
lease renewal al away! Thisworks great in our simple case, but there are many other

circumstances when you will want a more fine-grain control over how your service
participates in a Djinn. For that to happen, you won't be able to just use a
JoinManager. You will haveto do alittle more work. Because this chapter isjust
intended to get you introduced to Jini, we don't cover that here, but all the references
mentioned at the end of this chapter can assist with that.

What's after that? Nothing, our main ends, and our service exits. Right? Almost; it
turns out that the Join manager creates some threads to handle all the activities that
we've just delegated to it. Aslong asit's alive and active (which is until the power is
pulled), our service will continue to run. If you wind up implementing Discovery, Join,
and lease managing yourself, you will also have to include away to keep your service
from just exiting. A simple while(true) {} works pretty well.

Implementing the Jini Client

Our Jini Client is asimple stand-alone Java application that finds our Jini‘fied Morse
code printer service and prints out "Hello World." Somewhere in this code, we will
have to create atemplate to identify the service we're looking for, perform Discovery
tofind aJLUS, do alookup on that JLUS to actually find our service, and finally use
that service through its proxy.

import java.io.*;

import java.net.*;

import java.rmi._*;

import com.sun.jini.lookup.*;
import net.jini.core.entry.*;
import net.jini.core.lookup.*;
import net.jini.core.discovery.™;
import net._jini.lookup.entry.*;
import net.jini.discovery.*;

public class PrintClient implements DiscoverylListener
{
public ServiceRegistrar[] registrars; // holds list of JLUSs"
// registrars
public boolean JLUSfound = false; // will trigger lookup
// process

// This method is required to implement DiscoverylListener.
// This is how our client will be notified when a

// ServiceRegistrar object is received from a JLUS
public void discovered(DiscoveryEvent ev)

{
// Obtain the array of registrar objects from all available
// LUSs*
registrars = ev.getRegistrars();
JLUSfound = true;
bs

// Used to deal with the situation when a JLUS is discarded by
// our discovery object. We don"t use it here, but more

// robust code would.

public void discarded(DiscoveryEvent ev)

{

//just satisfying DiscoverylListener interface

}

public static void main(String[] args)

{
LookupDiscovery discovery; // discovers available LUS
ServiceRegistrar ourreg; // holds the test registrar
LookupLocator lookup; // used to lookup service
Entry[] desiredattribs; // attributes desired in service
// a template the service must fill
ServiceTemplate desiredtemplate;

Object serviceobject; //result of the search

PrintServicelnterface printer; //handle to hold found service

PrintClient printclient; //This holds the instantiation
//0f our client

try

{
// Set the security manager for handling downloaded code:
// needed to obtain the ServiceRegistrars and the servers
// proxy object
System.setSecurityManager(newRMISecurityManager());

// Perform Discovery Process for all JLUS containing the
// public group
discovery = newLookupDiscovery(new String[] {""});

// add a DiscoverylListener to recieve the ServiceRegistrar
// objects our LookupDiscovery finds.

printclient = new PrintClient();
discovery.addDiscoveryListener(printclient);

// create a description for the service we are looking for

// must have the name PrintService..

desiredattribs = new Entry[1];

desiredattribs[0] = new Name("'Jini"fied Morse Code
Printer™);

Class[] clArray = new Class {PrintServicelnterface};

desiredtemplate = new ServiceTemplate(null, clArray,

desiredattribs);

while (true)

{ // begin while

if (printclient.JLUSfound)

{ // begin if found
printclient.JLUSfound = false; // reset flag
System.out.printIn("'PrintClient: " +

printclient._registrars.length +
"Jini Lookup Service(s) Found.™);

// Go through the complete array of registrar
objects
// lookup on each one to find the PrintService
// if found print out "Hello World!™
for (int 1=0; i<printclient.registrars.length; i++)
{ //begin for
lookup = printclient.registrars[i].getLocator();
System._out._printin(
"PrintClient: LUS found at ™ +
lookup.getHost() + " on port " +
lookup.getPort());

//perform the actual Jini lookup
serviceobject = printclient.registrars[i].-lookup
(desiredtemplate);

if (serviceobject instanceof
PrintServicelnterface)
{
System.out._printIn("’Found a match!\n" +
"Calling print method: Hello World!\n');
printer = (PrintServicelnterface) serviceobject;
if (Jprinter.print("Hello World!\n™))

{
System.out._printIn("PrintClient: Print

}
else System.out.printIn("PrintClient: Print

Successful ') ;

Failed!™);

else System.out.printIn(’'No match Found. :-<');
} //end for
} //end if
} //end while

catch (Exception me)

{

}
} // end main

} /7 end client

me.printStackTrace();

A Walk Through the PrintClient Code

Unlike our PrintServer class, we won't use asingle class to handle all our
responsibilities. Therefore, it will be the responsibility of our PrintClient classto
handle the Discovery and L ookup process directly as well as have the main method.
The first hint at how we are going to do this occurs as we see our PrintClient
implementing the DiscoveryListener interface. Much asin AWT programming, by
implementing this interface, we can use an instance of our PrintClient class to register
itself as an event handler. The events we will handle are the two methods of the
DiscoveryListener interface, Discovered and Discarded. Discovered is called when a
JLUS isfound and its ServiceRegistrar object is obtained. Discarded is called when a
JLUS we had been aware of, becomes unavailable to us. Since we don't care too
terribly much about the second situation in this example, we don't do anything in the
Discarded method. On the other hand, the Discovered method is going to be the way
our PrintClient will get its hands on the ServiceRegistrar object, so we will want to do
something here, and we do.

We obtain the array of ServiceRegistrar objects from the method's only parameter and
storeit for later use. The next, and last, thing we do hereisto set aflag. Asyou might
guess, thiswill signal other mechanics to do the bulk of the work later.

In our PrintClients main method, we start off by creating placeholders to handle the
other things we're going to need to get through the Discovery and L ookup process.

Just like the service, we have to extend the security model in order to run remote code
inour local VM. Unlike the service, however, we will not just be obtaining the
ServiceRegistrar object, but also the print service's proxy object.

Next, we actually go through and perform Jini Discovery. Thisis done by simply
creating a LookupDiscovery object. Just creating it will send it off to find all the
JLUSs it can. We don't haveto tell it any more information. During the instantiation
of this object, however, anew Jini concept called groups comesinto play.

Basically, groups are away to logically organize services together in a Djinn. Without
going into great detail, a company may be a single large Djinn but may also decide to
define different groups within that Djinn, like the "Engineering Services' group or the
"Cafeteria Services' group. Groups are just away for Jini Servicesto further
differentiate and organize themselves within a Djinn. For our Discovery, we pass an
empty string as the argument. This says that we want to look in the public group,
which isthe default group all servicesjoin.

Since we sent the LookupDiscovery object to go out and discover the available JLUSS,
we must have away for it to give us all the ServiceRegistrarsit discovers. Thisis
where our PrintClients DiscoveryListener interface comesin handy. We create an
instance of our PrintClient and passit to our LookupDiscovery object as the event
handler for Discovered and Discarded events. Now whenever our LookupDiscovery
object finds new JLUSs, it will notify us by calling our Discovered method.

Next, we define the service we want to look for. Here again, we create an array of
Entry objects with only 1 element. We make this element aName and initialize it to
our "Jini‘fied Morse Code Printer."

Finally we get to the driving while loop of our PrintClient class. Here we will loop
forever. Each time we loop, we will check the JLUSfound flag kept by our PrintClient
to see if there are any targets to perform Lookup on. While there aren't any, we'll loop
forever. When we get one, we fall through the if statement and begin to processit.

Now, in areal Jini environment, there just may be multiple lookup services. That's
why, when we ask the DiscoveryEvent object back in the Discovered method for a
ServiceRegistrar, it actually hands us an array of them. We can query this array, just
like any other in Java, and find out exactly how many registrars we found. The answer
we get here will depend on how many JLUSs you started up when you went to run our
little example, probably one. Our client isalittle robust at least and will handle the
case of N JLUSs.

We index through the array, just as you would any other. On each element (JLUS
ServiceRegistrar object), we perform Jini Lookup. To do this, we pass the
ServiceTemplate we made to identify our service by its name as the argument in the
registrar's aptly named lookup method. The result will either be NULL, meaning no
match, or the proxy object of the first service that matched the template.

We check to make sure that the proxy object implements our well-known
PrintServicelnterface by using abit of RTTI, and if it does, we send "Hello World!"
out to the printer. If the proxy object doesn't implement that interface (who knows

why you would have a service out there calling itself Jini‘'fied Morse code printer that
didn't implement our interface, but you may), we say that we couldn't find a match.

After we have exhausted all the ServiceRegistrar possibilities, we fall out of the four
loop and eventually out of the if where we check the JLUSfound flag. Since we reset
that flag, we will loop forever until the user kills the process, or our LookupDiscovery
Object findsanew JLUS.

Running the Jini Server

Because standard RMI stubs and skeletons are being utilized, this service requires a
Web server running to distribute the stub file to anyone who needsit. Don't forget to
set the RMI codebase parameter to point to the URL where the stubs are served from.
If thisis confusing, it may be helpful to go back and refresh your knowledge of Java
RMI. In effect, the PrintService _Stub.classfile is the PrintServices proxy object.

Asan additional note, we will need a security policy file that allows the service
enough privilege to be able to download and run code given to it by the JLUS.

Required Files in Service Directory for running:

LightDriver.class—Light Driver for Linux System
MorseTranglator.class—Actual Morse code translator
MorseTable.dat—Table used by MorseTransl ator
PrintService.class—The Jini PrintService

PrintServicel nterface.class—The well-known interface
PrintService_Skel.class—The server-side part of the RMI stubs
policy.all—The Java RMI security policy

Required Files to be served by the service's webserver:
e PrintService_Stub.class—The client-side part of the RMI stubs

To run the server, you must have at least one JLUS running already on your local
network, such as Reggie the JLUS that comes with the Jini SDK.

The following commands will start up the Web server to serve the Stub file and run
the service.

In aUNIX environment:

echo Starting Server Codebase Webserver

java —-jar /path_to_Jini/jinil_0/lib/tools.jar -dir
/path_to_service_codebase directory/service-codebase -verbose
-port 8001 &

echo Starting Service
java -Djava.security.policy=policy.all
-Djava.rmi.server.codebase=http://192.168.1.4:8001/ PrintService

Y ou would replace the text in italics with the appropriate path for your system.

In aWindows environment:

echo Starting Server Codebase Webserver

jJava-jar Drive:\path_to Jini\jinil O\lib\tools. jar -dir
\path_to_server_codebase_directory\service-codebase -verbose
-port 8001 &

echo Starting Service

jJava -Djava.security.policy=policy.all
-Djava.rmi.server.codebase=http://192.168.1.4:8001/ PrintService

Y ou would replace the text in italics with the appropriate path for your system.
Assuming the appropriate classpath setup, the server should then run. Asit iswritten,
the server will execute and remain silent. It would be an easy task to include some
code to inform the user that it is up and running. Because the servicel DNotify method
gets called when the JLUSfirst assigns an 1D to the service, a statement could be
placed hereindicating to the user that a successful join had occurred.
Running the Jini Client
Running the client isalittle simpler. Again, we assume that thereisa JLUS already
running on our local network. Here also, apolicy file that allows the client enough
privilege to download and execute code from both the service and the JLUS is needed.
Required Files in Service Directory for running:

o PrintClient.class—Our PrintClient class

o PrintServicel nterface.class—The well-known interface

e policy.al—The Java RMI security policy
The following commands will run the client.

In aUNIX or Windows environment:

echo Starting the Client
jJava -Djava.security.policy=policy.all PrintClient

Again, this assumes that your classpaths are set up properly for your Java and Jini
installations.

Good References to Get You Started

As mentioned earlier, this chapter isreally only an introduction to Jini. | highly
recommend purchasing Core Jini by W. Keith Edwards, as both an excellent

introduction and a comprehensive text on this technology. In addition, several kind
individual s have made tutorials and examples of their Jini efforts available online.
Much of thisisequally helpful in getting your own Jini projects up and running.
Because the Web is ever changing, | don't include the URLS, but | do encourage
people to use their favorite search engine to find and visit these resources:

Noel Enete's Jini and Java Nuggets

Jan Newmarch's Guide to JINI Technologies

Bill Venner's Jini resources at Artima

All the material available through Sun on Jini, from the FAQ to the
specifications.

Concerning the actual Jini‘fied Morse code printer, an actual Morse code printer was
built at Binghamton University in 1999. The prototype system utilized asimple plastic
box containing two LEDs wired to a parallel cable. This parallel cable was connected
to aRed Hat Linux box running on an old 486 class PC. The PC acted as the
"embedded smarts' of the Jini device, implementing the full Java 2.0 SDK and Jini

1.0 SDK. Though the prototype system was quite large, and thus not "embedded" by
any standard, its use as amodel was still valid. The operating system, Java and Jini
Runtimes, Ethernet, and parallel portsall could have easily been implemented on one
of severa credit-card-sized PC systems commonly available from embedded systems
manufacturers.

It is worth mentioning that Linux was the operating system of choice for this
application for a couple of reasons. Linux isafreely available, full-fledged UNIX
clone. Linux has been used in a variety of embedded applications. Also, because of
the security restraints and cross platform features of Java, it wasn't possible to access
the printer hardware directly as an address in memory, asyou might in C or C++.
However, in Linux, asin other UNIX systems, hardware is accessible as simple files
in the /dev file structure. In this way, Java code could easily be written to twiddle the
output bits on the parallel port (/dev/Ipl) in exactly the same manner aswriting to a
file! This made the entire task of writing a"device driver" in Javatrivial.

Summary

In summary, most basic Djinn consist of a JLUS, a service provider, and a service
consumer. Both the service provider and consumer must usethe JLUS as a
middleman to coordinate initial contact between them. Once contact has been made,
however, they do not need to use the JLUS to communicate with each other. Direct
service to client communication is handled through the services proxy object, whichis
given to the JLUS by the service, and obtained by the client from the JLUS. This
client can be anything from afull-fledged, stand-alone Java GUI to asimple RMI
client that implements a"well-known interface." Jini's mechanism for removing
services that fail isthrough leasing. It is the responsibility of the service provider to
maintain its lease with the JLUS. The JLUS will not usually inform the service that its
lease has expired. These are the basic concepts of Jini.

Chapter 11. IMX/IMAPI: Java Management API

e What Is Network Management?
e Modifying Clientsfor IMAPI
e Modifying Serversfor IMAPI

Since the original publication of thisbook the Java Management API has been
renamed Management Extensions and placed under the Java Community Process. In
June 1999 at SuperComm '99 Sun Microsystems announced the availability of the
Public Draft of the Java Management Extensions (JM X) specification. Sun and a
number of leadersin the field of enterprise management—Powerware, IBM,
Computer Associates, BullSoft, TIBCO, and Xylan—jointly developed the
specification.

JMX is built on the IMAPI foundation and draws on Sun's experience with the Java
Dynamic Management Toolkit (JDMT). The IDMT has been out and in the hands of
developersfor the last 2 years and has been proven to provide the tools for building
distributed, Web-based modular and dynamic solutions for managing devices,
applications, and service-driven networks.

The IMX Draft Specification can be downloaded from
http://java.sun.com/aboutJava/communityprocess/first/jsr003/index.html. What
followsisthe original book's discussion of the IMAPI, which, for the purposes of this
book, should still be appropriate and informative.

The Java Management API as originally released was a heavy-duty implementation of
the Solstice suite of network management tools that come bundled with Sun
Microsystems' Solaris operating system. Even though IMAPI does not require Solaris,
it can help you to bring the power of Solstice to your operating environment. Y our
Java objects can be ensured of some semblance of stability if you provide a means by
which your applications can be monitored by a"neutral third party.” If your
applications go down, IMAPI can help you bring them back up. At the heart of
networked communication is the need for the reliability that IMAPI can help provide.

In this chapter, we cover network management and show you how to introduce a
management scheme for your clients and servers. Also, we touch briefly on how and
when to manage your objects. The concept of network management is discussed in
short, with emphasis on the needs of a management APl and how those needs are met
by IMAPI.

What Is Network Management?

At first glance, a book about Java networking does not appear to need a chapter on
network administration. After all, system administrators are hired by most
organizations to ensure that a network stays up and running. Most of the time,
however, system administrators are presented with a horrendous number of different
tools with which to do their job.

To make matters worse, these tools generally have no relationship to one another and
have vastly different user interfaces. For the system administrator, this amountsto a
significant amount of frustration. For the organization for which they work, this
amounts to a significant amount of money spent on training.

What is needed is a simple set of tools that can be used to build a homogeneous
environment for the administrator. If the tools have a common interface, then the
system administrator needs to learn only the basics of one tool to understand the
others. The Java Management API, or IMAPI, provides arobust environment in
which you can create administrative tools, provide administrative functionality, and
modify your regular Java objects so that they can be administered by the IMAPI.

Asthe Internet grows, and as programming the Internet becomes more and more
accessible, the need for complex network management will be apparent. If you create
your Java applications with management in mind, you can prepare for the eventual
arrival of Internet system administrators.

Network Management at a Glance

A long time ago, the notion of a network did not exist. In fact, computers were
connectionless entities that resided in aroom and did not in any way talk to one
another. Soon, the Local Area Network emerged and computersin the same physical
location could be connected to one another. It enabled information to flow from
computer to computer, and even for data to be centrally located on another computer.
Then, these little networks began to merge with larger networks and, eventually, the
Internet developed and connected them all together (see Figure 11-1).

Figure 11-1. The growth of connectivity among small networks eventually gave rise to
the Internet.

D
A

S

Local Area Network < ﬁ%

Local Area Network

Some day, our children will hear the tale of the birth of the network as they bounce on
our knees, but today we are presented with avery adult problem: how to make sure
each one of those computers stays up and running and how to fix them when they do
break. Thisisthe high-pressure world of network administration.

To complicate the matter further, network administrators often are asked to handle
software concerns as well. To facilitate this, several protocols that hook into
applications and determine and/or fix their health were devel oped. Once again,

network administrators are called on to fix ailing applications and bring them back to
ausable state.

As Java applications become more and more popular, and JavaStations and the Java
operating system gain greater acceptance, a burden will be placed on network
administrators to ensure the reliability of applications and the hardware on which
those applications run. To assist with this matter, Sun's Solstice network
administration group put forth the Java Management API. The IMAPI will be
discussed in detail in the next section, but for now we concentrate on traditional
network administration problems and how they relate to Java.

Simple Network Management Protocol

One of the protocols created by the Internet Engineering Task Force to assist with
local and wide area network administration is the Simple Network Management
Protocol. SNMP has several advantages over its competitors; chief anong themisits
ease of use. By setting up something called an SNMP trap, network administrators are
ableto identify crucia components, protect them, and give themselves a means by
which to be notified when the component fails.

SNMP exchanges information between the manager application and the managed
component through something called a Protocol Data Unit (PDU). A PDU contains
information about a component and is sent over a network connection to the manager
application. The application can read the PDU and determine the health of the
component. PDUs usually contain information about an application's name, type, and
current state. The SNMP trap we referred to is actually aform of a PDU.

SNMP isin wide use today. Chances are high that your network connection to the
Internet uses SNMP in one form or another to maintain its integrity. SNMP manager
applications are monitored by network administrators who can determine if and when
acomponent fails and from there arrive at a solution to the failure fairly quickly.

It isimportant to understand that we refer to SNMP in "application” space. The truth
isthat SNMP can be incorporated within applications themselves. In so doing, a
network administrator can pinpoint the exact causes of failures because he or she has
adirect hook into the code that failed. In a moment, we will see how Java
programmers can create similar applications by using IMAPI rather than SNMP.

The Unique Management Problems of Java

One of the biggest problems encountered with incorporating SNMP into Javais that
SNMP s not Java. Javais awonderful language, with great ease-of-use features. We
want to be able to deploy large-scale Java applications both over the Internet and
within our corporate intranets. In order to do so, and still have control over network
administration, we must have away to hook into Java code and obtain information
about it.

In the next few sections, we will examine the IMAPI closely and learn where it can be
used appropriately when deployed Java applications are created. As the language
gains more acceptance, as Java hardware becomes more and more prevalent, and as

applications that are written in Java exclusively are shipped, some form of Java
management mechanism must be developed and used if our networks are to maintain
a semblance of integrity.

Network Administration Overview

Network administration is often the underemphasized aspect of the Internet revolution.
Without a coherent network administration strategy, all networked applications will
fall apart, and the network backbone will break. It is because of the importance of this
that we will undertake a discussion of its relevance to Java network programming.

Modifying Clients for JIMAPI

The client code that is included as part of the Java Management API consists of a
series of RMI clients that interact with managed object servers. These RMI objects
enable you to communicate seamlessly with the object your client is designed to
manage. Y our client should be able to affect the performance and activity of the
server, provided the managed object follows the IMAPI architecture and implements
its core objects.

The IMAPI client architecture also consists of what can only be called a user interface
bonanza. From pie chartsto line graphs, lists to graphical lists, icons to animation, the
JMAPI's Admin View Model (AVM) is nothing more than alayer on top of the
Abstract Window Toolkit. In so doing, the AVM is, likethe AWT, completely
platform independent and AVM does not rely on any windowing system to function.

AVM Base Classes

The AVM base classes are, as we discussed, an extension of the AWT. They
implement several components, including image buttons, scrolling windows and
panels, toolbar, image canvases, dialog boxes, and things you can do while your
application is busy. There are aso several generic tables, HTML browsers, and chart
objects for you to use as you see fit. We will not show you how to use each of these
individually because they are used the same way the normal AWT classes are used.

AVM Help Classes

The AVM help classes provide a genera -purpose help utility for application
programmers. By using the AVM Help functions, your application's help
documentation could be used just as easily by other, non-JMAPI, applications and
vice versa. Why duplicate documentation efforts when the IMAPI can assist you in
creating a uniform documentation structure? AVM help documentation is nothing
more than HTML with afew JMAPI authoring tags sprinkled within it. The IMAPI
tags are contained in comments within the HTML documentation, so the HTML
documentation can be used el sewhere without giving away the fact that the same text
is aso used by the IMAPI.

The help classes consist of four modules. The first of these modules is the Ul-based
Table of Contents and Navigator. The TOC/Navigator allows you to survey your
documentation and build a hierarchical list of the topics contained therein. It uses the

authoring tags within the documentation set to determine the arrangement of the
contents list.

A documentation generator also isincluded to assist you in creating indices, glossaries,
and even table of contents files. The documentation generator (jmapidoc) acts on the
HTML file, parses the authoring tags within it, and spits out a series of HTML files
that can be used by the Help Navigator.

The third moduleis a series of help files built by the IMAPI documentation generator
and referring to the IMAPI itself. Thisway you can pass on information about how
JMAPI operates as part of the documentation for the ManagedObjects you create. A
set of help templates that you can fill in yourself isincluded aong with the standard
JMAPI help files. They will help you get started with building documentation for your
objects.

Last, a search engine isincluded with the AVM help utilities so that end users can
find the information you have created for them quickly.

Managed Object Interfaces

Let's say we have a series of objects that model each individual employeein our large,
monolithic corporation. Traditionally, the solution to poor employee morale is more
management. Therefore, to improve our employee's morale, we will add a manager.

Our EmployeeManager is based on RMI, so we must include the RMI classes in our
file. Furthermore, we must create a StatusObservable object to oversee the object. The
StatusObservable object will link our ManagedObject to an event notification
mechanism. If we so desire, we can set up a notification link within our client. If any
other client fiddles with our employee, we would know about it instantly.

public class EmployeeManager

{

public static void main(
String args[]
)

{

// our employee
Employeelnterface employee;

// our observable class
StatusObservable statusObserver =
new StatusObservable();

Once we have set up our EmployeeManager, we must go to the
ManagedObjectFactory to get an Employeel nterface object. The first argument to the
newObj call is the name of the object, including any Java package containers that are
associated with it. The second argument is the name of the object in the name space
(in our case "EMPLOYEE").

public class EmployeeManager
{
public static void main(
String args[]
)

{

// our employee
Employeelnterface employee;

// our observable class
StatusObservable statusObserver =
new StatusObservable();

// create the employee object
try
{
employee = (Employeelnterface)MOFactoryObj.newObj(
"sunw. jmapi .Employeelnterface",
"EMPLOYEE");

catch (Exception exc)

{

System._out._printIn (Error in create: " +
exc.toString O);

Now we must set our employee's attributes. We will create a setTask method and a
setName method here and implement them in afew moments. We will then go about
adding the object to the management system (in other words, we'll place the employee
in our org chart).

public class EmployeeManager
{
public static void main (
String args []
)

{

// our employee

Employeelnterface employee;

// our observable class

StatusObservable statusObserver = new
StatusObservable ();

// create the employee object
try
{
employee = (Employeelnterface)MOFactoryObj.newObj(
"sunw. jmapi .Employeelnterface",
"EMPLOYEE™);

catch(Exception exc)

System.out.printIn("Error in create: " +
exc.toString());

There are two operations analogous to the addObject method we just employed. We
just as easily could have modified the object and then notified any other observers of
this change by invoking modifyObject on the employee. If we wanted to remove the
object from the management systaem, we could invoke del eteObject on the employee.
Remember that the clients can set and modify attributes, the servers can use those
settings to do their business, and the clients can notify other clients that a change has

}

// assign a task

try

{
employee.setName("'Heath");
employee.setTask(""Throw a touchdown™™);

catch (RemoteException exc)
{
System.out.printIn("Error in setup: " +
exc.toString);

}

// add this client to the list of objects listening
// in on this employee
try

{
employee.addObject (statusObserver) ;

catch (Exception exc)

{
System._out._printIn("Error in add Object: " +

exc.toString ());

been made.

Setting Up Notifications

In order to create the notification mechanism in our client, we must implement the
MOObserver and create an ObserverProxy within the employee object. We must also
implement the update function as required by the MOObserver. The update function
will be the callback function. Aswe have discussed in Chapter 6 on IDL and Chapter
5 on RMI, simply setting up a callback is not enough. We also must create a place for

the server to invoke that callback.

public class EmployeeManager implements MOObserver

{

public static void main (

)
{

String args []

// our employee
Employeelnterface employee;

// our observable class
StatusObservable statusObserver =
new StatusObservable ();

// create the observerproxy
ObserverProxylmpl observerProxy =
new ObserverProxylmpl (this);

// create the employee object
try
{
employee = (Employeelnterface)MOFactoryObj.newObj(
"sunw. jmapi .Employeelnterface",

"EMPLOYEE') ;
catch(Exception exc)
{
System.out._printIn("Error in create: " +
exc.toString ());
}

// add the observer proxy to the managed object and

// tell it to notify on modifications only

employee.addObserver (observerProxy,
ManagedObject.OBSERVE_MODIFY);

// assign a task

try

{
employee.setName ("'Heath'™);
employee.setTask ("Throw a touchdown');

catch(RemoteException exc)

{

System.out._printIn("Error in setup: " +
exc.toString));
>

// add this client to the list of objects listening
// in on this employee
try

{
employee.addObject(statusObserver);

catch(Exception exc)

System.out.printIn("Error in addObject: " +
exc.toString ());

}

public void update(
ManagedObject mo,
Observation observation

)
{
if (observation instanceof ModifyObservation)
{
. do our modification stuff here . . .
}

When any other manager client invokes modifyObject on the ManagedObject, we get
anotification in the Update method. This enables us always to stay in synch with the
managed object, even if there are many other clients modifying it at the same time.
Now we must set up our servers so that the clients we just created can manage them.

Modifying Servers for JMAPI

The Java Management API includes a set of objects to be used on the server side of a
Java networked system. These objects are known collectively as the Administration
Runtime Module (ARM). The ARM isthe focal point of all management associated
with Java applications. Once Java applications include the ARM, they are essentially
instantiated objects that can be readily administered.

The various components of the ARM are discussed in the next sections. Each
component contributes a specialized function to the overall goal of administering your
clientsfully. Y our Java applications can be plugged into existing system management
protocols and software including SNMP, Solstice, and others using the ARM. Once
your Java applications can be administered, you can rest easy in the knowledge that
your object system can handle network situations beyond your control.

The Admin Runtime Module

The diagram in Figure 9-2 outlines the various components of the ARM that we will
soon discuss. All of the components are interchangeable. For example, your
application may need to use the Managed-Object routines, but you can omit the
Notification module easily should you so desire. Furthermore, your managed
applications remain fully scalable and the performance of your system should not be
degraded. Figure 11-2 illustrates the modular design of IMAPI applications.

Figure 11-2. Modular design of JMAPI applications

s ~

“_——{ ManagedObject J

ManagedObijectFactory

L Notification _

\ J
Your Java Application

When a IMAPI client is used to communicate with your server, it can inquire asto its
status and overall health. Thisinformation may take the form of a notification,
essentially a callback set up by the client using the IMAPI server, or the client may
inquire of its own volition. This kind of communication and data exchange is the heart
of networked computing and is required in order to administer the network with which
you communicate.

ManagedObject Classes

The ManagedObject class implements a distributed management architecture. It
enables multiple clients to obtain links to the same managed server and affect changes
on them simultaneously. Its underlying communication mechanism is Java RMI (see
Figure 11-3). Using remote method invocations, the ManagedObjects residing on the
client side can talk to the RMI ManagedObject server running within the managed
server.

Figure 11-3. RMI is the underlying communication mechanism of JMAPI.

Managed Object Managed Object
Client Server
RMI RMI

In order for a ManagedObject to begin communication with the object it wishes to
manage, the management server must be configured. Thisis done using the RMI
paradigm of creating a public interface for the ManagedObject clients to talk to first.
Here we are going to create an employee object and attempt to manage it:

public interface Employeelnterface extends ManagedObject

{
// set and get a task

public void setTask(
String newTask);
public String getTask();

// set and get the employee®s name
public void setName(

String newName);
public String getName();

Asyou can see, this public interface inherits from ManagedObject and, therefore, gets
all the RMI functionality it needs. In so doing, we need not mention RMI throughout
the server explicitly. Indeed, the RMI network code is part of ManagedObject.

Implementing the ManagedObject

Once we have created the interface, we must create the implementation of the
ManagedODbject class. This adds the functionality to the interface so that we have
much more than a skeleton. We will add a constructor and implement the functions
prescribed in the Employeel nterface object.

public class Employeelmpl extends ManagedObjectimpl
implements Employeelnterface
{

public Employeelmpl () throws RemoteException

{
super(Q);

public void setTask(
String newTask
)

{
}

public String getTask()

{
}

public void setName(
String newName
)

{
}

public String getName()

{
}

In addition, we must implement the performAction methods that map the creation of
M anagedObj ects using the ManagedObjectFactory of our implementation. Whenever
this ManagedObject is created, deleted, or modified using the factory, one of the
performAction methods will be called.

public class Employeelmpl extends ManagedObjectimpl
implements Employeelnterface
{

public Employeelmpl () throws RemoteException

{
super();

public void setTask(
String newTask
)

{
}

public String getTask()

{
}

public void setName(
String newName
)

{
}

public String getName()

{
}

public void performAddActions(
StatusObservable observable,
CommitAndRol lback commitObj

)
{
}

public void performModifyActions(
StatusObservable observable,
CommitAndRol lback commitObj

)

{

}

public void performDeleteActions(
StatusObservable observable,
CommitAndRol lback commitObj

NN

The perform methods accept an observable parameter. This facilitates notifications,
which we will discuss shortly. Perform methods al so take a CommitAnd-Rollback
object to keep track of all the operations on the ManagedObject. If we encounter any
kind of error during the Perform method, the CommitAndRollback object will allow
the ManagedODbject to backtrack and resume its previous unaltered state. This ensures
that the perform methods are always atomic in nature, meaning that either the whole
thing is complete or none of it is. In keeping with their implementation, the perform
methods are intended for atomic operations (database access, file manipulation, or the
like). We have not implemented anything in them here, but they are still required as
part of the ManagedObject implementation.

Managed Attributes

The name and task attributes of our employee need not be created in the

Employeel mpl object itself. Instead, we can take advantage of the ManagedObject's
attribute mechanism. We can enable the ManagedObject to handle persistence and
network-related tasks associated with the attribute for us by storing our attributes
within the ManagedObject's infrastructure.

public class Employeelmpl extends ManagedObjectimpl
implements Employeelnterface
{

public Employeelmpl () throws RemoteException

{
super(Q);

public void setTask(
String newTask

)
{

setknownAttributes (“employee-task™™, newTask);
}
public String getTask()
{

return (String) getAttribute (“employee-task™);
}

public void setName(
String newName

)
{

setknownAttributes (“'employee-name', newName);
}
public String getName()
{

return (String) getAttribute (“employee-name');
}

public void performAddActions (
StatusObservable observable,
CommitAndRol Iback commitObj

}

public void performModifyActions(
StatusObservable observable,
CommitAndRol lback commitObj

)
{
}

public void performDeleteActions(
StatusObservable observable,
CommitAndRol lback commitObj

PN

ManagedObjectFactory Classes

In the previous section, we saw how a ManagedObjectFactory enables a client to
obtain a handle to the server with which it wishes to speak. The

M anagedObj ectFactory is no different from the BMW auto factory in Spartanburg,
South Carolina. In Spartanburg, BMWs flow off the assembly line one by one. Here,
our ManagedObjectFactory enables us to serve up ManagedObjects on demand,
creating them on the fly, initializing them, and readying them for use. Aslong as our
objects implement the ManagedObject interfaces, they can be created and obtained
through afactory.

Notifications

We discussed how notifications are based on the Java Observer and Observable
classesin the client section. Unlike in Chapter 5, "Java RMI: Remote Method
Invocation," supporting notification callbacksin IMAPI involve virtually no effort on
our server's behalf. The ManagedObject implementation takes care of tracking the
individual subscribing clients and publishing information when necessary. By using
attributes as we did earlier, the ManagedObject is able to intercept changes made to
the server without the programmer having to supply it with any additional information.

Managed Data

JMAPI aso enables you to set up your data structures and member variables so that
they can be managed from clients as well. Y ou can allow clients to check on the
integrity of the data contained within your remote Java servers by registering your
data with the ManagedObject class. The client then could execute a series of stepsif it
finds something to act on.

Server Agents
Leigh Steinberg is the sports world's greatest agent. He is able to obtain lucrative

contracts and signing bonuses for his numerous clients. Similarly, software agents act
on behalf of parent applications and obtain information or make invocations when

triggered by certain events. The agents are remote objects, so they run in their own
process, perhaps on their own machine, perhaps even on aremote network. In so
doing, they do not affect the performance of the calling object.

Setting up an agent is similar to setting up an RMI object, but again you must handle
much of the RMI overhead.

Summary

Managing your networked applicationsis a complex and difficult task. The more
objects you introduce into your system, the greater your chances are of things going
wrong. JMAPI enables you to plug your applications into a predefined management
scheme easily. In so doing, you can start your object system and watch from afar how
it behaves. By setting up alerts and "traps,” you can make sure that your object system
alerts a global manager when a problem arises. Together with IMAPI, your
applications can be reliable systems of objects.

Now that we've spent a few chapters discussing how to develop systems of objects
using software, let's take a moment to examine how Java-based hardware can change
your professional and personal worlds. Someday soon, every computer-based
appliance will be Java-powered, fulfilling Java's original intention as alanguage for
embedded systems.

Chapter 12. What Are Directory Services?

e Some Background
e Introducing Java Naming Directory Interface
e Using the INDI to Access LDAP-Based Data

Directory services are the services provided by special network databases that are
used, much as paper phone books are (i.e., to map names to addresses, phone numbers,
and services). The directory isreally adistributed hierarchically arranged database
made up of keys and associated attribute name/value pairs.

Whether or not you redlize it, you use directory services whenever you use the
Internet. The Domain Name System is aform of directory, although not as general
purpose as the directories we will be discussing in this chapter. DNS provides a UDP-
based naming lookup service, namely that of mapping IP addresses to host names and
vice versa. Whenever we use our Web browser to retrieve a Web page, |P must use
DNSto look up and retrieve the | P address of the host computer that has the page we
wish to view. The sameistrue for FTP: whenever we want to retrieve afile from an
FTP server, IP uses DNS to look up the IP address of the host running the FTP server.

Whenever we use our e-mail client, whether it be Netscape M essenger, Outlook, or
any number of other e-mail clients (SMTP/POP3/MAPI), the e-mail address books
provided are usually based on Directory Services and the Lightweight Directory
Access Protocol (LDAP). If you are a Netscape Messenger user and check out
directories under your browser preferences (for newer browser users Directory
definition is right with the Address Book), you will be able to see the hostnames of a

number of commercial directories that allow general access to the public. If you then
select your persona address book, export (under the file drop-down menu) it to afile,
and then use Notepad or Wordpad to view it, you will notice that each entry is keyed
by a set of tags. Y ou should see the dn: tag followed by a set of name/value attributes.
Filesin thisform are in aformat known as LDAP Data Interchange Format (LDIF).
Thisfileformat is used for the batch process loading (and backing up) of Directory
Servers. The LDIF fileitself is usually populated with information from other data
sources (possibly your company's Human Resources Database, the Userid/password
database for your Local Area Network, or data extracted from arelational database
that keeps track of the hardware configuration of all the workstations in your site and
isused via Directory Services by your local helpdesk).

Currently the two most popular uses of directory servers are for user authentication
(by userid and password) for accessing limited access Web pages/sites and as e-mail
address books for intranet-based address books (for a corporation) and by the large

| SPs as address books for their users. In the near future, abig user of directory servers
will be e-Commerce applications using the Enterprise Java Beans framework because
directory servers are extremely fast. As a special-purpose database, they provide an
ideal mechanism for giving persistence to Java objects.

Some Background

The concept and architecture of modern directory services comes to us from the SO
X.500 specification for directory services.

A directory isintended to be a hierarchically arranged database; arrangement of the
database is left up to the designer of the Directory Information Tree (DIT). The DIT
of amultinational corporation could be arranged a number of ways. It could be
arranged hierarchically by geographic location asin Figure 12-1 or by organizational
function asin Figure 12-2.

Figure 12-1. Distinguished name structure by geographic location.

Root
— c=US
L — o=SUNY
— ou=Binghamton
i: cn=Dick Steflik
cn=Les Lander
— ou=0sweago

— o=California

— ou=UCLA
|— en=John Smith

— ou=Berkeley

— c=UK

Figure 12-2. Distinguished name structure by organizational function.

Directory User

Directory
User Agent

Read | Search| Modify
Port Port Port

Directory Object

Every directory entry is uniquely identified by an ordered sequence of name/value
attributes. The ordering of the attributes is such that it reflects the hierarchical
relationship that exists between the attributes. Assume the following naming attributes:

Attr. Name Meaning
c Country
Organization
ou Organizational Unit
cn Common Name

If we use the concatenation of these attributes and their values to identify an entry in
the directory, we have defined the entry's distinguished name. Distinguished names
are unigue, much like the primary key in arelational database table. My distinguished
name using the preceding schemawould be

{C=US, O=SUNY, OU=Binghamton, CN=Dick Steflik}

Figure 12-1 shows this pictorialy.

Each node in the tree structure has a distinguished name made up of the list of
attributes up to and including that node. The distinguished name for Binghamton
University would be

{ dn: ou=binghamton, o=suny, c=us}

X.500 defines the directory service as an object (see Figure 12-2), accessed through a
set of service ports. Each port isintended to provide access to a specific set of services.
Three of the primary service ports defined early in the X.500 development are:

1. Read Port provides the ability to read information from a directory.
2. Search Port providesthe ability to search and list directory information.
3. Modify Port provides the ability to add, modify, and delete directory entries.

To support these service ports, the DAP has avery comprehensive set of protocol-
based operations that address all the facilities needed to create and maintain alarge
distributed directory.

For applications that are directory-oriented but of a scale smaller than what X.500 and
DAP were designed for, applications like address books for Web browsers,
authentication for Web pages, alighterweight version of the DAP has been devel oped.
This slimmed down version of DAP is named Lightweight Directory Access Protocol
or LDAP for short. LDAP is described in RFC 2251 as an access mechanism to X.500
directories. It is alanguage-independent description of the protocol operations
required to interact with an X.500 directory.

Introducing Java Naming Directory Interface

The architecture of Java Naming and Directory Interface (JNDI) is a Java-specific
architecture for accessing a number of directory-based data repositories including
LDAP. The Javalnterfaceto LDAP is only one of a number of services provided
through the JNDI architectural model shown in Figure 12-3.

Figure 12-3. JNDI architecture.

Java Application

JNDI API

Naming Manager

Service Provider Interface

CORBA NDS NIS LDAP DNS RMI

If we re-examine the architectural picture of JDBC in Chapter 4, we can see some
very real similarities. In Figure 12-3, if we replace "JNDI" with "JDBC," "Service
Provider Interface" with "Driver Manager," and "CORBA, NDS, NIS, LDAP, DNS,
RMI" with words like "DB2, Oracle, Access, Sybase," we essentially have the same
picture. The architecture is essentially the same after al; directories are really just
specia -purpose databases, and for each database (datasource) there isadriver or
service provider.

The main difference between directories and relational databases is that the directory
information model is hierarchical, whereas, the model for relational databasesis a set
of tables. Relational databases are much more general purpose than directories;
because directories are specia-purpose, their data model can betailored to their
special-purpose uses. This can make them extremely fast for the types of queries done
against them, much faster than the equivalent query using arelational database.

Using the JNDI to Access LDAP-Based Data

The Netscape Directory server comes with a sample LDIF file for the Airius
Corporation that can be imported to set a reasonably sized and typically set up
database. Welll use this directory to demonstrate the major LDAP features.

Setting up the Airius Directory

To start this exercise, go to the Netscape download site for server software and
download atrial copy of the Directory Server. Thiswill get you a 3060 day copy of
the world's best Directory Server (yes, | am alittle biased). Thiswon't run on
W95/W98 so make sure to download a copy for the appropriate platform you want to
run the service on.

Using the Netscape Admin Interface, turn off the instance of the Directory Server that
you wish to install Airiuson. (In Netscape Suite Spot there is a separate Admin server
through which you do all Suite Spot server administration.) Click on the button with
the name of the instance you want to administer. When the page for the Netscape
Directory Server administration is displayed, click the Database Management button
and then click on the Import choice in the |eft-hand frame. On the Import panel, select

the radio button for Airius.dif and then click the OK button. Once imported,
remember to turn the Directory Server back on before exiting the Admin Server.

To test your installation, enter the directory setup screen for your browser (and add
the server by, assign it a name, enter the |P Address/Hostname or Localhost (if you
areusing it locally), enter port 389 as the LDAP port, and enter "o=airius.com"” asthe
search root. Save this and try to query *; you should get an address book filled with
the people of the Airius Corp.

The Airius Schema

The following isthefirst part of the Airius LDIF file. If we examine it alittle bit, we
can determine the schema of the Airius directory and will start to see the power of the
LDIF import/export file format. We will also see that some of the information in the
LDIF file can be added/updated through the Administration Interface to the Directory
Server and that some of the datais best put in viathe LDIF file, even though some of
the datais directly put in by the people in the directory.

NOTE

When examining the LDIF file, keep in the back of your mind the fact that lines
that are indented by a single space are continuation lines for the preceding line.

dn: o=airius.com

objectclass: top

objectclass: organization

0: airius.com

aci: (target ="ldap:///o=airius.com™)

(targetattr !'="userPassword")
(version 3.0;acl "Anonymous read-search access';allow
(read, search, compare)(userdn = "ldap:///anyone');)

aci: (target="ldap:///o=airius.com™)

(targetattr = "*")

(version 3.0; acl "allow all Admin group"; allow(all)
groupdn = "ldap:///cn=Directory Administrator

s, ou=Groups, o=airius.com;)

dn: ou=Groups, o=airius.com

objectclass: top

objectclass: organizationalunit

ou: Groups

dn: cn=Directory Administrators, ou=Groups, o=airius.com
cn: Directory Administrators

objectclass: top

objectclass: groupofuniquenames

ou: Groups

uniquemember: uid=kvaughan, ou=People, o=airius.com
uniquemember: uid=rdaugherty, ou=People, o=airius.com
uniquemember: uid=hmiller, ou=People, o=airius.com

Thelinedn: o=Arius.com identifiesthis as the distinguished name for the root of the
directory tree and is a'so amember of the "top" and "organization" object classes; the
only information stored in this nodeis "o: airius.com,” which identifies the
organization as airius.com.

dn: o=airius.com
objectclass: top
objectclass: organization
o: ailrius.com

The next group of linesisreally asingle line (notice the indention) that identifies the
aci (access control information) for the current node (root)

aci: (target ="ldap:///o=airius.com™)

(targetattr !'="userPassword")
(version 3.0;acl "Anonymous read-search access';allow
(read, search, compare)(userdn = "ldap:///anyone');)

L etting our imagination run alittle bit wild, we can surmise that anyone in the
directory has authority to read, search, and compare the userPassword. The second aci:

aci: (target="ldap:///o=airius.com™)

(targetattr = "*')

(version 3.0; acl "allow all Admin group™; allow(all)
groupdn = "ldap:///cn=Directory Administrator

s, ou=Groups, o=airius.com";)

authorizes anyone in the group with the common name "Directory Administrators’
full authority for the tree rooted at "o=airius.com” (target attribute). The next
distinguished name:

dn: ou=Groups, o=airius.com
objectclass: top

objectclass: organizationalunit
ou: Groups

identifies at the next level in the tree an organizational unit called Groups. The
addition of the next dn: ou=Directory Administrators Structuresour tree as
shown in Figure 12-4. This dn: has additional information in it in the form of the
"uniquemenbers,” which stores each dn: of the unique members as part of the data for
that node.

Figure 12-4. Airius.com.

dn: o=airius.com

dn: ou=Groups,
o=airius.com

dn: cn=Directory Administrators,
ou=Groups,
o=airius.com

Examining the node

dn: cn=Directory Administrators, ou=Groups, o=airius.com
cn: Directory Administrators

objectclass: top

objectclass: groupofuniquenames

ou: Groups

uniquemember: uid=kvaughan, ou=People, o=airius.com
uniquemember: uid=rdaugherty, ou=People, o=airius.com
uniquemember: uid=hmiller, ou=People, o=airius.com

we notice that the uniquememberstag identifies adn: that isin another branch of the
tree. The unique members are in the ou=People branch of the tree—which implies that
the tree actually looks like Figure 12-5.

Figure 12-5. Airius.com.

dn: o=airius.com

ou=Groups

cn=Directory Administrators,

uniquemember: uid=kvaughn
ou=People
o=airius.com

uid=kvaughn

Notice that to reference information in another branch of the tree all that needs to be
doneisto identify itsdn:.

If we examine more of the LDIF, we quickly come to the realization that the majority
of the file is taken up with the definitions of the individual people in the company.
Let'slook more closely at asingle entry becauseit is the meat of the schema and
identifies the attributes that we can query against:

dn: uid=kvaughan, ou=People, o=airius.com
cn: KirstenVaughan

sn: Vaughan

givenname: Kirsten

objectclass: top

objectclass: person

objectclass: organizationalPerson
objectclass: inetOrgPerson

ou: Human Resources

ou: People

1: Sunnyvale

uid: kvaughan

mail: kvaughan@airius.com
telephonenumber: +1 408 555 5625
facsimiletelephonenumber: +1 408 555 3372
roomnumber: 2871

userpassword: bribery

Most of the attribute entries are self-explanatory. Now that we understand the schema,
let's get on to the business of using the INDI to access information in our directory.

Connecting

Recall from JDBC that, before we can query, add to, update, or delete anything from a
database we must make a connection to it. To do this we need to create areference to
an object that implements the DirContext interface. Thisis usually done by creating
an Initial DirContext object and assigning it to a DirContext variable. To make the
connection, we need to pass some environmental information to the InitDirContext

object; thisis done by loading a Hashtable with a minimum of two pieces of
information:

1. Thefully qualified name of the service provider to be used
2. The URL (including port number) of the directory server we want to access.

We do this using predefined keys set up in the Context interface.

// create a hash table for passing environment info

Hashtable environment = new Hashtable();

// identify the service provider

environment.put(Context. INITIAL CONTEXT_FACTORY,
"com.sun. jndi.ldap.LdapCtxFactory™);

// identify the directory to be accessed

environment.put(Context.PROVIDER _URL,
"Idap://mydirectory.com:389");

// get a reference to the directory context

DirContext context = new InitialDirContext(environment);

Searching

This gets us a connection to the directory we wish to use, but to do a search we must
supply some additional information. A useful search would be to search the directory
for uid=kvaughan and display her attribute information.

When searching, we must set up a SearchControls object to tell the search engine the
scope of our search. The SearchControls class has three scopes, identified as constants,
that we can use depending on what it is we want to search for:

OBJECT_SCOPE—L imits the search to the names object.
ONE_LEVEL_SCOPE—Limitsthe search to al of the objects at the same
level in the named context.

SUBTREE_SCOPE—L imits the search to the named subtree.

A

//set the search scope
SearchControls scope = new SearchControl;
Scope.setSearchScope(SearchControls.SUBTREE_SCOPE)

®~NOUTA W

To do the actual search, we invoke the Search method on the DirContext object we
created a little while ago. The Search method has a number of overloads; make sure
that you read the API carefully, or you may not get the results you are after. For our
example, we will need to identify the base of our search, a search filter (ssmilar in
purpose to the "where" clause of an SQL select statement), and any constraints we set
(SUBTREE_SCOPE). The results from a directory search come back in adata
structure called a NamingEnumeration. NamingEnumeration is a JNDI-specific
extension of the Enumeration class that allows exceptions to be thrown during
enumeration (thisimplies that it needsto be in atry/catch statement).

public static String BASE = "O=airius.com";
public static String FILTER = "uid=kvaughan';
NamingEnumeration result = context.search(BASE, FILTER, scope);

If we have done everything right to this point, the search results are waiting for usin
the NamingEnumeration. Each entry in NamingEnumeration is a SearchResults object;
remember that NamingEnumeration holds objects and that as we take objects out of it
we must cast them to the appropriate type.

SearchResult srchresult = (SearchResult) result.next();

At this point, we can retrieve the distinguished name from the SearchResult object by
using its getName method,;

String dn = srchresult.getName();

Thiswill give us the distinguished name relative to where we rooted our search. To
get the entire distinguished name, we must concatenate the variable we used to base
our search on

String temp = "dn= " + dn + BASE;

The attributes are still in the SearchResults object and can be retrieved into an
Attributes object using the SearchResults getAttributes method

Attributes attrs = srchresults.getAttributes();

Recall from our brief introduction to LDIF that any attribute may have multiple values
(e.g., aperson may have multiple e-mail addresses). What we need to do now is
iterate through the returned attributes and, for each attribute found, iterate through the
list of returned values for that attribute.

NamingEnumeration ne = attrs.getAll();
While (ne.hasMoreElements)
{
Attribute attr = (Attribute) ne.next();
System.out.printin(attr.getiD());
Enumeration values = attr.getAll();
while (values.hasMoreElements())
System.out._printin(” " + values.nextElement());

The whole example follows:

import java.util_Hashtable;
import java.util._Enumeration;
import javax.naming.*;

import javax.naming.directory.*;

public class DirectorySearch

{
public static String BASE = "o=airius.com";
public static String FILTER = "uid=kvaughan';

public static void main (String args[])
{
try
{
// create a hash table for passing environment info
Hashtable environment = new Hashtable();
// identify the service provider
environment.put(Context. INITIAL CONTEXT_FACTORY,
"com.sun. jndi.ldap.LdapCtxFactory™);
// identify the directory to be accessed
environment.put(Context.PROVIDER _URL,
"ldap://mydirectory.com:389");
// get a reference to the directory context
DirContext context = new InitialDirContext(environment);
//set the search scope
SearchControls scope = new SearchControls();
scope.setSearchScope(SearchControls.SUBTREE_SCOPE) ;
NamingEnumeration result = context.search(BASE, FILTER,
scope);
SearchResult srchresult = (SearchResult) result_.next();
String dn = srchresult.getName();
String temp = "dn= " + dn + BASE;
Attributes attrs = srchresult._getAttributes();
NamingEnumeration ne = attrs.getAll();
while (ne.hasMoreElements())
{
Attribute attr = (Attribute) ne.next();
String attrname = attr.getID() + ": ';
Enumeration values = attr._getAll1();
while (values.hasMoreElements())
System.out.printin(attrname + values.nextElement());

}

catch (Exceptione)

{
}

System.out._printIn(""Exception: " + e.toString());

}

After compiling and running the program, we get Figure 12-6.

Figure 12-6. Output from the DirectorySearch program.

= MS5-DOS Prompt - EDIT H=] E3
[7«1z = ElleEl@ B g= Al
dn: uld:tuaughan,nuz]’euple,o:alrlus-r:nm :l
qivenname: Kirsten
telephonenumber: +1 408 555 5425
sn: Uaughan
ou: Human Resources
ou: People
l: Sunnyvale
roomnumber: 2871
ail: kvaughan@airius.com
facsimiletelephonenumber: +1 408 555 3372
objectclass: top
objectclass: person
objectclass: organizationalPerson
objectclass: inetOrgPerson
uid: kvaughan ——
cn: Kirsten Vaughan

4| | 4 P

This just happens to be what we were looking for. Neat stuff.

So far we've covered most of the basics that we need to be able to start thinking about
adding, modifying, and deleting entries to/from the directory. Wel'll address these
topics using code snippets and some associated commentary.

Adding Persons to the Directory

The hardest part about adding a person to the directory, besides creating the data input
panel, is creating a class that defines all the attributes that identify the person. Thisis
necessary because, to add the person to the directory, we must bind the person object
to their distinguished name.

String dn = "uid=mtoad, ou=People, o=airius.com";

Person newperson = new Person(‘mtoad","Mark',"Toad",
"ou=Engineering"”,
"mtoad@airius.com'™);

context.bind(dn, newperson);

Modifying Information Already in the Directory

To modify attributes of an existing entry, we first set up our environment and get a
reference to a directory context as we have in the previous examples. After we have
the reference, we create a Modificationltem array to hold the modifications we wish
performed on the item. Finally, we use the modifyAttributes method of the
DirContext object to update the data.

Modificationltem[] updates = new Modificationltem[3];
Attribute updateO new BasicAttribute(*'roomnumber®, "1234");
Attribute updatel new BasicAttribute(l", "Chicago™);
Updates[0] = new

ModiFficationltem(DirContext.REPLACE ATTRIBUTE,updateO);

Updates[1] = new
Modificationltem(DirContext.REPLACE_ATTRIBUTE,updatel);
context.modifyAttributes(dn,updates);

The DirContext interface also provides the tagged constants ADD_ATTRIBUTE and
DELETE_ATTRIBUTE for effecting the adding and deleting of attribute information.

Removing Entries from the Directory

To delete an item from the directory, we start out as we have previously, by obtaining
areference to a directory context; then all we do is use the destroySubcontext method
of the DirContext interface.

context.destroySubcontext(dn);

Authentication

One additional thing we must remember for any of the directory modification
operations is that, according to our directory ACI (refer to the section on LDIF), only
people belonging to the Directory Administrator group had al authority and would be
allowed to write into the directory. To do this, the application must authenticate with
the uid and password of one of the Directory Administrators. Thisis done by adding
three additional tagged values to the context environment Hashtable.

public static String ADMIN = "uid=kvaughan, ou=People,
o=ailrius.com";
public static String ADMIN_PW = "bribery";

env.put(Context.SECURITY_ AUTHENTICATION, "simple');
env.put(Context.SECURITY_PRINCIPAL,ADMIN);
env.put(Context.SECURITY_CREDENTIALS,ADMIN_PW);

Summary

There you have the five-penny tour of Directory Services, LDAP, and INDI. Asthe
industry progressesin its quest for ultimately scalable applications that are robust and
secure, we will see the Directory Server, LDAP, and JNDI take on larger roles. One of
the most exciting of which isthe storage of Java objects. Thisis exciting because
Directory Servers are so darned fast that they make an ideal place to store serialized

objects produced as part of an application’'s shutdown process; as part of the
application’s startup process, it retrieves the object from the server and picks up where
it left off. The best part isthat thisisjust the normal way that Directory Servers do
business (i.e., binding names to objects).

Chapter 13. Java and Security

Safety in Java

The Java Security Model

Java Class Security
Encryption

Authentication

Secure Sockets Layer

The Government and Security

We have al heard that Javais a"secure" programming language. What exactly does
that mean? In this chapter, we discuss the unique features of Javathat make it the
ideal choice for distributed network programming. Furthermore, we will discuss the
nuances of the applet host security model, as well as how security is handled from
within your Java applications.

We will also touch very briefly on Internet security and some of the alternatives you
may want to explore in your own networked applications to make them safe for cross-
network transmission. We begin our examination with the topic of cryptography. The
primary goal of cryptography isto provide data privacy, but, aswe will see,
cryptography can be used to provide other essential security principlesincluding
nonrepudiation, data integrity, and access-controlled authentication. We will then ook
at the issues surrounding authentication, a security process that attempts to identify a
participant (user, server, and applet) transaction.

Safety in Java

When we refer to Java as a safe language, we are referring to the fact that you cannot
"shoot yourself in the foot." There are no memory leaks, out of control threads, or
chance of ending up in the dark spiral of C++ debugging. Make no mistake—Javaisa
powerful language, and you will always end up with the possibility of sittingin an
infinite loop. Y ou can still freeze your Java code with thread deadlocks, and you can
certainly end up accessing parts of an array that aren't really there. In short, Javais
safe, but it isn't idiot-proof. The fact remains that, in order to screw up your Java
programs, you still have to make amajor effort.

Most Java programmers are pleased that Java has no pointers to memory locations.
This makes program debugging much easier, and it also makes security verification
possible. It cannot be verified at compile time that a pointer will do no harm. It can be
loaded at runtime with a naughty address to poke a hole in the password file or branch
to some code that sprinkles at-signs all over adisk. Without pointers, Java ensures
that all mischief is done within the downloaded applet running inside a Java Virtual
Machine. Moreover, memory is not allocated until runtime, and this prevents hackers
from studying source code to take advantage of memory layout because it is not

known at compile-time. Attempts to write beyond the end of an array, for example,
raise an ArraylndexOutOf BoundsException. Had the C language had this feature
(array bounds checking), the infamous Morris Internet worm would not have been
ableto trick the sendmail daemon (running with root privileges) into giving root
access to the worm.

Garbage collection, exceptions, and thread controls are part of Java no matter how
you try to useit. But, security and safety are two entirely different things. Safety
refers to protecting ourselves from our own misadventures. Security refersto
protecting ourselves from other people's devices. Because Java objects are loaded
dynamically, Java ensures that the objects are "trusted." Java's class security
mechanism makes sure that your applications are using the proper objects and not an
object that someone has dlipped into the download stream to wreak havoc on your
machine.

The Java Security Model

The Java security model has been a constantly evolving part of Java. In the JDK 1.0
model, the "sandbox" concept was introduced. In the sandbox model, all local code
(JDK-provided code) was run as part of the Java Virtual Machine, and all code
retrieved from remote servers (applets) was run in a"sandbox” area of the VM that
provided only alimited set of services. The reason for doing this was based on the fact
that any remotely retrieved code could be hostile. To protect the local machine the
sandbox provided only minimal access to the machine resources (Figure 13-1).

Figure 13-1. JDK 1.0 sandbox model.

Local Code
Remote Code

\\ Java Virtual Machine /
‘\\ _’../""#

Sandbox

|

Local Host System Resources
(File System, Sockets...)

The JDK 1.1 added to the JDL 1.0 security model the concept of "trusted applets' that
could run with the same privileges with respect to the local hosts system resources as
local code. Thiswas done through the advent of the Java Archive file format and the
inclusion of acorrectly signed digital signature in the JAR file. Unsigned appletsin
JDK 1.1 sill runin the sandbox (Figure 13-2).

Figure 13-2. JDK 1.1 security model.

Local Code

Hirmote
TrflTQ:; \\ Javva Virtusl Machine ,J_,r"fgil:]lg:“ud
(e N
[Sancim
e

Full:’l.cc:!:—..li.‘l Limited Access

Local Host System Resources
(File: Systerm, Sockals...)

The JDK 1.2 evolves the security model by changing the goals to make it:

1. Easy to usefine-grained access control
2. Easy to configure security policy
3. Easy to extend the access control structure
4. Easy to extend security checks to Java applications as well as applets (Figure
13-3).
Figure 13-3. JDK 1.2 security model.
All Code
Security Policy Class Loader

/1 N\
/ \

Sandbox Access 1o system resources
determined on individual
basis depending on
security policy

Local Host System Resources
(File System, Sockets...)

Easy to Use Fine-Grained Access Control

Fine-grained security has aways been a part of Java; the main problem was that the
JDK 1.0 and 1.1 models made it extremely hard to use. To get the degree of control
required, subclassing and customizing of the SecurityManager and ClassL oader
classesisrequired (not atask for the uninitiated or the faint of heart). This required
quite a bit of programming and an in-depth knowledge of computer and Internet
security.

Easy to Configure Security Policy

Because of the amount of code required to configure security policy with the earlier
JDKs, it would be more user friendly if the software developers and users could easily
configure the security policy viaan external policy file built with either atext editor
or aGUI tool.

Easy to Extend Access Control Structure

To extend the access control structure in JDK 1.1 required adding additional "check™
methods to the SecurityManager class. The new model does not require the addition
of new "check" methods to the SecurityManager; the new architecture is based on
permissionsin the policy file. Each permission defines access to a system resource.

Easy to Extend Security Checks to Applications

In an effort to simplify things and have all code treated equally, the JDK 1.1 concept
of "trusted" code was dumped in favor of amodel where all code (local or remote) is
treated equally, including JDK 1.1 trusted applets. It isfor this reason that some JDK
1.1 applications and trusted applets will fail with security exceptions when run under
the JDK 1.2 virtual machine.

Java Class Security
Java's security model is made up of three major pieces:

e The Bytecode Verifier
o TheClass Loader
e The Security Manager

The Bytecode Verifier

The designers of Java knew that applets could be downloaded over unsecured
networks, so they included a bytecode verifier in the Java Virtua Machine's
interpreter. It checks to make sure that memory addresses are not forged to access
objects outside of the virtual machine, that applet objects are accessed according to
their scope (public, private, and protected), and that strict runtime type enforcement is
done both for object types and parameters passed with method invocations. The
bytecode verifier does these checks after the bytecodes are downloaded but before
they are executed. This means that only verified code is run on your machine; verified
code runs faster because it does not need to perform these security checks during
execution.

The Class Loader

Each imported class executes within its own name space. There is a single name space
for built-in classes |loaded from the local file system. Built-in classes can be trusted,
and the class |oader searches the local name space first. This prevents a downloaded
class from being substituted for a built-in class. Also, the name space of the same
server is searched before the class |oader searches other name spaces. This prevents
one server from spoofing a class from a different server. Note that this search order
ensures that a built-in class will find another built-in class before it searches an
imported name space. So, when classes are downloaded, the client's built-in classes
are used because they are trusted (See Figure 13-4).

Figure 13-4. Downloaded Java objects use the local built-in classes rather than their
own.

Java Object

L]
Cl d
_ ass
Built-in
Classes Loader
— -

Local Machine [Java Object

The Security Manager

New to Javain the JDK 1.2 isthe ability to define a security policy that can be
defined for each application separately from the Java code in apolicy file. The policy
defined in this external fileis enforced at runtime by the Java security manager class.
Java classes that have the possibility of doing things that might violate the security
policy have been rewritten to include checks of the defined policy so asto verify that
the application writer really wantsto allow certain operations.

Java 1.2 Security Policies

New to Javawith the release of Java 1.2 is a methodology that provides a much finer-
grained approach to the security of important system resources like the file system,
sockets access, system properties, runtime facilities, and security facilities themselves.
Thisis done by establishing security policies; when an application/applet/serviet is
loaded, it is assigned a set of permissions that specify the level of access (read, write,
connect,...) that the code has to specific resources. If code isn't specifically given
permission to access something, it won't be able to. These sets of permissions are
specified in an external text file called apolicy file. Policy files can be created with a
text editor or by using the policy tool that comes with the JDK.

For the sample code in this book, a policy file called "policy.all" is provided on the
CD. Thisfilewill grant all permissions to everything (which is good for the purposes
of this book but bad from the standpoint of production code deployment; code placed
into a production environment should define only the permissions that it needs to run).

Policy Files

Policy files are made up of aset of "grant" statements that have the general form of:

Grant [SignedBy 'signer names'™] [, CodeBase "URL"]

permission 'permission_class_name™ ['‘target name']
[, "action'] [, SignedBy, "sigher names'];
permission. . ..

where

» SignedBy—Indicates that thisis signed code (asin asigned JAR file) and that
signatures should be checked. Thisis used to verify that downloaded codeis
from atrusted source. Thisis an optional attribute; if it is absent, signature
checking is skipped.

o CodeBase—A URL (usualy either http:// or file://) of either afileor a
directory to the grant applies.

e permission—The class that enforces the policy; the most commonly used are:

o javaio.FilePermission—accessto files

o javaio.SocketPermission—access to sockets

o javalang.RunTimePermission—access to threads and system resources
o java.util.PropertyPermission—access to properties

o target—A path to the resource. Thisis optional and, if absent, refersto the
current directory.

e action—Operations alowed (read, write, execute, delete).

« SignedBy—Signers of the permission classes; if signers can't be verified, the
permission isignored.

There are, by default, two policy files that establish the permissions that an
application runs under—a system-wide policy file and an optional user (application)
specific policy file. The system-wide policy fileiskept in
/java.home/lib/security/java.policy (java.home is a system property that contains the
name of the directory that the JDK isinstalled in).

The default policy java.policy follows. It grants all permissions to standard extensions,
allows anyone to listen in on ports above 1024, and allows any code to read standard
system properties that aren't considered sensitive.

grant codeBase "file:${java.home}/lib/ext/>" {
permission java.security.AllPermission;};

// default permissions granted to all domains

grant
{
// Allows any thread to stop itself using the
// java.lang.Thread.stop() method that takes no argument.
// Note that this permission is granted by default only to remain
// backwards compatible.
// 1t is strongly recommended that you either remove this
// permission from this policy file or further restrict it to code
// sources that you specify, because Thread.stop() is potentially
// unsafe. See "http://java.sun.com/notes'"” for more information.
// permission java.lang.RuntimePermission ''stopThread";
// allows anyone to listen on un-privileged ports
// permission java.net.SocketPermission "localhost:1024-"",
"listen";
// 'standard" properties that can be read by anyone

permission java.util_PropertyPermission "java.version', "read";
permission java.util_PropertyPermission "java.vendor', "read";
permission java.util _PropertyPermission "java.vendor.url™, "read";

permission java.util_PropertyPermission "java.class.version”,
"read"';

permission java.util _PropertyPermission "os.name', "read";
permission java.util _PropertyPermission ""os.version™, "read";
permission java.util_PropertyPermission "os.arch', "read";
permission java.util_PropertyPermission "file.separator', "read";
permission java.util_PropertyPermission "path.separator', "read";
permission java.util _PropertyPermission "line.separator', "read";

permission java.util _PropertyPermission
"java.specification.version","read";

permission java.util_PropertyPermission "java.specification.vendor",
"read";

permission java.util _PropertyPermission "java.specification_name™,
"read";

permission java.util _PropertyPermission
"java.vm.specification.version', "read";

permission java.util_PropertyPermission
"java.vm._specification.vendor', "read";

permission java.util _PropertyPermission
"java.vm.specification.name', "read";
permission java.util_PropertyPermission "java.vm.version', read";
permission java.util_PropertyPermission "java.vm.vendor', read";
permission java.util _PropertyPermission "java.vm.name', read";

};

User- or application-specific policy files are kept by default in user.home/.java.policy
(user.home is the system property that specifies the user's home directory.

Y our overall security policy iscreated at runtime by first setting up permissionsin the
java.policy file and then setting the permissions found in the user policy file. To set up
the system policy to your own policy just set the java.security.policy property to the
URL of the policy file to be used. The URL can be specified as:

A fully qualified path to the file (including the file name).
: jJava -Djava.security.policy=c:\advjavacd\rmi\statsl\policy.all

rmi .Statsl.StatsServerimpl

0GR WN

7. Anyregular URL.

8.

9. java -Djava.security.policy=http://policy.allStatsServerimpl
10.

11. The name of afilein the current directory.

12.

13. java -Djava.security.policy=policy.all
rmi .Statsl.StatsServerImpl

14.

The policy.all file we have been referring to follows:

// this policy file should only be used for testing and not deployed
grant

{
};

permissionjava.security_AllPermission;

Security Tools

The JDK comes with several toolsto help you manage the security of code that you
write and wish to deploy:

1. policytool—A Java application that comes with the JDK and that provides you
with a GUI tool for creating and maintaining policy files.

2. keytool—Used to create digital signatures and key pairs and to manage the
keystore database.

3. jarsigner—Allows the attaching of adigital signature to aJAR file.

For detailed instructions on these tools, refer to the JIDK documentation and the
security path of the Java Turorial at
http://java.sun.com/docs/books/tutorial/securityl.2/index.html.

Security Problems and Java Security Testing

Finally, the Java language has been thoroughly field-tested by high school and
university students, college dropouts, and professional hackers lurking in the dark
alleys of the World Wide Web. Each and every one of their creative minds was
confident it could find a flaw in such a seemingly wide-open door to any system in the
world! The most publicized security breaches happened early in Java's distribution,
and all have been corrected in the current releases. It has been very quiet ever since.
The flaws that were uncovered were implementation errors, not design problems. One
group was able to insert its own class |loader instead of the one loaded from a secure
local file system. Clearly all bets are off if an untrusted class |oader that doesn't
enforce the class search order we described earlier is used. Another implementation
bug was exploited by using a bogus Domain Name Server in cahoots with an evil
applet. Java 1.0.2 uses | P addresses instead of hostnames to enforce the network
access security levels described earlier.

Details about these early security flaws and their corrections can be found at
http://java.sun.com/sfag.

Encryption

In this section, we describe some of the technigues commonly used to provide privacy
during data exchanges between two parties. Data traveling through the Internet can be
captured (and possibly modified) by athird party. Certainly, you do not want your
credit card number to be revealed to athird party and you probably aso want the
merchandise you purchased to be delivered to your address and not to a different

address inserted by athird party. Data encryption ensures that a third party will not be
able to decipher any message sent between a client and a server.

A very simple agorithm used to scramble "sensitive" jokes on the Internet is called
"rot13" because it rotates each character by 13 positionsin the alphabet. That is, "a" is
mapped to "n," "b" is mapped to "o0," and so on. This algorithm also decrypts a
message that was scrambled by it. Thisis adequate for its purpose: to protect people
from reading ajoke that they might fedl is offensive. Thisis an example of symmetric
key encryption, where both sides use the same key (13) to encrypt and decrypt a
scrambled message (see Figure 13-5).

Figure 13-5. Symmetric key encryption decodes messages with a key on both the
sending and receiving ends.

Client Elt— Moy O + Key | Server

In its most commonly used mode, data encryption standard (DES) uses a 56-bit key to
scramble message blocks of 64 bits; in this form DES encrypts large amounts of data
relatively fast. DES s currently one of the encryption algorithms used by Secure
Sockets Layer (SSL). Recent research has shown that 56-bit DES is becoming
insufficient for providing robust encryption for security-sensitive applications. Many
companies now use "triple DES;," which encrypts each block of data three times with
three different keys.

One problem with symmetric key algorithms such as DES is key distribution (i.e.,
how do | share the private key securely among the participants?).

Public key, or asymmetric cryptography, uses a pair of mathematically related keys
for each user. Everyone can know a user's public key, but the private key must be kept
secret. To send data to another user, the sender encrypts the data using the recipient's
public key and sends the encrypted message to the recipient. The recipient decrypts
the message using his or her private key. Because only the recipient knows the private
key, data privacy is ensured. Asymmetric algorithms are inherently slower than their
symmetric counterparts. The key distribution problem of symmetric algorithmsis
overcome through the use of the public/private key pairs because the public key can
be widely distributed without fear of compromise. Thereis still one problem with key
management in public key encryption schemes. Namely, how do | know that the key |
am using for Joeisreally Joe's public key? It could be possible for a network
interloper to substitute his or her public key for Joe's public key. A variety of trust
models have risen to combat this problem. For corporations, the most prevalent model
isthe hierarchical trust model, which relies on the use of digital certificates and
certificate authorities to validate users public keys.

Real-world cryptographic implementations utilize a combination of public and private
key encryption to provide not only data privacy but also nonrepudiation (viadigital
signatures), access control, and authentication. These solutions use the strengths of

both public key (key distribution) and private key cryptography (speed); an example
follows.

John creates a document and wants to send it to Mary. John first encrypts the
document using a symmetric algorithm (like DES) and arandomly selected key. The
randomly selected key is then encrypted using an asymmetric algorithm (like RSA)
and Mary's public key. A message digest function (one-way mathematical function
(like MD5) is performed on the original document producing a fixed-length message
digest. This message digest is encrypted using an asymmetric encryption algorithm
using John's public key. These three elements are then sent to Mary over some
unsecured communications link. Thisis shown in Figure 13-6.

Figure 13-6. A combination of symmetric and asymmetric encryption.

Jnhn?\ Symmalric
Document / Algarithm ™
- L |

,,r-"“/ (DES)
\T Random -
Symmetrical

\ Key e |
| T Public Key | e —
\ \¢ . -~ -
| John's _ Algorithm _;_H\Unsecured],
. T (RSA) | _Channel .-
Public = - Skl
K | Digital
\H ol Envelope
\ John's
|\ Private T Public Key
Key Algorithm ey
M (RSA)
-
Message -
Digest |~
Function

The process of decrypting and verifying the encrypted document is shown in Figure
13-7 and goes something like this: Mary uses her private key to retrieve the random
symmetric key used to encrypt the document. Because Mary is the only one who
knows her private key, she isthe only one who can open the "digital envelope,” thus
ensuring data privacy. The retrieved symmetric key is used to decrypt the document.
Using the same message digest function as John, Mary produces a message digest for
comparison to the one sent by John. Mary now uses John's public key and the
asymmetric encryption (RSA) to retrieve the message digest sent with the document.
By using John's public key to retrieve the message digest, Mary has also verified that
the message was sent by John (i.e,, retrieved his digital signature) because only John's
private key could have been used to encrypt the message digest. The message digest
sent with the document is compared with the one computed by Mary. This
comparison ensures the data integrity. If the digests match, the document was
unaltered during transmission.

Figure 13-7. Decryption of example.

Random Symmaetric
Symmetric ————¥ Algorithm J/H Hﬂ\
P . Mary's Key (DES) t\‘ c
(UHSEcured:l Private
v Channel Key ™
—— b R‘*\i Public Key Originsl Verified
Algorithm Documant Original
(RSA) Document
A" / T
\1‘4 4 Wessage » Message
Digital Digest I::Iil;\uals.t‘g
Ernvelope Function
\ compare
Puhlic_ Ky v
Algorithm » Message
i iHEA:l | Dlgnsl
John's - T
Public < ~—
Key 'y Slgrj_atur_e
Varification

Java Cryptography Extension (JCE)

The JCE provides a set of APIsthat allow you to encrypt, decrypt, and password-
protect information.

Authentication

In many applications, it isimportant to authenticate the identity of a client making a
request for a service. Examples include banking, financial, real estate, medical records,
and ISP (Internet Service Provider) applications. An ISP, for example, wants to ensure
that Internet access is being provided to a paying customer and not the customer's
housekeeper. The online stock trading application wants to make sure that it isthe
portfolio owner who is making trades.

The usual way to do thisisto require an account number or customer name and a
password. Thisis adequate for workstations and time-sharing systems and
client/server sessions such as calling Charles Schwab to manage your stock portfolio.
In adistributed system, many different servers provide services. Instead of asingle
authentication to a single server or application, that server must authenticate each
service request sent over the network.

One obvious requirement of such an authentication system isthat it be transparent to
the user. The user does not want to type in a password for each service each timeit is
requested. Another requirement isthat it be available at all times because, if a server
cannot authenticate arequest, it will not provide the service. When the authentication
serviceis unavailable so are all the services that useit. A less obvious requirement is
that authentication must be protected against capture and playback by another user on
the network. Capture cannot be prevented on broadcast media such as an Ethernet
cable, so the authentication procedure must be able to prevent a playback by an
impostor.

Kerberos

One popular authentication system is Kerberos, which is named after a three-headed
guard dog in Greek mythology. It depends on athird party that is trusted by both
client and server (see Figure 13-8). Clients request aticket from the third party. The
ticket is encrypted using the server's secret password, so the server trusts the client
when it can decrypt the ticket. The server's password is known only to itself and the
third party. The third party knows everyone's password! This means that all systems
are vulnerableif the trusted third party is compromised.

Figure 13-8. Servers can trust clients only if they can decrypt the ticket from the
Kerberos server.

Kerberos
Server

Server

A well-known bank has two major data centers, one in San Francisco and the other in
Los Angeles. Each center backs up its data at the other site. In thisway, the bank can
resume operation soon after serious damage to either data center. The Kerberos
servers are replicated at both sites and kept behind "the glasswall.” In fact, thereisa
sealed walkway with locked doors at both ends and a badge reader with avideo
camerain the middle. If your face doesn't resemble the one on the badge, you are not
allowed into the room that houses the Kerberos servers. In fact, two or more very
large people will promptly escort you out of the building.

Including a timestamp in the ticket thwarts playback. That is, the Kerberos server
encrypts the client's IP address, a session key, and a timestamp using the server's key.
The client encrypts its service request message with the session key and sendsiit,
along with the ticket, to the server. The server usesits key to decrypt the ticket. If the
IP address in the ticket matches the | P address in the I P packet header and the
timestamp is within a few milliseconds of the current time, then the server accepts the
client's request. It uses the session key to unscramble the request and perform the
service. It's as simple as that. Playback is impossible because the encrypted timestamp
will have "timed out" before an impostor can capture and try to replay the request.
Also, the IP address of the impostor will not match the IP address encrypted in the
ticket.

Digital Signatures and Public Key Encryption

The theory behind digital signatures and public key encryption isthat in agiven
system every user has apair of digital keys. In the case of the Web, the mere act of
installing a browser on your system will generate the private and public keys to be
used with that browser. If you have two browsersinstalled (e.g., Netscape and 1E4),
then you will have two sets of private and public keys, one set for each browser. The
basic premise behind public key encryption is that using some algorithm you can use
your private key to generate a permutation (encrypt) of a message that can only be

decrypted using your public key. If you carefully distribute your public key to the
people you normally deal with, anytime you send them a message they will be able to
read it using your public key.

Secure Sockets Layer

By far the most widely used authentication and encryption on the Internet in general
and on the Web specifically is Secure Sockets Layer. SSL can be used with any
connection-based protocal. It's called alayer because we essentially insert an
additional protocol layer between TCP and the Application layer of the TCP/IP stack

(see Figure 13-9).

Figure 13-9. Secure Sockets Layer.

HTTF SMTP POP3
B0 25 LAY

HTTPS S5MTP 5P0OP3
443 465 995

| Secure Sockels |."I:||'l“.|'

| Transport |
|
Mework |
|
— |

SSL adds the following features to the reliable stream provided by TCH/IP:

Authentication and nonrepudiation of the server viadigital signatures.
Authentication and nonrepudiation of the client via digital signatures.
An encrypted stream to provide privacy.

Data integrity through message authentication codes.

AL

Netscape Corporation designed SSL as away of ensuring secure communications
between its browser and server products. SSL has become the de facto standard for
secure communications between Internet clients and servers.

For alook at the SSL v3.0 specification, see http://home.netscape.com/eng/ssl 3/ssl-
toc.html. To use SSL requires cooperation between the client browser and the server.
At the server, a secure instance of the Web server must be running on the well-known
port 443. (Some Web sites run both an unsecure and a secure instance of the Web
server on the same machine. The unsecure instanceis listening on port 80, while the
secure instance is running on port 443. Some sites run the unsecure and secure
instances on completely separate hosts.)

At the browser end, all references to the URL s of documents or applications must be
preceded with the protocol https rather than http. Aslong as the protocol notation is
https, the port is defaulted to 443 (the secure server port).

The attachment of an SSL client to an SSL server starts off with what is known as an
SSL handshake. During the handshake, the client and server agree on the protocol
version to be used, select the cryptographic algorithm they will use to protect data

transmission, optionally authenticate one another, and use public-key encryption to
generate shared secrets. After this has been done, the rest of the transmission takes
place in an encrypted manner using the parameters selected during the handshake.

The Government and Security

The issue of security on our computersis greatly affected by the restrictions on
security technology placed on a company by its home government. Because thisis not
by any stretch of the imagination a comprehensive text on security, we instead outline
the two major controversies concerning government intervention in computer security.
We attempt not to pass judgment on either the government or the security community;
you can make that determination for yourself. Instead, in this section, we ssimply point
out the two sides to the arguments of governmental control of security export and the
government's right to possess keys to domestic security apparatuses.

Export Control

The United States government is extremely adamant about protecting against U.S.
technology falling into nondomestic hands. Two of the more important regulations
that are in place are the DaoD International Trafficin Arms Regulation (ITAR) and the
U.S. Department of Commerce Export Administration Regulations (EAR). Both sets
of regulations concern the export of technology to foreign governments; ITAR
primarily concerns U.S.-based defense contractors, and EAR appliesto all

commercial ventures that involve the sale and export of technology-related items to
non-U.S. persons.

Because the Internet is a worldwide medium and social phenomenon, without
boundaries and governments to hinder it, the government realizes that some form of
security technology must be used to transmit information across national boundaries.
Therefore, the U.S. government restricts the level of security found in certain products
that are international in nature. For example, the Netscape browser has two versions.
OneisaU.S. domestic version with full browser security features. The other isan
international version that implements the Secure Socket Layer with less security. The
international version may be exported outside the United States, whereas the domestic
version may be used only within the United States.

Never mind the inability to actually protect against the dissemination of the more
powerful security technology to international audiences, the United States ssmply
makes the distinction. If Netscape were to blindly distribute the domestic version
without making a statement such as "Domestic Use Only," they would be breaking the
law. Isthe law enforceable to end users? Probably not, but the law is there, written as
plain as day, and should be followed by "morally upstanding citizens." For you, as
application programmers, secure networked applications should follow the same kind
of export controls if they are applicable.

The "Clipper" Controversy

Historically, the U.S. government has always known that there are ways for its
citizens to keep information hidden from the government. In fact, the Fourth

Amendment to the Constitution of the United States of America specifically outlines
thisright that all American citizens possess:

Theright of the people to be secure in their persons, houses, papers,
and effects, against unreasonabl e searches and seizures, shall not be
violated, and no Warrants shall issue, but upon probable cause,
supported by Oath or affirmation, and particularly describing the place
to be searched, and the persons or things to be seized.

But, over the years, a distinction has been made as to what is "unreasonable." The
government, in interests of "national security,” may, with permission from the Judicial
branch, execute a search of one's property and possessions. How does this apply to the
digital age?

The entire "Clipper chip" controversy centers around the government's willingness to
publish an encryption algorithm for telephones, computer files, and any other form of
communication. The transmissions would be encrypted and mathematically
impossible to break. However, the government would always be able to have a "back
door" to the encryption with its own special key. As outlined in the Fourth
Amendment, the government may use the key only with a written warrant;
nevertheless, the ideathat "Big Brother" may be watching is enough to bring chills
down the spines of some people.

Lost in the argument is the fact that there are several other encryption methods that
could be used instead of Clipper (e.g., PGP) and that are just as good and do not
encourage governmental interference. Clipper represents the entire belief that, in the
end, the U.S. government, as well as the other governments of the entire world, has no
idea how to protect itself in the digital age without sacrificing intellectual freedom.

Summary

Secure, networked transmissions are of the utmost importance to many people. If the
Internet is truly to become the focus of all our communication in the next century,

then we must all have confidence that no one can intercept and decode our innermost
thoughts. Although we have very briefly outlined the concerns of the U.S. government,
we hesitate to endorse or criticize any one position. In the end, the debate over the
involvement of government authorities will be settled in another, more appropriate,
forum. For now, as application programmers, you should be keenly aware of the
position of your government, whatever it may be, on how you can send secure
transmissions.

With this solid base of network programming underneath us, we must now make a

decision about which aternative to choose. Each has its advantages and disadvantages,
and we will discuss them in detail in the next chapter.

Chapter 14. Making an Architectural Decision

o Java Sockets
e JavaRMI Decisions

e JavalDL

« JDBC

e Other Java Technologies
e Application Servers

Making a decision is difficult, particularly when the fate of your company's entire
vision may be at stake. Although we make no attempt to salvage the many Titanics of
free enterprise, we do offer our thoughts on what the world of Java networking can
mean to you. In this chapter, we candidly browse the advantages and disadvantages of
each communication alternative. Do you want the heavy-duty power of CORBA or
the lightweight simplicity of RMI? Are databases vital to your business process, or do
you require customizable protocol s?

Aswe have seen, Java networking is avast and expansive subject. Thisbook isthetip
of the iceberg, and as the industry begins to shake out, more and more information
will be brought forward. This chapter will help you separate fact from fiction, reality
from hype, and engineering from marketeering.

Java Sockets

Many of the aternatives we have discussed in this book involve sockets in one way or
another. To recommend that you not use sockets essentially would be to say that you
should not use any of the technologies we talk about. Sockets by themselves are
useful for quite afew different things. Remember that, when you send an RMI or IDL
message, you are essentially sending abig chunk of data and the headersto that data.
When we discussed our own message format in Chapter 3, "Java Sockets and URLS,"
we were able to put together a small, lightweight messaging system. If speed and
efficiency are of the utmost importance to you, then certainly you would be interested
in using Java sockets alone.

Flexibility

Remember that we created our own message format and transmitted it with great
speed. Our message format was not inadequate as it transmitted all the information we
required. Notice too that we did not have to learn anything new. Aslong as we know
what a socket is and how to useit, we can easily transmit a message to our server.

Servers are equally easy to create. With Java IDL and Java RMI, we needed to create
an entire infrastructure for our server. With sockets, converting an application to a
server application was not only easy but also extremely powerful. Once again, we lost
no functionality by using sockets instead of some other communication alternative.

Furthermore, we could simply convert our connection-oriented socket to a broadcast
socket. Then we could use the broadcast socket to send information to a port while
allowing anyone elseto listen in on that port. Because of this ability to switch
between paradigms easily and quickly, sockets can be an excellent choice for both the
beginner and the advanced networking programmer who wants to build his or her own
infrastructure.

Simplicity

Aswe saw, using socketsis extremely simple. Once you get the concepts down,
actually changing your applications to use sockets is quite an easy task. Using the
ServerSocket, you can build asimple server. By integrating threads, you can make
sure that your server handles data efficiently. In addition, thereis no confusing IDL to
learn and no RMI API to understand. By using only sockets, you sacrifice the
functionality of RMI and IDL for speed and ease of use.

Because the networking world understands and knows sockets so well, having built
and deployed applications that use sockets for years, you will also have aready supply
of applications to use from within Java. Because sockets do not actually send data
"over thewire" and instead send strings of information, you can seamlessly plug your
Java applications into new or existing applications written in other languages. Just as
with Java IDL, sockets give you the promise of being able to easily integrate legacy
applications.

Again, there are several tradeoffs between sockets and the other aternatives we
discussin this book. Java IDL also integrates legacy applications well, but the plug-
and-play ability of JavalDL givesit adistinct advantage over using sockets alone.
With sockets, you have to make sure that everyone is speaking the same protocol.
With Java IDL, there is no message format or protocol to worry about. Simply invoke
remote objects as if they were already on your machine.

Java RMI Decisions

After surveying the entire spectrum of Java solutions we offer in this book, it istime
to make a decision. Perhaps Java RMI has piqued your interest. The promise of never
having to see C++ again seems like a good thing. Using the fun and robust networking
ability inherent in Java may be an even better reason to turn to a Java-only alternative.
Whatever the reason, thisis the place to get an honest account of what RMI can and
cannot do for you.

RMI Advantages

One of the absolute best things about JavaRMI is that you never ever have to see C++
again. C++ isarcane, difficult, and frustrating. Meanwhile, Javais fun, easy, and
exciting. Because Java offers the strongest alternative yet to a series of frustrations
wrought upon the computer science population, Java RMI has garnered significant
attention from the masses. It follows a simple notion of abstracting distributed
implementations by publishing interfaces and linking in implementations of those
interfaces later on.

Because we invested a significant amount of time, money, and effort in the Java
revolution by learning and promoting the language, we may be tempted to jump
directly into an all-Java solution to the communication quandary. Because invocations
on Java objects are simple to begin with, Java RMI makes sure that it is equally
simple to make the same kinds of invocations across different virtual machines. It is
precisely this ssimplicity that makes Java RM1 appealing.

Riding on the coattails of Java 1.2, the long awaited RMI-110P connection is now in
place. Thistechnology alows RMI's ease of use with CORBA's cross-language

interoperability. By following afew rules, we can now mix-'n-match RMI and
CORBA clients and servers.

Another new feature of RMI is Remote Object Activation. This feature allows an RMI
server to be shut down once it has been registered with the registry and then be
restarted remotely (functionally the same way a CORBA server can be remotely
started).

RMI Disadvantages

With the introduction of RMI-110P one of Java's main drawbacks has been eliminated
(i.e., the Java 1.1 restriction that RMI was a"Java Only" solution). Because we can
now mix-"n-match RMI and CORBA clients, we can still put a CORBA wrapper
around alegacy application and access it with a Java client application.

Thisleavesthe old "Javais not fast" argument. Indeed, it is an interpreted language
and, therefore, is subjected to alayer of processing that C++ and C are not. However,
the introduction of J' T compilers and other performance enhancements (like Sun's
HotSpot technology and IBM's current JVM technology) help negate the issue. Still, it
isimportant to realize that if performance is of the utmost importance, Java may not
be the language for you.

Three-Tier Applications in RMI

Aswe discussed in previous chapters, the notion of three-tier and n-tiered
client/server computing will not go away. It is the foundation for most of today's
distributed systems. M1S managers love it because it enables them to funnel accessto
data sources through a central repository. Programmers love it because they can revise
and update the various components of their applications without massive overhauls.
After all, the business logic contained in servers defines how and when databases are
accessed. Client-side GUIs are concerned only with getting and displaying
information. If a programmer makes a change in the business logic, there is no need to
push the change to the client as well.

JavaRMI does not readily facilitate the notion of three-tier client/server computing
any more than JavalDL does. Both are, in fact, middle-tier technologies. Java RMI
can easily use JDBC to connect to arelational database and JNDI to connect to
Directory Services just as CORBA can do with ODBC and LDAP. Thereal
functionality, brains, and resource management take place on the server end. The data
source is nothing but a repository of information.

Once again, the performance problem rearsits ugly head. Because the middletier is
intended to be home to all the businesslogic in an object system, JavaRMI servers
may have to process data extremely efficiently, perhaps more efficiently than possible.

Java RMI Is Not Robust
Perhaps the most important aspect of RMI isits lack of support for true distributed

computing. When invoking across machines and networks, the fact is that a client
generally has no control over how processes are executed on the remote end. Indeed,

the remote end can very well be an entirely different hardware architecture than
expected. Java RMI offers no ability to allow aclient to invoke without knowing the
destination of the request. The lack of location independence should be quite a
significant factor in making an architectural decision toward RMI.

Even though Java RMI is easy to understand, get started with, and design frameworks
around, it does not address some of the fundamental network concerns of distributed-
object programmers. L ocation independence is one of these concerns. Another
concern is automatic startup. With the recent introduction of Remotely Activatable
Objects, when a client invokes a server for the first time, aslong as the server has
been registered, an attempt to restart the server will be done.

One thing we shouldn't lose sight of regarding RMI registry isthat it isonly
one possible implementation (Sun's implementation) of what isreally RMI's
naming service. It could be implemented a number of other ways that would
allow for automatic load balancing, fail-over, and al those things CORBA is
famous for.

Thisrequires the server programmer not only to have the server available but also to
provide for fault tolerance. What if the server goes down unexpectedly? Part of the
software design specification should provide an automatic fail-over to a backup server
or automatically restart the server itself. Needless to say, these are difficult tasks to
program and may be more trouble than they are worth.

Java IDL

Every year for the past 3 years was touted as "the year CORBA will break out." Every
January aflood of articlesin trade rags and industry newsl etters trumpets the arrival
of the Common Object Request Broker Architecture. Although it is anyone's guess as
to what the future will be, it isarelatively safe assumption that CORBA, or a
derivative thereof, will power the forces of the Internet for quite some time. The
reasons are numerous, but the fact remains that CORBA technol ogy, although not
devoid of maor shortcomings, isthe most robust, mature, and powerful aternative
presented in this book. Any investigation into an Internet communication strategy
should place CORBA at the top of thelist of technologiesto investigate.

Advantages of Java IDL

Java IDL is awell-thought-out, coherent set of base objects that can be used to create
atightly woven distributed-object system. Because of the maturity of CORBA, many
of the questions about Java RMI and sockets have been addressed in the specification
and in the products currently available. In amoment, we will discuss the advantages
and disadvantages of the various implementations of the specification that are on the
market today. Y et, regardless of the great number of ORBs, JavalDL isasolidly
engineered set of core components that facilitate Javato ORB programming.

Aswe have discussed, the ORB isolates an object from the underlying mechanisms
that ensure that a client does not need to know the physical location of a server, how
to start the server, or evenif it should shut the server down. When you walk into a
supermarket, the doors are automatic. Y ou don't have to open them automatically, and

you don't have to close them behind you. Similarly, an ORB handles alot of the
internal machinations of networked communication for you.

Beyond its maturity and the fact that it handles much of the boredom of working with
networked objects, Java IDL is also Java. It uses the same memory handling,
parameter passing, serialization, and so on, that Java does and, therefore, helpsto
alleviate the learning curve of CORBA itself.

Disadvantages of Java IDL

Java IDL's biggest disadvantage is also one of its strong advantages. JavaIDL is
CORBA. CORBA isacomplex series of rules and regulations (in the software sense)
governing how distributed objects should behave. Java IDL is completely CORBA
compatible and is, therefore, an extension of CORBA itself. It plugsinto CORBA
very easily and without much hassle, but at a pretty steep price. In order to use Java
IDL effectively, you must understand CORBA and truly understand the principles of
distributed objects. Even though this book attempts to outline what CORBA is and
why you would want to use it, it is not the ultimate resource.

Y et, because of Java, much of the memory management morass and the differences
between varied ORBs is rendered moot because the nature of Javaremovesit. Javais
platform independent and requires no memory management on the programmer's part.
Even though CORBA programming is hard, thank your lucky stars for Java. Just
taking alook at a C++ CORBA program compared to a Java CORBA program will
make a Java believer out of you.

Java IDL Implementations

Sun Microsystemsis amaor proponent of CORBA but has announced that it is
getting out of the business of providing full-featured ORBs (NEO/JOE) as a product,
and it is deferring to such companies as IONA (Orbix), BEA, and Borland/Inprise
(Visibroker). Inprise's Visibroker is a smart, easy-to-use CORBA option that offers
strong three-tier client/server capabilities. If talking to a database is of the utmost
priority for your software architecture, Visibroker for Java might be your best option.

The current industry leader is Orbix. Orbix is available on every platform and isa
reliable, easy-to-use object broker. Many customers find getting started with Orbix to
be arelatively easy task and discover soon thereafter that CORBA isn't as bad asiit
was cracked up to be.

One of the biggest problems with the various CORBA implementations is that the
code is not portable from one ORB to another. Although they all comply with the
CORBA specification, the specification is general enough for each implementor to do
it its own way. APIs from one ORB to another are quite different.

Java IDL Is Robust
Imagine creating a client application that can invoke a server, get information, and

report results without even once having to worry about network code, server-side
behavior, or slow system resources. CORBA, and the ORB specifically, handle all

those tasks for you. So long as an ORB is on both the client and the server platforms,
the request can get through to the server, the server can be started up if necessary, and
the server can process information for the client.

The notion of an ORB on every platform is not as far-fetched as you might expect.
Sun's Solaris operating system is incorporating Sun's own NEO family of CORBA
products directly. When you get Solaris, you will also get the plumbing necessary to
create CORBA fixtures. Similarly, OLE and COM have always been present on the
Microsoft Windows operating environment, and with CORBA offering a strong
OLE/COM to CORBA connectivity solution as part of its specification, the client side
on Windows platforms will soon be aredlity.

Furthermore, a Java DL application also includes its own "mini-ORB" that provides
limited functionality so that an ORB need not be present within the Web browser
itself. Netscape, however, as part of its ONE technology includes a version of the
Visibroker ORB with every 4.0 or newer browser. In this way, the Web browser can
act as acommunication mediator between clients and CORBA servers.

Java IDL Is Difficult

One of the big gripes we have heard and emphasized in thisbook is that CORBA is
difficult. Well, there's no getting around the fact that in the past you had to be atrue
C++ expert to understand CORBA itself. Y ou could allocate a chunk of memory on
the client side, passit to the server, where it got deallocated, and still have a memory
leak on your client side. That was just one of the many, many, many problems with
C++ and CORBA.

Y et, that is much more of a C++ problem than a CORBA problem. True, you still
need to know much more than the basics of object-oriented programming to use
CORBA, but with Java things become much easier. Memory management, for one, is
no longer even an issue.

The Interface Definition Language is blasted by critics as just one more thing you
need to know in order to use the CORBA architecture. True, the IDL isalayer on top
of your normal application, but it serves avery important purpose. It prevents your
applications from being locked into one language. Who knows? Tomorrow, a new
programming language may emerge with its own cool name, its own cult following,
and itsown list of strengths. The entire world may jump on that bandwagon much as
it has with Java. But CORBA applications still will be important and will not be
rendered obsol ete because they can be phased into the new language in a short time
without affecting the rest of the system.

L anguage independence, while not of real importance to the subject of this book, is
the single most interesting thing about CORBA. It enables you to migrate applications
to new platforms, new languages, and even new agorithms without having to adjust
the entire object system. Remember that, with JavaRMI, you are locked into Java until
you have areason to change. That kind of thinking is why many people are trying
today to figure out how to migrate from COBOL.

Java IDL Is Powerful

Java IDL isaflexible, distributed-object environment. With it, you can invoke C++
objects half aworld away asif they were both local and written in Java. To you, the
application programmer, the Javato CORBA to C++ is hidden. You simply instantiate
Java objects and talk to C++ servers on the other end without even knowing. Of
course, if you prefer to write Java servers, more power to you.

Remember that |anguage independence is a very good thing for large-scal e object
systems. Y ou can swap components in and out using the language most appropriate
for the task. If you happen to have a CORBA to L ISP language mapping (don't panic,
thereisn't one), you could write all your artificial intelligence componentsin LISP,
while saving Ul or computation components for an object-oriented language like Java
or C++. JavaIDL isthe only alternative we present that can possibly integrate such
disparate object components.

But, for many people, the smplicity and elegance of Java RMI may be all that is
needed. Maybe you don't have any legacy systemsto be integrated. Maybe language
independence is of no use to you. Maybe all you want is a simple remote object
invocation system. In that case, Java RMI is definitely your cup of tea.

JDBC

Java Database Connectivity is an enabling technology, not necessarily a
communication framework in and of itself. By "enabling technology,” we mean that it
enables you to link other communication strategies with repositories of information
and data to form a cohesive network of objects that can communicate vast quantities
of information. JDBC is not the answer in itself, but in combination with Java DL,
Java RMI, or even Java Sockets, it can be a heck of a powerful answer to the Internet
question for the next decade.

Why JDBC Is Not Enough

JDBC aone limits you in what you can accomplish with advanced networking. Every
client that talks to a database connects directly with the database. There can be no
additional intelligence added in the business logic to assist with routing messages.
Basically, your applications are connected to the database, and if that causes some
kind of sluggishness between the database and the client, then so beit. In the end, the
decision to use JDBC aone or with another technology amounts to a decision between
the two-tier and three-tier architectural models.

The two-tier architecture links clients directly with the data repository as shown in
Figure 14-1. This means that any kind of processing for the access and any further
processing for the data retrieved from the repository isleft to the client. Splitting the
business logic out of the client is the driving force behind the three-tier model.
However, in some cases that trait is not a necessary qualification. If your applications
are deployed often, or maybe even deployed over the Web, then updating aclient is
not amajor factor because it will be done no matter what architecture you choose. If
you are deploying shrink-wrapped applications written in Java—as will be commonin
just afew years—then updating applications constantly will be amajor pain, and you
may want to revert to athree-tier model.

Figure 14-1. Two-tier client to database architecture.

Client

Client Database

Client

The biggest drawback to the two-tier model is the sheer number of clients that may
attach themselves to a data repository. Typically, data repositories are not set up to
handle the intelligent management of resources required to process multiple
simultaneous invocations. If your applications ping the database only rarely, then this
Is not afactor for you. However, if there are to be many instances of your client
application, you will want to go to athree-tier model.

A three-tier model is predicated on the belief that business logic should not exist in
either aclient or adatabase. It dictates that the client should be a pretty application the
sole purpose of which isto funnel information back to the user. The client istypicaly
arich GUI with simple execution steps that relies completely on the information given
toit by the middle tier (see Figure 14-2).

Figure 14-2. Three-tier application architecture with server middleware.

Client

Middle-

Client Tier —— Database
Server

Client

The middle-tier is a server that talks to a data repository. The server iswritten using
Java DL, Sockets, or Java RMI and can talk to the database using JDBC. JDBC acts,
asit aways does, as the interface from a client (in this case the middle-tier server) to a
database. It just so happens that the server isfully capable of handling multiple
invocations and requests and houses all the business logic. The business logic could
range from simply adding a number of results from a database query and passing it
back to the client, to invoking other servers using the same data. Whatever it does
with the data it retrieves, the server can manipulate the information as it seesfit and
then pass it back to the client.

JDBC and Java IDL or Java RMI

Aswe discussed, the middle tier in the three-tier architecture could easily be Java DL
or Java RMI. Indeed, IDL and RMI are complementary technologies to JDBC. JDBC
is not their competition because the vast majority of people using JDBC use it within
amiddle-tier paradigm. Thisiswhy JavalDL and Java RMI are vital to JDBC's
success. Moreover, JDBC lends credibility to JavalDL and Java RMI. Without a
simple technology to enable database access, Java IDL and Java RMI would be
largely uselessin the business community.

The largest investments made by most companies in their computing infrastructureis
contained within their databases. Databases often are used to maintain important
records ranging from medical history to employment records and to keep track of
business processes from supply purchases to stock maintenance. Most of the time,
changing the database to a Java-only application is not only difficult and expensive
but also completely unreasonable and unfeasible. For this reason, JDBC can be used
to communicate and update the database, while the middle-tier server can be quickly
migrated to Java using the techniques in this book.

Client applications can be generated quite easily using the many visua Java builders
on the market today. Often, client applications are not only simpler to create, test, and
deploy but are also less vital and less error prone than the rest of the architectural
model.

JDBC Alone

While using JDBC aoneis certainly not out of the question, it is highly discouraged
for mission-critical applications. However, for proof of concept applications,
applications requiring limited data access, and even for heavy-duty applications with
large chunks of data transfer, JDBC may be an excellent option.

What JDBC givesyou isasimple, clean interface to a database that requires no
additional knowledge of network programming, distributed design, or remote
procedure calls. For database programmers, JDBC is awelcome arrival for Java
because it means that they need not build special server programs whose sole purpose
isto funnel information back to the client. In other words, for those programmers who
desire not to use three-tier computing, JDBC is the perfect answer.

Because of its smplicity, you will find that, for major application development efforts,
JDBC isall you need to affect some kind of persistence for your client applications.
Clients can do their heavy computation, cool graphics, or whatever and store their
state in a database using JDBC. The next time the client is executed, it can retrieve its
previous state from the database and start again where it |eft off.

JDBC Overview

JDBC isafantastic set of APIsto connect Java applications and applets directly to
databases. With its simplicity, robustness, and ability to bring together the disparate
worlds of databases and the Internet, JDBC will be a successful venture for Java. By
modifying your existing database clients for Java, you can capture al the usefulness
of the Java Revolution without sacrificing the power required to manipulate your data
stores.

Other Java Technologies

In addition to the four major Java communication technol ogies, we have shown you
three other mechanisms that you can use to plug your Java applications into the
Internet. Beans, servlets, and IMAPI give you the means necessary to package,
publish, and administer the applications you have written in RMI, IDL, JDBC, or
Sockets. Even though the "big four” are fascinating and powerful in their own right,
they need the additional functionality provided by the other Java APIs that have been
or will be published in the future.

When to Use Beans

Let's say that you've created a bunch of gee-whiz Java applications to interface with
your hand-held Personal Information Manager. These applications have severa
modules that translate the data on the device to aformat that is readable by your on-
disk schedule manager. These modules are for your address book, to-do list, and
schedule. By dividing your Java applications into separate, self-contained Beans, you
can publish the components. Moreover, if you were to split out the network
component that interfaces the device with your computer, then others could write their
own customizable applications that use your network module (see Figure 14-3).

Figure 14-3. Beans enable you to build components such as the Schedule component
that can be used by other applications.

To do List
On-disk Device
Schedule Addresses
Manager Interface
Schedule

Thisis precisely what we intended to do with our featured application. Although we
didn't exactly use Beans, we could have done so easily and allowed others to pick out
the Beans they wanted and interface with our calendar manager. Currently, the
network module talks to a server on aremote machine. The server stores the
information on the disk on which it resides.

What if we were to modify our calendar manager to use Beans? It would simply be a
matter of encapsulating our various Java objects in Java Beans containers. Then we
could allow anyone who wanted to interface to the rest of our calendar manager to do
so using the Network module. Remember that Java Beans supports the notion of
introspection, which enables people to take our Network module, browse it from
within a GUI builder, and then generate their own objects that interface directly to it.
Even if they do not like our user interfaces, people still can use the Network module
rather than invest their own time and effort into learning the RMI, IDL, or JDBC APIs.

When to Use Servlets and Java Server Pages

Servlets and Java Server Pages are information publishing tools. If we wanted the
people in our department to know what our schedule is simply by browsing our
personal Web page, we could allow them to do so by sticking the server portion of our
calendar manager inside a servlet. The servlet then could be queried viaan HTTP
request, and the information contained within the server could be displayed on the
Web page. Then, when we modify our server, people talking to our servlet would get
the latest and greatest list of what we are doing that day (see Figure 14-4).

Figure 14-4. Servlets provide dynamic documents via Web servers.

HTTP:/lschedule.html

Dick's Schedule
04:30 Get ready for work

05:30 Go to work Calendar Calendar
06:00 Work Serviet Server
11:30 Lunch

12:00 Work

16:30 Go home

The alternative to servletsisto create a Web page by hand and stick it on a Web
server. But, if we were to change the times of our appointment, we would have to
generate a new Web page. By incorporating the servlet technology within our server,
we do not have to regenerate a Web page every time. Remember that the entire
Internet game is about information—how to get, disseminate, and update information
constantly. Servlets enable you to publish information contained within servers that
get and update that information constantly.

Java Server Pages are an extension of servlet technology and allow the initial creation
of server-side Web pages to be done using traditional GUI-based html editors. After
we get the page to look the way we want, we attach it with atext editor or our favorite
Java IDE and add Java functionality viathe JSP API. Once we rename it from .html

to .jsp we have our JSP, and it can be pretty much managed and served as a plain old
html page.

Application Servers

At last we come to application servers. The application server seemsto have
overcome al the problems we have pointed out with other technologies. Important
issues like state management, scalability, fault tolerance, and fail-over have been
addressed and taken care of. Enterprise Java Beans is on track, and in general the
application server really seems to be the way to go.

When things sound too good to be true they usually are. Application servers are a
relatively big-ticket item and may not be affordable for many medium- and small-size
organizations. Technology comes at a price, and in the case of application serversthe
priceisdollars. In the case of the stand-alone technologies we've looked at, they are
relatively inexpensive to implement and deploy. The big application servers are pretty
much priced for large enterprises where significant amounts of cash are transacted via
the Internet, require architectures that guarantee zero downtime sites, and are
massively scalable.

Summary

Whew! There you haveit! There are several different alternatives, all of which
accomplish different things and, in many cases, the same things. We hope that this
book has been of some help to you as you sort out your information strategy for the
next decade. The Internet is a fabulous phenomenon and, as you know, much more
than a collection of Web sites, e-mail accounts, and chat rooms. Using the

technol ogies we presented to you in this book, you can begin to harness the power of
the Internet to publish and receive information right from within your Java
applications.

After al, we firmly believe that Javais the Internet Programming Language, and,
after reading this book, we hope you will agree.

Appendix Glossary
ActiveWeb

Active Software's publish/subscribe system for corporate intranet information
publishing.

ActiveX

Proprietary Microsoft component model for the Internet.

AWT

Abstract Window Toolkit. One of the windowing environments supplied as
part of the core Java classes, uses peer components of the OS.

Bytecode

The binary language produced by the Java compiler and used as the native
binary language for the Java Virtual Machine.

C++

Compiled, object-oriented programming language.

Callback

Saving a method with an object in the hopes that the function will be invoked,
or "called back," at alater time.

CGl

Common Gateway Interface. The original way of creating executable content
on the server side of an HTTP connection. Seeservelt.

Client

Program that invokes another object from a remote location.

COM

Common Object Model. Proprietary Microsoft protocol for platform-
independent interobject communication.

Component

A separate object that can be reused, modified, and redeployed without
requiring access to its source code.

Component Model

Next wave in object-oriented programming that promotes the reuse of objects
without exposing any source code whatsoever to the end user or programmer.

Concurrent Access

Occurs when multiple threads get the same piece of data. Seemutual exclusion.

Constructor

The function of an object that initializes the object and readiesit for invocation.

CORBA

Common Object Request Broker Architecture. Industry standard for
Distributed Object programming.

Deadlock

Occurs when athread grabs a mutual exclusion lock and hangs on to it
indefinitely, thereby preventing other threads from getting the same lock.

EJB
Enterprise Java Beans. A specification from Sun Microsystems whose goal is

to provide corporate America with the ultimate in reusable, scalable, and
robust application.

Encapsulation

Object Oriented programming practice of packaging data and behavior
together as asingle entity.

Encryption

The trandlation of datainto unreadable sequences of characters so that
"untranslation” back into its original state isimpossible without a"key."

Firewall

Protective barrier between the internal information of a business and the
external information it makes available to the world.

HTTP

HyperText Transfer Protocol. The de facto standard for Web communication.
Specifies the format of transmissions between Web clients and Web servers.

IDL

Interface Definition Language. The part of the CORBA language that enables
objects and their interfaces to be specified easily.

IOP

Internet Inter-Orb Protocol. New standard for object communication over the
Internet. Enables objects to invoke one another over the Internet regardless of
the communi cation mechanism that was used to create them.

Information Hiding

Creating objects that provide one set of user interfaces to data while keeping
the plumbing of the data hidden.

Inheritance

The derivation of an object's interfaces or implementations from another
object.

IPC
Interprocess Communication. Act of programs talking to one another through
alink of some kind, usually a socket.

Java
A platform-independent and architecture-neutral programming language from
Sun Microsystems, Inc. Also, slang for coffee.

Java Beans
Component model for Java. Seecomponent model.
See also [Component M odel]

Java IDL

The Java binding to CORBA and IDL.

Java RMI

Remote Method Invocation. A means by which to invoke methods on objects
that are not necessarily on the same virtual machine.

Java Web Server

The name for the set of components that includes servlets and the written-in-
Java HTTP server that allows connections to them.

JDBC

Java Database Connectivity. A set of ssimple APIs used to connect Java objects
directly into databases.

JINI
Sun Microsystem's technology for impromptu networking.
JIT
Just In Time. A kind of compiler that, as part of aVirtual Machine's bytecode
interpreter, can take bytecodes and optimize them for a machine's native
language.
JNDI
Java Naming and Directory Interface. The set of APIsthat allows consistent
use of Internet Naming services (like DNS) and LDAP-based access to
Directory Services.
JNI
Java Native Interface. APIs used for interfacing with native windows code.
JSP

Java Server Pages. An all-Java solution to producing active server pages, part
of servlet technology.

Kerberos

A secure network authentication system based on private key encryption.

Key

The special code that allows the decryption of encrypted data.

Language Mapping

The means necessary to take one language and convert its syntax and
semantics to another language.

Layout

Graphical construct in Java's Abstract Window Toolkit that allows
components to be placed on the screen.

LDAP

Lightweight Directory Access Protocol. A TCP/IP-based interface to Directory
Services (1SO X.500).

Location Independent

CORBA-added functionality that enables a client to invoke a server without
having to know whereit is or how to start it.

Method

An operation on an object. See also Marlon Brando.

Mutual Exclusion

A method used to prevent multiple threads from affecting the same chunk of
data.

Naming Service

Any of anumber of servicesthat map namesto values (DNS, CORBA
Naming Service, RMI Registry).

Object Reference

A pointer to an object.

ODBC
Open Database Connectivity. Microsoft-created paradigm and API for

communicating with databases. JDBC uses it as a base for interacting with
databases from Java applications.

OLE

Object Linking and Embedding. A proprietary Microsoft protocol for
Interobject communication.

ORB

Object Request Broker. Component of the CORBA environment that routes
requests from the client to the server.

oSl

Open Systems Interconnection. A reference model for alayered approach to
networking.

Orbix

lona Technologies industry-leading entry in the CORBA market.

RSA

RSA Data Security, Inc. One of the patent holders for public key encryption
algorithms. RSA usually refersto the specific algorithm.

Serialization

The act of transforming a Java object into a string representation.

Server

Program that accepts invocations from objects at a remote |ocation.

Servlet

A component of the Java Web Server that allows you to create executable
programs on the server side of an HTTP connection.

SET

Secure Electronic Transaction. Major credit card vendors proposal for secure
electronic commerce.

Socket

Fundamental tool for network communication. Defines endpoints of
communication, the origin of the message, and the destination of the message.

SQL

Structured Query Language. The language most commonly used to construct
database queries.

SSL

Secure Socket Layer. Web browser functionality that provides encryption of
data across a network.

Streams

A flow of data from which you can get information or to which you can add
information.

String Tokenizer

A construct that allows you to search through a string, extracting parts
delimited by atoken or set of tokens.

Sun

Cool company responsible for the Java programming language.

Swing

The other windowing toolkit supplied with the JDK. It uses 100% Java
components to produce user interfaces that are OS independent.

Synchronized

Javas version of amutual exclusion lock.

TCP

Transmission Control Protocol. Socket protocol for point-to-point
communication.

Thread

A series of executable steps that are executed along with other steps.

Three-Tier Computing
The philosophy of splitting the client application from the data, using amiddle

tier called a server. The server routes requests from one or more clients to the
data source and sends information back to it.

UDP

User Datagram Protocol (sometimes called Unreliable Datagram Protocol).
Socket for broadcast communication.

Vector

Complex Java data type that allows you to store and retrieve information
easily in an arraylike construct.

Virtual Machine

Software component of Javathat trandates Java bytecode into native code that
can then be executed on a machine.

VisiBroker

Imprise's CORBA ORB product. Bundled as part of the Netscape
Communicator.

