


Computer Science Logo Style
Symbolic Computing





Volume 1

Brian Harvey

SECOND EDITION

Computer Science Logo Style

Symbolic Computing

The MIT Press
Cambridge, Massachusetts
London, England









′

1997 by the Massachusetts Institute of Technology

The Logo programs in this book are copyright 1997 by Brian Harvey.

These programs are free software; you can redistribute them and/or modify them
under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 2 of the License, or (at your option) any later version.

These programs are distributed in the hope that they will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License (Appendix B of
this book) for more details.

For information on program diskettes for PC and Macintosh, please contact the Marketing
Department, The MIT Press, 55 Hayward Street, Cambridge, Massachusetts, 02142.

Drawings on pages 53 and 169 by James Brzezinski. Photograph of U.C. Berkeley on
page 234 by Dennis Galloway, courtesy of the Public Information Office, University of
California. Photographs of Stanford University on page 235 courtesy of the News and
Publications Service, Stanford University.

This book was typeset in the Baskerville typeface.

The cover art is an untitled mixed media acrylic monotype by San Francisco artist Jon
Rife, copyright 1996 by Jon Rife and reproduced by permission of the artist.

Library of Congress Cataloging-in-Publication Data

Harvey, Brian, 1949–
Computer Science Logo Style / Brian Harvey. — 2nd ed.

p. cm.
Includes indexes.
Contents: v. 1. Symbolic computing. — v. 2. Advanced techniques —
v. 3. Beyond programming.
ISBN 0–262–58151–5 (set : pbk. : alk. paper). — ISBN
0–262–58148–5 (v. 1 : pbk. : alk. paper). — ISBN 0–262–58149–3 (v.
2 : pbk. : alk. paper). — ISBN 0–262–58150–7 (v. 3 : pbk. : alk.
paper)
1. Electronic digital computers–Programming. 2. LOGO (Computer

programming language) I. Title.
QA76.6.H385 1997
005.13 3—dc20 96–35371

CIP



xi

xix

1

Contents

xi
xii

xiii
xv

xvii
xvii

xx

2
3

3
4

4
6

7
7

8
9

v

Preface

Acknowledgments

1 Exploration

The Intellectual Content of Computer Programming
Computer Science Apprenticeship
About the Second Edition
Why Logo?
Hardware and Software Requirements
Words of Wisdom

Second Edition

Getting Acquainted with Logo...
... in Two Senses
Another Greeting
Fooling Around
A Slightly Longer Conversation
A Sneaky Greeting
A Quiz Program
Saving Your Work
About Chapter 2
No Exercises



11

39

61

Print Show

X

2 Procedures

3 Variables

4 Predicates

11
12

13
16

17
18

20
21

27
28

29
30

33
33

35
37

39
42

43
43

47
48

48
49

51
55

56
57

59

61
64

64
66

vi Contents

Procedures and Instructions
Technical Terms
Evaluation
Error Messages
Commands and Operations
Words and Lists
How to Describe a Procedure
Manipulating Words and Lists

and
Order of Evaluation
Special Forms of Evaluation
Writing Your Own Procedures
Editing Your Procedures
Syntax and Semantics
Parentheses and Plumbing Diagrams
Nonsense Plumbing Diagrams

User Procedures with Inputs
What Kind of Container?
An Abbreviation
More Procedures
An Aside on Variable Naming
Don’t Call It
Writing New Operations
Scope of Variables
The Little Person Metaphor
Changing the Value of a Variable
Global and Local Variables
Indirect Assignment
Functional Programming

True or False
Defining Your Own Predicates
Conditional Evaluation
Choosing Between Alternatives



77

103

Ifelse

Initials

Map
Filter

Reduce

Cascade

5 Functions of Functions

6 Example: Tic-Tac-Toe

68
69

69
70

71
72

74
75

77
78

81
82

84
88

89
90

91
92

96
98

103
106

109
112

115
117

119
120

121
125

126

Contents vii

Conditional Evaluation Another Way
About Those Brackets
Logical Connectives

as an Operation
Expression Lists and Plumbing Diagrams
Stopping a Procedure
Improving the Quiz Program
Reporting Success to a Superprocedure

The Problem:
One Solution: Numeric Iteration
Critique of Numeric Iteration
What’s a Function?
Functions of Functions:
Higher Order Selection:
Many to One:
Choosing the Right Tool
Anonymous Functions
Higher Order Miscellany
Repeated Invocation:
A Mini-project: Mastermind

The Project
Strategy
Program Structure and Modularity
Data Representation
Arrays
Triples
Variables in the Workspace
The User Interface
Implementing the Strategy Rules
Further Explorations
Program Listing



Filter

131

149

167

179

195

132
132

134
136

137
138
140

144

149
152

153
157

161
162

165

167
173

174
175

179
182

185
186

191
194

195
200

202

viii Contents

7 Introduction to Recursion

8 Practical Recursion: the Leap of Faith

9 How Recursion Works

10 Turtle Geometry

11 Recursive Operations

Starting Small
Building Up
Generalizing the Pattern
What Went Wrong?
The Stop Rule
Local Variables
More Examples
Other Stop Rules

Recursive Patterns
The Leap of Faith
The Tower of Hanoi
More Complicated Patterns
A Mini-project: Scrambled Sentences
Procedure Patterns
Tricky Stop Rules

Little People and Recursion
Tracing
Level and Sequence
Instruction Stepping

A Review, or a Brief Introduction
Local vs. Global Descriptions
The Turtle’s State
Symmetry
Fractals
Further Reading

A Simple Substitution Cipher
More Procedure Patterns
The Pattern



219

233

255

Reduce
Find

Cascade

Subsets

Sentence

12 Example: Playfair Cipher

13 Planning

14 Example: Pitcher Problem Solver

203
205

208
211

213
214

216

223
225
228

229
230

236
237

238
240

244
245

246
251

252
253

259
261

264
265

267
267

270
272

273
274

Contents ix

The Pattern
The Pattern
Numerical Operations: The Pattern
Pig Latin
A Mini-project: Spelling Numbers
Advanced Recursion:
A Word about Tail Recursion

Data Redundancy
Composition of Functions
Conversational Front End
Further Explorations
Program Listing

Structured Programming
Critique of Structured Programming
A Sample Project: Counting Poker Hands
An Initialization Procedure
Second Edition Second Thoughts
Planning and Debugging
Classifying Poker Hands
Embellishments
Putting the Project in a Context
Program Listing

Tree Search
Depth-first and Breadth-first Searching
Data Representation
Abstract Data Types

as a Combiner
Finding the Children of a Node
Computing a New State
More Data Abstraction
Printing the Results
Efficiency: What Really Matters?



Appendices

283

299

305

309

313

275
276
277

278
279

283
285

288
293

293
295

299
300

302
303

x Contents

15 Debugging

A Running Berkeley Logo

B GNU General Public License

Index of Defined Procedures

General Index

Avoiding Meaningless Pourings
Eliminating Duplicate States
Stopping the Program Early
Further Explorations
Program Listing

Using Error Messages
Invalid Data
Incorrect Results
Tracing and Stepping
Pausing
Final Words of Wisdom

Getting Berkeley Logo
Berkeley Logo for DOS Machines
Berkeley Logo for the Macintosh
Berkeley Logo for Unix



Preface

using

xi

The Intellectual Content of Computer Programming

This book isn’t for everyone.

Not everyone needs to program computers. There is a popular myth that if you
aren’t “computer literate,” whatever that means, then you’ll flunk out of college, you’ll
never get a job, and you’ll be poor and miserable all your life. The myth is promoted by
computer manufacturers, of course, and also by certain educators and writers.

The truth is that no matter how many people study computer programming in high
school, there will still be only a certain number of programming jobs. When you read
about “jobs in high-tech industry,” they’re talking mostly about manufacturing and sales
jobs that are no better paid than any other manufacturing jobs. (Often, these days, those
jobs are exported to someplace like Taiwan where they pay pennies a day.) It’s quite
true that many jobs in the future will involve computers, but the computers will be
disguised. When you use a microwave oven, drive a recently built car, or play a video
game, you’re using a computer, but you didn’t have to take a “computer literacy” course
to learn how. Even a computer that looks like a computer, as in a word processing system,
can be mastered in an hour or two.

This book is for people who are interested in computer programming because it’s
fun.

When I wrote the first edition of this book in 1984, I said that the study of computer
programming was intellectually rewarding for young children in elementary school, and
for computer science majors in college, but that high school students and adults studying
on their own generally had an intellectually barren diet, full of technical details of some
particular computer brand.



is

Byte.

xii Preface

Computer Science Apprenticeship

At about the same time I wrote those words, the College Board was introducing
an Advanced Placement exam in computer science. Since then, the AP course has
become popular, and similar official or semi-official computer science curricula have
been adopted in other countries as well. Meanwhile, the computers available to ordinary
people have become large enough and powerful enough to run serious programming
languages, breaking the monopoly of BASIC.

So, the good news is that intellectually serious computer science is within the reach
of just about everyone. The bad news is that the curricula tend to be imitations of what is
taught to beginning undergraduate computer science majors, and I think that’s too rigid
a starting point for independent learners, and especially for teenagers.

See, the wonderful thing about computer programming is that it fun, perhaps not
for everyone, but for very many people. There aren’t many mathematical activities that
appeal so spontaneously. Kids get caught up in the excitement of programming, in the
same way that other kids (or maybe the same ones) get caught up in acting, in sports, in
journalism (provided the paper isn’t run by teachers), or in ham radio. If schools get too
serious about computer science, that spontaneous excitement can be lost. I once heard
a high school teacher say proudly that kids used to hang out in his computer lab at all
hours, but since they introduced the computer science curriculum, the kids don’t want
to program so much because they’ve learned that programming is just a means to the
end of understanding the curriculum. No! The ideas of computer science are a means
to the end of getting computers to do what you want.

My goal in this series of books is to make the goals and methods of a serious computer
scientist accessible, at an introductory level, to people who are interested in computer
programming but are not computer science majors. If you’re an adult or teenaged
hobbyist, or a teacher who wants to use the computer as an educational tool, you’re
definitely part of this audience. I’ve taught these ideas to teachers and to high school
students. What I enjoy most is teaching high school freshmen who bring a love of
programming into the class with them—the ones who are always tugging at my arm to
tell me what they found in the latest

I said earlier that I think that for most people programming as job training is
nonsense. But if you happen to be interested in programming, studying it in some depth
can be valuable for the same reasons that other people benefit from acting, music, or
being a news reporter: it’s a kind of intellectual apprenticeship. You’re learning the
discipline of serious thinking and of taking pride in your work. In the case of computer



About the Second Edition

mathematical formal

anyone

About the Second Edition xiii

programming, in particular, what you’re learning is thinking, or
thinking. (If you like programming, but you hate mathematics, don’t panic. In that case
it’s not really mathematics you hate, it’s school. The programming you enjoy is much
more like real mathematics than the stuff you get in most high school math classes.) In
these books I try to encourage this sort of formal thinking by discussing programming in
terms of general rules rather than as a bag of tricks.

When I wrote the first edition of this book, in 1984, it was controversial to suggest
that not everyone has to learn to program. I was accused of elitism, of wanting to keep
computers as a tool for the rich, while condemning poorer students to dead-end jobs.
Today it’s more common that I have to fight the opposite battle, trying to convince people
why should learn about computer programming. After all, there is all that great
software out there; instead of wasting time on programming, I’m told, kids should learn
to use Microsoft Word or Adobe Illustrator or Macromind Director. At the same time,
kids who’ve grown up with intricate and beautifully illustrated video games are frustrated
by the relatively primitive results of their own first efforts at programming. A decade ago
it was thrilling to be able to draw a square on a computer screen; today you can do that
with two clicks of a mouse.

There are two reasons why you might still want to learn to program. One is that
more and more application programs have programming languages built in; you can
customize the program’s behavior if you learn to speak its “extension” language. (One
well-known example is the Hypertalk extension language for the Hypercard program; the
one that has everyone excited as I’m writing this is the inclusion of the Java programming
language as the extension language for the Netscape World Wide Web browser.) But I
think a more important reason is that programming—learning how to express a method
for solving a problem in a formal language—can still be very empowering. It’s not the
same kind of fast-paced fun as playing a video game; it feels more like solving a crossword
puzzle.

I’ve tried to make these books usable either with a teacher or on your own. But
since the ideas in these books are rather different from those of most computer science
curricula, the odds are that you’re reading this on your own. (When I published the
first edition, one exception was that this first volume was used fairly commonly in teacher
training classes, for elementary school teachers who’d be using Logo in their work.)

Three things have happened since the first edition of these books to warrant a revision.
The first is that I know more about computer science than I did then! In this volume,



Advanced Techniques,

Beyond Programming,

xiv Preface

the topics of recursion and functional programming are explained better than they were
the first time; there is a new chapter on higher order functions early in the book. There
are similar improvements in the later volumes, too.

Second, I’ve learned from both my own and other people’s experiences teaching
these ideas. I originally envisioned a style of work in which high school students would
take a programming course in their first year, then spend several years working on
independent projects, and perhaps take a more advanced computer science class senior
year. That’s why I put all the programming language instruction in the first volume
and all the project ideas in the second one. In real life, most students don’t spread out
their programming experience in that way, and so the projects in the second volume
didn’t get a chance to inspire most readers. In the second edition, I’ve mixed projects
with language teaching. This first volume teaches the core Logo capabilities that every
programming student should know, along with sample projects illustrating both the
technical details and the range of possibilities for your own projects. The second volume,

teaches more advanced language features, along with larger and
more intricate projects.

Volume three, is still a kind of sampler of a university computer
science curriculum. Each chapter is an introduction to a topic that you might study in
more depth during a semester at college, if you go on to study computer science. Some
of the topics, like artificial intelligence, are about programming methods for particular
applications. Others, like automata theory, aren’t how-to topics at all but provide a
mathematical approach to understanding what programming is all about. I haven’t
changed the table of contents, but most of the chapters have been drastically rewritten to
improve both the technical content and the style of presentation.

The third reason for a second edition of these books is that the specific implementa-
tions of Logo that I used in 1984 are all obsolete. (One of them, IBM Logo, is still available
if you try very hard, but it’s ridiculously expensive and most IBM sales offices seem to
deny that it exists.) The commercial Logo developers have moved toward products in
which Logo is embedded in some point-and-click graphical application program, with
more emphasis on shapes and colors, and less emphasis on programming itself. That’s
probably a good decision for their purposes, but not for mine. That’s why this new
edition is based on Berkeley Logo, a free implementation that I developed along with
some of my students. Berkeley Logo is available for Unix systems, DOS machines, and
Macintosh, and the language is exactly the same on all platforms. That means I don’t
have to clutter the text with footnotes like “If you’re using this kind of computer, type
that instead.”



PRINT

Why Logo?

books

doesn’t

automatic;

syntax

Why Logo? xv

Logo has been the victim of its own success in the elementary schools. It has acquired a
reputation as a trivial language for babies. Why, then, do I use it as the basis for a series
of books about serious computer science? Why not Pascal or C++ instead?

The truth is that Logo is one of the most powerful programming language available
for home computers. (In 1984 I said “by far the most powerful,” but now home computers
have become larger and Logo finally has some competition.) It is a dialect of Lisp, the
language used in the most advanced research projects in computer science, and especially
in artificial intelligence. Until recently, all of the about Logo have been pretty
trivial, and they tend to underscore the point by strewing cute pictures of turtles around.
But the cute pictures aren’t the whole picture.

What does it mean for a language to be powerful? It mean that you can write
programs in a particular language that do things you can’t do in some other language.
(In that sense, all languages are the same; if you can write a program in Logo, you can
write it in Pascal or BASIC too, one way or another. And vice versa.) Instead, the power
of a language is a way of measuring how much the language helps you concentrate on the
actual problem you wanted to solve in the first place, rather than having to worry about
the constraints of the language.

For example, in C, Pascal, Java, and all of the other languages derived originally
from Fortran, the programmer has to be very explicit about what goes where in the
computer’s memory. If you want to group 20 numbers together as a unit, you must
“declare an array,” saying in advance that there will be exactly 20 numbers in it. If you
change your mind later and want 21 numbers, too bad. You also have to say in advance
that this array will contain 20 integers, or perhaps 20 numbers with fractions allowed,
or perhaps 20 characters of text—but not some of each. In Logo the entire process of
storage allocation is if your program produces a list of 20 numbers, the space
for that list is provided with no effort by you. If, later, you want to add a 21st number,
that’s automatic also.

Another example is the of a language, the rules for constructing legal
instructions. All the Fortran-derived languages have a dozen or so types of instructions,
each with its own peculiar syntax. For example, the BASIC statement requires a
list of expressions you want printed. If you separate expressions with commas, it means
to print them one way; if you separate them with semicolons, that means something else.
But you aren’t allowed to use semicolons in other kinds of statements that also require
lists of expressions. In Logo there is only one syntax, the one that invokes a procedure.



Structure and Interpretation of Computer Programs,

Simply Scheme: Introducing Computer
Science

xvi Preface

It’s not an accident that Logo is more powerful than Pascal or C++; nor is it just that
Logo’s designers were smarter. Fortran was invented before the mathematical basis of
computer programming was well understood, so its design mostly reflects the capabilities
(and the deficiencies) of the computers that happened to be available then. The
Fortran-based languages still have the same fundamental design, although some of its
worst details have been patched over in the more recent versions like Java and C++. More
powerful languages are based on some particular mathematical model of computing and
use that model in a consistent way. For example, APL is based on the idea of matrix
manipulation; Prolog is based on predicate calculus, a form of mathematical logic. Logo,
like Lisp, is based on the idea of composition of functions.

The trouble is that if you’re just starting this book, you don’t have the background
yet to know what I’m talking about! So for now, please just take my word for it that I’m
not insulting you by asking you to use a “baby” language. After you finish the book, come
back and read this section again.

A big change since 1984 is that Logo is no longer the only member of the Lisp
family available for home computers. Another dialect, Scheme, has become popular
in education. Scheme has many virtues in its own right, but its popularity is also due
in part to the fact that it’s the language used in the best computer science book ever
written: by Harold Abelson and Gerald
Jay Sussman with Julie Sussman (MIT Press/McGraw-Hill, 1985). I have a foot in both
camps, since I am co-author, with Matthew Wright, of

(MIT Press, 1994), which is sort of a Scheme version of the philosophy of this
book.

The main difference between Scheme and Logo is that Scheme is more consistent
in its use of functional programming style. For example, in Scheme, every procedure
is what Logo calls an operation—a procedure that returns a computed value for use by
some other procedure. Instead of writing a program as a sequence of instructions, as
in Logo, the Scheme programmer writes a single expression whose complexity takes the
form of composition of functions.

The Scheme approach is definitely more powerful and cleaner for writing advanced
projects. Its cost is that the Scheme learner must come to terms from the beginning with
the difficult idea of function as object. Logo is more of a compromise with the traditional,
sequential programming style. That traditional style is limiting, in the end, but people
seem to find it more natural at first. My guess is that ultimately, Logo programmers who
maintain their interest in computing will want to learn Scheme, but that there’s still a
place for Logo as a more informal starting point.



☞

2+3

Words of Wisdom xvii

Hardware and Software Requirements

Words of Wisdom

The programs in this series of books are written using Berkeley Logo, a free interpreter
that is available on diskette from the MIT Press or on the Internet. (Details are in
Appendix A.) Berkeley Logo runs on Unix systems, DOS machines, and Macintosh.

Since Berkeley Logo is free, I recommend using it with this book, even if you have
another version of Logo that you use for other purposes. One of the frustrations I had
in writing the first edition was dealing with all the trivial ways in which different Logo
dialects differ. (For example, if you want to add 2 and 3, can you say , or do you have
to put spaces around the plus sign? Different dialects answer this question differently.)
Nevertheless, the examples in this first volume should be workable in just about any Logo
dialect with some effort in fixing syntactic differences. The later volumes in the series,
though, depend on advanced features of Berkeley Logo that are missing from many other
dialects.

The Berkeley Logo distribution includes the larger programs from these books.
When a program is available in a file, the filename is shown at the beginning of the
chapter. (There are only a few of these in the first volume, but more in later volumes.)

The trick in learning to program, as in any intellectual skill, is to find a balance between
theory and practice. This book provides the theory. One mistake would be to read
through it without ever touching a computer. The other mistake would be to be so eager
to get your hands on the keyboard that you just type in the examples and skip over the
text.

There are no formal exercises at the ends of chapters. That’s because (1) I hate a
school-like atmosphere; (2) you’re supposed to be interested enough already to explore
on your own; and (3) I think it’s better to encourage your creativity by letting you invent
your own exercises. However, at appropriate points in the text you’ll find questions
like “What do you think would happen if you tried thus-and-such?” and suggestions for
programs you can write. These questions and activities are indicated by this symbol:
(the finger of fate). You’ll get more out of the book if you take these questions seriously.

If you’re not part of a formal class, consider working with a friend. Not only will you
keep each other from handwaving too much but it’s more fun.





xix

Acknowledgments

The people who read and commented on early drafts of this book include Hal Abelson,
Sharon Yoder, Michael Clancy, Jim Davis, Batya Friedman, Paul Goldenberg, Tessa
Harvey, Phil Lewis, Margaret Minsky, and Cynthia Solomon. I am especially grateful
to Paul Goldenberg and Cindy Carter for their professional, financial, and emotional
support during the months I spent as a guest in their home while working on this project,
keeping them from their own work and tying up Paul’s computer equipment. This book
wouldn’t exist without them. Special mention also goes to Hal Abelson, without whose
support this book wouldn’t have found a publisher.

The main ideas in this book, and some of the specific examples, first surfaced in
the form of self-paced curriculum units for a programming class at the Lincoln-Sudbury
Regional High School, in Sudbury, Massachusetts. Alison Birch, Larry Davidson, and
Phil Lewis were my colleagues there. (So, later, was Paul.) All of them helped debug
the curriculum by finding mistakes and by pointing out the parts that were correct but
incomprehensible. Larry, especially, was my mentor and untiring collaborator, helping
me survive my first real teaching job, even though he had his own work and wasn’t
officially part of the computer department at all. I’m also grateful to the many students
who served as guinea pigs for the curriculum, and to David Levington, then the district
superintendent, who was generous with equipment and with administrative freedom in
support of an untested idea.

My work at Lincoln-Sudbury would not have been possible without the strong support
of computer scientists at the Massachusetts Institute of Technology, especially but not
only the ones at the Logo Laboratory. Equipment grants from the Digital Equipment
Corporation and from Atari, Inc., were also crucial to this work.

And thanks, also, to my faculty supervisors in the Graduate Group in Science and
Mathematics Education, at the University of California at Berkeley, for their patience and
understanding while I worked on this instead of my thesis.



Second Edition

Simply Scheme,

Simply Scheme,
Computer Science Logo Style.

xx Acknowledgments

In 1992 one of my then-undergraduate students, Matt Wright, suggested that we collabo-
rate on a textbook for Berkeley’s introductory programming course for non-majors. The
book would use Scheme, the same language used in our first course for students in the
computer science major, but would be based on the ideas in the first edition of this book.
The result of that collaboration, was published in 1994.

In writing Matt and I reconsidered every detail of the presentation used
in We added a greater emphasis on higher order functions,
and we completely reorganized the chapters on recursion. Large example programs were
added to the text, along with suggestions for student projects.

Most of the changes in this second edition were inspired by the work that Matt and
I did together for the Scheme book. In a few cases I have lifted entire paragraphs from
it! Matt also read early drafts of some of the new chapters in this edition, and this text
benefits from his comments.

Berkeley Logo, the interpreter used in this edition, is a collective effort of many
people, both at Berkeley and across the Internet. My main debt in that project is to
three former students: Dan van Blerkom, Michael Katz, and Doug Orleans. At the risk
of missing someone, I also want to acknowledge substantial contributions by Freeman
Deutsch, Khang Dao, Fred Gilham, Yehuda Katz, George Mills, Sanford Owings, and
Randy Sargent.



Computer Science Logo Style
Symbolic Computing





•

•

•

•

logos,

this

1

1 Exploration

The name Logo comes from the Greek word which means “word.” In contrast to
earlier programming languages, which emphasized arithmetic computation, Logo was
designed to manipulate language—words and sentences.

Like any programming language, Logo is a general-purpose tool that can be
approached in many ways. Logo programming can be understood at different levels of
sophistication. It has been taught to four-year-olds and to college students. Most of the
books about Logo so far have been introductory books for young beginners, but
book is different. It’s for somewhat older learners, probably with some prior computer
experience, although not necessarily Logo experience.

This book was written using the Berkeley Logo dialect, a version of Logo that’s
available at no cost for PCs, Macintoshes, and Unix systems. Recent commercial Logo
dialects have emphasized the control of real-time animation, robotics, and other such
application areas, somewhat at the expense of more traditional Logo features designed
to be useful in the development of larger and more complex programs. Berkeley Logo
follows the traditional design, so you may miss some “bells and whistles” that you associate
with Logo from elementary school. In fact, we’ll hardly do any graphics in this book!

Some of the details you’ll have to know in order to work with Logo depend on the
particular kind of computer you’re using. This book assumes you already know some
things about your computer:

How to turn on your computer and start Logo

How to type a command, ending with the RETURN key

How to use control keys to correct typing mistakes

How to use a text editing program



Getting Acquainted with Logo...

[] ()

UPPER CASE lower case

Hi

cleartext ct

language
environment.

programs
vocabulary

prompt.
instruction

2 Chapter 1 Exploration

Welcome to Berkeley Logo version 3.3
?

repeat 50 [setcursor list random 75 random 20 type "Hi]

These points I’ve listed aren’t actually part of the Logo itself, but they’re part
of the Logo programming Appendix A has a brief guide to some of these
machine-specific aspects, but if you’ve never used a computer before at all, start by
working with some application programs to get the feel of the machine.

On the other hand, I’d like to pretend that you know nothing about the Logo
language—the primitive procedures, the process of procedure definition, and so on—
even if you’ve really used Logo in elementary school. The reason for this pretense is that
I want you to think about programming in what will probably be a new way. The
may not be new to you, but the with which you think about them will be. I’m
warning you about this ahead of time because I don’t want you to skip over the early
chapters, thinking that you already know what’s in them.

Okay, it’s time to start Logo running on your computer. You should then see a
screen that says something like

The question mark is Logo’s When you see the question mark, it means that the
computer is prepared for you to type in a Logo and that Logo will carry out
the instruction as soon as you finish it.

Right now, type this instruction:

Remember that square brackets are different from parentheses . Also remember
that it’s important to put spaces between words. However, it doesn’t matter whether you
use or letters in the words that Logo understands.

If all goes well, Logo will cheerfully greet you by scattering s all over the screen.
If all doesn’t go well, you probably misspelled something. Take a look at what you typed,
and try again.

Afterward, you can clear the screen by typing or its abbreviation .



why

Another Greeting 3

repeat random setcursor

... in Two Senses

Another Greeting

repeat 20 [repeat random 30 [type "Hi] print []]

I thought it would be appropriate to start exploring Logo by having it say hello. You and
Logo can get acquainted as you would with another person.

But, of course, the point of the exercise is to get acquainted with Logo in a more
serious sense too. You’re seeing what a Logo instruction looks like and a little bit about
what kinds of things Logo can do. In this first chapter the kind of acquaintance I have
in mind is relatively superficial. I’m trying to get across a broad sense of Logo’s flavor
rather than a lot of details. So I’m not explaining completely what we’re doing here.
For that reason, the second chapter will repeat some of the same activities, but I’ll give a
more detailed discussion there.

Perhaps you’ve made Logo’s acquaintance before, probably through the medium
of turtle graphics. In that first introduction you may have explored Logo’s ability to
manipulate text as well as graphics. But maybe not. Writing a book like this, it’s not easy
for me to carry on a conversation with someone I haven’t met, so in this introduction
I may be saying too much or too little for your individual situation. I hope that by the
second chapter you and the other readers will all be ready for the same discussion.

If you haven’t used Logo before, or if you’ve used only the part of Logo that has to do
with turtles, look at the instruction I asked you to type earlier. Think about the different
parts of that instruction, the words like and and . Try to
figure out what each one means. Then see if you can figure out an experiment to decide
if you’ve understood each word correctly! Later, we’ll go over all these details and you’ll
learn the “official” explanations. But the kind of experimenting I’m suggesting isn’t
pointless. This kind of exploration may raise questions in your mind, not just about the
meanings of the Logo words but about how they’re connected together in an instruction,
or about a word means just what it does rather than something a little different.

Here is a somewhat less “scatterbrained” greeting instruction:

Try that one. Compare it to the one we started with. Which do you like better? Do
you prefer random scattering, or orderly rows? Perhaps this question will teach you
something about your own personality!



print random

hi

usermanual userman.ual

style

procedures,

4 Chapter 1 Exploration

Fooling Around

A Slightly Longer Conversation

* If you’re using Berkeley Logo, it’s in a file named (or if you’re
using a DOS machine) that should be installed along with the Logo program. The Berkeley Logo
reference manual is also an appendix to Volume 2 of this series.

Then again, maybe you think this is all silly. If so, I’d like to try to convince you that there
are some good, serious reasons for you to take a lighthearted approach to computer
programming, no matter how serious your ultimate goals may be.

There are two aspects to learning how to program in a language like Logo. One
aspect is memorizing the vocabulary, just as in learning to speak French. If you flip
through the reference manual that came with your Logo,* you’ll find that it’s a sort of
dictionary, translating each Logo word into a bunch of English words that explain it.
But the second aspect is to learn the “feel” of Logo. What kinds of problems does Logo
handle particularly well? What are the examples of programming that correspond
to the idioms of a human language? What do you do when something doesn’t work?

It is by fooling around with Logo that you learn this second aspect of the language.
Starting with the second chapter of this book, we’ll be going through plenty of dry,
carefully analyzed fine points of Logo usage. But as we progress, you should still be
fooling around, on the computer, with the ideas in the chapters.

In fact, I think that that kind of intellectual play is the best reason for learning
about computer programming in the first place. This is true whether you are a kid
programming for the fun of it or an adult looking for a career change. The most
successful computer programmers aren’t the ones who approach programming as a task
they have to carry out in order to get their paychecks. They’re the ones for whom
programming is a joyful game. Just as a baseball diamond is a good medium in which
you can exercise your body, the computer is a good medium in which you can exercise
your mind. That’s the real virtue of the computer in education, not anything about job
training or about arithmetic drill.

The Logo words such as and are the names of little pieces of
computer program that are “specialists” in some particular task. We are now going to
add to Logo’s repertoire by inventing a new procedure named . At the question mark
prompt, start by typing this:



boldface

to

>

lightface

hi

end

to hi

hi

Brian Harvey

I’m fine.

metaphor teach

A Slightly Longer Conversation 5

to hi

?
>

print [Hi. What’s your name?]
print sentence [How are you,] word first readlist "?
ignore readlist
print [That’s nice.]
end

hi

?
Hi. What’s your name?

How are you, Brian?

That’s nice.

The word here is short for “here’s how to.” The name is intended to suggest
the that what you’re doing when you write computer programs is to the
computer a new skill. Metaphors like this can be very helpful to you in understanding a
new idea. ( Just ask any English teacher.) I’ll point out other metaphors from time to
time.

Logo should have responded to this instruction by printing a different prompt
character. Instead of the question mark, you should now see a greater-than sign ( ) at
the beginning of the line:

(Whenever I show an interaction with the computer in this book, I’ll show the part
that you’re supposed to type in ; what the computer prints in response is in

. But I won’t use boldface when I’m only showing what you type and not a
complete interaction.) This new prompt means that Logo will not immediately carry out
whatever instructions you type; instead Logo will remember these instructions as part of
the new procedure . Continue typing these lines:

Again, be careful about the spaces and punctuation. After the last line, the one that just
says , Logo should go back to the question mark prompt. Now just type

on a line by itself. You can carry on a short conversation with this program. Here’s what
happened when I tried it.



☞

☞

hi

A Sneaky Greeting

6 Chapter 1 Exploration

to hi2

to start
cleartext
print [Welcome to Berkeley Logo version 3.3]
type "|? |
process readlist
type "|? |
wait 100
print [Ha, ha, fooled you!!]
end

to process :instruction
test emptyp :instruction
iftrue [type "|? | process readlist stop]
iffalse [print sentence [|I don’t know how to|] first :instruction]
end

If something unexpected happens when you try it, perhaps you made a typing mistake.
If you know how, you can fix such mistakes using the Logo editor. If not, you’ll have
a chance to review that process later, but for now, just start over again but give the
procedure a different name. For example, you can say

for the second version of .

This program pretends to be pretty smart. It carries on a conversation with you in
English. But of course it isn’t really smart. If you say “I feel terrible” instead of “I’m fine,”
the procedure cheerfully replies “That’s nice” anyway. How else can you mess up the
program? What programming tools would you need to be able to overcome the “bugs”
in this program?

(When a paragraph starts with this symbol it means that the paragraph asks you
to invent something. Often it will be a Logo program, but sometimes, as in this case, just
answers to questions. This is a good opportunity to take a break from reading, and check
on your understanding of what you’ve read.)

This chapter started as a sort of pun in my mind—the one about getting acquainted.
How should I have Logo introduce itself? I’m still playing with that idea. Here’s another
version.



☞

Saving Your Work 7

sports.quiz
history.quiz

A Quiz Program

Saving Your Work

to music.quiz
print [Who is the greatest musician of all time?]
if equalp readlist [John Lennon] [print [That’s right!] stop]
print [No, silly, it’s John Lennon.]
end

to total.quiz
music.quiz
sports.quiz
history.quiz
end

* It has been suggested by some reviewers of the manuscript that there may be younger readers
who don’t know who John Lennon is. Well, he’s the father of Julian Lennon, an obscure rock star
of the ’80s, and he used to be in a rock group called the Quarrymen. If you have trouble with some
of the cultural references later in the book you’ll have to research them yourself.

The vertical bars are used to tell Logo that you want to include space characters within
a word. (Ordinarily Logo pays no attention to extra spaces between words.) This is the
sort of grubby detail you may not want to bother with right now, but if you are a practical
joker you may find it worth the effort.

Before we get on to the next chapter, I’ll just show you one more little program. Try
typing this in. As before, you’ll see greater-than prompts instead of question marks while
you’re doing it.

You can try out this procedure by typing its name as an instruction.*

If you don’t like my question, you could make up your own procedures that ask
different questions. Let’s say you make up one called and another called

, each asking and answering one question. You could then put them all
together into one big quiz like this:

If you do write a collection of quiz procedures, you’ll want to save them so that they’ll
still be available the next time you use Logo. Certainly you’ll want to save the work you



save "mystuff

About Chapter 2

save

mystuff
load

save
mystuff

mystuff
mystuff

save

print
print

workspace

procedure workspace

all

doing

understanding

below
inside

8 Chapter 1 Exploration

do in later chapters. You can ask Logo to record all of the definitions you’ve made as a
file using the command. For example, if you enter the instruction

you are asking Logo to write a disk file called containing everything you’ve
defined. (The next time you use Logo, you can get back your definitions with the
command.)

Don’t get confused about the difference between a name and a
name. Logo beginners sometimes think that saves only a single procedure, the
one whose name you tell it (in this example, a procedure named ). But the
workspace file named will actually contain the procedures you’ve defined.
In fact, you probably don’t have a procedure named .

The format for the name of a disk file will depend on the kind of computer you’re
using, whether you’re writing to a hard disk or a floppy disk, and so on. Just use whatever
file name format your system requires in other programs, preceded by the quotation
mark that tells Logo you’re providing a word as the input to the command.

In this chapter the emphasis has been on things. You’ve been playing around with
some fairly intricate Logo instructions, and if you don’t understand everything about the
examples, don’t let that worry you.

Chapter 2 has the opposite emphasis. There is very little to do, and the examples
will seem quite simple, perhaps even insultingly simple! But the focus of the chapter is
on those simple examples in great detail.

Logo deserves its reputation as an easy-to-learn language, but it is also a very
sophisticated one. The ease with which Logo can be learned has lured many people
into sloppy thinking habits that make it hard for them to grow beyond the most trivial
programming. By studying examples that seem easy on the surface, we can start exploring

the surface. The important questions will not be ones like “what does do,”
but instead ones like “what is going on the Logo interpreter when I type ?”

Later chapters will strike more of a balance between things to do and things to think
about. If the pace seems slow in chapter 2, glance back at the table of contents to reassure
yourself about how much territory we’ll cover before the end of the book. Then keep in
mind that you’ll need the ideas from chapter 2 in order to understand what comes later.



No Exercises

you

confident

No Exercises 9

This is the point in the chapter where you might be expecting a set of exercises: Problem
1.1, get the computer to print your name.

There aren’t any exercises—but not because you shouldn’t try using Logo at this
point. The reason is that part of the challenge is for to invent things to try, not just
rely on me for your ideas. In each chapter there will be some sample procedures to
illustrate the new information in the chapter. You should try to invent programs that use
those ideas.

But I hope it’s clear by now that I don’t want you to do this with a sense of duty.
You should play with the ideas in each chapter only to the extent that it’s interesting and
mind-stretching for you to do so.

In this chapter I really haven’t yet told you any of the rules for putting together Logo
instructions. (I’ll do that in Chapter 2.) So you shouldn’t get discouraged or feel stupid
if you don’t get very far, right now, in playing with Logo. It will be a few more chapters
before you should expect to feel really about undertaking new projects of your
own. But you won’t break anything by trying now. Go ahead, fool around!





print 17

boldface

print 17

?
17

2 Procedures

Procedures and Instructions

lightface

print
print

print let input
if while

procedures
evaluation.

you

procedure,

statement types

11

Logo is one of the most powerful programming languages around. In order to take
advantage of that power, you must understand Logo’s central ideas: and

It is with these ideas that our exploration of Logo programming begins.

In response to Logo’s question-mark prompt, type this instruction:

Logo will respond to this instruction by printing the number 17 and then printing
another question mark, to indicate that it’s ready for another instruction:

(Remember, the things in are the ones should type; what’s in
is what the computer prints.)

This instruction doesn’t do much, but it’s important to understand how it’s put
together. The word is the name of a which is a piece of a computer
program that has a particular specialized task. The procedure named , for
example, has the task of printing things on your screen.

If you have previously used some other programming language, you may be accus-
tomed to the idea of different making up the repertoire of the language.
For example, BASIC has a statement, a statement, an statement, etc.
Pascal has an assignment statement, an statement, a statement, etc. Each kind



Technical Terms

print

print

Print 17

Print

syntax,
everything

primitive

exactly

flexibility

inputs.

instruction procedure

command operation,

instruction

exactly

procedure

12 Chapter 2 Procedures

of statement has its own that is, its own special punctuation and organization.
Logo is very different. It does not have different kinds of instructions; in Logo
is done by the use of procedures. If Logo is your first programming language, you don’t
have to worry about this. But for people with previous experience in another language,
it’s a common source of misunderstanding.

When you first start up Logo, it “knows” about 200 procedures. These initial
procedures are called procedures. Your task as a Logo programmer is to add
to Logo’s repertoire by defining new procedures of your own. You do this by putting
together procedures that already exist. We’ll see how this is done later in this chapter.

The procedure , although it has a specific task, doesn’t always do the
same thing; it can print anything you want, not always the number 17. (You’ve seen
several examples in Chapter 1.) This may seem like an obvious point, but later you will
see that the of procedures is an important part of what makes them so powerful.
To control this flexibility, we need a way to tell a procedure exactly what we want it to
do. Therefore, each procedure can accept a particular number of An input is a
piece of information. It can be a number, as in the example we’re examining, but there
are many other kinds of information that Logo procedures can handle. The procedure
named requires one input. Other procedures will require different numbers of
inputs; some don’t require any.

In ordinary conversation, words such as and have pretty much the
same meaning—they refer to any process, recipe, or method for carrying out some task.
That’s not the situation when we’re talking about computer programming. Each of these
words has a specific technical meaning, and it’s very important for you to keep them
straight in your head while you’re reading this chapter. (Soon we’ll start using more
words, such as and which also have similar meanings in ordinary use
but very different meanings for us.)

An is what you type to Logo to tell it to do something. is
an example of an instruction. We’re about to see some more complicated instructions,
made up of more pieces. An instruction has to contain enough information to specify

what you want Logo to do. To make an analogy with instructing human beings,
“Read Chapter 2 of this book” is an instruction, but “read” isn’t one, because it doesn’t
tell you what to read.

A is like a recipe or a technique for carrying out a certain kind of task.
is the name of a procedure just as “lemon meringue pie” is the name of a recipe.



print sum 2 3

Evaluation

invoke

those

evaluated

output input

output printing.

Evaluation 13

print

sum 2 3
print sum 2 3

print
sum

sum Sum

print sum
sum print

sum
print print

(The recipe itself, as distinct from its name, is a bunch of instructions, such as “Preheat
the oven to 325 degrees.”) A procedure contains information about how to do something,
but the procedure doesn’t take action itself, just as a recipe in a book can’t bake a pie by
itself. Someone has to carry out the recipe. In the Logo world something has to
a procedure. To “invoke” a procedure means to carry it out, to do what the procedure
says. Procedures are invoked by instructions. The instruction you gave just now invoked
the procedure named .

If an instruction is made up of names of procedures, and if the procedures invoked
by the instruction are made up of more instructions, why doesn’t the computer get
caught in a vicious circle, always finding more detailed procedures to invoke and never
actually doing anything? This question is a lot like the one about dictionaries: When you
look up the definition of a word, all you find is more words. How do you know what

words mean? For words in the dictionary this turns out to be a very profound and
difficult question. For Logo programming the answer is much simpler. In the end, your
instructions and the procedures they invoke must be defined in terms of the primitive
procedures. Those procedures are not made up of Logo instructions. They’re the things
that Logo just knows how to do in the first place.

Now try this instruction:

If everything is going according to plan, Logo didn’t print the words “ ”; it printed
the number 5. The input to was the expression , but Logo
the input before passing it to the procedure. This means that Logo invoked the
necessary procedures (in this case, ) to compute the value of the expression (5).

In this instruction the word is also the name of a procedure. requires two
inputs. In this case we gave it the numbers 2 and 3 as inputs. Just as the task of procedure

is to print something, the task of procedure is to add two numbers. It is the
result of this addition, the from , that becomes the to .

Don’t confuse with In Logo the word “output” is one of those
technical terms I mentioned before. It refers to a value that one procedure computes
and hands on to another procedure that needs an input. In this example outputs the
number 5 to , but doesn’t output anything to another procedure. When



print sum 4 product 10 2

output input

14 Chapter 2 Procedures

print

print
print

sum
sum print

sum sum
sum

sum

sum
product

sum

product
print sum

print sum

product

product

product

product
product

sum
sum sum

sum print print

prints the 5, that’s the end of the story. There are no more procedures waiting
for inputs.

See if you can figure out what this instruction will do before you try it:

Here are the steps Logo takes to evaluate the instruction:

1. The first thing in the instruction is the name of the procedure . Logo knows
that requires one input, so it continues reading the instruction line.

2. The next thing Logo finds is the word . This, too, is the name of a procedure.
This tells Logo that the from will be the to .

3. Logo knows that takes two inputs, so can’t be invoked until Logo finds
’s inputs.

4. The next thing in the instruction is the number 4, so that must be the first input to
. This input, too, must be evaluated. Fortunately, a number simply evaluates to

itself, so the value of this input is 4.

5. Logo still needs to find the second input to . The next thing in the instruction
is the word . This is, again, the name of a procedure. Logo must carry out
that procedure to evaluate ’s second input.

6. Logo knows that requires two inputs. It must now look for the first of those
inputs. (Meanwhile, and are both “on hold” waiting for their inputs to
be evaluated. is waiting for its single input; , which has found one input,
is waiting for its second.) The next thing on the line is the number 10. This number
evaluates to itself, so the first input to is 10.

7. Logo still needs another input for , so it continues reading the instruction.
The next thing it finds is the number 2. This number evaluates to itself, so the
second input to has the value 2.

8. Logo is now ready to invoke the procedure , with inputs 10 and 2. The
output from is 10 times 2, or 20.

9. This output, 20, is the value of the second input to . Logo is now ready to invoke
, with inputs 4 and 20. The output from is 24.

10. The output from , 24, is the input to . Logo is now ready to invoke ,
which prints 24. (You were only waiting for this moment to arise.)



SUMPRINT

SUM

PRINT

PRODUCT

210

4

SUM

PRINT

PRODUCT

210

4

24

20

Print
Sum

composition of
functions.

Evaluation 15

That’s a lot of talking about a pretty simple instruction! I promise not to do it
again in quite so much detail. It’s important, though, to be able to call upon your
understanding of these details to figure out more complicated situations later. Using
the output from one procedure as an input to another procedure is called

Some people find it helpful to look at a pictorial form of this analysis. We can
represent each procedure as a kind of tank, with input hoppers on top and perhaps an
output pipe at the bottom. (This organization makes sense because gravity will pull the
information downward.) For example:

has one input, which is represented by the hopper above the tank. It doesn’t have
an output, so there is no pipe coming out the bottom. has two inputs, shown at the
top, and an output, shown at the bottom.

We can put these parts together to form a kind of “plumbing diagram” of the
instruction:

In that diagram the output pipes from one procedure are connected to the input hoppers
of another. Every pipe must be connected to something. The inputs that are explicitly
given as numbers in the instruction are shown with arrows pointing into the hoppers.

You can annotate the diagram by indicating the actual information that flows through
each pipe. Here’s how that would look for this instruction:



☞

Error Messages

print

print remainder product 4 5

figure out

kind

particular

16 Chapter 2 Procedures

print

?
Not enough inputs to print

?
Not enough inputs to remainder

print sum product

plus add sum
remainder

remainder

Print sum product

print

print

remainder
print product

By the way, I’ve introduced the procedures , , and so casually
that you might think it’s a law of nature that every programming language must have
procedures with these names. Actually the details of Logo’s repertoire of primitive
procedures are quite arbitrary. It would be hard to avoid having a way to add numbers,
but it might have been named or instead of . For some primitives there
are additional arbitrary details; for noncommutative operations such as ,
for example, the rule about which input comes first was an arbitrary choice for Logo’s
designers. ( Experiment with and see if you can describe it well enough
that someone else can use it without needing to experiment.) I am making a point of the
arbitrary nature of these details because people who are learning to program sometimes
think they’re doing badly if they don’t how a primitive procedure works in
advance. But these rules aren’t things you work out; they’re things someone has to tell
you, like the capital of Kansas.

We’ve observed that Logo knows in advance how many inputs a particular procedure
needs. ( needs one; and each need two.) What if you give a
procedure the wrong number of inputs? Try this:

(That is, the word as an instruction all by itself, with no input.) You should see
something like this:

This gentle complaint from Logo tells you two things. First, it indicates the general
of thing that went wrong (not enough inputs to some procedure). Second, it names the

procedure that complained ( ). In this case it was pretty obvious which
procedure was involved, since we only used one procedure. But try this:

In this case Logo’s message is helpful in pinpointing the fact that it was , not
or , that lacked an input.



print 2 3

print 2 print 3

Commands and Operations

print 2
3

Sum product

Print

sum 3 2

?
2
You don’t say what to do with 3

?
2
3

operation

command not effect

expression

Commands and Operations 17

The reason I’m beating this error message to death is that one of the most common
mistakes made by beginning programmers is to ignore what an error message says. Some
people get very upset at seeing this kind of message and just give up without trying to
figure out the problem. Other people make the opposite mistake, breezing past the
message without taking advantage of the detailed help it offers. Some smart people at
M.I.T. put a lot of effort into designing Logo’s error messages, so please pay attention to
them.

What if you give a procedure too many inputs? Try this:

(The exact text of the message, by the way, may be slightly different in some versions of
Logo.) What happened here is that Logo carried out the instruction , and then
found the extra number on the line. It would have been okay if we’d done something
with the 3:

It’s okay to have more than one instruction on the same line, as long as they are complete
instructions.

What’s a “complete instruction”? Before I can answer that question, you have to
understand that in Logo there are two kinds of procedures: commands and operations.

An is a procedure that computes a value and outputs it. and
are operations, for example.

A is a procedure that does output a value but instead has some
such as printing something on the screen, moving a turtle, or making a sound. ,
then, is a command. Some commands have effects that are not apparent on the outside
but instead change something inside the computer that might become important later
in the program.

A complete instruction consists of the name of a command, followed by as many
expressions as necessary to provide its inputs. An is something like



Words and Lists

?
I don’t know how to Hello

?
Hello

?
5

print Hello

print "Hello

print sum "2 "3

17

sum 3 2 sum
3 2

Hello

Hello
print sum

hello

print sum hello
"

carefully!

quote to prevent it from being evaluated.
the thing evaluates to itself after

before

18 Chapter 2 Procedures

or . Operations are used to construct expressions. More formally, an expression is
one of two things: either an explicitly provided value such as a number, or else the name
of an operation, followed by as many expressions as necessary to provide its inputs. For
example, the expression consists of the operation name followed by two
expressions, the number and the number . Numbers are the only values we’ve seen
how to provide explicitly, but that’s about to change.

So far, our examples have been about numbers and arithmetic. Many people think that
computers just do arithmetic, but actually it’s much more interesting to use computers
with other kinds of information. You’ve seen examples of text processing in Chapter 1,
but this time we’re going to do it

Suppose you want Logo to print the word . You might try this:

Logo interpreted the word as the name of a procedure, just as in the examples
with earlier. The error message means that there is no procedure named

in Logo’s repertoire.

When Logo is evaluating instructions, it always interprets unadorned words such as
or or as names of procedures. In order to convince Logo to treat a

word simply as itself, you must type a quotation mark ( ) in front of it:

Here is why the quotation mark is used for this purpose in Logo: In computer science,
to something means (Another way to say the same
thing is that or that its value evaluation is the same as what
it is evaluation.) For example, we have already seen that in Logo, numbers are
automatically quoted. (It doesn’t hurt to use the quotation mark with numbers, however.

Logo is perfectly happy to add the quote-marked numbers.)



cherry vanilla

mango

[[cherry vanilla] mango [root beer swirl]]

[cherry vanilla] [root beer swirl]

root beer swirl

How

mango

print [How are you?]?
How are you?

[[cherry vanilla] mango [root beer swirl]]

word character string

list.

members.

tree diagram:

Words and Lists 19

(People who have programmed in some other language should note that quotation
marks are not used in pairs in Logo. This is not just an arbitrary syntactic foible; it reflects
the fact that a Logo is a different idea from what would be called a
in other languages. I urge you not only to program in Logo but even to think in Logo
terminology.)

What if you want to print more than one word? You can combine several words to
form a The easiest way to do this is to enclose the words in square brackets, which
tells Logo to quote the list. That is, a list in brackets evaluates to the list itself:

(If square brackets quote a list, what does it mean to evaluate a list? Well, every instruction
line you type to Logo is actually a list, which is evaluated by invoking the procedures it
names. Most of the time you don’t have to remember that an instruction is a list, but that
fact will become very useful later on.)

The list in the example above contains three In this example each member
is a word. For example, the first member is the word . But the members of a list
aren’t required to be words; they can also be lists. The fact that a list can have another
list as a member makes lists very flexible as a way of grouping information. For example,
the list

contains three members. The first and third members are themselves lists, while the
second member is the word . A list like this can be represented using a



cherry vanilla

mango

root beer swirl

[How are you?]

How to Describe a Procedure

* Later we’ll use a third kind of datum, called an “array.”

leaves

delimit quote

part of

datum.
sentence flat list.

20 Chapter 2 Procedures

This diagram has the name “tree” because it resembles an upside-down tree, with a trunk
at the top and branches extending downward. Often a tree diagram is drawn with only
the labeled—the words that make up the smallest sublists:

Keep in mind that the square brackets in Logo serve two purposes at once: they
a list—that is, they show where the list begins and ends—and they also the

list, so that Logo’s evaluator interprets the list as representing itself and not as requesting
the invocation of procedures. The brackets surround the list; they are not the list.
(Similarly, the quotation mark that indicates a quoted word is not part of the word.)

Words and lists are the two kinds of information that Logo can process. (Numbers
are a special case of words.) The name I’ll use for “either a word or a list” is a * A
list of words, such as , is called a or a (It’s called “flat”
because the tree diagram only has one level, not counting the “root” at the top.) The
name “sentence” is meant to suggest that flat lists are often, although not always, used
to represent English sentences. A sentence is a special kind of list, just as a number is a
special kind of word. We’ll see other kinds of lists later.

My high school U.S. history teacher was very fussy about what he considered the proper
way to color in outline maps. He would make us do them over if we used colors or
shading techniques he didn’t like. We humored him because he was a very good teacher
in other ways; for example, he gave us original historical documents to read instead of
boring textbooks.

I hope you will humor me when I tell you that there is a right way and a wrong way
to talk about procedures. If I were teaching you in person, I’d be very understanding



?
H
?
How

Manipulating Words and Lists

print first "Hello

print first [How are you?]

Sum

Sum
sum

print
print

First
first

Butfirst
butfirst

programs,
descriptions.

type

output? effect?

characters,

members

Manipulating Words and Lists 21

about mistakes in your but I’d hit you over the head (gently, of course) if you
were sloppy about your

Here is an example of the wrong way: “ adds up two numbers.” It’s not that this
description isn’t true but that it’s inadequate. It leaves out too much.

Here is an example of the right way: “ is an operation. It has two inputs. Both
inputs must be numbers. The output from is a number, the result of adding the two
inputs.”

Here are the ingredients in the right way:

1. Command or operation?

2. How many inputs?

3. What of datum must each input be?

4. If the procedure is an operation, what is its If a command, what is its

Another example: “The command has one input. The input can be any
datum. The effect of is to print the input datum on the screen.”

Logo provides several primitive operations for taking data apart and putting data
together. Words come apart into such as letters or digits or punctuation marks.
(A character is not a third kind of datum. It’s just a word that happens to be one character
long.) Lists come apart into whatever data are the of the list. A sentence, which
is a list of words, comes apart into words.

is an operation that takes one input. The input can be any nonempty datum.
(In a moment you’ll see what an empty datum is.) The output from is the first
member of the input if the input is a list, or the first character if the input is a word. Try
these examples:

is also an operation that takes one input. The input can be any nonempty
datum. The output from is a list containing all but the first member of the



?
ello
?
are you?

?

?

?

?

?

abbreviations

22 Chapter 2 Procedures

print butfirst "Hello

print butfirst [How are you?]

print butfirst "A

print butfirst [Hello]

print " print []

first butfirst

butfirst

first butfirst

[Hello] "Hello

first butfirst

last butlast

bf butfirst Pr
print first

input if the input is a list, or a word containing all but the first character of the input if
it’s a word:

Notice that the of a list can be a word, but the of any datum is
always another datum of the same type. Also notice what happens when you take the

of a datum with only one thing in it:

In each case Logo printed a blank line. In the first case that blank line represents an
empty word, a word with no characters in it. The second blank line represents an empty
list, a list with no members. You can indicate the empty word in an instruction by using
a quotation mark with a space (or the RETURN key to end the instruction) after it. To
indicate an empty list, use brackets with nothing inside them:

Do you understand why it doesn’t make sense to use the empty word or the empty list as
input to or ? Try it and see what happens.

You should also notice that the list is not the same as the word .
They look the same when you print them, but they act differently when you take their

or .

There are also primitive operations and . I’m sure you’ll have no
trouble guessing what they do. Try them out, then practice describing them properly.

This is probably a good place to mention that there are for some Logo
primitive procedures. For example, is an abbreviation for . is an
abbreviation for . There isn’t any abbreviation for .



selectors. constructors.

members
members

Manipulating Words and Lists 23

item

First last butfirst butlast item

Sentence

sentence

sentence

sentence
sentence

sentence
Sentence

?
s
?
Day

?
hello goodbye
?
this is a test
?
this is one too
?
list of words

?
[list 1a] [list 1b] [list 2a] [list 2b]
?
flat list [not flat] [list]

print item 3 "Yesterday

print item 2 [Good Day Sunshine]

print sentence "hello "goodbye

print sentence [this is] [a test]

print sentence "this [is one too]

print sentence [] [list of words]

print sentence [[list 1a] [list 1b]] [[list 2a] [list 2b]]

print sentence [flat list] [[not flat] [list]]

If you want to extract a piece of a word or list that isn’t at the beginning or end, you
can use the more general operation with two inputs: a positive integer to indicate
which member to select, and a word or list. For example:

, , , , and are taking-apart operations, or
Logo also provides putting-together operations, or

is a constructor. It takes two inputs, which can be any data at all. Its
output is always a list.

Describing the output from is a little tricky because the same procedure
serves two different purposes. The first purpose is the one suggested by its name:
constructing sentences. If you use only words and sentences (flat lists) as inputs, then
the output from is a sentence concatenating (stringing together) the words
contained in the inputs. Here are some examples:

On the other hand, can also be used to append two lists (flat or not). With
lists as inputs, the output from is a list in which the of the first input
and the of the second input are concatenated:

In the second example the output is a list with four members: two words and two lists.

Using a word as input to is equivalent to using a list with that word as its
single member. is the only primitive operation that treats words the same as



24 Chapter 2 Procedures

first butfirst
hello [hello]

list
sentence

Word
word

sum
product

(print word word last "awful first butfirst "computer
first [go to the store, please.])

?
[this is] [a test]
?
this [is one too]
?
[] [list of words]

?
hellogoodbye
?
nowhere
?
word doesn’t like [is a test] as input

~

print list [this is] [a test]

print list "this [is one too]

print list [] [list of words]

print word "hello "goodbye

print word "now "here

print word "this [is a test]

single-word lists; you’ve seen from the earlier examples that and treat
the word and the list differently.

Another constructor for lists is . Its inputs can be any data; its output is a list
whose members are the inputs—not the members of the inputs, as for .

is an operation that takes two inputs. Both inputs must be words. (They may
be the empty word.) The output from is a word formed by concatenating the
characters in the input words:

Selectors and constructors can be composed, in the same way we composed and
earlier. See if you can work out what this example will do before you try it with

the computer:*

* The tilde ( ) at the end of the first line is the notation used by Berkeley Logo to indicate that
this and the following line should be understood as a single, long instruction line. It’s somewhat
analogous to the way a hyphen (-) is used in English text when a single word must be split between
two lines. Berkeley Logo will also continue an instruction to the next line if a line ends inside
parentheses or brackets, so another way to indicate a long instruction line is to enclose the entire
instruction in parentheses, like this:

Other Logo dialects have other rules for line continuation. (In some dialects everything you type
is automatically taken as one big line, so you don’t have to think about this.) In the book, I’ll
indent continuation lines, as above, to make it quite clear that they are meant to be part of the
same instruction as the line above. But Logo doesn’t pay attention to the indentation.



•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

Manipulating Words and Lists 25

print word word last "awful first butfirst "computer ~
first [go to the store, please.]

print word

word word

word last

last awful

last l
word

word first

first butfirst

butfirst computer

butfirst omputer first

first o
word

word lo
word

word first

first [go to the store, please.]

first go
word

word logo print

print logo

Here is how I’d analyze it.

The input to is the output from .

The first input to is the output from .

The first input to (the second) is the output from .

The input to is the quoted word .

The output from is the word , which becomes the first input to the second
.

The second input to the second is the output from .

The input to is the output from .

The input to is the quoted word .

The output from is the word , which becomes the input to .

The output from is the word , which becomes the second input to the second
.

The output from the second is the word , which becomes the first input to the
first .

The second input to (the first) is the output from (the second) .

The input to is the sentence .

The output from is the word , which becomes the second input to the first
.

The output from is the word , which becomes the input to .

Finally, prints the word .

And here is the plumbing diagram:



[go to the store, please.]

BUTFIRST

WORD

PRINT

FIRST

LAST FIRST

WORD

computer

awful

☞

Count
count

26 Chapter 2 Procedures

print word sum 2 3 product 2 3

print sum word 2 3 product 2 3

print sentence sum 2 3 word 2 3

print butlast "tricky
print butlast [tricky]
print se bl "farm bl bl bl "output
print first butfirst "hello
print first butfirst [abc def ghi]
(print word bl "hard word bl bl first [very hard]

last first [extremely hard])

?
56
?
29
?
5 23

If you made it through that, you should find it easy to predict what these instructions
will do:

Remember that numbers are words, so you can combine arithmetic operations with
these word and list operations:

is an operation that takes one input. The input can be any datum. The
output from is a number, indicating the length of the input. If the input is a word,
the output is the number of characters in the word. If the input is a list, the output is the
number of members in the list.



and

and 27

Print Show

hi print

first

first first

show

Print Show

?
5
?
1
?
0
?
0
?
57
?
12

?
aardvark
?
aardvark

?
aardvark
?
a

print count "hello

print count [hello]

print count "

print count []

print word count "hello count "goodbye

print sum count "hello count "goodbye

print [aardvark]

print "aardvark

print first [aardvark]

print first "aardvark

Because lists are often used to represent English sentences in conversational programs
like the procedure of Chapter 1, prints only the members of a list, without
enclosing brackets. This behavior could be confusing if a list contains only one member:

There is no visible difference between a word and a one-word list. But the two values are
actually quite different, as we can see if we use them as inputs to :

The of a sentence is its first word, even if it has only one word, but the of
a word is its first letter.

To help distinguish words from lists, Logo has another printing command called
that displays brackets around lists:



print
show

Order of Evaluation

before

28 Chapter 2 Procedures

show [aardvark]

show "aardvark

show sentence [this is] [an example]

show list [this is] [an example]

?
[aardvark]
?
aardvark
?
[this is an example]
?
[[this is] [an example]]

print first butfirst butfirst [print the third word]

butfirst [print the third word]

butfirst [the third word]

first [third word]

print "third

Use if your program wants to carry on a conversation with the user in English.
Use if you are using lists to represent some structure other than a sentence.

You may hear people say something like this: “Logo evaluates from right to left.” What
they mean is that in an instruction such as

Logo first evaluates

and next evaluates

and then

and finally

In other words, the procedures named toward the right end of the instruction line must
be invoked Logo can know the appropriate input values for the procedures farther
to the left.

This right-to-left idea can be a useful way of helping you understand evaluation
in Logo. But you should realize that it’s not quite true. It only works out that way



☞

print 2+3

print sum 2 3

Special Forms of Evaluation

word sum

first butfirst
print

2+3*4 2+(3*4)
2*3+4 (2*3)+4

finish

starts
part of

infix arithmetic prefix arithmetic

Special Forms of Evaluation 29

if the instruction line contains only one instruction and each procedure used in that
instruction takes only one input. If you look back at one of the examples in which
two-input procedures such as or are used, you’ll see that Logo really does read
the instruction line from left to right. And if there are two instructions on the same line,
the one on the left is evaluated first.

The reason for the seeming right-to-left evaluation is that Logo can’t evaluating
a procedure invocation until it has collected and evaluated the inputs to the procedure.
But Logo evaluating an instruction line by looking at the first word on the line. In
the example just above, the evaluation of and is the evaluation
of .

So far, the evaluation process has been very uniform. Logo looks at the first word of an
instruction and interprets that word as the name of a procedure. Logo knows how many
inputs each procedure requires. It then evaluates as many expressions as necessary to
assign values to those inputs. The expressions are evaluated the same way: Logo looks at
the first word. . . and so on.

Although this evaluation process is perfectly general, Logo also provides a couple
of special forms of evaluation to make certain things easier to type. (The computer
science terminology for such a special case is a “kludge.” The letter “u” in this word is
pronounced as in “rude,” not as in “sludge.”)

One special case is that Logo provides as well as the
we’ve used so far. That is, you can say

instead of

When you use infix operations, the usual rules of precedence apply: multiplications
and divisions are done before additions and subtractions unless you use parentheses.
In other words, (the asterisk represents multiplication) means , while

means . You should take note that this issue of precedence doesn’t arise
when prefix operations are used.

For example, look at these expressions:



f x

30 Chapter 2 Procedures

Writing Your Own Procedures

2+3*4

Sum product word list sentence print

(f x)

print sum 2 3 4

print (sum 2 3 4)

show (list "one)

show (list)

sum 2 product 3 4
product sum 2 3 4
sum product 2 3 4
product 2 sum 3 4

?
5
You don’t say what to do with 4
?
9
?
[one]
?
[]

print word (word (last "awful) (first butfirst "computer)) ~
(first [go to the store, please.])

to hello

Each of these indicates precisely what order of operations is desired. The first, for
example, is equivalent to . Try converting the others to infix form. Which ones
require parentheses?

The second special form of evaluation is that certain primitive procedures can be
given extra inputs, or fewer inputs than usual, by using parentheses around the procedure
name and all its inputs. Here are some examples:

, , , , , and can be used with any number of
inputs.

By the way, it is always permitted to enclose a procedure name and its inputs (the
correct number of them!) in parentheses, even when it’s not necessary, to make the
instruction more readable. One of the earlier illustrations, for example, might be easier
to read in this form:

Notice that Logo’s placement of parentheses is different from the function notation used
in algebra. In algebra you say ( ). In Logo you would express the same idea as .

With these tools, you are ready to begin writing new procedures. Type this:



does not evaluate

immediate

To

Hello to
to hello

to to

hello

end
hello

teach it how

Writing Your Own Procedures 31

to hello

print "Hello
print [This is Logo speaking.]
print [What’s new?]
end

hello

print Hello

?
>

>
>
>
>
?

?
Hello
This is Logo speaking.
What’s new?

end print

end
print

hello end

* Why can’t we simply think of as the name of a procedure, just as is? This is a
minor point, but one that you can use to test your understanding of what’s going on while you
are defining a procedure. When you see the greater-than prompt, Logo the lines
you type. It simply remembers those lines as part of the procedure you’re defining. If were a
procedure, it wouldn’t be evaluated right away, just as those instructions aren’t evaluated
right away. It, too, would be remembered as part of the definition of . Instead, typing
has an effect: It ends the procedure definition and returns to the question-mark prompt
that allows interactive evaluation.

is a command, but it’s a very special one. It’s the only one that does not evaluate its
inputs. Remember earlier when we said

and Logo complained that it didn’t know how to ? Well, doesn’t make that
kind of complaint. Instead it prepares to have you . (That’s why

is called !) What you should see on the screen is something like this:

Instead of a question mark, Logo has printed a greater-than symbol as the prompt.
This special prompt warns you that whatever instructions you type won’t be carried out
immediately, as usual. Instead Logo remembers what you type as part of the procedure
named . Continue like this:

The word isn’t the name of a procedure. It’s a special signal to Logo that you’re
finished defining the procedure .*

Now you can try out your new procedure:



☞

po "hello

po
po

to po
hello

to

end

pops
pots

hello
print butfirst

Last
Last

?
to hello
print "Hello
print [This is Logo speaking.]
print [What’s new?]
end
?

does

title line.
instruction lines.

end line.

just like

32 Chapter 2 Procedures

You can also examine the procedure itself by asking Logo to print it out. The command
(for Print Out) takes one input, a word or a list. The input is either the name of a

procedure (if a word) or a list of names of procedures. The effect of is to print out
the definition(s) of the procedure(s) named by the input. Here is an example:

Unlike , but like all other Logo procedures, evaluate its input. That’s why the
word must be quoted in this example.

In a procedure definition the line starting is called the The lines
containing instructions are, naturally, called We won’t have many
occasions to talk about the line containing only the word , but just in case, we’ll call
it the

The command (for Print Out ProcedureS) takes no inputs. Its effect is to print
out the definitions of all the procedures you’ve defined. The command (for Print
Out TitleS) also takes no inputs and prints out only the title lines of all the procedures
you’ve defined.

Some writers and teachers reserve the word “procedure” to refer only to ones you
write yourself, such as . They use the word “primitive” as a noun, to mean things
like and . They say things like “Logo instructions are made up of
procedures and primitives.” This is a big mistake. The procedures you write are
the procedures Logo happens to know about in the first place. It’s just that somebody
else wrote the primitive procedures. But you use your own procedures in exactly the same
way that you use primitive procedures: you type the name of the procedure and Logo
evaluates that name by invoking the procedure. It’s okay to say “ is a primitive” as
an abbreviation for “ is a primitive procedure,” as long as you know what you’re
talking about.

Try defining more procedures. You’ll find that you don’t have quite enough tools
yet to make your procedures very interesting; the main problem is that yours don’t take
inputs, so they do exactly the same thing every time you use them. We’ll solve that
problem in the next chapter.



edit

edit

to to

to

to

print item [john paul george ringo] 2

Editing Your Procedures

Syntax and Semantics

editor,

syntax

semantics,

Syntax and Semantics 33

As you may remember from earlier experiences, Logo includes an a program that
allows you to make corrections to a procedure you’ve defined. You can also use the editor
to write procedure definitions in the first place. The editor works slightly differently in
each version of Logo, so you should consult the manuals for your own computer (or
Appendix A, for Berkeley Logo) to review the details.

By the way, when you’re learning about the command, don’t forget that it
can accept a list of procedure names as input, not only a single word. By listing several
procedures in the input to , you can have them all visible at once while you’re
editing, and you can copy instructions from one to another. This is a powerful capability
of the Logo editor, which beginners often neglect.

Once you’ve gotten familiar with the Logo editor, you’ll probably find yourself
wanting to use it all the time, and you’ll rarely choose to define a procedure by invoking

directly. (Don’t get confused about that last sentence; of course you type when
you’re using the editor, but you don’t type it as a command to the Logo interpreter in
response to a question mark prompt.) The editor makes it much easier to correct typing
mistakes. Nevertheless, if you need to define a short procedure in the middle of doing
something else, you may occasionally find it simpler to use rather than wait for an
editor to start up.

Except for the special case of , all Logo instructions follow the same rules about the
meaning of punctuation and about which subexpression provides an input to which
procedure call. These are called rules. The rules pay no attention to what any
particular procedure means, or what inputs might or might not be sensible for that
procedure; those aspects of a program are called its which is a fancy word for
“meaning.” You might say that Logo’s plumber, the part of Logo that hooks up the
plumbing diagrams, doesn’t know anything about semantics. So, for example, if you
make a mistake like

and get a Logo error message, you might feel that it’s obvious what you meant—and it
would be, to another person—and so Logo should have figured it out and done the right
thing. But computers aren’t as smart as people, and so you can rely only on Logo’s syntax
rules, not on the semantics of your program, to help Logo make sense of what you write.



WORD

PRINT

SUM

42

es

SUM

PRINT

WORD

42

es

word sum

sum 24 es

print word sum 2 4 "es?
6es

print sum word 2 4 "es

before

semantic

34 Chapter 2 Procedures

To illustrate the difference between syntax and semantics, we’ll start by examining
the following Logo instruction:

Here’s its plumbing diagram:

The connections in a plumbing diagram depend only on the numbers of inputs
and outputs for each procedure used. Logo “connects the plumbing” invoking
any of the procedures named in the instruction. The plumbing is connected regardless
of whether the specified inputs actually make sense to the procedures in question. For
example, suppose we make a slight change to the instruction given just now:

The only change is that and have been interchanged. Since these are both
two-input operations, the shape of the plumbing diagram is unchanged.

The plumbing connections are syntactically fine, so Logo can work out which expression
provides the input to which procedure call. However, when Logo gets around to invoking
the procedure with inputs and , an error message will result because the
second input isn’t a number. This is a error.



WORD

PRINT

SUM

es2

?

print word sum 2 "es

Parentheses and Plumbing Diagrams

syntactic

Parentheses and Plumbing Diagrams 35

es word
sum

print
word word print

word sum sum
word sum

word
sum

word

not enough inputs

you don’t say what to do with
too much inside ()’s

By contrast, the following instruction shows a error, in which Logo is unable
to figure out a plumbing diagram in which all the pieces connect up.

The question mark in the diagram indicates a missing input. In this example, the pro-
grammer intended the word to be the second input to ; from the programmer’s
point of view, it is a number, the desired second input to , that’s “really” missing.
But Logo doesn’t know about the programmer’s intentions, and Logo’s plumber follows
uniform rules in deciding which input goes with which procedure call.

The rule is that Logo starts by looking for an input to . The first thing it finds
is , so the output from is hooked up to the input for . Now Logo is
looking for two inputs to . The next thing it finds is , so the output from is
hooked up to the first input for . Now Logo is looking for two inputs to , and
the syntax rules say that Logo must find those two inputs before it can continue with the
still-pending task of finding a second input for . Logo’s plumber isn’t smart enough
to say, “Hey, here’s a non-number as input to , and I happen to remember that we
still need another input for , so that must be what the programmer meant.”

There are really only two kinds of plumbing errors. In the one shown here, too few
expressions are included in the instruction, so that the message
results. The other error is that too many expressions appear inside the instruction.
This may result in the message something, or, if the
extra expressions are within parentheses, by .

Parentheses can be used in a Logo instruction for three reasons: for readability, to
show the precedence of infix operators, or to include a nonstandard number of inputs
for certain primitives. In all three cases, the syntax rule is that everything inside the



PRINT

WORD

a b c

PRINT

WORD

a b c

print

word

within

f x

36 Chapter 2 Procedures

print (word "a "b "c)

print word ("a "b "c) ; (wrong)

parentheses must form one single complete expression. In plumbing diagram terms,
this means that the stuff inside the parentheses must correspond to a subdiagram with
no inputs and with exactly one output (unless an entire instruction is parenthesized, in
which case the diagram will have no outputs):

The dotted rectangle indicates the subdiagram corresponding to the expression inside
the parentheses. That rectangle has no inputs; there are three inputs the rectangle,
but in each case the source of the input and the recipient of the input are both inside.
There is no recipient inside the rectangle that needs a source from outside. The rectangle
has one output; the entire expression within the rectangle provides the input to .

The mathematical function notation ( ) used in algebra often tempts beginning
Logo programmers to write the above example as

but by thinking about the plumbing diagram we can see that that would not put one
single expression inside the parentheses:

The part of the instruction inside the parentheses is trying to provide three outputs,
not just one. This violates the rules. Also, since the word isn’t inside the
parentheses, that procedure follows its ordinary rules and expects only two inputs.



RINGO0 stu

GEORGE2

JOHN2

paul

☞

garply2
x

baz3x

Nonsense Plumbing Diagrams

Nonsense Plumbing Diagrams 37

john2 "paul george2 ringo0 "stu

baz3x 1 2 foo3x foo3x 4 5 6 (foo3x 7) 8
baz3x 1 [2 foo3x foo3x 4 5 6 (foo3x 7)] 8
if2 test3 [a b] [c d] [e f] [g h]
if2 try0 [foo3x 8 9]

To emphasize the point that the plumbing diagram depends only on the number of inputs
expected by each procedure, and not on the purpose or meaning of the procedure, we
can draw plumbing diagrams for nonsense instructions using unknown procedures. The
rule of this game is that each procedure name includes a number indicating how many
inputs it accepts. For example, is a procedure that requires two inputs. If a
procedure can accept extra inputs when used with parentheses, we put an after the
number; ordinarily takes three inputs, but can be given any number of inputs by
using parentheses around the subexpression that invokes it.

We don’t have to know what any of these procedures do. The only information we need
is that some words in the instruction are quoted, while others are names of procedures
that take a known number of inputs. This is a syntactically correct instruction because
each procedure has been given exactly as many inputs as it requires.

Try these:





3 Variables

invoke
define

name.

39

User Procedures with Inputs

greet

hello

greet
greet

greet
greet

to

greet "Brian

greet "Emma

to greet :person

?
Hello, Brian
Pleased to meet you.
?
Hello, Emma
Pleased to meet you.

?

In the last chapter I suggested that you would find yourself limited in writing new
procedures because your procedures don’t take inputs, so they do exactly the same thing
every time you use them. In this chapter we’ll overcome that limitation.

As a first example I’m going to write a very simple command named , which will
take a person’s name as its one input. Here’s how it will work:

This procedure will be similar to the command in the last chapter, except that
what it prints will depend on the input we give it.

Each time we , we want to give it an input. So that Logo will expect an
input, we must provide for one when we . (Each procedure has a definite
number of inputs; if takes one input once, it must take one input every time it’s
invoked.) Also, in order for the instructions inside to be able to use the input,
we must give the input a Both of these needs are met in the command that
supplies the title line for the procedure:



>
>
>
?

greet "Brian

print sentence "Hello, thing "person
print [Pleased to meet you.]
end

not

not

procedure input

variable.
name thing value parts of

is
word,

40 Chapter 3 Variables

to greet

:person
greet

person
greet Brian Emma

person

person
to to

greet
person

print sentence

thing

Thing
thing

person
person Person

You are already familiar with the use of the command, the need for a word like
to name the procedure, and the appearance of the greater-than prompt instead of the
question mark. What’s new here is the use of after the procedure name. This
addition tells Logo that the procedure will require one input and that the name
of the input will be . It may help to think of the input as a container; when the
procedure is invoked, something (such as the word or the word )
will be put into the container named .

Why is the colon used in front of the name ? Remember that the inputs
to , unlike the inputs to all other Logo procedures, are evaluated before is
invoked. Later we’ll see that a colon has a special meaning to the Logo evaluator, but
that special meaning is in effect in a title line. Instead, the colon is simply a sort of
mnemonic decoration to make a clear distinction between the word , which is a

name, and the word , which is an name. Some versions of Logo
don’t even require the colon; you can experiment with yours if you’re curious. (By the
way, if you want to sound like a Logo maven, you should pronounce the colon “dots,” as
in “to greet dots person.”)

To see why having a name for the input is helpful, look at the rest of the procedure
definition:

You already know about and and about quoting words with the
quotation mark and quoting lists with square brackets. What’s new here is the procedure

.

is an operation. It takes one input, which must be a word that’s the name of
a container. The output from is whatever datum is in the container.

The technical name for what I’ve been calling a “container” is a Every
variable has a and a (or ). The name and the thing are both the
variable. We’ll sometimes speak loosely of “the variable ,” but you should realize
that this speaking loosely; what we should say is “the variable named .”
itself is a which is different from a variable.

When I type the instruction



person

SENTENCE

PRINT

THING
Hello,

greet first [Brian Harvey]

greet person
greet Brian

first [Brian Harvey]
Brian

name, thing.
type of

thing

User Procedures with Inputs 41

formal parameter. actual
argument.

actual argument expression,
actual argument value,

greet
greet

"Brian
Brian

greet

greet
greet

person Brian
greet

greet
sentence

greet

thing person thing
person Brian

Brian se

* While reading the definition of , it’s easy to say “the input is ”; then, while
reading an invocation of , it’s easy to say “the input is .” To avoid confusion between
the input’s name and its value, there are more precise technical terms that we can use when
necessary. The name of the input, given in the title line of the procedure definition, is called a

The value of the input, given when the procedure is invoked, is called an
In case the actual argument is the result of a more complicated subexpression, as in the

instruction

we might want to distinguish between the ,
and the which is the word .

the Logo interpreter starts with the first word on the line, . As usual, Logo takes
this to be the name of a procedure. Logo discovers that requires one input, so
it continues to the next thing on the line. This is a quoted word, . Since it’s
quoted, it requires no further interpretation. The word itself becomes the input
to .*

Logo is now ready to invoke . The first step, before evaluating the instruction
lines in , is to create a variable to hold the input. This variable is given the word

as its and the word as its (Please notice that I don’t have
to know the name of ’s input in order to use it. All I have to know is what

—a person’s name— expects as its input. What are the names of the inputs
to a primitive like ? We don’t know and we don’t need to know.)

Logo now evaluates the first instruction in . The process is just like the ones
we went through in such detail in Chapter 2. In the course of this evaluation Logo invokes
the procedure with the word as its input. The output from is
the thing in the variable named , namely the word . That’s how the word

becomes one of the inputs to . Here’s a plumbing diagram.



Your driver’s
name is:

John Smith

thing

thing
thing

What Kind of Container?

name

value

one

name
value

42 Chapter 3 Variables

One of the favorite activities that Logo experts use to while away the time when the
computer is down is to argue about the best metaphor to use for variables. A variable is a
container, but what kind of container?

One popular metaphor is a mailbox. The mailbox has a painted on it, like
“The Smiths.” Inside the mailbox is a piece of mail. The person from the Post Office
assigns a to the box by putting a letter in it. Reading a letter is like invoking
on the mailbox.

I don’t like this metaphor very much, and if I explain why not, it may help illuminate
for you some details about how variables work. The first problem is that a real mailbox
can contain several letters. A variable can only contain thing or value. (I should say
“one thing at a time,” since we’ll see that it’s possible to replace the thing in a variable
with a different thing.)

Another problem with the mailbox metaphor is that to read a letter, you take it out
of the mailbox and tear it open. Then it isn’t in the mailbox any more. When you invoke

to look at the thing in a variable, on the other hand, it’s still in the variable. You
could use again and get the same answer.

There are two metaphors that I like. The one I like best won’t make sense for a while,
until we talk about scope of variables. But here is the one I like second best: Sometimes
when you take a bus or a taxi, there is a little frame up in front that looks like this:

The phrase “your driver’s name is” is like a label for this frame, and it corresponds to the
of a variable. Each bus driver has a metal or plastic plate that says “John Smith” or

whoever it is. The driver inserts this plate, which corresponds to the of the variable,
into the frame. You can see why this is a closer metaphor than the mailbox. There is only
one plate in the frame at a time. To find out who’s driving the bus, you just have to look
inside the frame; you don’t have to remove the plate.

(To be strictly fair I should tell you that some Logoites don’t like the whole idea of
containers. They have a completely different metaphor, which involves sticking labels on
things. But I think it would only confuse you if I explained that one right now.)



primer "Paul

not

More Procedures 43

An Abbreviation

More Procedures

greet

thing
thing

:narf
thing "narf

thing "person

:person

print sentence "hello :person

to primer :name
print (sentence first :name [is for] word :name ".)
print (sentence "Run, word :name ", "run.)
print (sentence "See :name "run.)
end

?
P is for Paul.
Run, Paul, run.
See Paul run.

Examining the value of a variable is such a common thing to do in a Logo procedure that
there is a special abbreviation for it. Instead of the expression

you can simply say

So in the procedure, we could have said

Please note that the colon is just an abbreviation for the word but rather for
the combination -quote.

When drawing plumbing diagrams, treat as if it were spelled out as
.

It’s time to invent more procedures. I’ll give you a couple of examples and you should
make up more on your own.



soap.opera "Bill "Sally "Fred

interactive

44 Chapter 3 Variables

Primer
word sentence

Soap.opera

soap.opera

Readlist

Readlist

to soap.opera :him :her :it
print (sentence :him "loves word :her ".)
print (sentence "However, :her [doesn’t care for] :him "particularly.)
print (sentence :her [is madly in love with] word :it ".)
print (sentence :him [doesn’t like] :it [very much.])
end

?
Bill loves Sally.
However, Sally doesn’t care for Bill particularly.
Sally is madly in love with Fred.
Bill doesn’t like Fred very much.

to converse
print [Please type your full name.]
halves readlist
end

to halves :name
print sentence [Your first name is] first :name
print sentence [Your last name is] last :name
end

uses the extra-input kludge I mentioned near the end of Chapter 2. It also shows
how the operations and can be used in combination to punctuate a
sentence properly.

With all of these examples, incidentally, you should take the time to work through
each instruction line to make sure you understand what is the input to what.

In this example you see that a procedure can have more than one input.
has three inputs. You can also see why each input must have a name, so that the
instructions inside the procedure have a way to refer to the particular input you want to
use. You should also notice that has a period in the middle of its name,
not a space, because the name of a procedure must be a single Logo word.

For the next example I’ll show how you can write an procedure, which
reads something you type on the keyboard. For this we need a new tool. is
an operation with no inputs. Its output is always a list, containing whatever you type on a
single line (up to a RETURN). waits for you to type a line, then outputs what
you type.



converse

Brian Harvey

program
top-level

procedure.
subprocedure

superprocedure

relative

More Procedures 45

converse halves
Converse

converse
Halves converse

halves converse converse
halves

Halves
Converse halves converse

sentence halves

readlist

?
please type your full name.

Your first name is Brian
Your last name is Harvey

po [converse halves]

to incorrect.converse
print [Please type your full name.]
print sentence [Your first name is] first readlist
print sentence [Your last name is] last readlist
end

This program includes two procedures, and . (A is a bunch
of procedures that work together to achieve a common goal.) is the

In other words, is the procedure that you invoke at the question-
mark prompt to set the program in motion. is a of , which
means that is invoked by an instruction inside . Similarly,
is a of .

There are two things you should notice about the terminology “subprocedure” and
“superprocedure.” The first thing is that these are terms. It doesn’t mean
anything to say “ is a subprocedure.” Any procedure can be used as part of a
larger program. , for example, is a superprocedure of , but
might at the same time be a subprocedure of some higher-level procedure we haven’t
written yet. The second point is that primitive procedures can also be considered as
subprocedures. For example, is a subprocedure of .

(Now that we’re dealing with programs containing more than one defined procedure,
it’s a good time for me to remind you that the commands that act on procedures can
accept a list as input as well as a single word. For example, you can say

and Logo will print out the definitions of both procedures.)

Why are two procedures necessary for this program? When the program reads your
full name, it has to remember the name so that it can print two parts of it separately. It
wouldn’t work to say

because each invocation of would read a separate line from the keyboard
instead of using the same list for both first and last names. We solve this problem by using



☞

conj "jouer

46 Chapter 3 Variables

readlist converse

Hi ignore Ignore

ignore Ignore

hi

readlist
readlist

ignore

er

to hi
print [Hi. What’s your name?]
print sentence [How are you,] word first readlist "?
ignore readlist
print [That’s nice.]
end

to ignore :something
end

ignore readlist

?
je joue
tu joues
il joue
nous jouons
vous jouez
elles jouent

the output from as the input to a subprocedure of and letting the
subprocedure do the rest of the work.

One of the examples in Chapter 1 was this procedure:

uses a procedure called that we haven’t yet discussed. is predefined
in Berkeley Logo but would be easy enough to define yourself:

That’s not a misprint; really has no instructions in its definition. is a
command that takes one input and has no effect at all! Its purpose is to ignore the input.
In , the instruction

waits for you to type a line on the keyboard, then just ignores whatever you type. (We
couldn’t just use as an instruction all by itself because a complete instruction
has to begin with a command, not an operation. That is, since outputs a
value, there must be a command to tell Logo what to do with that value. In this case, we
want to it.)

Write a procedure to conjugate the present tense of a regular first-conjugation (-er)
French verb. (Never mind if you don’t know what any of that means! You’re about to
see.) That is, the letters at the end of the verb should be replaced by a different
ending for each pronoun:



My other car

is a Mercedes

An Aside on Variable Naming

An Aside on Variable Naming 47

jouer jou
er e es

monter frapper garder

person
name it him
her it

him1 him2

The verb (to play) consists of the root combined with the infinitive ending
. Print six lines, as shown, in which the ending is changed to , , etc. Try your

procedure on (to climb), (to hit), and (to keep).

By the way, in a practical program we would have to deal with the fact that French
contains many irregular verbs. In addition to wildly irregular ones like être (to be,
irregular even in English) there are ones like manger, to eat, which are almost regular
except that the first and second person plural forms keep the letter e: nous mangeons.
Many issues in natural language programming (that is, getting computers to speak or
understand human language) turn out like this—90% of the cases are trivial, but most of
your effort goes into the other 10%.

In my metaphor about the frame containing the bus driver’s name, the inscription on
the frame tells you what to expect inside the frame. Variable names like and

serve a similar purpose. (You might argue that the in the group of names ,
, and is a little misleading. But it serves to keep the story straight, probably better

than an alternative like and .)

Another kind of frame is the one you sometimes see around a car’s license plate:

I know it’s pedantic to pick apart a joke, but just the same I want to make the point that
this one works only because the car itself provides enough clues that what belongs in the
frame is indeed a license plate. If you were unfamiliar with the idea of license plates, that
frame wouldn’t help you.

The computer equivalent of this sort of joke is to give your variables names that don’t
reflect their purpose in the procedure. Some people like to name variables after their
boyfriends or girlfriends or relatives. That’s okay if you’re writing simple programs, like
the ones in this chapter, in which it’s very easy to read the program and figure out what
it does. But when you start writing more complicated programs, you’ll need all the help
you can get in remembering what each piece of the program does. I recommend starting
early on the habit of using sensible variable names.



X

x

x

Second first

output Output

print second [the red computer]

Don’t Call It

Writing New Operations

require

effect output

48 Chapter 3 Variables

to second :thing
output first butfirst :thing
end

?
red

Another source of trouble in variable naming is lazy fingers. When I’m teaching
programming classes, a big part of my job is reading program listings that students bring
to me, saying, “I just can’t find the bug in this program.” I have an absolute rule that I
refuse to read any program in which there is a variable named .

My students always complain about this arbitrary rule at first. But more often than
not, a student goes through a program renaming all the variables and then finds that the
bug has disappeared! This magical result comes about because when you use variable
names like , you run the risk of using the same name for two different purposes at the
same time. When you pick reasonable names, you’ll pick two different names for the two
purposes.

It is people who’ve programmed in BASIC who are most likely to make this mistake.
For reasons that aren’t very important any more, BASIC used to single-letter
variable names. Even now there are limits on longer names in most versions of BASIC
that make it risky to use more than two or three letters in a name. So if you’re a BASIC
programmer, you’ve probably gotten into bad habits, which you should make a point of
correcting.

So far all the procedures we’ve written have been commands. That is, our procedures
have had an (like printing something) rather than an to be used with other
procedures. You can also write operations, once you know how to give your procedure
an output. Here is an example:

is an operation with one input. Like the primitive operation , it extracts a
component of its input, either a character from a word or a member from a list. However,
it outputs the second component instead of the first one.

What is new in this procedure definition is the use of the primitive command
. can be used only inside a procedure definition, not at top level. (In



☞

Scope of Variables

command,
operation.

Scope of Variables 49

thing "thing

?
should I have known better?
?
are you experienced?

print query [I should have known better]

print query [you are experienced]

output

output
output output

second

output print

thing second
Thing

thing
thing

:thing

thing thing

query

other words, not when you are typing in response to a question-mark prompt.) It takes
one input, which can be any datum. The effect of is to make the datum you
supply as its input be the output from your procedure.

Some people find it confusing that itself is a even though a
procedure that uses is an But it makes sense for to be the
head of a complete instruction. The effect of the instruction is to inform Logo what
output you want your procedure (the procedure named in this case) to supply.

Another possible confusion is between and . The problem is that
people talk about “computer output” while waving a stack of paper at you, so you think
of “output” as meaning “stuff the computer printed.” But in Logo, “output” is something
one procedure hands to another procedure, not something that is printed.

I chose the name for the input to to remind myself that the input can
be anything, word or list. is also, as you know, the name of a primitive procedure.
This is perfectly okay. The same word can name both a procedure and a variable. Logo
can tell which you mean by the context. A word that is used in an instruction without
punctuation is a procedure name. A word that is used as an input to the procedure

is a variable name. (This can happen because you put dots in front of the word
as an abbreviation or because you explicitly typed and used the word as its input.)
The expression is an abbreviation for

in which the first names a procedure, and the second names a variable.

Write an operation that takes a sentence as input and that outputs a question
formed by swapping the first two words and adding a question mark to the last word:

This is going to be a somewhat complicated section, and an important one, so slow down
and read it carefully.

When one procedure with inputs invokes another procedure with inputs as a
subprocedure, it’s possible for them to share variables and it’s also possible for them to



top "a "b

50 Chapter 3 Variables

outer
top Bottom outer bottom :outer

outer
top a outer

a b b c
c v v

c v

If a procedure refers to a variable that does not belong to that procedure,
Logo looks for a variable of that name in the superprocedure of that
procedure.

to top :outer :inner
print [I’m in top.]
print sentence [:outer is] :outer
print sentence [:inner is] :inner
bottom "x
print [I’m in top again.]
print sentence [:outer is] :outer
print sentence [:inner is] :inner
end

to bottom :inner
print [I’m in bottom.]
print sentence [:outer is] :outer
print sentence [:inner is] :inner
end

?
I’m in top.
:outer is a
:inner is b
I’m in bottom.
:outer is a
:inner is x
I’m in top again.
:outer is a
:inner is b

have separate variables. The following example isn’t meant to do anything particularly
interesting, just to make explicit what the rules are.

First, concentrate on the variable named . This name is used for the first input to
. doesn’t have an input named . When refers to ,

since it doesn’t have one of its own, the reference is to the variable that belongs
to its superprocedure, . That’s why is printed as the value of in both
procedures.

Suppose procedure invokes procedure , and invokes . Suppose an instruction
in procedure refers to a variable . First Logo tries to find a variable named that
belongs to . If that fails, Logo looks for a variable named that belongs to procedure



The Little Person Metaphor

there are two variables
named

local

dynamic scope,

actors scripts.

The Little Person Metaphor 51

b c b v
a

inner
inner top

inner b top bottom bottom
inner x bottom top

inner inner top
bottom

inner

print
butfirst bottom greet

Variables that belong to a procedure are temporary. They exist only
so long as that procedure is active. If one procedure has a variable
with the same name as one belonging to its superprocedure, the latter is
temporarily “hidden” while the subprocedure is running.

. Finally, if neither nor has a variable named , Logo looks for such a variable that
belongs to procedure .

Now look at . The important thing to understand is that
, one belonging to each procedure. When is invoked, its input named

gets the word as its value. When invokes , ’s input (which
is also named ) gets the value . But when finishes, and continues,
the name once again refers to the variable named that belongs to .
The one that belongs to has disappeared.

Because each procedure has its own variable named , we refer to the procedure
input variables as to a particular procedure. Inputs are always local in Logo. There
is also a name for the fact that a procedure can refer to variables belonging to its
superprocedures. If you want to show off, you can explain to people that Logo has

which is what that rule is called.

Earlier I told you my second favorite metaphor about variables. My very favorite is an old
one, which Logo teachers have been using for years. It is a metaphor about procedures as
well as variables, which is why I didn’t present it earlier. Now that you’re thinking about
the issue of variable scope, you can see that to have a full understanding of variables, you
have to be thinking about procedures at the same time.

The metaphor is that inside the computer there is a large community of little people.
Each person is a specialist at a particular procedure. So there are people and

people and people and people. I like to think of these
people as elves, because I started teaching Logo on a computer called a PDP-11, and I
like the pun of an elf inside an 11. But if you find elves too cute or childish, perhaps
you should think of these people as doctors in white coats, specializing in dermatology
or ophthalmology or whatever. Another terminology for the same idea, one which is
becoming more and more widely used in advanced computer science circles, is to call the
little people and to call their procedures Each actor has only one script, but
several actors can have the same script.



an
expert in itself;

52 Chapter 3 Variables

top "a "b

print [I’m in top.]

print sentence [:outer is] :outer

print sentence

top
a b

[I’m in top.]
print

sentence

thing
:outer thing "outer

In any case, what’s important is that when a procedure is invoked, a little person
who is an expert on that procedure goes to work. (It’s important that the person is

the procedure, and not the procedure we’ll see later that there can be two
little people carrying out the same procedure at the same time. This is one of the more
complicated ideas in Logo, so I think the expert metaphor will help you later.)

You may be wondering where the variables come in. Well, each elf is wearing a
jerkin, a kind of vest, with a bunch of pockets. (If your people are doctors, the pockets
are in those white lab coats.) A person has as many pockets as the procedure he or she
knows has inputs. A expert has one pocket; a expert has two. Each
pocket can contain a datum, the value of the variable. (The pockets are only big enough
for a single datum.) Each pocket also has a name tag sewn on the inside, which contains
the name of the variable.

The name tags are on the inside to make the point that other people don’t need to
know the names of an expert’s variables. Other experts only need to know how many
pockets someone has and what kind of thing to put in them.

When I typed

the Chief Elf (whose name is Evaluator) found an elf named Theresa, who is a
expert, and put an in her first pocket and a in her second pocket.

Theresa’s first instruction is

To carry out that instruction, she handed the list to another elf named
Peter, a expert.

Theresa’s second instruction is

To carry out this instruction, Theresa wanted to hire Peter again, but before she could
give him his orders, she first had to deal with Sally, a expert. (This is the old
evaluation story from Chapter 2 again.) But Theresa didn’t know what to put in Sally’s
second pocket until she got the information from Tom, a expert. (Remember
that is an abbreviation for .)



Theresa Bonnie Tom

outer

bottom

x

outer
outer

bottom "x

print sentence [:outer is] :outer

planning

then

The Little Person Metaphor 53

What’s important right now is how Tom does his job. Tom is a sort of pickpocket.
He doesn’t steal anything; he just sneaks looks in other people’s pockets. There are lots
of people inside the computer, but the only ones with things in their pockets are the ones
who are actually employed at a given moment. Aside from Tom himself, the only person
who was employed at the time was Theresa, so Tom could only look in her pockets for
a name tag saying . (Theresa is to hire Sally and then Peter, to finish
carrying out her instruction, but she can’t hire them until she gets the information she
needs from Tom.)

Later Theresa will hire Bonnie, a specialist, to help with the instruction

Theresa will give Bonnie the word to put in her pocket. Bonnie also has an instruction

As part of the process of carrying out this instruction, Bonnie will hire Tom to look for
something named . In that case Tom first looks in the pockets of Bonnie, the
person who hired him. Not finding a pocket named , Tom can check the
pockets of Theresa, the person who hired Bonnie. (If you’re studying Logo in a class
with other people, it can be both fun and instructive to act this out with actual people
and pockets.)

An appropriate aspect of this metaphor is that it’s slightly rude to look in someone
else’s pockets, and you shouldn’t do it unnecessarily. This corresponds to a widely



☞

54 Chapter 3 Variables

conj

superconj

superconj

sc1

superconj "jouer [ais ais ait ions iez aient]

superconj "finir [is is it issons issez issent]

? ; imperfect tense
je jouais
tu jouais
il jouait
nous jouions
vous jouiez
elles jouaient
? ; 2nd conj present
je finis
tu finis
il finit
nous finissons
vous finissez
elles finissent

to superconj :verb :endings
sc1 "je 1
sc1 "tu 2
sc1 "il 3
sc1 "nous 4
sc1 "vous 5
sc1 "elles 6
end

accepted rule of Logo style: most of the time, you should write procedures so that they
don’t have to look at variables belonging to their superprocedures. Whatever information
a procedure needs should be given to it explicitly, as an input. You’ll find situations in
which that rule seems very helpful, and other situations in which taking advantage of
dynamic scope seems to make the program easier to understand.

The procedure you wrote earlier deals only with the present tense of the verb.
In French, many other tenses can be formed by a similar process of replacing the endings,
but with different endings for different tenses. Also, second conjugation (-ir) and third
conjugation (-re) verbs have different endings even in the present tense. You don’t want
to write dozens of almost-identical procedures for each of these cases. Instead, write a
single procedure that takes two inputs, a verb and a list of six endings, and
performs the conjugation:

You can save some typing and take advantage of dynamic scope if you use a helper
procedure. My looks like this:

Write the helper procedure to finish this.



Changing the Value of a Variable

name
value

Changing the Value of a Variable 55

make "inner "y

make "new thing "old

make "new :old

make first [new old] thing last [new old]

make
Make

thing Make
make

inner y
inner bottom

thing

old new
old new

new old

new old
make

new make old
thing

make
old new

It is possible for a procedure to change the thing in a variable by using the
command. takes two inputs. The first input must be a word that is the name of a
variable, just like the input to . ’s second input can be any datum. The effect
of is to make the variable named by its first input contain as its value the datum
that is its second input, instead of whatever used to be its value. For example,

would make the variable named have the word as its value. (If there are two
variables named , as is the case while is running, it is the one in the
lower-level procedure that is changed. This is the same as the rule for that we
have already discussed.)

Suppose a procedure has variables named and and you want to copy the
thing in into . You could say

or use the abbreviation

People who don’t understand evaluation sometimes get very upset about the fact that a
quotation mark is used to refer to and a colon is used to refer to . They think
this is just mumbo-jumbo because they don’t understand that a quotation mark is part of
what the colon abbreviates! In both cases we are referring to the name of a variable. A
variable name is a Logo word. To refer to a word in an instruction and have it evaluate
to itself, not invoke a procedure named or , the word must be quoted. The
difference is that the first input to is the of the variable we want to change
( ), while the second input to is, in this example, the of a variable ( ),
which we get by invoking . Since you understand all this, you won’t get upset. You
also won’t resort to magic formulas like “always use quote for the first variable and dots
for the second” because you understand that the inputs to can be computed with
any expression you want! For example, we could copy ’s value into this way:



Global and Local Variables

make

make

Thing

local

local local
converse halves

extremely

modular

not
global

at all

56 Chapter 3 Variables

This instruction contains neither a quotation mark nor a colon, but the inputs to
are exactly the same as they were in the earlier version.

Earlier I mentioned that it is considered slightly rude for a procedure to read its
superprocedures’ variables. It is rude for a procedure to change the values
of other procedures’ variables! Perhaps you can see why that’s so. If you’re trying to
read the definition of a procedure, and part way through that procedure it invokes a
subprocedure, there is no clue to the fact that the subprocedure changes a variable. If
you break this rule, it makes your program very hard to read because you have to read
all the procedures at once. If each procedure deals only with its own variables, you have
written a program, in which each piece can be understood separately.

What if the first input to isn’t the name of an input to an active procedure? In other
words, what if you try to assign a value to a variable that doesn’t exist? What happens is
that a new variable is created that is local to any procedure. The name for this kind of
variable is a variable. looks at global variables if it can’t find a local variable
with the name you want.

A local variable disappears when the procedure it belongs to finishes. Global variables
don’t belong to any procedure, so they stay around forever. This can be convenient, when
you have a permanent body of information that several procedures must use. But it can
also lead to problems if you are careless about what’s in which variable. Local variables
come and go with the procedures they belong to, so it’s easy to avoid clutter when you
use them. Global variables are more like old socks under the bed.

If you are a BASIC programmer, you’ve become accustomed to a language in which
all variables are global. I’ve learned over the years that it’s impossible, at this point
in your career, for you to appreciate the profound effect that’s had on your style of
programming. Only after you’ve used procedural languages like Logo for quite a while
will you understand. Meanwhile there is only one hope for you: you are not allowed to
use global variables for the next few months. Please take my word for it.

Sometimes it’s convenient for a procedure to use a variable that is not an input, but
which could just as well be local. To do this, you can use the command. This
command takes one input, a word. It creates a variable, local to the procedure that
invoked , with that word as its name. For example, we can use to rewrite
the earlier example without needing the subprocedure:



Indirect Assignment

increment

Indirect Assignment 57

local
make local

local
name

local

make

make

increment

increment

to new.converse
local "name
print [Please type your full name.]
make "name readlist
print sentence [Your first name is] first :name
print sentence [Your last name is] last :name
end

make first [new old] thing last [new old]

to increment :variable
make :variable (thing :variable)+1
end

The instruction that invokes can be anywhere in the procedure before the variable
is given a value with . It’s traditional, though, to put instructions at the
beginning of a procedure.

The same procedure would work even without the , but then it would create
a global variable named . It’s much neater if you can avoid leaving unnecessary
global variables around, so you should use unless there is a reason why you really
need a global variable.

Earlier I showed you the example

in which the first input to was the result of evaluating a complex expression rather
than an explicit quoted word in the instruction. But the example was kind of silly, used
only to make the point that such a thing is possible.

Here are a couple of examples in which the use of a computed first input to
really makes sense. These are tricky examples; it may take a couple of readings before
you see what I’m doing here. The technique I’m using is an advanced part of Logo
programming. First is the procedure :

To a variable means to add something to it, usually (as in this procedure) to add
one to it. The input to is the name of a variable. The procedure adds 1 to
that variable:



another

58 Chapter 3 Variables

make "count 12
print :count

increment "count
print :count

?
?
12
?
?
13

make "count :count+1

thing :variable

thing thing "variable

make

increment make "variable
:variable variable

variable
variable

variable count
:count

increment make

variable

You may wonder what the point is. Why couldn’t I just say

instead of the obscure instruction I used? The answer is that if we have several
variables in the program, each of which sometimes gets incremented, this technique
allows a single procedure to be able to increment any variable. It’s a kind of shorthand
for something we might want to do repeatedly.

In the definition of , the first input to is not but
rather . Therefore, the word itself is not the name of the variable
that is incremented. (To say that more simply, the variable named isn’t
incremented.) Instead the variable named contains as its value the name of

variable. (In the example the value of is the word .) It is that
second variable whose value is changed. (In the example was 12 and becomes
13.)

While reading , remember that in the second input to ,

is really an abbreviation for

In other words this expression asks for the value of the variable whose name is itself the
value of .

As a second example suppose you’re writing a program to play a game of Tic-Tac-Toe.
The computer will play one side and a person can play the other side. The person gets to
choose X or O (that is, going first or second). The choice might be made with procedures
like these:



Functional Programming

indirect assignment,

Another

Functional Programming 59

Xsquares Osquares

person.move
make

:person X
Xsquares :person

O Osquares

make

make

make
make

to computer.first
make "computer "X
make "person "O
end

to person.first
make "person "X
make "computer "O
end

to person.move :square
make word :person "squares sentence :square thing word :person "squares
end

word :person "squares

Elsewhere in the program there will be a procedure that asks the person where he or
she wants to move. Suppose the squares on the board are numbered 1 through 9, and
suppose we have two variables, and , which contain lists of numbers
corresponding to the squares marked X and O. Look at this procedure:

The input to is the number of the square into which the person has asked
to move. The first input to is the expression

If the person has chosen to move first, then is the word , and the value of this
expression is the word . If the person has chosen to move last, then
is the word , and the value of the expression is the word . Either way, the
expression evaluates to the name of the appropriate variable, into which the newly chosen
square is appended.

These are examples of which means assigning a value to a variable
whose name is computed by the program. This is an unusual, advanced technique.
Most of the time you’ll use an explicit quoted word as the first input to . But the
technique is a powerful one; many programming languages don’t have this capability at
all. In Logo it isn’t something that had to be invented specially; it is a free consequence
of the fact that the inputs to any procedure (including ) are evaluated before the
procedure is invoked.

But don’t get carried away with the flexibility of . advanced Logo technique
avoids the whole idea of changing the value of a variable. Any procedure that uses



converse

make

parallel

functional

60 Chapter 3 Variables

can be rewritten to use an input to a subprocedure instead; compare the two versions of
the program in this chapter.

Why would you want to avoid ? One reason is that if the value of a variable
changes partway through a procedure, then the sequence of steps within the procedure
is very important. One hot area in computer science research is computation:
What if, instead of a computer that can only do one thing at a time, we build a computer
that can do many things at once? It’s hard to take advantage of that ability if each step of
our program depends on the results of previous steps, and if later steps depend on the
result of this one.

A procedure is if it always gives the same output when invoked with the
same input(s). We need a few more Logo tools before we can write interesting functional
programs, but we’ll come back to this idea soon.



4 Predicates

True or False

pattern

instructions

question.

yes-or-no questions.

predicate.

61

Print
first

true false

listp
listp true false

Wordp
wordp true false

listp

Emptyp
emptyp true

false

By introducing variables in Chapter 3, we made it possible for a procedure to operate on
different data each time you invoke it. But the of what the procedure does with
the data remains constant. We can get even more variety out of our procedures if we can
vary the that the procedure executes. We need a way to say, “Sometimes do
this; other times do that.”

One helpful metaphor is this: When you invoke a command, you’re giving the computer
an order. “Now hear this! such-and-such!” But when you invoke an operation,
you’re asking the computer a “What is the member of such-and-such?”

In real life we single out as a special category For example, these
special questions form the basis of the game Twenty Questions. The corresponding
category in Logo is the A predicate is an operation whose output is always either
the word or the word .

For example, (pronounced “list-pea”) is a predicate that takes one input.
The input can be any datum. The output from is if the input is a list,
if the input is a word.

is another predicate that takes one input. The input can be any datum. The
output from is if the input is a word, if the input is a list. (This is the
opposite of the output from .)

is also a predicate with one input. The input can be any datum. The output
from is if the input is either the empty word or the empty list; if the input
is anything else, the output is .



62 Chapter 4 Predicates

p

Numberp
numberp true false

Equalp equalp
true

?
true
?
false
?
true
?
false

?
true
?
false
?
true
?
false
?
true

p list? listp
p

* Many versions of Logo use a question mark at the end of names of predicates, instead of a
. For example, you may see instead of . Berkeley Logo accepts either form, but I

prefer the version.

print wordp "hello

print wordp [hello]

print emptyp []

print emptyp 0

print equalp 3 3.0

print equalp "hello [hello]

print equalp "hello first [hello]

print equalp " []

print equalp [] butfirst [hello]

You’ll have noticed by now that predicates tend to have names ending in the letter .
This is not quite a universal rule, but almost. It’s a good idea to follow the same
convention in naming your own predicates.*

As I’m describing primitive predicates, you might want to try them out on the
computer. You can do experiments like this:

Of course, most of the time you won’t actually want to print the output from a predicate.
You’ll see in a few moments how we can use a predicate to control the instructions carried
out in a procedure.

But first here are a few more primitive predicates. takes one input, which
can be any datum. The output from is if the input is a number,
otherwise.

takes two inputs, each of which can be any datum. The output from
is if the two inputs are identical or if they’re both numbers and they’re numerically
equal. That is, 3 and 3.0 are numerically equal even though they’re not identical words.
A list is never equal to a word.



infix

same

True or False 63

= equalp

f

Memberp

memberp

?
true
?
false

?
f

?
true

?
true
?
f

?
true
?
false
?
true
?
true
?
false

print "hello = first [hello]

print 2 = 3

print first [hello] = "hello

print first [hello] = "hello

print (first [hello]) = "hello

print first ([hello] = "hello)

print memberp "rain [the rain in Spain]

print memberp [the rain] [the rain in Spain]

print memberp [the rain] [[the rain] in Spain]

print memberp "e "please

print memberp "e "plain

The equal sign ( ) can be used as an equivalent of :

As I mentioned in Chapter 2, if you use infix operations you have to be careful about
what is grouped with what. It varies between versions of Logo. Here is an example I tried
in Berkeley Logo:

Among current commercial implementations, Object Logo and Microworlds give the
same answer . But here is the example in Logowriter:

You can avoid confusion by using parentheses. The following instructions work reliably
in any Logo:

is a predicate with two inputs. If the second input is a list, then the first can
be any datum. If the second input is a word, then the first must be a one-character word.
The output from is true if the first input is a member of the second input.



64 Chapter 4 Predicates

Defining Your Own Predicates

Conditional Evaluation

print vowelp "e

print vowelp "g

print oddp 5

print oddp 8

if equalp 2 1+1 [print "Yup.]

if equalp 3 2 [print "Nope.]

Lessp greaterp
lessp true
greaterp

false lessp greaterp
false lessp < greaterp >

if
ifelse ifelse if

If true
false

true if
false if

to vowelp :letter
output memberp :letter [a e i o u]
end

?
true
?
false

to oddp :number
output equalp (remainder :number 2) 1
end

?
true
?
false

?
Yup.
?
?

and are predicates that take two inputs. Both inputs must be
numbers. The output from is if the first input is numerically less than
the second; the output from is true if the first is greater than the second.
Otherwise the output is . (In particular, both and output

if the two inputs are equal.) The infix forms for ( ) and ( )
are also allowed.

Here are two examples of how you can create new predicates:

The main use of predicates is to compute inputs to the primitive procedures and
. We’ll get to in a while, but first we’ll explore .

is a command with two inputs. The first input must be either the word or
the word . The second input must be a list containing Logo instructions. If the
first input is , the effect of is to evaluate the instructions in the second input. If
the first input is , has no effect.



☞

Conditional Evaluation 65

talk

George Washington

talk

John Paul Jones

if
converse

Talk
name

:name talk
:name talk

if

if

Here is an example of how can be used in a procedure. This is an extension of the
example in Chapter 3:

asks you to type your name and reads what you type into a list, which is remembered
in the variable named . Your first and last names are printed as in the earlier
version. If the list contains more than two members, however, also prints
the second member as your middle name. If contains only two members,
assumes that you don’t have a middle name.

Write a procedure of your own that asks a question and uses to find out something
about the response.

You can use to help in writing more interesting predicates.

to talk
local "name
print [Please type your full name.]
make "name readlist
print sentence [Your first name is] first :name
if (count :name) > 2 ~

[print sentence [Your middle name is] first bf :name]
print sentence [Your last name is] last :name
end

?
Please type your full name.

Your first name is George
Your last name is Washington
?
Please type your full name.

Your first name is John
Your middle name is Paul
Your last name is Jones

to about.computersp :sentence
if memberp "computer :sentence [output "true]
if memberp "computers :sentence [output "true]
if memberp "programming :sentence [output "true]
output "false
end



☞

☞

two

66 Chapter 4 Predicates

?
true
?
false
?

?
Yup.
?
Nope.
?

if

Choosing Between Alternatives

* In some versions of Logo, the name is used both for the two-input command discussed
earlier and for the three-input one presented here.

output
output

about.computersp computer
if output

true

past.tensep true
ed saw went

integerp true

If

ifelse
Ifelse

ifelse

Ifelse true
false

true if
false

print about.computersp [This book is about programming]

print about.computersp [I like ice cream]

ifelse 4 = 2+2 [print "Yup.] [print "Nope.]

ifelse 4 = 3+5 [print "Yup.] [print "Nope.]

This procedure illustrates something I didn’t explain before about : An
command finishes the evaluation of the procedure in which it occurs. For

example, in , if the input sentence contains the word ,
the first evaluates the instruction that is its second input. The procedure
immediately outputs the word . The remaining instructions are not evaluated at all.

Write , which takes a word as input and outputs if the word
ends in or if it’s one of a list of exceptions, like and .

Write , which takes any Logo datum as input and outputs if and
only if the datum is an integer (a number without a fraction part). Hint: a number with
a fraction part will contain a decimal point.

gives the choice between carrying out some instructions and doing nothing at all.
More generally, we may want to carry out either of sets of instructions, depending
on the output from a predicate. The primitive procedure meets this need.*

is an unusual primitive because it can be used either as a command or as an
operation. We’ll start with examples in which is used as a command.

requires three inputs. The first input must be either the word or the
word . The second and third inputs must be lists containing Logo instructions. If
the first input is , the effect of is to evaluate the instructions in the second input.
If the first input is , the effect is to evaluate the instructions in the third input.



☞

☞

ifelse

color
10h red

black

Choosing Between Alternatives 67

groupie

Frank Sinatra

groupie

Ray Davies

converse

Chris White

converse

Ms. Grace Slick

converse

J. Paul Getty

converse

Sigmund Freud, M.D.

Here is an example of a procedure using :

Write an operation that takes as input a word representing a card, such as
for the ten of hearts. Its output should be the word if the card is a heart or a

diamond, or if it’s a spade or a club.

Write a conversational program that asks the user’s name and figures out how to
address him or her. For example:

to groupie
local "name
print [Hi, who are you?]
make "name readlist
ifelse :name = [Ray Davies] ~

[print [May I have your autograph?]] ~
[print sentence "Hi, first :name]

end

?
Hi, who are you?

Hi, Frank
?
Hi, who are you?

May I have your autograph?

?
Hi, what’s your name?

Pleased to meet you, Chris.

?
Hi, what’s your name?

Pleased to meet you, Ms. Slick.

?
Hi, what’s your name?

Pleased to meet you, Paul.

?
Hi, what’s your name?

Pleased to meet you, Dr. Freud.



68 Chapter 4 Predicates

converse

Mr. Lon Chaney, Jr.

Conditional Evaluation Another Way

ifelse groupie
print

if
ifelse

Test true
false test

test

Iftrue ift
iftrue

test
true iftrue test

Iffalse iff
iffalse

test false

Iftrue iffalse test

?
Hi, what’s your name?

Pleased to meet you, Mr. Chaney.

to better.groupie
local "name
print [Hi, who are you?]
make "name readlist
test equalp :name [Ray Davies]
iftrue [print [Wow, can I have your autograph?]]
iftrue [print [And can I borrow a thousand dollars?]]
iffalse [print sentence [Oh, hello,] first :name]
end

What should the program say if it meets Queen Elizabeth II?

The use of in the example above makes for a rather long instruction
line. If you wanted to do several instructions in each case, rather than just one ,
the line would become impossible to read. Logo provides another mechanism that is
equivalent to the command but may be easier to read.

is a command that takes one input. The input must be either the word
or the word . The effect of is just to remember what its input was in a special
place. You can think of this place as a variable without a name. This special variable is
automatically local to the procedure from which is invoked.

(abbreviation ) is a command with one input. The input must be a list
of Logo instructions. The effect of is to evaluate the instructions in its input only
if the unnamed variable set by the most recent command in the same procedure is

. It is an error to use without first using .

(abbreviation ) is a command with one input, which must be an
instruction list. The effect of is to evaluate the instructions only if the
remembered result of the most recent command is .

and can be invoked as many times as you like after a . This
allows you to break up a long sequence of conditionally evaluated instructions into several
instruction lines:



→

→
→

About Those Brackets

Logical Connectives

if [equalp 2 3] [print "really??] ; (wrong!)

you

Before

before
itself

both and either or

Logical Connectives 69

if
ifelse

if
true false if
equalp 2 3

equalp false print
if

if

equalp 2 3 false
[print "really??] [print "really??]

And true
false and true true false

false And

I hope that the problem I’m about to mention won’t even have occurred to you because
you are so familiar with the idea of evaluation that you understood right away. But you’ll
probably have to explain it to someone else, so I thought I’d bring it up here:

Some people get confused about why the second input to (and the second and
third inputs to ) is surrounded by brackets but the first isn’t. That is, they wonder,
why don’t we say

They have this problem because someone lazily told them to put brackets around
the conditionally evaluated instructions without ever explaining about brackets and
quotation.

I trust aren’t confused that way. You understand that, as usual, Logo evaluates
the inputs to a procedure before invoking the procedure. The first input to has to
be either the word or the word . invoking , Logo has to evaluate
an expression like to compute the input. (In this case, the result output
by will be .) But if the instruction weren’t quoted, Logo would
evaluate it, too, invoking . That’s not what we want. We want the instruction
list to be the second input, so that can decide whether or not to carry out the
instructions in the list. So, as usual, we use brackets to tell Logo to quote the list.

actual argument expression actual argument value

Sometimes the condition under which you want to evaluate an instruction is complicated.
You want to do it if this that are true, or if this that is true. Logo provides
operations for this purpose.

is a predicate with two inputs. Each input must be either the word or the
word . The output from is if both inputs are ; the output is
if either input is . ( can take more than two inputs if the entire expression is



Ifelse as an Operation

logical connectives
logical

70 Chapter 4 Predicates

print sentence "It’s ifelse 2=3 ["correct] ["incorrect]

print ifelse emptyp [] [sum 2 3] [product 6 7]

and true
true

Or true
false or true true

false false or true
true false false

Not true
false not true

false false true

true
false

ifelse

ifelse
true false

ifelse
true

false

to fullp :datum
output not emptyp :datum
end

to realwordp :datum
output and wordp :datum not numberp :datum
end

to digitp :datum
output and numberp :datum equalp count :datum 1
end

?
It’s incorrect
?
5

enclosed in parentheses. In that case the output from will be only if all of its
inputs are .)

is a predicate with two inputs. Each input must be either the word or the
word . The output from is if either input is (or both inputs are).
The output is if both inputs are . (Extra-input outputs if any of
its inputs are , if all inputs are .)

is a predicate with one input. The input must be either the word or the
word . The output from is the opposite of its input: if the input is

, or if the input is .

These three procedures are called because they connect logical
expressions together into bigger ones. (A expression is one whose value is
or .) They can be useful in defining new predicates:

So far, we have applied the idea of conditional evaluation only to complete instructions.
It is also possible to choose between two expressions to evaluate, by using as an
operation.

When used as an operation, requires three inputs. The first input must be
either the word or the word . The second and third inputs must be lists
containing Logo expressions. The output from is the result of evaluating the
second input, if the first input is , or the result of evaluating the third input, if the
first input is .



Expression Lists and Plumbing Diagrams

ifelse

If ifelse

ifelse

ifelse

ifelse

ifelse ifelse
false ifelse

Ifelse

ifelse

absolute value

instruction lists expression lists

Expression Lists and Plumbing Diagrams 71

to abs :number
output ifelse :number<0 [-:number] [:number]
end

ifelse "false ["stupid "list] [print 23]

ifelse last [true false] list ""stupid ""list list bf "sprint 23

Here is one of the classic examples of a procedure in which is used as an
operation. This procedure is an operation that takes a number as its input; it outputs the

of the number:

and require or as inputs. This requirement is part
of their semantics, not part of the syntax of an instruction. Just as the arithmetic operators
require numbers as inputs (semantics), but those numeric values can be provided either
as explicit numbers in the instruction or as the result of an arbitrarily complicated
subexpression (syntax), the procedures that require instruction or expression lists as
input don’t interpret those inputs until after Logo has set up the plumbing for the
instructions that invoke them.

What does that mean? Consider the instruction

Even though the second input to —that is, the first of the two literal lists—makes
no sense as an instruction list, this instruction will work correctly without printing an
error message. The Logo interpreter knows that accepts three inputs, and it
sees that the three input expressions provided are a literal (quoted) word and two literal
lists. It sets up the plumbing without paying any attention to the semantics of ;
in particular, Logo doesn’t care whether the given inputs are meaningful for use with

. Then, once starts running, it examines its first input value. Since that
input is the word , the procedure ignores its second input completely and
executes the instruction in its third input.

The use of quotation marks and square brackets to indicate literal inputs is part of
the plumbing syntax, not part of the procedure semantics. Don’t say, “ requires
one predicate input and two inputs in square brackets.” The instruction

has a very different plumbing diagram (syntax) from that of the earlier example, but
provides exactly the same input values to .



PRINT PRINT

[first "hello]FIRST

hello

print first "hello print [first "hello]

☞

Stopping a Procedure

new

72 Chapter 4 Predicates

print

first

print
ifelse print

emptyp

ifelse
zot3 ifelse

true false
emptyp ifelse

emptyp
emptyp ifelse

print ifelse emptyp :a [emptyp :b] [emptyp :c]

to music.quiz
print [Who is the greatest musician of all time?]
if equalp readlist [John Lennon] [print [That’s right!] stop]
print [No, silly, it’s John Lennon.]
end

Consider these two instructions:

Since the effect of is easy to observe, it’s not hard to see the relationship among
the instructions, the plumbing diagrams, and the effects when these instructions are run.
Why are brackets used around the expression in one case but not in the other?
Because in one case the expression is how we tell Logo to set up the plumbing diagram,
while in the second case we are giving as input a literal list that just happens to
look like an expression. When the context is something like instead of ,
the syntactic situation is really quite similar, but may be harder to see. Consider this
instruction:

Why do we put brackets around two expressions but not around another similar-
looking one? Draw a plumbing diagram for this instruction, paying no attention to
your mental model of the meaning of the procedure, treating it as if it were the
nonsense procedure . You will see that the first input to is an expression
whose value will be the word or the word , because Logo will carry out that
first computation before invoking . The remaining two inputs, however,
are literal lists that happen to contain the word but do not involve an invocation
of in the plumbing diagram. Once is actually invoked, precisely one of
those two list inputs will be interpreted as a Logo expression, for which a plumbing
diagram is (in effect) drawn by Logo. The other input list is ignored.

I’d like to examine more closely one of the examples from the first chapter:



2

all

ax bx c

Stopping a Procedure 73

if :discriminant < 0 [print [No solution.] stop]

stop

Stop
stop stop

stop
stop

output

output stop

music.quiz stop
print

ifelse
stop

if Stop

ifelse equalp readlist [John Lennon] ~
[print [That’s right!]] ~
[print [No, silly, it’s John Lennon.]]

to quadratic :a :b :c
local "discriminant
make "discriminant (:b * :b)-(4 * :a * :c)

make "discriminant sqrt :discriminant
local "x1
local "x2
make "x1 (-:b + :discriminant)/(2 * :a)
make "x2 (-:b - :discriminant)/(2 * :a)
print (sentence [x =] :x1 [or] :x2)
end

You now know about almost all of the primitive procedures used in this example. The
only one we haven’t discussed is the command in the second instruction line.

is a command that takes no inputs. It is only allowed inside a procedure; you
can’t type to a top-level prompt. The effect of is to finish the evaluation of
the procedure in which it is used. Later instructions in the same procedure are skipped.

Notice that does not stop active procedures. If procedure A invokes
procedure B, and there is a command in procedure B, then procedure A continues
after the point where it invoked B.

Recall that the command also stops the procedure that invokes it. The
difference is that if you’re writing an operation, which should have an output, you use

; if you’re writing a command, which doesn’t have an output, you use .

In , the effect of the is that if you get the right answer, the final
instruction isn’t evaluated. The same effect could have been written this way:

The alternative form uses the three-input command. One advantage of
using is precisely that it allows the use of shorter lines. But in this example, where
there is only one instruction after the , it doesn’t matter much. is really useful
when you want to stop only in an unusual situation and otherwise you have a lot of work
still to do:

This procedure applies the quadratic formula to solve the equation

+ + = 0



☞

Improving the Quiz Program

anywhere within

list

74 Chapter 4 Predicates

stop

stop
stop

stop

music.quiz

qa music.quiz
Quiz qa

quiz qa

Qa
Lennon John Lennon

:answer Lennon Lennon John
Lennon the Lennon Sisters qa

to qa :question :answer
print :question
if equalp readlist :answer [print [That’s right!] stop]
print sentence [Sorry, it’s] :answer
end

to quiz
qa [Who is the best musician of all time?] [John Lennon]
qa [Who wrote "Compulsory Miseducation"?] [Paul Goodman]
qa [What color was George Washington’s white horse?] [white]
qa [how much is 2+2?] [5]
end

qa [Who is the best musician of all time?] ~
[[John Lennon] [Lennon] [the Beatles]]

The only interesting thing about this example for our present purpose is the fact that
sometimes there is no solution. In that case the procedure s as soon as it finds out.

Don’t forget that you need only if you want to stop a procedure before its last
instruction line. A common mistake made by beginners who’ve just learned about
is to use it in every procedure. If you look back at the examples so far you’ll see that
many procedures get along fine without invoking .

When I first introduced the example in Chapter 1, we hadn’t discussed
things like user procedures with inputs. We are now in a position to generalize the quiz
program:

Procedure is our old friend , with variable inputs instead of a fixed
question and answer. uses several times to ask different questions.

Here are a couple of suggestions for further improvements you should be able to
make to and :

1. is very fussy about getting one particular answer to a question. If you answer
instead of , it’ll tell you you’re wrong. There are a couple of ways

you might fix this. One is to look for a single-word answer what the user
types. So if is the word , the program will accept “ ,” “

,” or “ .” The second approach would be for to take a
of possible answers as its second input:



Reporting Success to a Superprocedure

operation,

Reporting Success to a Superprocedure 75

Qa

quiz score quiz qa

qa quiz

true
ask.once

ask.thrice ask.thrice
ask.once ask.once

repeat
Repeat

repeat

make "score :score+1

to ask.thrice :question :answer
repeat 3 [if ask.once :question :answer [stop]]
print sentence [The answer is] :answer
end

to ask.once :question :answer
print :question
if equalp readlist :answer [print [Right!] output "true]
print [Sorry, that’s wrong.]
output "false
end

then has to use a different predicate, to see if what the user types is any of the answers
in the list.

2. By giving a local variable named , you could have and
cooperate to keep track of how many questions the user gets right. At the end the score
could be printed. (This is an opportunity to think about the stylistic virtues and vices of
letting a subprocedure modify a variable that belongs to its superprocedure. If you say

inside , doesn’t that make somewhat mysterious to read? For an alternative, read
the next section.)

Suppose we want the quiz program to give the user three tries before revealing the right
answer. There are several ways this could be programmed. Here is a way that uses the
tools you already know about.

The general idea is that the procedure that asks the question is written as an
not as a command. To be exact, it’s a predicate; it outputs if the user

gets the right answer. This asking procedure, , is invoked as a subprocedure
of , which is in charge of allowing three tries. invokes

up to three times, but stops if reports success.

You’ve seen in the first chapter, but you haven’t been formally introduced.
is a command with two inputs. The first input must be a non-negative whole

number. The second input must be a list of Logo instructions. The effect of is



☞

calculating printing

also

76 Chapter 4 Predicates

ask.once
true false

true false

second

second
prsecond

second
or

o

prsecond

quiz qa
quiz ask.thrice

to prsecond :datum
print first butfirst :datum
end

prsecond [something or other]

print second [something or other]

print first second [something or other]

to evaluate its second input, the instruction list, the number of times given as the first
input.

The programming style used in this example is a little controversial. In general,
it’s considered a good idea not to mix effect and output in one procedure. But in this
example, has an effect (it prints the question, reads an answer, and comments
on its correctness) and also an output ( or ).

I think the general rule I’ve just cited is a good rule, but there are exceptions to it.
Using an output of or to report the success or failure of some process is
one of the situations that I consider acceptable style. The real point of the rule, I think,
is to separate something from it. For example, it’s a mistake to write
procedures like this one:

A more powerful technique is to write the operation from Chapter 2; instead of

you can then say

It may not be obvious from this example why I call more powerful than
. But remember that an operation can be combined with other operations,

as in the plumbing diagrams we used earlier. For example, the operation can
extract the word from the list as shown here. But you can use it as part of a more
complex instruction to extract the letter :

If you’d written the command to solve the first problem, you’d have to start
all over again to solve this new one. (Of course, both of these examples must seem pretty
silly; why bother extracting a word or a letter from this list? But I’m trying to use examples
that are simple enough not to obscure this issue with the kinds of complications we’ll see
in more interesting programs.)

If you made the improvements to and that I suggested earlier, you might
like to see if they can fit easily with a new version of using .



Initials

initials

The Problem:

aggregates

77

5 Functions of Functions

?
[G H]

to initials :name
output sentence (first first :name) (first last :name)
end

?
[J E]
?
[P N]

show initials [George Harrison]

show initials [John Alec Entwistle]

show initials [Peter Blair Denis Bernard Noone]

We now have many of the tools we need to write computer programs. We have the
primitive operations for arithmetic computation, the primitive operations to manipulate
words and sentences, and a way to choose between alternative computations. One
thing that we still lack is a way to deal systematically with data —collections
of data. We want to be able to say “carry out this computation for each member of
that aggregate.” Processing large amounts of data uniformly is one of the abilities that
distinguish computers from mere pocket calculators.

To make this concrete, we’ll look at a very simple example. I’d like to write a procedure
that can figure out a person’s initials, like this:

One obvious approach is to find the initials of the first name and the last name:

The trouble is that this approach doesn’t work for people with middle names. We’d like
our procedure to be able to handle any length name. But it doesn’t:



BASIC
Pascal
C

n
i n

i

...
i 1 i

2 i n

One Solution: Numeric Iteration

numeric iteration.

78 Chapter 5 Functions of Functions

show initials.in.our.dreams [John Alec Entwistle]

show initials.in.our.dreams [Peter Blair Denis Bernard Noone]

?
[J A E]
?
[P B D B N]

show initials [Princess Angelina Contessa Louisa Francesca ~
Banana Fana Bo Besca the Third]

for i = 1 to n : ... : next i ( )
for 1 := 1 to n do begin ... end ( )
for (i=1; i<=n; i++) { ... } ( )

to initials :name
local "result
make "result []
for [i 1 [count :name]] ~

[make "result sentence :result first (item :i :name)]
output :result
end

What we want is this:

If we knew that the input would have exactly five names, we could extract the first letter
of each of them explicitly. But you never know when some smart alec will ask you to

If you’ve programmed before in other languages, then one solution will immediately
occur to you. You create a variable whose value is the number of words in the input,
then you have a variable that takes on all possible values from 1 to , and you select
the th word from the input and pull out its first letter. Most languages have a special
notation for this sort of computation:

All of these have the same meaning: Carry out some instructions (the part shown as
above) repeatedly, first with the variable named having the value , then with equal
to , and so on, up to equal to . This technique is called “Iteration”
means repetition, and it’s “numeric” iteration because the repetition is controlled by a
variable that takes on a sequence of numeric values.

We can do the same thing in Logo, although, as we’ll soon learn, it’s not the usual
approach that Logo programmers take to this problem.



?
4
5
6
7
?
4
7
10

?
7
6
5
?
15
9
3
?
?

result i for
for i for

for

number
value
Value

For

for for x

index variable.

already

One Solution: Numeric Iteration 79

for [number 4 7] [print :number]

for [value 4 11 3] [print :value]

for [i 7 5] [print :i]

for [n 15 2 -6] [print :n]

for [x 15 2 6] [print :x]

(The reason I declare as local, but not , is that Logo’s automatically makes
its index variable local to the itself. There is no variable outside of the
instruction.)

The command takes two inputs. The second input is an instruction list that
will be carried out repeatedly. The first input controls the repetition; it is a list of either
three or four members: a variable name, a starting value, a limit value, and an optional
increment. (The variable named by the first member of the list is called the
For example:

In the first example, takes on all integer values between 4 and 7. In the second,
’s starting value is 4, and on each repetition its new value is 3 more than last time.
never actually has its limiting value of 11; the next value after 10 would have been

13, but that’s bigger than the limit.

can count downward instead of upward:

The last example has no effect. Why? The increment of 6 implies that this invocation
of should count upward, which means that the continues until the value of is
greater than the limit, 2. But the starting value, 15, is greater than 2.



spread 19

spread 83

80 Chapter 5 Functions of Functions

for for 1 -1

for

for
for

for

for

for initials

to spread :ends
for [digit [first :ends] [last :ends]] [type :digit]
print []
end

?
123456789
?
876543

show initials [Raymond Douglas Davies]

local "i ; initialize index variable
make "i 1

if (:i > 3) [stop] ; testing
make "result (se :result first "Raymond) ; action (result is [R])
make "i :i+1 ; incrementing (i is 2)

if (:i > 3) [stop] ; testing
make "result (se :result first "Douglas) ; action (result is [R D])
make "i :i+1 ; incrementing (i is 3)

If no increment is given in the first input to , then will use either or as
the increment, whichever is compatible with the starting and limit values.

Although I’ve been using constant numbers as the starting value, limit value, and
increment in these examples, can handle any Logo expression, represented as a list,
for each of these:

More formally, the effect of is as follows. First it creates the local index variable
and assigns it the starting value. Then carries out three steps repeatedly: testing,
action, and incrementing. The testing step is to compare the current value of the index
variable with the limit value. If the index variable has passed the limit, then the
is finished. (“Passed” means that the index variable is greater than the limit, if the
increment is positive, or that the index variable is less than the limit, if the increment is
negative.) The action step is to evaluate the instructions in the second input to . The
incrementing step is to assign a new value to the index variable by adding the increment
to the old value. Then comes another round of testing, action, and incrementing.

So, for example, if we give Logo the instruction

then the instruction within is equivalent to this sequence of instructions:



Raymond

FIRST FIRST FIRST

Douglas Davies[

[R D D]

]

Critique of Numeric Iteration

Critique of Numeric Iteration 81

stop for
initials

for
initials

result
result

result

first

if (:i > 3) [stop] ; testing
make "result (se :result first "Davies) ; action (result is [R D D])
make "i :i+1 ; incrementing (i is 4)

if (:i > 3) [stop] ; testing

except that the instruction in the testing step stops only the instruction, not
the procedure.

Computers were originally built to deal with numbers. Numeric iteration matches closely
the behind-the-scenes sequence of steps by which computers actually work. That’s why
just about every programming language supports this style of programming.

Nevertheless, a instruction isn’t anything like the way you, a human being,
would solve the problem without a computer. First of all, you wouldn’t begin
by counting the number of words in the name; you really don’t have to know that. You’d
just say, for example, “First of Raymond is R; first of Douglas is D; first of Davies is D.”
When you ran out of names, you’d stop.

The manipulation of the variable to collect the results also seems unnatural.
You wouldn’t think, “I’m going to start with an empty result; then, whatever value
has, I’ll throw in an R; then, whatever value now has, I’ll throw in a D” and so on.

In fact, if you had to explain to someone else how to solve this problem, you probably
wouldn’t talk about a sequence of steps at all. Rather, you’d draw a picture like this one:

To explain the picture, you’d say something like “Just take the of each word.” You
wouldn’t even mention the need to put the results together into a sentence; you’d take
that for granted.



−

argument result

initials

map

map

What’s a Function?

to initials :name
output map "first :name
end

first
item

this those.

function argument

f x x

f x

domain
range

82 Chapter 5 Functions of Functions

* It’s a little awkward to talk about the domain of a function that takes two arguments. That is,
it’s easy to say that the domain of the function represented by the operation is words or lists,
but how do we describe ? We could loosely say “its domain is numbers and words or lists,” but
that sounds as if either argument could be any of those. The most precise way to say it is this: “The

In Logo we can write an procedure using the same way of thinking that
you’d use in English:

The procedure means “collect the results of doing for each of ”

As this example illustrates, is easy to use. But it’s a little hard to talk about,
because it’s a function of a function. So first we’ll take a detour to talk more precisely
about functions in general.

A is a rule for turning one value (called the ) into another. If you’ve
studied algebra you’ll remember numeric function rules such as

( ) = 3 6

but not all functions are numeric, and not all rules need be expressed as algebraic
formulas. For example, here is the Instrument function, which takes a Beatle as its
argument and returns his instrument:

John rhythm guitar
Paul bass guitar
George lead guitar
Ringo drums

This particular function has only four possible arguments. Other functions, like ( )
above, may have infinitely many possible arguments. The set of possible arguments is
called the of the function. Similarly, the set of possible result values is called the

of the function.*



× −
− ×

instrument

f g
f 10

g 10

represents is

represent

What’s a Function? 83

to f :x
output 3*:x - 6
end

to instrument :beatle
if :beatle = "John [output [rhythm guitar]]
if :beatle = "Paul [output [bass guitar]]
if :beatle = "George [output [lead guitar]]
if :beatle = "Ringo [output [drums]]
end

to f :x to g :x
output 3*:x - 6 output 3 * (:x-2)
end end

item

Item

domain of is pairs of values, in which the first member of the pair is a positive integer and the
second member is a word or list of length greater than or equal to the first member of the pair.”
But for ordinary purposes we just rephrase the sentence to avoid the word “domain” altogether:
“ takes two inputs; the first must be a positive integer and the second must be a word or list...”

Functions can be represented in many ways. (We’ve seen two in this section: formulas
and tables.) One way to represent a function is with a Logo operation. Here are Logo
representations of the two functions we’ve discussed:

(What if we give an input that’s not in the domain of the function? In that
case, it won’t output any value, and a Logo error message will result. Some people would
argue that the procedure should provide its own, more specific error message.)

I’ve been careful to say that the Logo operation the function, not that it
the function. In particular, two Logo procedures can compute the same function—the
same relationship between input and output values—by different methods. For example,
consider these Logo operations:

The Logo operations and carry out two different computations, but they represent
the same function. For example, to compute we say 3 10 = 30, 30 6 = 24;
to compute we say 10 2 = 8, 3 8 = 24. Different computations, but the same
answer. Functional programming means, in part, focusing our attention on the inputs
and outputs of programs rather than on the sequence of computational steps.

Just as a Logo operation represents a function, the procedure’s inputs similarly
the arguments to the corresponding function. For example, that instrument

function I presented earlier has Beatles (that is to say, people) as its domain and has



Map

?
[R A]

Functions of Functions:

show map "first [Rod Argent]

instrument

instrument

map
map

map

instrument

map

map

Map
map

first
map

map

the name of
the name of

function of functions.

name

purpose

notation

84 Chapter 5 Functions of Functions

musical instruments as its range. But Logo doesn’t have people or instruments as data
types, and so the procedure takes as its input a Beatle (that is,
a word) and returns as its output an instrument (a sentence). Instrument is
a function from Beatles to instruments, but is an operation from words to
sentences.

We’re about to see a similar situation when we explore . The map function—that
is, the function that represents—is a One of the arguments to
the map function is itself a function. The corresponding input to Logo’s procedure
should be a procedure. But it turns out that Logo doesn’t quite allow a procedure to be
an input to another procedure; instead, we must use the of the procedure as the
input, just as we use the name of a Beatle as the input to .

I know this sounds like lawyer talk, and we haven’t written any programs for a while.
But here’s why this is important: In order to understand the of , you have
to think about the map function, whose domain is functions (and other stuff, as we’ll
see in a moment). But in order to understand the that you use with in
Logo, you have to think in terms of the Logo operation, whose input is words (names of
procedures). You have to be clear about this representation business in order to be able
to shift mentally between these viewpoints.

takes two inputs. The first is a word, which must be the name of a one-input Logo
operation. The second can be any datum. The output from is either a word or a list,
whichever is the type of the second input. The members of the output are the results of
applying the named operation to the members of the second input.

In this example, the output is a list of two members, just as the second input is a list of
two members. Each member of the output is the result of applying to one of the
members of ’s second input.

Many people, when they first meet , are confused by the quoting of its first
input. After all, I made a fuss back in Chapter 2 about the difference between these two
examples:



map

Rod Argent

first

MAP

SHOW

FIRST

[Rod Argent]

?

print Hello

print "Hello

first
map

map first

map first

Map

?
I don’t know how to Hello
?
Hello

show map first [Rod Argent] ;; wrong!

another function,

map first Rod Argent

the
output from invoking

composing

Functions of Functions: 85

You learned that a quoted word means the word itself, while an unquoted word asks Logo
to invoke a procedure. But now, when I want to use the procedure as input to

, I’m quoting its name. Why?

All that effort about the domains of functions should help you understand the
notation used here. Start by ignoring the Logo notation and think about the domain of
the map function. We want the map function to have the function “first”
in this case, as one of its arguments:

It’s tempting to say that in Logo, a function is represented by a procedure, so
represents map, and represents first. If this were algebra notation, I’d say

( , ), so in Logo I’ll say

But when a Logo instruction has two unquoted procedure names in a row, that doesn’t
mean that the second function is used as argument to the first! Instead, it means that

the second function is used as the argument to the first. In this case,
we’d be and :



MAP

SHOW

first [Rod Argent]

the name of

86 Chapter 5 Functions of Functions

map
first map

first

uppercase

uppercase

map

map map
map

?
YOUNG

?
uppercase doesn’t like [neil young] as input.

?
[NEIL YOUNG]

?
[o p e n]
?
[741 852 963]

print uppercase "young

show uppercase [neil young]

show map "uppercase [neil young]

show (map "item [2 1 2 3] [john paul george ringo])

show (map "sum [1 2 3] [40 50 60] [700 800 900])

As the plumbing diagram shows, the list that we intended as the second input to
actually ends up as the input to , and Logo will complain because isn’t given
enough inputs.

Instead, as I said earlier, we must use the procedure to represent
it. That gives this diagram:

Here’s another simple example. Logo has a primitive operation that
takes a word as input, and outputs the same word but in all capital letters:

What if we want to translate an entire sentence to capital letters? The
primitive doesn’t accept a sentence as its input:

But we can use to translate each word separately and combine the results:

Ordinarily works with one-argument functions. But we can give extra
arguments (by enclosing the invocation of in parentheses, as usual) so that it can
work with functions of more than one argument.



☞

higher order function.

Functions of Functions: 87

[2 1 2 3] item
item

sum

map

hangletter hangword
guessed

exaggerate

map
map

Map

print hangword "potsticker [e t a o i n]

print hangword "gelato [e t a o i n]

print exaggerate [I ate 3 potstickers]

print exaggerate [The chow fun is good here]

to hangword :secret :guessed
output map "hangletter :secret
end

to hangletter :letter
output ifelse memberp :letter :guessed [:letter] [" ]
end

?
ot ti er

?
e ato

?
I ate 6 potstickers
?
The chow fun is great here

Each input after the first provides values for one input to the mapped function. For
example, provides four values for the first input to . The input lists
must all have the same length (two lists of length four in the example, three lists of
length three in the example).

In the examples so far, the input data have been lists. Here’s an example in which
we use with words. Let’s say we’re writing a program to play Hangman, the word
game in which one player guesses letters in a secret word chosen by the other player. At
first the guesser sees only a row of dashes indicating the number of letters in the word;
for each guess, more letters are revealed. We aren’t going to write the entire program yet,
but we’re ready to write the operation that takes the secret word, and a list of the letters
that have been guessed so far, and outputs a row of letters and dashes as appropriate.

Notice that depends on Logo’s dynamic scope to have access to ’s
local variable named .

Write an operation that takes a sentence as input and outputs an
exaggerated version:

It should double all the numbers in the sentence, and replace “good” with “great,” “bad”
with “terrible,” and so on.

A function whose domain or range includes functions is called a
The function represented by is a higher order function. (We may speak loosely and
say that is a higher order function, as long as you remember that Logo procedures



FilterHigher Order Selection:

map

map

map
filter

initials

transform
select

88 Chapter 5 Functions of Functions

?
[76 4 8]

to vowelp :letter
output memberp :letter "aeiou
end

?
aei

to beatlep :person
output memberp :person [John Paul George Ringo]
end

?
[George]

?
[C S L S]
?
[A C L U]

show filter "numberp [76 trombones, 4 calling birds, and 8 days]

show filter "vowelp "spaghetti

show filter "beatlep [Bob George Jeff Roy Tom]

show initials [Computer Science Logo Style]

show initials [American Civil Liberties Union]

aren’t really functions!) It’s tempting to say that the procedure itself is a “higher
order procedure,” but in Logo that isn’t true. Procedures aren’t data in Logo; the only
data types are words and lists. That’s why the input to is a word, the name of a
procedure, and not the procedure itself. Some languages do treat procedures themselves
as data. In particular, the language Scheme is a close relative of Logo that can handle
procedures as data. If this way of thinking appeals to you, consider learning Scheme
next!

The purpose of is to each member of an aggregate (a list or a word) by
applying some function to it. Another higher order function, , is used to
some members of an aggregate, but not others, based on a criterion expressed as a
predicate function. For example:

What happens if we use the procedure that we wrote with people’s names
in mind for other kinds of names, such as organizations or book titles? Some of them
work well:



ReduceMany to One:

filter

Reduce

Reduce

really

nonempty

Many to One: 89

?
[A f C M]
?
[P R o C]

to importantp :word
output not memberp :word [the an a of for by with in to and or]
end

to initials :name
output map "first (filter "importantp :name)
end

?
[A C M]
?
[P R C]

?
CSLS
?
18
?
[U N I C E F]

to acronym :name
output reduce "word initials :name
end

show initials [Association for Computing Machinery]

show initials [People’s Republic of China]

show initials [Association for Computing Machinery]

show initials [People’s Republic of China]

show reduce "word [C S L S]

show reduce "sum [3 4 5 6]

show reduce "sentence "UNICEF

but others don’t give quite the results we’d like:

We’d like to eliminate words like “for” and “of” before taking the first letters of the
remaining words. This is a job for :

Of course, what we’d like is to have those initials in the form of a single word: ACLU,
CSLS, ACM, and so on. For this purpose we need yet another higher order function, one
that invokes a combining function to join the members of an aggregate.

takes two inputs. The first must be the name of a two-input operation; the
second can be any word or list.



[ ]

[ ]

− − − −

Choosing the Right Tool

show biggest [5 7 781 42 8]

constructor.

90 Chapter 5 Functions of Functions

reduce
sum

difference

word sentence sum product

map filter reduce

Map

reduce "difference [5 6 7]

to bigger :a :b
output ifelse :a > :b [:a] [:b]
end

to biggest :nums
output reduce "bigger :nums
end

?
781

In practice, the first input to won’t be any old operation; it’ll be a
It’ll be something that doesn’t care about the grouping of operands; for example, is
a good choice but is problematic because we don’t know whether

means 5 (6 7) or (5 6) 7, and the grouping affects the answer. Almost all the time,
the constructor will be , , , or . But here’s an example of
another one:

So far you’ve seen three higher order functions: , , and . How do
you decide which one to use for a particular problem?

transforms each member of a word or list individually. The result contains as
many members as the input.



[ ]

[ ]

[ ]

Anonymous Functions

Anonymous Functions 91

Filter

Reduce

hangletter importantp bigger

to hangword :secret :guessed
output map [ifelse memberp ? :guessed [?] [" ]] :secret
end

selects certain members of a word or list and discards the others. The
members of the result are members of the input, without transformation, but the result
may be smaller than the original.

transforms the entire word or list into a single result by combining all of the
members in some way.

In several of the examples in this chapter, I’ve had to write “helper” procedures such as
, , and that will never be used independently, but are

needed only to provide the function argument to a higher order function. It would be
simpler if we could avoid writing these as separate procedures.

Does that sound confusing? This is one of those ideas for which an example is worth
1000 words:



Higher Order Miscellany

map

?
?1 ?2

output

output

output

Map

map.se

template.

instructions, expression

from the procedure containing it!

92 Chapter 5 Functions of Functions

?

[George]

to biggest :nums
output reduce [ifelse ?1 > ?2 [?1] [?2]] :nums
end

?
?
fiveseveneightnine
?
[five seven eight nine]

?
[[Within You] [Without You]]
?
[Within You Without You]

show filter [memberp ? [John Paul George Ringo]] ~
[Bob George Jeff Roy Tom]

make "numbers [zero one two three four five six seven eight nine]
show map [item ?+1 :numbers] 5789

show map.se [item ?+1 :numbers] 5789

show map [sentence (word "With ?) "You] [in out]

show map.se [sentence (word "With ?) "You] [in out]

Until now, the first input to has always been a word, used to represent the function
with that word as its name. In this example we see how a nameless function can be
represented: as a list containing a Logo expression, but with question marks where the
function’s argument belongs. Such a list is called a

Anonymous functions of more than one argument are a little uglier. Instead of for
the argument, you must use for the first, for the second, and so on.

Notice that the templates don’t say , as the named procedures did. That’s
because procedures are made of whereas these are templates.
When input values are “plugged in” for the question marks, the template becomes a Logo
expression, which means that when evaluated it has a value. If the template said ,
it would be saying to use that value as the output (I’m just
repeating the point made earlier that immediately stops the procedure it’s in,
even if there are more instructions below it.)

combines the partial results into a list, if the second argument is a list, or into a
word, if it’s a word. Sometimes this behavior isn’t quite what you want. An alternative
is (map to sentence), which makes a sentence of the results. Here are some
examples.



☞

Higher Order Miscellany 93

map map.se

map map.se
map map.se

?

show map.se [sentence ? "Warner] [Yakko Wakko Dot]

show map [sentence ? "Warner] [Yakko Wakko Dot]

show crossproduct [red blue green] [shirt pants]

?
[Yakko Warner Wakko Warner Dot Warner]
?
[[Yakko Warner] [Wakko Warner] [Dot Warner]]

?
[[red shirt] [blue shirt] [green shirt] [red pants] [blue pants]
[green pants]]

[red shirt blue shirt green shirt red pants blue pants green pants]

[[[red shirt] [blue shirt] [green shirt]]
[[red pants] [blue pants] [green pants]]]

to crossproduct :these :those
output map.se [prepend.each :these ?] :those
end

to prepend.each :these :that
output map [sentence ? :that] :these
end

As these examples show, sometimes does what you want, but sometimes
does, depending on the “shape” you want your result to have. Do you want a word, a
sentence, or a structured list?

Suppose we have two sets of things, and we want all the pairings of one of these with
one of those. An example will make clear what’s desired:

This is a tricky example because there are two different mistakes we could make. We
don’t want to “flatten” the result into a sentence:

but we also don’t want all the shirts in one list and all the pants in another:

Here’s the solution:

Notice that this solution uses both and . Try to predict what would
happen if you used both times, or both times, or interchanged the two.
Then try it on the computer and be sure you understand what happens and why!

By the way, this is a case in which we still need a named helper function despite the
use of templates, because otherwise we’d have one template inside the other, and Logo
couldn’t figure out which to replace with what:



map.se map find filter

foreach

one

action

instruction

94 Chapter 5 Functions of Functions

print spellout "5d

print spellout "10h

foreach (crossproduct [[ultra chocolate] pumpkin [root beer swirl]
ginger] [cone cup]) "print

to crossproduct :these :those
output map.se [map [sentence ? ?] :these] :those ; (wrong!)
end

to spellout :card
output (sentence (butlast :card) "of

(find [equalp last :card first ?]
[hearts spades diamonds clubs]))

end

?
5 of diamonds
?
10 of hearts

?

ultra chocolate cone
pumpkin cone
root beer swirl cone
ginger cone
ultra chocolate cup
pumpkin cup
root beer swirl cup
ginger cup

Just as is a variant of , is a variant of , for the situations
in which you only want to find member that meets the criterion, rather than all the
members. (Perhaps you know in advance that there will only be one, or perhaps if there
are more than one, you don’t care which you get.)

Sometimes what you want isn’t a function at all. You want to take some for
each member of an aggregate. The most common one is to print each member on a
separate line, in situations where you’ve computed a long list of things. You can use

with an template, rather than an expression template as used with
the others. The template is the last argument, rather than the first, to follow the way in
which the phrase “for each” is used in English: For each of these things, do that.

If you look closely at the letters on your computer screen you’ll see that they are
made up of little dots. One simple pattern represents each letter in a rectangle of dots
five wide and seven high, like this:



☞ say

say "brian

Higher Order Miscellany 95

* ***** ***** **** *****
* * * * * * * *
* * * * * * * *
***** **** * * * ***
* * * * * * * *
* * * * * * * *
* * ***** ***** **** *****

to say :word
for [row 1 7] [foreach :word [sayrow :row ?] print []]
print []
end

to sayrow :row :letter
type item :row thing :letter
type "| |
end

make "b [|*****| |* *| |* *| |**** | |* *| |* *| |*****|]
make "r [|*****| |* *| |* *| |*****| |* * | |* * | |* *|]
make "i [|*****| | * | | * | | * | | * | | * | |*****|]
make "a [| * | | * * | |* *| |*****| |* *| |* *| |* *|]
make "n [|* *| |** *| |** *| |* * *| |* **| |* **| |* *|]

?
***** ***** ***** * * *
* * * * * * * ** *
* * * * * * * ** *
**** ***** * ***** * * *
* * * * * * * * **
* * * * * * * * **
***** * * ***** * * * *

The following program allows you to spell words on the screen in big letters like these.
Each letter’s shape is kept as the value of a global variable with the letter as its name. (I
haven’t actually listed all 26 letters.) The value is a list of seven words, each of which
contains five characters, some combination of spaces and asterisks.

Modify the program so that takes another input, a number representing the size
in which you want to print the letters. If the number is 1, then the program should work
as before. If the number is 2, each dot should be printed as a two-by-two square of spaces
or asterisks; if the number is 3, a three-by-three square, and so on.



≥− −n n n

Cascade

0

1

1 2

23 22 21

Repeated Invocation:

Cascade

map cascade
cascade

F

F

F F F n

F F F

96 Chapter 5 Functions of Functions

print first bf bf bf bf [The Continuing Story of Bungalow Bill]

print first (cascade 4 "bf [The Continuing Story of Bungalow Bill])

print power 2 8

show range 3 8

?
Bungalow
?
Bungalow

to power :base :exponent
output cascade :exponent [? * :base] 1
end

?
256

to range :from :to
output cascade :to-:from [sentence ? (1+last ?)] (sentence :from)
end

?
[3 4 5 6 7 8]

Finally, sometimes you want to compose a function with itself several times:

takes three inputs. The first is a number, indicating how many times to invoke
the function represented by the second argument. The third argument is the starting
value.

Like , can be used with extra inputs to deal with more than one
thing at a time. One example in which multi-input is useful is the Fibonacci
sequence. Each number in the sequence is the sum of the two previous numbers; the
first two numbers are 1. So the sequence starts

1, 1, 2, 3, 5, 8, 13, . . .

A formal definition of the sequence looks like this:

= 1,

= 1,

= + , 2.

In order to compute, say, , we must know both and . As we work our way up, we
must always remember the two most recent values, like this:



22 21

22 21 22

F F
F F F

Repeated Invocation: 97

print fib 5

print fib 23

print reverse [how now brown cow]

cascade ?1 ?2

?1 ?1 ?2

cascade
?1 ?2

?1 ?2

[] [how now brown cow]
[how] [now brown cow]
[now how] [brown cow]
[brown now how] [cow]
[cow brown now how] []

Cascade

to fib :n
output (cascade :n [?1+?2] 1 [?1] 0)
end

?
8
?
46368

to reverse :sent
output (cascade (count :sent)

[sentence (first ?2) ?1] []
[butfirst ?2] :sent)

end

?
cow brown now how

Most recent value Next most recent value

start 1 0
step 1 1 1
step 2 2 1
step 3 3 2
step 4 5 3
. . . . . . . . .
step 22
step 23 +

To express this using , we can use to mean the most recent value and to
mean the next most recent. Then at each step, we need a function to compute the new

by adding the two known values, and a function to copy the old as the new :

Another situation in which multi-input can be useful is to process every
member of a list, using to remember the already-processed ones and to remember
the still-waiting ones. The simplest example is reversing the words in a sentence:

start
step 1
step 2
step 3
step 4



TM

A Mini-project: Mastermind

function start
function start

cascade

?1 ?2
Cascade ?1

rgbv royg

rgrb

n
n

98 Chapter 5 Functions of Functions

howmany function1 start1 function2 start2 ...(cascade )

red green blue violet

red orange yellow green

Here is the general notation for multi-input :

There must be as many inputs as inputs. Suppose there are pairs
of inputs; then each of the s must accept inputs. The s provide the
initial values for , , and so on; each function provides the next value for one of
those. returns the final value of .

It’s time to put these programming tools to work in a more substantial project. You’re
ready to write a computer program that plays a family of games like Mastermind . The
computer picks a secret list of colors; the human player makes guesses. (The number
of possible colors can be changed to tune the difficulty of the game.) At each turn, the
program should tell the player how many colors in the guess are in the correct positions
in the secret list and also how many are in the list, but not at the same positions. For
example, suppose the program’s secret colors are

and the player guesses

There is one correct-position match (red, because it’s the first color in both lists) and one
incorrect-position match (green, because it’s second in the computer’s list but fourth in
the player’s list).

In the program, to reduce the amount of typing needed to play the game, represent
each color as a single letter and each list of colors as a word. In the example above, the
computer’s secret list is represented as and the player’s guess as .

There are two possible variations in the rules, depending on whether or not color
lists with duplications (such as , in which red appears twice) are allowed. The
program will accept a true-or-false input to determine whether or not duplicates are
allowed.

Here’s an example of what an interaction with the program should look like:



A Mini-project: Mastermind 99

master "roygbiv 4 "false

royg

rogy

orygbv

oryx

oryr

oryg

rbyg

boyg

roby

?

What’s your guess?

You have 1 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You have 1 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You must guess exactly 4 colors.

What’s your guess?

The available colors are: roygbiv

What’s your guess?

No fair guessing the same color twice!

What’s your guess?

You have 0 correct-position matches
and 3 incorrect-position matches.

What’s your guess?

You have 1 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You have 0 correct-position matches
and 3 incorrect-position matches.

What’s your guess?

You have 1 correct-position matches
and 3 incorrect-position matches.



☞

100 Chapter 5 Functions of Functions

for

make print output

choose.dup
choose.nodup

pick

rybo

ryob

print choose.nodup 4 "roygbiv

print pick [Pete John Roger Keith]

print pick [Pete John Roger Keith]

print pick "roygbiv

What’s your guess?

You have 2 correct-position matches
and 2 incorrect-position matches.

What’s your guess?

You win in 8 guesses!
?

?
briy

?
John
?
Keith
?
b

If you prefer, just jump in and start writing the program. But I have a particular
design in mind, and you may find it easier to follow my plan. The core of my program
is written sequentially, in the form of a instruction that carries out a sequence of
steps once for each guess the user makes. But most of the “smarts” of the program are
in a collection of subprocedures that use functional programming style. That is, these
procedures are operations, not commands; they merely compute and output a value
without taking any actions. Pay attention to how these two styles fit together. In writing
the operations, don’t use or ; each operation will consist of a single
instruction.

The first task is for the computer to make a random selection from the available
colors. Write two versions: that allows the same color to be chosen more
than once, and that does not allow duplication. Each of these operations
should take two inputs: a number, indicating how many colors to choose, and a word of
all the available colors. For example, to choose four colors from the rainbow without
duplication, you’d say

You’ll find the Logo primitive helpful. It takes a word or list as its input, and
returns a randomly chosen member:



☞

add one color
remove that color

rotate

A Mini-project: Mastermind 101

(cascade :number-wanted
[ ] "
[ ] :colors)

?
ygbivro
?
vroygbi
?
bivroyg

?
1
?
1
?
2

rotate "roygbiv

rotate "roygbiv

rotate "roygbiv

print exact "rgrb "yrrr

print inexact "rgrb "yrrr

print inexact "royg "rgbo

choose.dup pick cascade

Choose.nodup
cascade

reverse

rotate

rotate cascade random
Random

random 3 0 1 2

exact
inexact

anymatch

rgrb
yrrr

Writing is a straightforward combination of and .

is a little harder. Since we want to eliminate any color we choose
from further consideration, it’s plausible to use a multi-input sort of like this:

If we always wanted to choose the first available color, this would be just like the
example earlier. But we want to choose a color randomly each time. One solution is
to the available colors by some random amount, then choose what is now the first
color. To use that idea you’ll need a operation that rotates a word some random
number of times, like this:

You can write using along with the Logo primitive operation .
takes a positive integer as its input, and outputs a nonnegative integer less than

its input. For example, will output , , or .

The second task is to evaluate the player’s guess. You’ll need an operation called
that takes two words as inputs (you may assume they are the same length) and

outputs the number of correct-position matches, and another operation called
that computes the number of wrong-position matches. (You may find it easier to write a
helper procedure that takes two words as inputs, but outputs the total number
of matches, regardless of position.) Be sure to write these so that they work even with the
duplicates-allowed rule in effect. For example, if the secret word is and the user
guesses , then you must report one exact and one inexact match, not one exact and
two inexact.



☞

☞

102 Chapter 5 Functions of Functions

Exact map

anymatch map

howmany

valid.guessp true
false

false

master

true false
choose.dup choose.nodup

for

is a straightforward application of multi-input , since you want to look at
each letter of the secret word along with the same-position letter of the user’s guess.
My solution to was to use to consider each of the available colors. For
each color, the number of matches is the smaller of the number of times it appears in
the secret word and the number of times it appears in the guess. (You’ll need a helper
procedure that takes two inputs, a letter and a word, and outputs the number
of times that letter occurs in that word.)

Up to this point, we’ve assumed that the player is making legitimate guesses. A
valid guess has the right number of colors, chosen from the set of available colors, and
(perhaps, depending on the chosen rules) with no color duplicated. Write a predicate

that takes a guess as its input and returns if the guess is valid,
otherwise. In this procedure, for the first time in this project, it’s a good idea to

violate functional programming style by printing an appropriate error message when the
output will be .

We now have all the tools needed to write the top-level game procedure .
This procedure will take three inputs: a word of the available colors, the number of colors
in the secret word, and a or to indicate whether or not duplicate colors are
allowed. After using either or to pick the secret word, I
used a loop to carry out the necessary instructions for each guess.



ttt

The Project

6 Example: Tic-Tac-Toe

planning

data structure

describe

how

103

Program file for this chapter:

This chapter is the first application of the ideas we’ve explored to a sizable project. The
primary purpose of the chapter is to introduce the techniques of a project,
especially the choice of how to organize the information needed by the program. This
organization is called the of the program. Along the way, we’ll also see a
new data type, the array, and a few other details of Logo programming.

Tic-tac-toe is not a very challenging game for human beings. If you’re an enthusiast,
you’ve probably moved from the basic game to some variant like three-dimensional
tic-tac-toe on a larger grid.

If you sit down right now to play ordinary three-by-three tic-tac-toe with a friend, what
will probably happen is that every game will come out a tie. Both you and your friend can
probably play perfectly, never making a mistake that would allow your opponent to win.

But can you how you know where to move each turn? Most of the time,
you probably aren’t even aware of alternative possibilities; you just look at the board and
instantly know where you want to move. That kind of instant knowledge is great for
human beings, because it makes you a fast player. But it isn’t much help in writing a
computer program. For that, you have to know very explicitly what your strategy is.

By the way, although the example of tic-tac-toe strategy is a relatively trivial one,
this issue of instant knowledge versus explicit rules is a hot one in modern psychology.
Some cognitive scientists, who think that human intelligence works through mechanisms
similar to computer programs, maintain that when you know how to do something
without knowing you know, you have an explicit set of rules deep down inside. It’s
just that the rules have become a habit, so you don’t think about them deliberately.



☞

1 2 3
4 5 6
7 8 9

another

corner squares edge squares
center square position

one

104 Chapter 6 Example: Tic-Tac-Toe

They’re “compiled,” in the jargon of cognitive psychology. On the other hand, some
people think that your implicit how-to knowledge is very different from the sort of lists
of rules that can be captured in a computer program. They think that human thought
is profoundly different from the way computers work, and that a computer cannot be
programmed to simulate the full power of human problem-solving. These people would
say, for example, that when you look at a tic-tac-toe board you immediately grasp the
strategic situation as a whole, and your eye is drawn to the best move without any need
to examine alternatives according to a set of rules. (You might like to try to be aware
of your own mental processes as you play a game of tic-tac-toe, to try to decide which
of these points of view more closely resembles your own experience—but on the other
hand, the psychological validity of such introspective evidence is hotly contested
issue in psychology!)

Before you read further, try to write down a set of strategy rules that, if followed
consistently, will never lose a game. Play a few games using your rules. Make sure they
work even if the other player does something bizarre.

I’m going to number the squares in the tic-tac-toe board this way:

Squares 1, 3, 7, and 9 are . I’ll call 2, 4, 6, and 8 . And of course
number 5 is the . I’ll use the word to mean a specific partly-filled-in
board with X and O in certain squares, and other squares empty.

One way you might meet my challenge of describing your strategy explicitly is to
list all the possible sequences of moves up to a certain point in the game, then say what
move you’d make next in each situation. How big would the list have to be? There are
nine possibilities for the first move. For each first move, there are eight possibilities for
the second move. If you continue this line of reasoning, you’ll see that there are nine
factorial, or 362880, possible sequences of moves. Your computer may not have enough
memory to list them all, and you certainly don’t have enough patience!

Fortunately, not all these sequences are interesting. Suppose you are describing
the rules a computer should use against a human player, and suppose the human being
moves first. Then there are, indeed, nine possible first moves. But for each of these,
there is only possible computer move! After all, we’re programming the computer.
We get to decide which move it will choose. Then there are seven possible responses
by the opponent, and so on. The number of sequences when the human being plays
first is 9 times 7 times 5 times 3, or 945. If the computer plays first, it will presumably



123 147 159

123 258

ttt

symmetry

them

is

The Project 105

always make the single best choice. Then there are eight possible responses, and so on.
In this case the number of possible game sequences is 8 times 6 times 4 times 2, or 384.
Altogether we have 1329 cases to worry about, which is much better than 300,000 but still
not an enjoyable way to write a computer program.

In fact, though, this number is still too big. Not all games go for a full nine moves
before someone wins. Also, many moves force the opponent to a single possible response,
even though there are other vacant squares on the board. Another reduction can be
achieved by taking advantage of . For example, if X starts in square 5, any
game sequence in which O responds in square 1 is equivalent to a sequence in which O
responds in square 3, with the board rotated 90 degrees. In fact there are only two truly
different responses to a center-square opening: any corner square, or any edge square.

With all of these factors reducing the number of distinct positions, it would probably
be possible to list all of them and write a strategy program that way. I’m not sure, though,
because I didn’t want to use that technique. I was looking for rules expressed in more
general terms, like “all else being equal, pick a corner rather than an edge.”

Why should I prefer a corner? Each corner square is part of three winning
combinations. For example, square 1 is part of , , and . (By expressing these
winning combinations as three-digit numbers, I’ve jumped ahead a bit in the story with
a preview of how the program I wrote represents this information.) An edge square, on
the other hand, is only part of two winning combinations. For example, square 2 is part
of and . Taking a corner square makes three winning combinations available to
me and unavailable to my opponent.

Since I’ve brought up the subject of winning combinations, how many of
are there? Not very many: three horizontal, three vertical, and two diagonal. Eight
altogether. That a reasonable amount of information to include in a program, and in
fact there is a list of the eight winning combinations in this project.

You might, at this point, enjoy playing a few games with the program, to see if you
can figure out the rules it uses in its strategy. If you accepted my earlier challenge to write
down your own set of strategy rules, you can compare mine to yours. Are they the same?
If not, are they equally good?

The top-level procedure in this project is called . It takes no inputs. When you
invoke this procedure, it will ask you if you’d like to play first (X) or second (O). Then
you enter moves by typing a digit 1–9 for the square you select. The program draws the
game board on the Logo graphics screen.

I’m about to start explaining my strategy rules, so stop reading if you want to work
out your own and haven’t done it yet.



−

−

x o
x

x o

Strategy

n

n

n

fork

106 Chapter 6 Example: Tic-Tac-Toe

The highest-priority and the lowest-priority rules seemed obvious to me right away. The
highest-priority are these:

1. If I can win on this move, do it.

2. If the other player can win on the next move, block that winning square.

Here are the lowest-priority rules, used only if there is nothing suggested more strongly
by the board position:

2. Take the center square if it’s free.

1. Take a corner square if one is free.

. Take whatever is available.

The highest priority rules are the ones dealing with the most urgent situations: either
I or my opponent can win on the next move. The lowest priority ones deal with the
least urgent situations, in which there is nothing special about the moves already made
to guide me.

What was harder was to find the rules in between. I knew that the goal of my own
tic-tac-toe strategy was to set up a , a board position in which I have two winning
moves, so my opponent can only block one of them. Here is an example:

X can win by playing in square 3 or square 4. It’s O’s turn, but poor O can only block one
of those squares at a time. Whichever O picks, X will then win by picking the other one.

Given this concept of forking, I decided to use it as the next highest priority rule:

3. If I can make a move that will set up a fork for myself, do it.

That was the end of the easy part. My first attempt at writing the program used only these
six rules. Unfortunately, it lost in many different situations. I needed to add something,
but I had trouble finding a good rule to add.

My first idea was that rule 4 should be the defensive equivalent of rule 3, just as rule
2 is the defensive equivalent of rule 1:

4a. If, on the next move, my opponent can set up a fork, block that possibility by
moving into the square that is common to his two winning combinations.



456 369

258 789

147

to force X’s next move

not

Strategy 107

x
o

x
o

x
x

o
x o

x

o
x o
x x

x
o

x
o

x
x

o
x

o x

o
x x
o x

o
x x o
o x

In other words, apply the same search technique to the opponent’s position that I applied
to my own.

This strategy works well in many cases, but not all. For example, here is a sequence
of moves under this strategy, with the human player moving first:

In the fourth grid, the computer (playing O) has discovered that X can set up a fork by
moving in square 6, between the winning combinations and . The computer
moves to block this fork. Unfortunately, X can also set up a fork by moving in squares 3,
7, or 8. The computer’s move in square 6 has blocked one combination of the square-3
fork, but X can still set up the other two. In the fifth grid, X has moved in square 8. This
sets up the winning combinations and . The computer can only block one of
these, and X will win on the next move.

Since X has so many forks available, does this mean that the game was already
hopeless before O moved in square 6? No. Here is something O could have done:

In this sequence, the computer’s second move is in square 7. This move also blocks a
fork, but it wasn’t chosen for that reason. Instead, it was chosen . In
the fifth grid, X has had to move in square 4, to prevent an immediate win by O. The
advantage of this situation for O is that square 4 was one of the ones with which X
could set up a fork. O’s next move, in the sixth grid, is also forced. But by then the board
is too crowded for either player to force a win; the game ends in a tie, as usual.

This analysis suggests a different choice for an intermediate-level strategy rule, taking
the offensive:

4b. If I can make a move that will set up a winning combination for myself, do it.

Compared to my earlier try, this rule has the benefit of simplicity. It’s much easier for
the program to look for a single winning combination than for a fork, which is two such
combinations with a common square.

Unfortunately, this simple rule isn’t quite good enough. In the example just above,
the computer found the winning combination in which it already had square 1, and
the other two were free. But why should it choose to move in square 7 rather than square
4? If the program did choose square 4, then X’s move would still be forced, into square 7.



258 357 456

357

x x
o

x
o

x

x x
o

x
o

x

x o
o

x

x o
o

x x

both

consistent

108 Chapter 6 Example: Tic-Tac-Toe

We would then have forced X into creating a fork, which would defeat the program on
the next move.

It seems that there is no choice but to combine the ideas from rules 4a and 4b:

4. If I can make a move that will set up a winning combination for myself, do it. But
ensure that this move does not force the opponent into establishing a fork.

What this means is that we are looking for a winning combination in which the computer
already owns one square and the other two are empty. Having found such a combination,
we can move in either of its empty squares. Whichever we choose, the opponent will be
forced to choose the other one on the next move. If one of the two empty squares would
create a fork for the opponent, then the computer must choose that square and leave the
other for the opponent.

What if of the empty squares in the combination we find would make forks for
the opponent? In that case, we’ve chosen a bad winning combination. It turns out that
there is only one situation in which this can happen:

Again, the computer is playing O. After the third grid, it is looking for a possible winning
combination for itself. There are three possibilities: , , and . So far we have
not given the computer any reason to prefer one over another. But here is what happens
if the program happens to choose :

By this choice, the computer has forced its opponent into a fork that will win the game
for the opponent. If the computer chooses either of the other two possible winning
combinations, the game ends in a tie. (All moves after this choice turn out to be forced.)

This particular game sequence was very troublesome for me because it goes against
most of the rules I had chosen earlier. For one thing, the correct choice for the program
is any edge square, while the corner squares must be avoided. This is the opposite of the
usual priority.

Another point is that this situation contradicts rule 4a (prevent forks for the other
player) even more sharply than the example we considered earlier. In that example, rule
4a wasn’t enough guidance to ensure a correct choice, but the correct choice was at least

with the rule. That is, just blocking a fork isn’t enough, but threatening a win



italics

Program Structure and Modularity

to ttt

forever [
if [stop]

if [stop]

]
end

also
does

doesn’t

Program Structure and Modularity 109

initialize

game.is.over
record.human.move get.human.move

game.is.over
record.program.move compute.program.move

and blocking a fork is better than just threatening a win alone. This is the meaning
of rule 4. But in this new situation, the corner square (the move we have to avoid)
block a fork, while the edge square (the correct move) block a fork!

When I discovered this anomalous case, I was ready to give up on the idea of
beautiful, general rules. I almost decided to build into the program a special check for
this precise board configuration. That would have been pretty ugly, I think. But a shift in
viewpoint makes this case easier to understand: What the program must do is force the
other player’s move, and force it in a way that helps the computer win. If one possible
winning combination doesn’t allow us to meet these conditions, the program should try
another combination. My mistake was to think either about forcing alone (rule 4b) or
about the opponent’s forks alone (rule 4a).

As it turns out, the board situation we’ve been considering is the only one in which a
possible winning combination could include two possible forks for the opponent. What’s
more, in this board situation, it’s a diagonal combination that gets us in trouble, while
a horizontal or vertical combination is always okay. Therefore, I was able to implement
rule 4 in a way that only considers one possible winning combination by setting up the
program’s data structures so that diagonal combinations are the last to be chosen. This
trick makes the program’s design less than obvious from reading the actual program, but
it does save the program some effort.

Most game programs—in fact, most interactive programs of any kind—consist of an
initialization section followed by a sequence of steps carried out repeatedly. In the case
of the tic-tac-toe game, the overall program structure will be something like this:

The parts of this structure shown in are just vague ideas. At this point in the
planning, I don’t know what inputs these procedures might need, for example. In fact,
there may not be procedures exactly like this in the final program. One example is that



game.is.over

110 Chapter 6 Example: Tic-Tac-Toe

already.wonp tiedp p

forever
repeat for foreach

stop output Forever

the test that I’ve called here will actually turn out to be two separate
tests and (using a final letter to indicate a predicate, following
the convention established by the Logo primitive predicates).

This half-written procedure introduces a Logo primitive we haven’t used before:
. It takes a list of Logo instructions as its input, and carries out those

instructions repeatedly, much as , , and do. But the number of
repetitions is unlimited; the repetition stops only if, as in this example, the primitive

or is invoked within the repeated instructions. is useful when
the ending condition can’t be predicted in advance, as in a game situation in which a
player might win at any time.

It may not be obvious why I’ve planned for one procedure to figure out the next
move and a separate procedure to record it. (There are two such pairs of procedures, one
for the program’s moves and the other for the human opponent’s moves.) For one thing,
I expect that the recording of moves will be much the same whether it’s the program or
the person moving, while the decision about where to move will be quite different in the
two cases. For the program’s move we must apply strategy rules; for the human player’s
moves we simply ask the player. Also, I anticipate that the selection of the program’s
moves, which will be the hardest part of the program, can be written in functional style.
The strategy procedure is a function that takes the current board position as its input,
always returning the same chosen square for any given input position.

This project contains 28 procedures. These procedures can be divided into related
groups like this:

7 overall orchestration
6 initialization
2 get opponent’s moves
9 compute program’s moves
4 draw moves on screen

As you might expect, figuring out the computer’s strategy is the most complex part of the
program’s job. But this strategic task is still only about a third of the complete program.

The five groups are quite cleanly distinguishable in this project. There are relatively
few procedure invocations between groups, compared to the number within a group.
It’s easy to read the procedures within a group and understand how they work without
having to think about other parts of the program at the same time.

The following diagram shows the subprocedure/superprocedure relationships within
the program, and indicates which procedures are in each of the five groups listed above.



ttt

draw.board

drawline

init

choose

choosex chooseo

getmove

freep

pickmove

find.win find.fork find.advance

win.nowp

repeated.number singles

best.move

singlep

youplay meplay

draw

move   drawo   drawx

already.wonp

make.triples

substitute.triple

tiedp

Ttt
draw.board init

Program Structure and Modularity 111

Some people find diagrams like this one very helpful in understanding the structure of a
program. Other people don’t like these diagrams at all. If you find it helpful, you may
want to draw such diagrams for your own projects.

In the diagram, I’ve circled the names of seven procedures. If you understand the
purpose of each of these, then you will understand the general structure of the entire
program. (Don’t turn to the end and read the actual procedures just now. Instead, see if
you can understand the following paragraphs just from the diagram.)

is the top-level procedure for which I gave a rough outline earlier. It calls
initialization procedures ( and ) to set up the game, then repeatedly



x o
x x

o

Data Representation

112 Chapter 6 Example: Tic-Tac-Toe

getmove youplay
pickmove meplay

Make.triples
ttt
make.triples

Getmove
getmove

Pickmove

Youplay meplay

draw
position

Draw

alternates between the human opponent’s moves and the program’s moves. It calls
to find out the next move by the opponent, to record that move,

then to compute the program’s next move and to record it.

translates from one representation of the board position to another.
The representation used within is best suited for display and for user interaction,
while the representation output by is best for computing the program’s
strategy. We’ll look into data representation more closely later.

invites the opponent to type in a move. It ensures that the selected move is
legal before accepting it. The output from is a number from 1 to 9 representing
the chosen square.

figures out the program’s next move. It is the “smartest” procedure in
the program, embodying the strategy rules I listed earlier. It, too, outputs a number from
1 to 9.

and are simple procedures that actually carry out the moves
chosen by the human player and by the program, respectively. Each contains only two
instructions. The first invokes to draw the move on the screen. The second
modifies the array to remember that the move has been made.

moves the turtle to the chosen square on the tic-tac-toe board. Then it draws
either an X or an O. (We haven’t really talked about Logo’s turtle graphics yet. If you’re
not familiar with turtle graphics from earlier Logo experience, you can just take this part
of the program on faith; there’s nothing very interesting about it.)

Notice, in the diagram, that the lines representing procedure calls come into a box
only at the top. This is one sign of a well-organized program: The dashed boxes in the
diagram truly do represent distinct parts of the program that don’t interact very much.

I’ve written several tic-tac-toe programs, in different programming languages. This expe-
rience has really taught me about the importance of picking a good data representation.
For my first tic-tac-toe program, several years ago, I decided without much prior thought
that a board position should be represented as three lists of numbers, one with X’s
squares, one with O’s squares, and one with the free squares. So this board position



:free

[1
4 7] [4 5 6]

Data Representation 113

make "xsquares [1 4 5]
make "osquares [2 9]
make "free [3 6 7 8]

to occupant :square ;; old program
if memberp :square :xsquares [output "x]
if memberp :square :osquares [output "o]
output "free
end

to freep :square ;; old program
output memberp :square :free
end

make "wins [[1 2 3] [4 5 6] [7 8 9] [1 4 7] [2 5 8]
[3 6 9] [1 5 9] [3 5 7]]

[4 [1 7] [5 6]]

could be represented like this:

These three variables would change in value as squares moved from to one of the
others. This representation was easy to understand, but not very helpful for writing the
program!

What questions does a tic-tac-toe program have to answer about the board position?
If, for example, the program wants to print a display of the position, it must answer
questions of the form “Who’s in square 4?” With the representation shown here, that’s
not as easy a question as we might wish:

On the other hand, this representation isn’t so bad when we’re accepting a move from
the human player and want to make sure it’s a legal move:

Along with this representation of the board, my first program used a constant list of
winning combinations:

It also had a list of all possible forks. I won’t bother trying to reproduce this very long list
for you, since it’s not used in the current program, but the fork set up by X in the board
position just above was represented this way:

This indicates that square 4 is the pivot of a fork between the winning combinations
and . Each member of the complete list of forks was a list like this sample.



mywins
yourwins
freewins

Computer Science Logo Style,

114 Chapter 6 Example: Tic-Tac-Toe

to checkwin :candidate :mysquares :free ;; old program
if memberp first :candidate :free ~

[output check1 butfirst :candidate :mysquares]
if memberp last :candidate :free ~

[output check1 butlast :candidate :mysquares]
if memberp first butfirst :candidate :free ~

[output check1 list first :candidate last :candidate :mysquares]
output "false
end

to check1 :sublist :mysquares ;; old program
output and (memberp first :sublist :mysquares) ~

(memberp last :sublist :mysquares)
end

The list of forks was fairly long. Each edge square is the pivot of a fork. Each corner
square is the pivot of three forks. The center square is the pivot of six forks. This adds
up to 22 forks altogether.

Each time the program wanted to choose a move, it would first check all eight
possible winning combinations to see if two of the squares were occupied by the program
and the third one free. Since any of the three squares might be the free one, this is a
fairly tricky program in itself:

This procedure was fairly slow, especially when invoked eight times, once for each possible
win. But the procedure to check each of the possible forks was even worse!

In the program that I wrote for the first edition of a
very different approach is used. This approach is based on the realization that, at any
moment, a particular winning combination may be free for anyone (all three squares
free), available only to one player, or not available to anyone. It’s silly for the program to
go on checking a combination that can’t possibly be available. Instead of a single list of
wins, the new program has three lists:

wins available to the computer
wins available to the opponent
wins available to anyone

Once I decided to organize the winning combinations in this form, another advantage
became apparent: for each possible winning combination, the program need only
remember the squares that are free, not the ones that are occupied. For example, the
board position shown above would contain these winning combinations, supposing the
computer is playing X:



Arrays

two

array,

Arrays 115

[7] :mywins
[1

4 7]

checkwin
:mywins

[7] [6] single

single :mywins
:yourwins

pickmove

sentence

make "mywins [[7] [6] [3 7]]
make "yourwins [[3 6] [7 8]]
make "freewins []

to single :list ;; old program
output find [equalp (count ?) 1] :list
end

The sublist of indicates that the computer can win simply by filling square
7. This list represents the winning combination that was originally represented as

, but since the computer already occupies squares 1 and 4 there is no need to
remember those numbers.

The process of checking for an immediate win is streamlined with this representation
for two reasons, compared with the procedure above. First, only those
combinations in must be checked, instead of all eight every time. Second, an
immediate win can be recognized very simply, because it is just a list with one member,
like and in the example above. The procedure looks for such a list:

The input to is either , to find a winning move for the computer (rule
1), or , to find and block a winning move for the opponent (rule 2).

Although this representation streamlines the strategy computation (the
part of the program), it makes the recording of a move quite difficult, because combi-
nations must be moved from one list to another. That part of the program was quite
intricate and hard to understand.

This new program uses representations, one for the interactive part of the program
and one for the strategy computation. The first of these is simply a collection of nine
words, one per square, each of which is the letter X, the letter O, or the number of the
square. With this representation, recording a move means changing one of the nine
words. It would be possible to keep the nine words in a list, and compute a new list (only
slightly different) after each move. But Logo provides another data type, the which
allows for changing one member while keeping the rest unchanged.

If arrays allow for easy modification and lists don’t, why not always use arrays? Why
did I begin the book with lists? The answer is that each data type has advantages and
disadvantages. The main disadvantage of an array is that you must decide in advance
how big it will be; there aren’t any constructors like to lengthen an array.



116 Chapter 6 Example: Tic-Tac-Toe

init

{}

meplay youplay
Setitem

item
occupant

item

array

setitem

item
butfirst

arraytolist listtoarray

make "position {1 2 3 4 5 6 7 8 9}

setitem 7 :position "x

to occupant :square
output item :square :position
end

to freep :square
output numberp item :square :position
end

In this case, the fixed length of an array is no problem, because a tic-tac-toe board
has nine squares. The procedure creates the position array with the instruction

The braces indicate an array in the same way that brackets indicate a list.

If player X moves in square 7, we can record that information by saying

(Of course, the actual instruction in procedures and uses variables
instead of the specific values 7 and X.) is a command with three inputs: a
number indicating which member of the array to change, the array itself, and the new
value for the specified member.

To find out who owns a particular square, we could write this procedure:

(The operation can select a member of an array just as it can select a member of a
list or of a word.) In fact, though, it turns out that I don’t have an procedure
in this program. But the parts of the program that examine the board position do use

in a similar way, as in this example:

To create an array without explicitly listing all of its members, use the operation
. It takes a number as argument, indicating how many members the array should

have. It returns an array of the chosen size, in which each member is the empty list. Your
program can then use to assign different values to the members.

The only primitive operation to select a member of an array is . Word-and-
list operations such as can’t be used with arrays. There are operations

and to convert a collection of information from one data
type to the other.



x o
x x

o

Triples

show make.triples

Simply Scheme,

triple.

Triples 117

xo3 xx6
78o x
o

make.triples

Make.triples
ttt position

?
[xo3 xx6 78o xx7 ox8 36o xxo 3x7]

to make.triples
output map "substitute.triple [123 456 789 147 258 369 159 357]
end

to substitute.triple :combination
output map [item ? :position] :combination
end

The position array works well as a long-term representation for the board position,
because it’s easy to update; it also works well for interaction with the human player,
because it’s easy to find out the status of a particular square. But for computing the
program’s moves, we need a representation that makes it easy to ask questions such as “Is
there a winning combination for my opponent on the next move?” That’s why, in the
first edition of these books, I used the representation with three lists of possible winning
combinations.

When Matthew Wright and I wrote the book we decided that the
general idea of combinations was a good one, but the three lists made the program more
complicated than necessary. Since there are only eight possible winning combinations in
the first place, it’s not so slow to keep one list of all of them, and use that list as the basis
for all the questions we ask in working out the program’s strategy. If the current board
position is

we represent the three horizontal winning combinations with the words , , and
. Each combination is represented as a three-“letter” word containing an or an

for an occupied square, or the square’s number for a free square. By using words
instead of lists for the combinations, we make the entire set of combinations more
compact and easier to read. Each of these words is called a The job of procedure

is to combine the information in the position array with a list of the
eight winning combinations:

takes no inputs because the list of possible winning combinations is built
into it, and the position array is in ’s local variable :



118 Chapter 6 Example: Tic-Tac-Toe

map
make.triples
substitute.triple

:position

ttt

position

xxx ooo

position
position

me x
o you x o

to already.wonp :player
output memberp (word :player :player :player) (make.triples)
end

to ttt
local [me you position]
draw.board
init
if equalp :me "x [meplay 5]
forever [
if already.wonp :me [print [I win!] stop]
if tiedp [print [Tie game!] stop]
youplay getmove ;; ask person for move
if already.wonp :you [print [You win!] stop]
if tiedp [print [Tie game!] stop]
meplay pickmove make.triples ;; compute program’s move

]
end

This short subprogram will repay careful attention. It uses twice, once in
to compute a function of each possible winning combination, and once

in to compute a function of each square in a given combination.
(That latter function is the one that looks up the square in the array .)

Once the program can make the list of triples, we can use that to answer many
questions about the status of the game. For example, in the top-level procedure we
must check on each move whether or not a certain player has already won the game.
Here’s how:

If we had only the array to work with, it would be complicated to check all the
possible winning combinations. But once we’ve made the list of triples, we can just ask
whether the word or the word appears in that list.

Here is the actual top-level procedure definition:

Notice that is declared as a local variable. Because of Logo’s dynamic scope,
all of the subprocedures in this project can use as if it were a global variable,
but Logo will “clean up” after the game is over.

Two more such quasi-global variables are used to remember whether the computer
or the human opponent plays first. The value of will be either the word or the word

, whichever letter the program itself is playing. Similarly, the value of will be or



Variables in the Workspace

flag variable,

Variables in the Workspace 119

if :mefirst [draw "x :square] [draw "o :square]

draw :me :square

if equalp :me "x [meplay 5]

init

mefirst true
false true false

true false

forever

make init
box1 box9

:box1 [-40 50]
move draw

load

to indicate the letter used by the opponent. All of these variables are given their values
by the initialization procedure .

This information could have been kept in the form of a single called
something like , that would contain the word if the computer is X, or

if the computer is O. (A flag variable is one whose value is always or ,
just as a predicate is a procedure whose output is or .) It would be used
something like this:

But it turned out to be simpler to use two variables and just say

One detail in the final program that wasn’t in my first rough draft is the instruction

just before the loop. It was easier to write the loop so that it always gets the
human opponent’s move first, and then computes a move for the program, rather than
having two different loops depending on which player goes first. If the program moves
first, its strategy rules would tell it to choose the center square, because there is nothing
better to do when the board is empty. By checking for that case before the loop, we are
ready to begin the loop with the opponent as the next to move.

There are nine global variables that are part of the workspace, entered directly with
top-level instructions rather than set up by , because their values are never
changed. Their names are through , and their values are the coordinates
on the graphics screen of the center of each square. For example, is .
These variables are used by , a subprocedure of , to know where to position
the turtle before drawing an X or an O.

The use of variables loaded with a workspace file, rather than given values by an
initialization procedure, is a practice that Logo encourages in some ways and discourages
in others. Loading variables in a workspace file makes the program start up faster,
because it decreases the amount of initialization required. On the other hand, variables
are sort of second-class citizens in workspace files. In many versions of Logo the



save

getmove

The User Interface

constant

say

120 Chapter 6 Example: Tic-Tac-Toe

to getmove
local "square
forever [
type [Your move:]
make "square readchar
print :square
if numberp :square

[if and (:square > 0) (:square < 10)
[if freep :square [output :square]]]

print [not a valid move.]
]
end

command lists the names of the procedures in the workspace file, but not the names of
the variables. Similarly, often reports the number of procedures saved, but not the
number of variables. It’s easy to create global variables and forget that they’re there.

Certainly preloading variables makes sense only if the variables are really constants;
in other words, a variable whose value may change during the running of a program
should be initialized explicitly when the program starts. Otherwise, the program will
probably give incorrect results if you run it a second time. (One of the good ideas in
the programming language Pascal is that there is a sort of thing in the language called
a ; it has a name and a value, like a variable, but you can’t give it a new value in
mid-program. In Logo, you use a global variable to hold a constant, and simply refrain
from changing its value. But being able to that something is a constant makes the
program easier to understand.)

One reason the use of preloaded variables is sometimes questioned as a point of style
is that when people are sloppy in their use of global variables, it’s hard to know which
are really meant to be preloaded and which are just left over from running the program.
That is, if you write a program, test it by running it, and then save it on a diskette,
any global variables that were created during the program execution will still be in the
workspace when you load that diskette file later. If there are five intentionally-loaded
variables along with 20 leftovers, it’s particularly hard for someone to understand which
are which. This is one more reason not to use global variables when what you really want
are variables local to the top-level procedure.

The only part of the program that really interacts with the human user is , the
procedure that asks the user where to move.



Implementing the Strategy Rules

echo

supposed

Implementing the Strategy Rules 121

readchar

readlist

Readchar

getmove print

getmove

number?
getmove

getmove

getmove <

freep

ttt pickmove
pickmove

make.triples

pickmove

There are two noteworthy things about this part of the program. One is that I’ve
chosen to use to read what the player types. This primitive operation, with
no inputs, waits for the user to type any single character on the keyboard, and outputs
whatever character the user types. This “character at a time” interaction is in contrast
with the more usual “line at a time” typing, in which you can type characters, erase some
if you make a mistake, and finally use the RETURN or ENTER key to indicate that the
entire line you’ve typed should be made available to your program. (In Chapter 1 you
met Logo’s primitive for line at a time typing.) Notice that if tic-tac-toe had
ten or more squares in its board I wouldn’t have been able to make this choice, because
the program would have to allow the entry of two-digit numbers.

was meant for fast-action programs such as video games. It therefore
does not display (or ) the character that you type on the computer screen. That’s
why includes a instruction to let the user see what she or he has typed!

The second point to note in is how careful it is to allow for the possibility
of a user error. Ordinarily, when one procedure uses a value that was computed by
another procedure, the programmer can assume that the value is a legitimate one for
the intended purpose. For example, when you invoke a procedure that computes a
number, you assume that you can add the output to another number; you don’t first use
the predicate to double-check that the result was indeed a number. But in

we are dealing with a value that was typed by a human being, and human beings
are notoriously error-prone! The user is to type a number between 1 and 9.
But perhaps someone’s finger might slip and type a zero instead of a nine, or even some
character that isn’t a number at all. Therefore, first checks that what the user
typed is a number. If so, it then checks that the number is in the allowed range. (We’d
get a Logo error message if used the operation with a non-numeric input.)
Only if these conditions are met do we use the user’s number as the square-selecting
input to .

To determine the program’s next move, invokes ; since many of the
strategy rules will involve an examination of possible winning combinations,
is given the output from as its input.

The strategy I worked out for the program consists of several rules, in order of
importance. So the structure of should be something like this:



122 Chapter 6 Example: Tic-Tac-Toe

win.nowp

3xx

win.nowp

3xx

find.winning.square

first.rule.works first.rule’s.square
second.rule.works second.rule’s.square

to pickmove :triples
if [output ]
if [output ]
...
end

to can.i.win.now
output not emptyp find "win.nowp :triples
end

to win.nowp :triple
output equalp (filter [not numberp ?] :triple) (word :me :me)
end

to find.winning.square
output filter "numberp find "win.nowp :triples
end

This structure would work, but it would be very inefficient, because the procedure to
determine whether a rule is applicable does essentially the same work as the procedure
to choose a square by following the rule. For example, here’s a procedure to decide
whether or not the program can win on this move:

The subprocedure decides whether or not a particular triple is winnable
on this move, by looking for a triple containing one number and two letters equal to
whichever of X or O the program is playing. For example, is a winnable triple if the
program is playing X.

The procedure to pick a move if there is a winnable triple also must apply
to the triples:

If there is a winnable triple , then the program should move in square 3. We find
that out by looking for the number within the first winnable triple we can find.

It seems inelegant to find a winnable triple just to see if there are any, then find
the same triple again to extract a number from it. Instead, we take advantage of the
fact that the procedure I’ve called will return a distinguishable
value—namely, an empty list—if there is no winnable triple. We say



something

Implementing the Strategy Rules 123

find.winning.square
find.win

Pickmove

filter
find

find.fork

In fact, instead of the procedure the actual program uses a
similar procedure that takes the letter X or O as an input; this allows the same
procedure to check both rule 1 (can the computer win on this move) and rule 2 (can the
opponent win on the following move).

checks each of the strategy rules with a similar pair of instructions:

Here is the complete procedure:

The procedures that check for each rule have a common flavor: They all use
and to select interesting triples and then to select an available square from the
chosen triple. I won’t go through them in complete detail, but there’s one that uses a
Logo feature I haven’t described before. Here is :

to pickmove :triples
local "try
make "try find.winning.square
if not emptyp :try [output :try]
...
end

make "try
if not emptyp :try [output :try]

to pickmove :triples
local "try
make "try find.win :me ; rule 1: can computer win?
if not emptyp :try [output :try]
make "try find.win :you ; rule 2: can opponent win?
if not emptyp :try [output :try]
make "try find.fork ; rule 3: can computer fork?
if not emptyp :try [output :try]
make "try find.advance ; rule 4: can computer force?
if not emptyp :try [output :try]
output find [memberp ? :position] [5 1 3 7 9 2 4 6 8] ; rules 5-7
end

to find.fork
local "singles
make "singles singles :me ; find triples like 14x, x23
if emptyp :singles [output []]
output repeated.number reduce "word :singles ; find square in two triples
end



x o
x

o

124 Chapter 6 Example: Tic-Tac-Toe

Find.fork singles

4x6x473x7 repeated.number

464737
find ?rest

?rest find
?

find

[4x6 x47 3x7]

reduce "word :singles

to repeated.number :squares
output find [memberp ? ?rest] filter "numberp :squares
end

filter "numberp :squares

[memberp ? ?rest]

memberp 4 64737

Suppose the computer is playing X and the board looks like this:

calls (a straightforward procedure that you can read in the
complete listing at the end of this chapter) to find all the triples containing one X and
two vacant squares. It outputs

indicating that the middle row, the left column, and one of the diagonals meet these
conditions. To find a fork, we must find a vacant square that is included in two of these
triples. The expression

strings these triples together into the word . The job of
is to find a digit that occurs more than once in this word. Here is the procedure:

The expression

gives us the word , which is the input word with the letters removed. We use
to find a repeated digit in this number. The new feature is the use of in the

predicate template

represents the part of the input to (or any of the other higher-order
functions that understand templates) to the right of the value being used as . So in this
example, first computes the value of the expression



true find
find

?rest

Further Explorations

learning

Further Explorations 125

memberp 6 4737
memberp 4 737
memberp 7 37
memberp 3 7
memberp 7 "

This happens to be , so returns the value 4 without looking at the remaining
digits. But if necessary, would have gone on to compute

(using the empty word as in the last line) until one of these turned out to be true.

The obvious first place to look for improvements to this project is in the strategy.

At the beginning of the discussion about strategy, I suggested that one possibility
would be to make a complete list of all possible move sequences, with explicit next-move
choices recorded for each. How many such sequences are there? If you write the program
in a way that considers rotations of the board as equivalent, perhaps not very many. For
example, if the computer moves first (in the center, of course) there are really only two
responses the opponent can make: a corner or an edge. Any corner is equivalent to
any other. From that point on, the entire sequence of the game can be forced by the
computer, to a tie if the opponent played a corner, or to a win if the opponent played an
edge. If the opponent moves first, there are three cases, center, corner, or edge. And so
on.

An intermediate possibility between the complete list of cases and the more general
rules I used would be to keep a complete list of cases for, say, the first two moves. After
that, general rules could be used for the “endgame.” This is rather like the way people,
and some computer programs, play chess: they have the openings memorized, and don’t
really have to start thinking until several moves have passed. This book-opening approach
is particularly appealing to me because it would solve the problem of the anomalous
sequence that made such trouble for me in rule 4.

A completely different approach would be to have no rules at all, but instead to write
a program. The program might recognize an immediate win (rule 1) and the
threat of an immediate loss (rule 2), but otherwise it would move randomly and record
the results. If the computer loses a game, it would remember the last unforced choice it
made in that game, and keep a record to try something else in the same situation next
time. The result, after many games, would be a complete list of all possible sequences,
as I suggested first, but the difference is that you wouldn’t have to do the figuring out



Program Listing

126 Chapter 6 Example: Tic-Tac-Toe

;; Overall orchestration

to ttt
local [me you position]
draw.board
init
if equalp :me "x [meplay 5]
forever [
if already.wonp :me [print [I win!] stop]
if tiedp [print [Tie game!] stop]
youplay getmove ;; ask person for move
if already.wonp :you [print [You win!] stop]
if tiedp [print [Tie game!] stop]
meplay pickmove make.triples ;; compute program’s move

]
end

to make.triples
output map "substitute.triple [123 456 789 147 258 369 159 357]
end

to substitute.triple :combination
output map [item ? :position] :combination
end

of each sequence. Such learning programs are frequently used in the field of artificial
intelligence.

It is possible to combine different approaches. A famous checkers-playing program
written by Arthur Samuel had several general rules programmed in, like the ones in this
tic-tac-toe program. But instead of having the rules arranged in a particular priority
sequence, the program was able to learn how much weight to give each rule, by seeing
which rules tended to win the game and which tended to lose.

If you’re tired of tic-tac-toe, another possibility would be to write a program that plays
some other game according to a strategy. Don’t start with checkers or chess! Many people
have written programs in which the computer acts as dealer for a game of Blackjack; you
could reverse the roles so that you deal the cards, and the computer tries to bet with a
winning strategy. Another source of ideas is Martin Gardner, author of many books of
mathematical games.



Program Listing 127

to already.wonp :player
output memberp (word :player :player :player) (make.triples)
end

to tiedp
output not reduce "or map.se "numberp arraytolist :position
end

to youplay :square
draw :you :square
setitem :square :position :you
end

to meplay :square
draw :me :square
setitem :square :position :me
end

;; Initialization

to draw.board
splitscreen clearscreen hideturtle
drawline [-20 -50] 0 120
drawline [20 -50] 0 120
drawline [-60 -10] 90 120
drawline [-60 30] 90 120
end

to drawline :pos :head :len
penup
setpos :pos
setheading :head
pendown
forward :len
end

to init
make "position {1 2 3 4 5 6 7 8 9}
print [Do you want to play first (X)]
type [or second (O)? Type X or O:]
choose
print [For each move, type a digit 1-9.]
end



128 Chapter 6 Example: Tic-Tac-Toe

to choose
local "side
forever [
make "side readchar
pr :side
if equalp :side "x [choosex stop]
if equalp :side "o [chooseo stop]
type [Huh? Type X or O:]

]
end

to chooseo
make "me "x
make "you "o
end

to choosex
make "me "o
make "you "x
end

;; Get opponent’s moves

to getmove
local "square
forever [
type [Your move:]
make "square readchar
print :square
if numberp :square [

[if and (:square > 0) (:square < 10)
[if freep :square [output :square]]]

print [not a valid move.]
]
end

to freep :square
output numberp item :square :position
end



Program Listing 129

;; Compute program’s moves

to pickmove :triples
local "try
make "try find.win :me
if not emptyp :try [output :try]
make "try find.win :you
if not emptyp :try [output :try]
make "try find.fork
if not emptyp :try [output :try]
make "try find.advance
if not emptyp :try [output :try]
output find [memberp ? :position] [5 1 3 7 9 2 4 6 8]
end

to find.win :who
output filter "numberp find "win.nowp :triples
end

to win.nowp :triple
output equalp (filter [not numberp ?] :triple) (word :who :who)
end

to find.fork
local "singles
make "singles singles :me
if emptyp :singles [output []]
output repeated.number reduce "word :singles
end

to singles :who
output filter [singlep ? :who] :triples
end

to singlep :triple :who
output equalp (filter [not numberp ?] :triple) :who
end

to repeated.number :squares
output find [memberp ? ?rest] filter "numberp :squares
end

to find.advance
output best.move filter "numberp find [singlep ? :me] :triples
end



130 Chapter 6 Example: Tic-Tac-Toe

to best.move :my.single
local "your.singles
if emptyp :my.single [output []]
make "your.singles singles :you
if emptyp :your.singles [output first :my.single]
ifelse (count filter [? = first :my.single]

reduce "word :your.singles) > 1 ~
[output first :my.single] ~
[output last :my.single]

end

;; Drawing moves on screen

to draw :who :square
move :square
ifelse :who = "x [drawx] [drawo]
end

to move :square
penup
setpos thing word "box :square
end

to drawo
pendown
arc 360 18
end

to drawx
setheading 45
pendown
repeat 4 [forward 25.5 back 25.5 right 90]
end

make "box1 [-40 50]
make "box2 [0 50]
make "box3 [40 50]
make "box4 [-40 10]
make "box5 [0 10]
make "box6 [40 10]
make "box7 [-40 -30]
make "box8 [0 -30]
make "box9 [40 -30]



downup

recursion:
itself

131

7 Introduction to Recursion

downup "hello

downup "goodbye

?
hello
hell
hel
he
h
he
hel
hell
hello
?
goodbye
goodby
goodb
good
goo
go
g
go
goo
good
goodb
goodby
goodbye

My goal in this chapter is to write a procedure named that behaves like this:

The programming techniques we’ve used so far in this book don’t allow an elegant
solution to this problem. We’ll use a new technique called writing a procedure
that uses as a subprocedure.



downup1 "j

downup2 "it

Starting Small

Building Up

downup downup

downup1

downup

lot

combining method.

132 Chapter 7 Introduction to Recursion

to downup1 :word
print :word
end

?
j

to downup2 :word
print :word
print butlast :word
print :word
end

?
it
i
it

We’re going to solve this problem using recursion. It turns out that the idea of
recursion is both very powerful—we can solve a of problems using it—and rather
tricky to understand. That’s why I’m going to explain recursion several different ways in
the coming chapters. Even after you understand one of them, you’ll probably find that
thinking about recursion from another point of view enriches your ability to use this idea.
The explanation in this chapter is based on the

My own favorite way to understand recursion is based on the general problem-solving
strategy of solving a complicated problem by starting with a simpler version. To solve the

problem, I’ll start by solving this simpler version: write a procedure that
works only for a single-character input word. (You can’t get much simpler than that!)
Here’s my solution:

See how well it works?

Of course, won’t work at all if you give it an input longer than one character.
You may not think this was such a big step. But bear with me. Next I’ll write a procedure
that acts like when you give it a two-letter input word:



☞

Building Up 133

downup3 "dot

downup2 butlast :word

downup3

print downup4
downup20

downup3

downup2
do downup3

downup2

butlast
dot do

to downup3 :word
print :word
print butlast :word
print butlast butlast :word
print butlast :word
print :word
end

?
dot
do
d
do
dot

to downup3 :word
print :word

print :word
end

to downup4 :word
print :word
downup3 butlast :word
print :word
end

We could keep this up for longer and longer input words, but each procedure gets
more and more complicated. Here’s :

How many instructions would I need to write this way? How many
would I need for ?

Luckily there’s an easier way. Look at the result of invoking :

The trick is to recognize that the boxed lines are what we’d get by invoking
with the word as input. So we can find the instructions in that print those
three lines and replace them with one instruction that calls :

You might have to think a moment to work out where the came from, but
consider that we’re given the word and we want the word .

Once we’ve had this idea, it’s easy to extend it to longer words:



☞

☞

Generalizing the Pattern

downup2

downup

downup
downup

downup5 "hello

downup7 "goodbye

134 Chapter 7 Introduction to Recursion

to downup5 :word
print :word
downup4 butlast :word
print :word
end

?
hello
hell
hel
he
h
he
hel
hell
hello
?
goodbye
goodby
goodb
good
goo
go
g
go
goo
good
goodb
goodby
goodbye

Can you rewrite so that it looks like these others?

Before going on, make sure you really understand these procedures by answering
these questions: What happens if you use one of these numbered versions of
with an input that is too long? What if the input is too short?

We’re now in good shape as long as we want to short words. We can pick the
right version of for the length of the word we have in mind:



☞

Generalizing the Pattern 135

downup
downup28

downup

to downup
if

erase

downup
downup5

downup

to downup :word
if equalp count :word 1 [downup1 :word]
if equalp count :word 2 [downup2 :word]
if equalp count :word 3 [downup3 :word]
if equalp count :word 4 [downup4 :word]
if equalp count :word 5 [downup5 :word]
if equalp count :word 6 [downup6 :word]
if equalp count :word 7 [downup7 :word]
end

downup "antidisestablishmentarianism

to downup :word
print :word
downup butlast :word
print :word
end

Having to count the number of characters in the word is a little unaesthetic, but we could
even have the computer do that for us:

There’s only one problem. What if we want to be able to say

You wouldn’t want to have to type in separate versions of all the way up to
!

What I hope you’re tempted to do is to take advantage of the similarity of all the
numbered procedures by combining them into a single procedure that looks
like this:

(Remember that Logo’s command won’t let you redefine if you’ve already
typed in my earlier version with all the instruction lines. Before you can type in the
new version, you have to the old one.)

Compare this version of with one of the numbered procedures like
. Do you see that this combined version should work just as well, if all the

numbered procedures are identical except for the numbers in the procedure
names? Convince yourself that that makes sense.

Okay, now try it.



downup5 "hello

    print "hello                hello
    downup4 "hell

        print "hell             hell
        downup3 "hel

            print "hel          hel
            downup2 "he

                print "he       he
                downup1 "h

                    print "h    h

                print "he       he

            print "hel          hel

        print "hell             hell

    print "hello                hello

What Went Wrong?

downup

downup
downup1

downup downup1

aren’t

136 Chapter 7 Introduction to Recursion

downup "hello

downup0 butlast :word
print :word

?
hello
hell
hel
he
h

butlast doesn’t like as input in downup

to downup1 :word
print :word

end

You probably saw something like this:

There’s nothing wrong with the reasoning I used in the last section. If all the
numbered procedures are identical except for the numbers, it should work to
replace them all with a single procedure following the same pattern.

The trouble is that the numbered procedures quite all identical. The
exception is . If it were like the others, it would look like this:

Review the way the numbered s work to make sure you understand why
is different. Here’s what happens when you invoke one of the numbered versions:



☞

The Stop Rule

The Stop Rule 137

print "hello downup4 "hell downup5
print "hello

downup4

print print :word

downup1
downup1

downup

downup1

downup5

downup

ifelse

to downup :word
ifelse equalp count :word 1 [downup.one :word] [downup.many :word]
end

to downup.one :word
print :word
end

to downup.many :word
print :word
downup butlast :word
print :word
end

In this chart, instructions within a particular procedure are indented the same amount.
For example, the lines and are part of , as is
the line at the very end of the chart. The lines in between are indented
more because they’re part of and its subprocedures.

(By the way, the lines in the chart don’t show actual instructions in the procedure
definitions. Otherwise all the lines would say instead of showing
actual words. In the chart I’ve already evaluated the inputs to the commands.)

The point of the chart is that has to be special because it marks the end of
the “down” part of the problem and the beginning of the “up” part. doesn’t
invoke a lower-numbered subprocedure because there’s no smaller piece of the
word to print.

Okay, Logo knows when to stop the “down” part of the program because
is different from the other procedures. Question: How does Logo know when to stop
the “up” part of the program? Why doesn’t , in this example, have to be written
differently from the others?

Our attempt to write a completely general procedure has run into trouble
because we have to distinguish two cases: the special case in which the input word
contains only one character and the general case for longer input words. We can use

to distinguish the two cases:



Local Variables

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

downup
downup.one downup1 downup.many
downup

downup.one
downup.many stop

if downup

Downup

print

downup word

stop rule.

recursive call,

before

ends end

before
before

names
separate

138 Chapter 7 Introduction to Recursion

You’ll find that this version of the program actually works correctly. Sub-
procedure is exactly like the old , while is like the
version of that didn’t work.

It’s possible to use the same general idea, however—distinguishing the special case
of a one-letter word—without having to set up this three-procedure structure. Instead
we can take advantage of the fact that ’s single instruction is the same as
the first instruction of ; we can use a single procedure that s early if
appropriate.

The instruction in this final version of is called a

illustrates the usual pattern of a recursive procedure. There are three kinds
of instructions within its definition: (1) There are the ordinary instructions that carry
out the work of the procedure for a particular value of the input, in this case the
instructions. (2) There is at least one an instruction that invokes the same
procedure with a smaller input. (3) There is a stop rule, which prevents the recursive
invocation when the input is too small.

It’s important to understand that the stop rule always comes the recursive call
or calls. One of the common mistakes made by programmers who are just learning about
recursion is to think this way: “The stop rule the program, so it belongs at the
of the procedure.” The right way to think about it is that the purpose of the stop rule is
to stop the innermost invocation of the procedure it has a chance to invoke itself
recursively, so the stop rule must come the recursive call.

When you’re thinking about a recursive procedure, it’s especially important to remember
that each invocation of a procedure has its own local variables. It’s possible to get
confused about this because, of course, if a procedure invokes itself as a subprocedure,
each invocation uses the same for local variables. For example, each invocation of

has a local variable (its input) named . But each invocation has a
input variable.



that

this

procedure invocations,

Local Variables 139

downup5 "hello

print :word

downup4 butlast :word

print :word

downup1 downup2

downup5 hello Downup5
word hello

downup5

:word hello hello

downup4 hell butlast
hello downup4 word

hell

word Downup5 word
hello downup4 word hell

downup4 downup3 downup4
downup5

word
word downup5

hello

downup
word downup4
word downup

word

It’s hard to talk about different invocations in the abstract. So let’s look back at
the version of the program in which each invocation had a different procedure name:

, , and so on.

If you type the instruction

the procedure is invoked, with the word as its input. has a
local variable named , which contains as its value. The first instruction in

is

Since is , this instruction prints . The next instruction is

This instruction invokes procedure with the word (the of
) as input. has a local variable that is also named . The value of

variable is the word .

At this point there are two separate variables, both named . ’s
contains ; ’s contains . I won’t go through all the details of
how invokes and so on. But eventually finishes its task,
and continues with its final instruction, which is

Even though different values have been assigned to variables named in the interim,
variable named (the one that is local to ) still has its original value,

. So that’s what’s printed.

In the recursive version of the program exactly the same thing happens about local
variables. It’s a little harder to describe, because all the procedure invocations are
invocations of the same procedure, . So I can’t say things like “the variable

that belongs to ”; instead, you have to think about “the variable named
that belongs to the second invocation of .” But even though there is only

one involved, there are still five procedure each with its own local
variable named .



☞

More Examples

down "hello

up "hello

inout "hello

quite

140 Chapter 7 Introduction to Recursion

?
hello
hell
hel
he
h
?
h
he
hel
hell
hello

?
hello
ello
llo
lo
o

lo
llo

ello
hello

down up

print downup

print down up

down up
inout

inout downup butfirst
butlast Inout downup

Downup

downup

Before I go on to show you another example of a recursive procedure, you might try
to write and , which should work like this:

As a start, notice that there are two instructions in and that one of
them does the “down” half and the other does the “up” half. But you’ll find that just
eliminating one of the s for and the other for doesn’t work.

After you’ve finished and , come back here for a discussion of a similar
project, which I call :

At first glance looks just like , except that it uses the of its
input instead of the . is somewhat more complicated than ,
however, because it has to print spaces before some of the words in order to line up the
rightmost letters. lined up the leftmost letters, which is easy.

Suppose we start, as we did for , with a version that only works for single-letter
words:



More Examples 141

inout1 inout2 downup
inout1

Type Type
print

print type

to inout1 :word
print :word
end

to inout2 :word
print :word
inout2.1 butfirst :word
print :word
end

to inout2.1 :word
type "| | ; a word containing a space
print :word
end

to inout3 :word
print :word
inout3.2 butfirst :word
print :word
end

to inout3.2 :word
type "| |
print :word
inout3.1 butfirst :word
type "| |
print :word
end

But we can’t quite use as a subprocedure of , as we did in the
problem. Instead we need a different version of , which types a space before its
input:

is a command, which requires one input. The input can be any datum.
prints its input, like , but does not move the cursor to a new line afterward. The
cursor remains right after the printed datum, so the next or command will
continue on the same line.

We need another specific case or two before a general pattern will become apparent.
Here is the version for three-letter words:



☞ inout5

142 Chapter 7 Introduction to Recursion

Convince yourself that each of these procedures types the right number of spaces before
its input word.

Here is one final example, the version for four-letter words:

Try this out and try writing along the same lines.

How can we find a common pattern that will combine the elements of all these
procedures? It will have to look something like this:

to inout3.1 :word
repeat 2 [type "| |]
print :word
end

to inout4 :word
print :word
inout4.3 butfirst :word
print :word
end

to inout4.3 :word
type "| |
print :word
inout4.2 butfirst :word
type "| |
print :word
end

to inout4.2 :word
repeat 2 [type "| |]
print :word
inout4.1 butfirst :word
repeat 2 [type "| |]
print :word
end

to inout4.1 :word
repeat 3 [type "| |]
print :word
end



More Examples 143

something

something

something

inout "hello 0

print
inout2.1 inout3.1 inout4.1

repeat
inout2

inout3 inout4
inout4

inout4.3 inout4.3 inout4.2
inout4.2 inout4.1

spaces

to inout :word
repeat [type "| |]
print :word
if [stop]
inout butfirst :word
repeat [type "| |]
print :word
end

to inout :word :spaces
repeat :spaces [type "| |]
print :word
if equalp count :word 1 [stop]
inout (butfirst :word) (:spaces+1)
repeat :spaces [type "| |]
print :word
end

?
hello
ello
llo
lo
o

lo
llo

ello
hello

This is not a finished procedure because we haven’t figured out how to fill the blanks.
First I should remark that the stop rule is where it is, after the first , because that’s
how far the innermost procedures ( , , and ) get. They
type some spaces, print the input word, and that’s all.

Another thing to remark is that the first input to the commands in this
general procedure will sometimes be zero, because the outermost procedures ( ,

, and ) don’t type any spaces at all. Each subprocedure types one more
space than its superprocedure. For example, types no spaces. Its subprocedure

types one space. ’s subprocedure types two spaces.
Finally, ’s subprocedure types three spaces.

In order to vary the number of spaces in this way, the solution is to use another input
that will have this number as its value. We can call it . The procedure will then
look like this:



Other Stop Rules

inout
inout

inout
inout.sub

inout

inout inout.sub

down

initialization procedure.

144 Chapter 7 Introduction to Recursion

to inout :word
inout.sub :word 0
end

to inout.sub :word :spaces
repeat :spaces [type "| |]
print :word
if equalp count :word 1 [stop]
inout.sub (butfirst :word) (:spaces+1)
repeat :spaces [type "| |]
print :word
end

if equalp count :word 1 [stop]

to down :word
print :word
if equalp count :word 1 [stop]
down butlast :word
end

Notice that, when we use , we have to give it a zero as its second input. We could
eliminate this annoyance by writing a new that invokes this one as a subprocedure:

(The easiest way to make this change is to edit with the Logo editor and change
its title line and its recursive call so that its name is . Then, still in the editor,
type in the new superprocedure . When you leave the editor, both procedures will
get their new definitions.)

This program structure, with a short superprocedure and a recursive subprocedure,
is very common. The superprocedure’s only job is to provide the initial values for some
of the subprocedure’s inputs, so it’s sometimes called an In this
program is an initialization procedure for .

By the way, the parentheses in the recursive call aren’t really needed; I just used them
to make it more obvious which input is which.

The examples I’ve shown so far use this stop rule:

Perhaps you wrote your procedure the same way:



countdown 10

down

down
print

butfirst butlast

tail recursive.

command

Other Stop Rules 145

to down :word
if emptyp :word [stop]
print :word
down butlast :word
end

to countdown :number
if equalp :number 0 [print "Blastoff! stop]
print :number
countdown :number-1
end

?
10
9
8
7
6
5
4
3
2
1
Blastoff!

Here is another way to write , which has the same effect. But this is a more
commonly used style:

This version of has the stop rule as its first instruction. After that comes the
instructions that carry out the specific work of the procedure, in this case the
instruction. The recursive call comes as the last instruction.

A procedure in which the recursive call is the last instruction is called
We’ll have more to say later about the meaning of tail recursion. (Actually, to be precise,
I should have said that a in which the recursive call is the last instruction is
tail recursive. What constitutes a tail recursive operation is a little tricker, and so far we
haven’t talked about recursive operations at all.)

Here’s another example:

In this case, instead of a word that gets smaller by ing or ing it, the
input is a number from which 1 is subtracted for each recursive invocation. This example



☞

☞

146 Chapter 7 Introduction to Recursion

print "Blastoff!

one.per.line

foreach

triangle

one.per.line "hello

one.per.line [the rain in spain]

?
h
e
l
l
o
?
the
rain
in
spain

to down :word
ignore cascade (count :word) [print ? butlast ?] :word
end

also shows how some special action (the instruction) can be taken
in the innermost invocation of the procedure.

Here are some ideas for recursive programs you can write. In each case I’ll show an
example or two of what the program should do. Start with , a command
with one input. If the input is a word, the procedure should print each letter of the word
on a separate line. If the input is a list, the procedure should print each member of the
list on a separate line:

(You already know how to do this without recursion, using instead. Many,
although not all, recursive problems can also be solved using higher order functions. You
might enjoy this non-obvious example:

While you’re learning about recursion, though, don’t use higher order functions. Once
you’re comfortable with both techniques you can choose which to use in a particular
situation.)

As an example in which an initialization procedure will be helpful, try , a
command that takes a word as its single input. It prints the word repeatedly on the same
line, as many times as its length. Then it prints a second line with one fewer repetition,
and so on until it prints the word just once:



☞

Other Stop Rules 147

triangle "frog

diamond "program

diamond

diamond.top diamond.bottom
inout

diamond

?
frog frog frog frog
frog frog frog
frog frog
frog

?
g
ogr

rogra
program
rogra
ogr
g

A more ambitious project is , which takes as its input a word with an odd
number of letters. It displays the word in a diamond pattern, like this:

(Hint: Write two procedures and for the growing and
shrinking halves of the display. As in , you’ll need an input to count the number of
spaces by which to indent each line.) Can you write so that it does something
sensible for an input word with an even number of letters?





149

downup "hello

Recursive Patterns

downup5 downup4

downup

?
hello
hell
hel
he
h
he
hel
hell
hello

8 Practical Recursion: the Leap of Faith

When people first meet the idea of recursive procedures, they almost always think there
is some sort of magic involved. “How can that possibly work? That procedure uses
itself as a subprocedure! That’s not fair.” To overcome that sense of unfairness, the
combining method works up to a recursive procedure by starting small, so that each step
is completely working before the next step, to solve a larger problem, relies on it. There
is no mystery about allowing to rely on .

The trouble with the combining method is that it’s too much effort to be practical.
Once you believe in recursion, you don’t want to have to write a special procedure for
a size-one problem, then another special procedure for a size-two problem, and so on;
you want to write the general recursive solution right away. I’m calling this the “leap of
faith” method because you write a procedure while taking on faith that you can invoke
the same procedure to handle a smaller subproblem.

Let’s look, once more, at the problem we were trying to solve when writing the
procedure. We wanted the program to behave like this:







already
works

150 Chapter 8 Practical Recursion: the Leap of Faith

downup "hello

print "hello
downup "hell
print "hello

to downup :word
print :word
downup butlast :word
print :word
end

downup

hello

downup "hell

hell
hel
he
h
he
hel
hell

hello

downup
hello downup

hell

downup

print
downup

hello
hello hell

butlast

The secret of recursive programming is the same as a secret of problem solving in general:
see if you can reduce a big problem to a smaller problem. In this case we can look at the
printout from this way:

What I’ve done here is to notice that the printout from applying to a five-letter
word, , includes within itself the printout that would result from applying
to a smaller word, .

This is where the leap of faith comes in. I’m going to pretend that
for the case of four-letter words. We haven’t begun to write the procedure yet, but

never mind that. So it seems that in order to evaluate the instruction

we must carry out these three instructions:

(The two instructions print the first and last lines of the desired result, the ones
that aren’t part of the smaller printout.)

To turn these instructions into a general procedure, we must use a variable in place
of the specific word . We also have to figure out the general relationship that is
exemplified by the transformation from into . This relationship is, of course,
simply . Here is the procedure that results from this process of generalization:







one.per.line "hello

not

Recursive Patterns 151

downup
downup

h hello

one.per.line
"ello

e
l
l
o

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

?
h
e
l
l
o

As you already know, this procedure won’t quite work. It lacks a stop rule. But once
we have come this far, it’s a relatively simple matter to add the stop rule. All we have to do
is ask ourselves, “What’s the smallest case we want the program to handle?” The answer is
that for a single-letter word the should just print the word once. In other words,
for a single-letter word, should carry out its first instruction and then stop. So
the stop rule goes after that first instruction, and it stops if the input has only one letter:

Voilà!

The trick is to think about the stop rule at first. Just accept, on faith, that the
procedure will somehow manage to work for inputs that are smaller than the one you’re
interested in. Most people find it hard to do that. Since you haven’t written the program
yet, after all, the faith I’m asking you to show is really unjustified. Nevertheless you have
to pretend that someone has already written a version of the desired procedure that
works for smaller inputs.

Let’s take another example from Chapter 7.

There are two different ways in which we can find a smaller pattern within this one.
First we might notice this one:

(first of )

This pattern would lead to the following procedure, for which I haven’t yet invented a
stop rule.



☞





The Leap of Faith

152 Chapter 8 Practical Recursion: the Leap of Faith

one.per.line
"hell

h
e
l
l

o hello

first butfirst last
butlast

one.per.line

say

to one.per.line :word
print first :word
one.per.line butfirst :word
end

to one.per.line :word
one.per.line butlast :word
print last :word
end

if emptyp :word [stop]

to one.per.line :word
print first :word
one.per.line butfirst :word
end

Alternatively we might notice this pattern:

(last of )

In that case we’d have a different version of the procedure. This one, also, doesn’t yet
have a stop rule.

Either of these procedures can be made to work by adding the appropriate stop rule:

This instruction should be the first in either procedure. Since both versions work, is
there any reason to choose one over the other? Well, there’s no theoretical reason but
there is a practical one. It turns out that and work faster than
and . It also turns out that procedures that are tail recursive (that is, with the
recursion step at the end) can survive more levels of invocation, without running out of
memory, than those that are recursive in other ways. For both of these reasons the first
version of is a better choice than the second. (Try timing both versions
with a very long list as input.)

Rewrite the procedure from page 95 recursively.

If we think of



The Tower of Hanoi

* Well, almost. It needs a base case.

runnable! look

really

The Tower of Hanoi 153

one.per.line

one.per.line

one.per.line
one.per.line "hello one.per.line

"ello

one.per.line

one.per.line1
one.per.line4

whatever4
whatever5

merely as a statement of a true fact about the “shape" of the result printed by
, it’s not very remarkable. The amazing part is that this fragment is

* It doesn’t runnable because it invokes itself as a helper procedure,
and—if you haven’t already been through the combining method—that looks as if it can’t
work. “How can you use when you haven’t written it yet?”

The leap of faith method is the assumption that the procedure we’re in the middle
of writing already works. That is, if we’re thinking about writing a
procedure that can compute , we assume that

will work.

Of course it’s not a leap of faith, in the sense of something accepted as
miraculous but not understood. The assumption is justified by our understanding of the
combining method. For example, we understand that the five-letter is
relying on the four-letter version of the problem, not really on itself, so there’s no circular
reasoning involved. And we know that if we had to, we could write
through “by hand.”

The reason that the technique in this chapter may seem more mysterious than the
combining method is that this time we are thinking about the problem top-down. In
the combining method, we had already written before we even raised the
question of . Now we start by thinking about the larger problem and assume
that we can rely on the smaller one. Again, we’re entitled to that assumption because
we’ve gone through the process from smaller to larger so many times already.

The leap of faith method, once you understand it, is faster than the combining
method for writing new recursive procedures, because you can write the recursive
solution immediately, without bothering with many individual cases. The reason I
showed you the combining method first is that the leap of faith method seems too much
like magic, or like “cheating,” until you’ve seen several believable recursive programs.
The combining method is the way to learn about recursion; the leap of faith method is
the way to write recursive procedures once you’ve learned.

One of the most famous recursive problems is a puzzle called the Tower of Hanoi. You
can find this puzzle in toy stores; look for a set of three posts and five or six disks. You



A B C

5
4
3
2
1

A B C

5
4
3
2
1

A B C

5
4
3
2

1

first move:

A B C

5
4
3

1

second move:

2

downup one.per.line

154 Chapter 8 Practical Recursion: the Leap of Faith

start out with the puzzle arranged like this:

The object of the puzzle is to move all of the disks to the second post, like this:

This looks easy, but there are rules you must follow. You can only move one disk at a
time, and you can’t put a disk on top of a smaller disk. You might start trying to solve the
puzzle this way:

After that, you could move disk number 1 either onto post A, on top of disk 3, or onto
post C, on top of disk 2.

I’m about to describe a solution to the puzzle, so if you want to work on it yourself
first, stop reading now.

In the examples of and , we identified each problem as one
for which a recursive program was appropriate because within the pattern of the overall
solution we found a smaller, similar pattern. The same principle will apply in this case.
We want to end up with all five disks on post B. To do that, at some point we have to move



A B C

5

first part:

4
3
2
1

A B C

5

second part:

4
3
2
1

A B C

third part:

5
4
3
2
1

that,

The Tower of Hanoi 155

to hanoi :number
hanoi :number-1
movedisk :number
hanoi :number-1
end

disk 5 from post A to post B. To do we first have to get the other four disks out of the
way. Specifically, “out of the way” must mean onto post C. So the solution to the problem
can be represented graphically this way, in three parts:

The first part of the solution is to move disks 1 through 4 from post A to post C. The
second part is a single step, moving disk 5 from post A to post B. The third part, like the
first, involves several steps, to move disks 1 through 4 from post C to post B.

If you’ve developed the proper recursive spirit, you’ll now say, “Aha! The first
part and the third part are just like the entire puzzle, only with four disks instead of
five!” I hope that after this example you’ll develop a sort of instinct that will let you
notice patterns like that instantly. You should then be ready to make a rough draft of a
procedure to solve the puzzle:



third

not

156 Chapter 8 Practical Recursion: the Leap of Faith

movedisk

hanoi from
to

Hanoi

hanoi other

movedisk
movedisk

movedisk

hanoi

hanoi 5 "A "B

hanoi 4 "A "C
movedisk 5 "A "B
hanoi 4 "C "B

to hanoi :number :from :to :other
hanoi :number-1 :from :other :to
movedisk :number :from :to
hanoi :number-1 :other :to :from
end

to movedisk :number :from :to
print (sentence [Move disk] :number "from :from "to :to)
end

if equalp :number 1 [movedisk 1 :from :to stop]

Of course, this isn’t at all a finished program. For one thing, it lacks a stop rule.
(As usual, we leave that part for last.) For another, we have to write the subprocedure

that moves a single disk. But a more important point is that we’ve only
provided for changing the disk number we’re moving, not for selecting which posts to
move from and to. You might want to supply with two more inputs, named
and , which would be the names of the posts. So to solve the puzzle we’d say

But that’s not quite adequate. also needs to know the name of the post.
Why? Because in the recursive calls, that third post becomes one of the two “active” ones.
For example, here are the three steps in solving the five-disk puzzle:

You can see that both of the recursive invocations need to use the name of the third post.
Therefore, we’ll give a fourth input, called , that will contain that name.
Here is another not-quite-finished version:

This version still lacks a stop rule, and we still have to write . But we’re
much closer. Notice that does need the name of the third post as an
input. Its job is to take a single step, moving a single disk. The unused post really has
nothing to do with it. Here’s a simple version of :

What about the stop rule in ? The first thing that will come to your mind,
probably, is that the case of moving disk number 1 is special because there are no
preconditions. (No other disk can ever be on top of number 1, which is the smallest.) So
you might want to use this stop rule:



More Complicated Patterns

hanoi 3 "A "B "C

updown "hello

hanoi

movedisk

downup updown

More Complicated Patterns 157

if equalp :number 0 [stop]

?
Move disk 1 from A to B
Move disk 2 from A to C
Move disk 1 from B to C
Move disk 3 from A to B
Move disk 1 from C to A
Move disk 2 from C to B
Move disk 1 from A to B

?
h
he
hel
hell
hello
hell
hel
he
h

Indeed, that will work. (Where would you put it in the procedure?) But it turns out
that a slightly more elegant solution is possible. You can let the procedure for disk 1 go
ahead and invoke itself recursively for disk number 0. Since there is no such disk, the
procedure then has nothing to do. By this reasoning the stop rule should be this:

You may have to trace out the procedure to convince yourself that this really works.
Convincing yourself is worth the effort, though; it turns out that very often you can get
away with allowing an “extra” level of recursive invocation that does nothing. When that’s
possible, it makes for a very clean-looking procedure. (Once again, I’ve left you on your
own in deciding where to insert this stop rule in .)

If your procedure is working correctly, you should get results like this for a small
version of the puzzle:

If you like graphics programming and have been impatient to see a turtle in this
book, you might want to write a graphic version of that would actually display
the moves on the screen.

Suppose that, instead of , we wanted to write , which works like this:



☞









158 Chapter 8 Practical Recursion: the Leap of Faith

downup
downup

updown updown
h

hello

updown

h
he
hel
hell
hello

up "hello

hell
hel
he
h

down "hell

up down

updown

to up :word
if emptyp :word [stop]
up butlast :word
print :word
end

to down :word
if emptyp :word [stop]
print :word
down butlast :word
end

to updown :word
up :word
down butlast :word
end

It’s harder to find a smaller subproblem within this pattern. With , removing
the first and last lines of the printout left a pattern for a shorter word. But the
middle lines of this pattern aren’t an . The middle lines don’t start with
a single letter, like the in the full pattern. Also, the middle lines are clearly made out
of the word , not some shortened version of it. You might want to try to find a
solution yourself before reading further.

There are several approaches to writing . One thing we could do is to divide
the pattern into two parts:

It is relatively easy to invent the procedures and to create the two parts of the
pattern.

Then we can use these as subprocedures of the complete :



More Complicated Patterns 159

updown1 "hello 3

updown1 "hello 5









inout

updown1 "hello 1

h

updown1 "hello 2

he
hel
hell
hello
hell
hel
he

h

updown
hello updown1 updown

truncate

?
hel
hell
hello
hell
hel
?
hello

to truncate :word :size
if equalp count :word :size [print :word stop]
truncate butlast :word :size
end

to updown1 :word :size
truncate :word :size
if equalp count :word :size [stop]
updown1 :word :size+1
truncate :word :size
end

Another approach would be to use numbers to keep track of things, as in the
example of Chapter 7. In this case we can consider the middle lines as a smaller version
of the problem.

In this point of view all the inner, smaller patterns are made from the same word,
. But each invocation of (which is what I’ll call this version of )

will use a second input, a number that tells it how many letters to print in the first and
last lines:

We need a subprocedure, , that prints the beginning of a word, up to a certain
number of letters.











160 Chapter 8 Practical Recursion: the Leap of Faith

truncate
second prsecond

updown updown1

updown

updown updown1

updown1 "h "ello

h

updown1 "he "llo

he
hel
hell
hello
hell
hel
he

h

updown hello
h ello

he
llo

to updown :word
updown1 :word 1
end

to updown1 :now :later
print :now
if emptyp :later [stop]
updown1 (word :now first :later) butfirst :later
print :now
end

to updown :word
updown1 first :word butfirst :word
end

(The helper procedure is the sort of thing that should really be an operation,
for the same reason that was better than on page 76. We’ll come
back to the writing of recursive operations in Chapter 11.)

Finally, we can write a new superprocedure called that uses with
the correct inputs. (If you try all these approaches on the computer, remember that you
can have only one procedure named in your workspace at a time.)

A third approach, which illustrates a very powerful technique, also uses an initializa-
tion procedure and a subprocedure with two inputs. In this version,
though, both inputs to the subprocedure are words: the partial word that we’re printing
right now and the partial word that is not yet to be printed.

In this example, to print an pattern for the word , the two subprocedure
inputs would be (what’s printed on the first line) and (what isn’t printed there).
For the inner pattern with the first and last lines removed, the two inputs would be
and . Here is the program:



☞

☞

slant "salami

A Mini-project: Scrambled Sentences

updown1

updown

first butfirst word

slant

A Mini-project: Scrambled Sentences 161

updown "hello
updown1 "h "ello
updown1 "he "llo
updown1 "hel "lo
updown1 "hell "o
updown1 "hello "

?
s
a
l
a
m
i

This program may be a little tricky to understand. The important part is .
Read it first without paying attention to the stop rule; see if you can understand how it
corresponds to the pattern. A trace of its recursive invocations might help:

The innermost level of recursion has been reached when the second input is the empty
word. Notice how , , and are used in combination to calculate
the inputs.

Write a recursive procedure that takes a word as input and prints it on a
diagonal, one letter per line, like this:

Just as Logo programs can be iterative or recursive, so can English sentences. People are
pretty good at understanding even rather long iterative sentences: “This is the farmer
who kept the cock that waked the priest that married the man that kissed the maiden
that milked the cow that tossed the dog that worried the cat that killed the rat that ate the
malt that lay in the house that Jack built.” But even a short recursive (nested) sentence is
confusing: “This is the rat the cat the dog worried killed.”

Write a procedure that takes as its first input a list of noun-verb pairs representing
actor and action, and as its second input a word representing the object of the last action
in the list. Your procedure will print two sentences describing the events, an iterative one
and a nested one, following this pattern:



print

one.per.line

Procedure Patterns

162 Chapter 8 Practical Recursion: the Leap of Faith

scramble [[girl saw] [boy owned] [dog chased] [cat bit]] "rat?
This is
the girl that saw
the boy that owned
the dog that chased
the cat that bit
the rat

This is
the rat
the cat
the dog
the boy
the girl
saw
owned
chased
bit

to one.per.line :word
if emptyp :word [stop]
print first :word
one.per.line butfirst :word
end

You don’t have to worry about special cases like “that Jack built”; your sentences will
follow this pattern exactly.

Ordinarily the most natural way to program this problem would be as an operation
that outputs the desired sentence, but right now we are concentrating on recursive
commands, so you’ll write a procedure that s each line as shown above.

Certain patterns come up over and over in programming problems. It’s worth your while
to learn to recognize some of them. For example, let’s look again at :

This is an example of a very common pattern:



☞

praise

result

Procedure Patterns 163

procedure

do.something.to
procedure

praise [[ultra chocolate] [chocolate cinnamon raisin] ginger]

lovepoem "Mary

A procedure pattern is different from the patterns we examined earlier in
this chapter. Before we were looking at what we wanted a not-yet-written procedure to
accomplish; now we are looking at already-written procedures to find patterns in their
instructions. A particular procedure might look like this pattern with the blanks filled in.
Here’s an example:

Do you see how fits the pattern?

Continuing our investigation of literary forms, write a procedure to compose love
poems, like this:

The core of this project is a database of deathless lines, in the form of a list of lists:

to :input
if emptyp :input [stop]

first :input
butfirst :input

end

to praise :flavors
if emptyp :flavors [stop]
print sentence [I love] first :flavors
praise butfirst :flavors
end

?
I love ultra chocolate
I love chocolate cinnamon raisin
I love ginger

?
M is for marvelous, that’s what you are.
A is for awesome, the best by far.
R is for rosy, just like your cheek.
Y is for youthful, with zest at its peak.
Put them together, they spell Mary,
The greatest girl in the world.

make "lines [[A is for albatross, around my neck.]
[B is for baloney, your opinions are dreck.]
[C is for corpulent, ...] ...]



select

countdown

164 Chapter 8 Practical Recursion: the Leap of Faith

procedure

do.something
procedure

manyprint 4 [Lots of echo in this cavern.]

and a recursive procedure that takes a letter and a list of lines as inputs and finds
the appropriate line to print by comparing the letter to the beginning of each line in the
list.

Another common pattern is a recursive procedure that counts something numeri-
cally, like :

And here is the pattern:

A procedure built on this pattern is likely to have additional inputs so that it can do
something other than just manipulate the number itself. For example:

to countdown :number
if equalp :number 0 [stop]
print :number
countdown :number-1
end

to :number
if equalp :number 0 [stop]

:number-1
end

to manyprint :number :text
if equalp :number 0 [stop]
print :text
manyprint :number-1 :text
end

?
Lots of echo in this cavern.
Lots of echo in this cavern.
Lots of echo in this cavern.
Lots of echo in this cavern.

to multiply :letters :number
if equalp :number 0 [stop]
print :letters
multiply (word :letters first :letters) :number-1
end



multiply "f 5

one.per.line

Tricky Stop Rules

two

two

Tricky Stop Rules 165

?
f
ff
fff
ffff
fffff

to two.per.line :stuff
print list (first :stuff) (first butfirst :stuff)
two.per.line butfirst butfirst :stuff
end

if emptyp :stuff [stop]

to two.per.line :stuff
if emptyp :stuff [stop]
if emptyp butfirst :stuff [show first :stuff stop]
print list (first :stuff) (first butfirst :stuff)
two.per.line butfirst butfirst :stuff
end

One way to become a skillful programmer is to study other people’s programs
carefully. As you read the programs in this book and others, keep an eye open for
examples of patterns that you think might come in handy later on.

Suppose that instead of we’d like a procedure to print the members of
a list per line. (This is plausible if we have a list of many short items, for example.
We’d probably want to control the spacing on each line so that the items would form two
columns, but let’s not worry about that yet.)

The recursive part of this program is fairly straightforward:

The only thing out of the ordinary is that the recursive step uses a subproblem that’s
smaller by two members, instead of the usual one.

But it’s easy to fall into a trap about the stop rule. It’s not good enough to say

because in this procedure it matters whether the length of the input is odd or even.
These two possibilities give rise to stop rules. For an even-length list, we stop if the
input is empty. But for an odd-length list, we must treat the case of a one-member list
specially also.



☞

butfirst

show print
show print

166 Chapter 8 Practical Recursion: the Leap of Faith

It’s important to get the two stop rules in the right order; we must be sure the input isn’t
empty before we try to take its .

Why does this procedure include one instruction and one instruction?
Why aren’t they either both or both ?



believe in

167

9 How Recursion Works

Little People and Recursion

downup

print count stop

print
equalp

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

The last two chapters were about how to write recursive procedures. This chapter is about
how to recursive procedures, and about understanding the process by which
Logo carries them out.

In Chapter 3, I introduced you to the metaphor of a computer full of little elves. Each elf
is an expert on a particular procedure. I promised that this metaphor would be helpful
later, when we’d have to think about two little people carrying out the same procedure at
the same time. Well, “later” is now.

I want to use the elf metaphor to think about the example of the previous
chapter:

Recall that we are imagining the computer to be full of elves, each of whom is a
specialist in carrying out some procedure. There are elves, elves,
elves, and so on. Each elf has some number of pockets, used to hold the inputs for
a particular invocation of a procedure. So a elf will have one pocket, while an

elf needs two pockets.



☞

168 Chapter 9 How Recursion Works

downup "hello

print :word

print thing "word

if equalp count :word 1 [stop]

downup
downup

downup

print if

downup
downup

hello

downup

print thing print
thing

thing
word word

word downup thing
hello print

We’re going to be most interested in the elves and the contents of their
pockets. To help you keep straight which elf is which, I’m going to name the
elves alphabetically: the first one will be Ann, then Bill, then Cathy, then David, and so
on. Since we aren’t so interested in the other elves, I won’t bother naming them.

If you’re reading this with a group of other people, you may find it helpful for each
of you to take on the role of one of the elves and actually stick words in your
pockets. If you have enough people, some of you should also serve as elves for the
primitive procedures used, like and .

What happens when you type the instruction

to Logo? The Chief Elf reads this instruction and sees that it calls for the use of the
procedure named . She therefore recruits Ann, an elf who specializes in that
procedure. Since has one input, the Chief Elf has to give Ann something to put
in her one pocket. Fortunately, the input you provided is a quoted word, which evaluates
to itself. No other elves are needed to compute the input. Ann gets the word in
her pocket.

Ann’s task is to carry out the instructions that make up the definition of .
The first instruction is

This, you’ll remember, is an abbreviation for

Ann must hire two more elves, a specialist and a specialist. The elf
can’t begin his work until he’s given something to put in his pocket. Ann asks the
elf to figure out what that input should be. The elf also gets an input, namely the
word . As we saw in Chapter 3, is what’s written on the name tag in Ann’s
pocket, since is the name of ’s input. So the elf looks in that pocket,
where it finds the word . That word is then given to the elf, who prints it
on your computer screen.

Ann is now ready to evaluate the second instruction:



Ann Bill

downup butlast :word

not

another

procedure invocation

instantiation
two

Little People and Recursion 169

if count thing
if count

hello if false
if [stop] stop

if true
if stop

false if

downup
downup

butlast thing
hell butlast hello

downup
word word

hello word hell

downup

word

Ann must hire several other elves to help her: an elf, a elf, and a
elf. I won’t go through all the steps in computing the inputs to ; since the of
the word is not 1, the first input to turns out to be the word . The
second input to is, of course, the list . (Notice that Ann does hire a
specialist. A list inside square brackets evaluates to itself, just like a quoted word, without
invoking any procedures. If the first input to had turned out to be , it would
have been the elf who would have hired a elf to carry out the instruction inside
the list.) Since its first input is , the elf ends up doing nothing.

Ann’s third instruction is

Here’s where things start to get interesting. Ann must hire specialist,
named Bill. (Ann can’t carry out this new instruction herself because she’s
already in the middle of a job of her own.) Ann must give Bill an input to put in his
pocket; to compute this input, she hires a elf and a elf. They eventually
come up with the word (the of ), and that’s what Ann puts in Bill’s
pocket.

We now have two active elves, Ann and Bill. Each has a pocket. Both
pockets are named , but they have different contents: Ann’s pocket contains

, while Bill’s pocket contains .

Here is what this metaphor represents, in more technical language: Although there
is only one named , there can be more than one of that
procedure in progress at a particular moment. (An invocation of a procedure is also
sometimes called an of the procedure.) Each invocation has its own local
variables; at this moment there are variables named . It is perfectly possible for



global

procedure,
invocation

same

scroll, elves’ jackets.

first
then

170 Chapter 9 How Recursion Works

downup

word

downup1 downup2
word

word downup

downup

word
downup

print hell
hell hello thing

:word thing
word

if
downup downup

hel word

two variables to have the same name as long as they are associated with (local to) different
procedure invocations.

If you had trouble figuring out how works in Chapter 7, it’s almost certainly
because of a misunderstanding about this business of local variables. That’s what makes
the elf metaphor so helpful. For example, if you’re accustomed to programming in
BASIC, then you’re familiar with variables as the only possibility in the language.
If all variables were global in Logo, then there could only be one variable in the entire
computer named . Instead of representing variables as pockets in the elves’ clothes,
we’d have to represent them as safe deposit boxes kept in some central bank and shared
by all the elves.

But even if you’re familiar with Logo’s use of local variables, you may have been
thinking of the variables as being local to a instead of understanding that
they are local to an of a procedure. In that case you may have felt perfectly
comfortable with the procedures named , , and so on, each of them
using a separate variable named . But you may still have gotten confused when the

variable , the one belonging to the single procedure , seemed to have
several values at once.

If you were confused in that way, here’s how to use the elf metaphor to help yourself
get unconfused: Suppose the procedure definitions are written on scrolls, which are kept
in a library. There is only one copy of each scroll. (That is, there is only one definition for
a given procedure.) All the elves who specialize in a particular procedure, like ,
have to share the same scroll. Well, if variables were local to a procedure, they’d be
pockets in the rather than pockets in the By directing your attention
to the elves (the invocations) instead of the scrolls (the procedure definitions), you can
see that there can be two variables with the same name ( ), associated with the same
procedure ( ), but belonging to different invocations (represented by the elves
Ann and Bill).

We still have several more elves to meet, so I’m going to pass over some of the details
more quickly now. We’ve just reached the point where Bill is ready to set to work. For
his first instruction he hires a elf, who prints the word on your screen. Why

and not ? The answer is that when Bill hires a expert to evaluate the
expression , the rules say that that expert must look in Bill’s pockets,

(if Bill didn’t have a pocket named ) in Ann’s pockets.

Bill then carries out the instruction, which again has no effect. Then Bill is ready
for the instruction. He hires a third elf, named Cathy. Bill puts the
word in Cathy’s pocket. There are now three elves, all with pockets named ,
each with a different word.



repeat 100 [print "hello if equalp random 5 0 [stop]]

not

seven

lowest-level invocation of a user-defined procedure.

Little People and Recursion 171

hel
if downup

downup he

downup
he if

count he
downup h

h if
if true count

h if
[stop] stop

if stop
stop If stop

stop
downup

stop

stop
if if

stop

hello

stop repeat

Cathy is now ready to get to work. Don’t forget, though, that Ann and Bill haven’t
finished their jobs. Bill is still working on his third instruction, waiting for Cathy to report
the completion of her task. Similarly, Ann is waiting for Bill to finish.

Cathy evaluates her first instruction, printing on the screen. She evaluates the
instruction, with no effect. Then she’s ready for the instruction, the third

one in the procedure definition. To carry out this instruction, she hires David, a fourth
expert. She puts the word in his pocket.

David’s career is like that of the other elves we’ve met so far. He starts by
printing his input, the word . He evaluates the instruction, with no effect. (The

of the word is still not equal to 1.) He then gets to the recursive invocation of
, for which he hires a fifth expert, named Ellen. He puts the word in Ellen’s

pocket.

Ellen’s career is quite like that of the other elves. It starts similarly: she prints
her input, the word , on your screen. Then she prepares to evaluate the instruction.
This time, though, the first input to turns out to be the word , since the
of is, indeed, 1. Therefore, the elf evaluates the instruction contained in its second
input, the list . It hires a elf, whose job is to tell Ellen to stop working.
(Why Ellen? Why not one of the other active elves? There are elves active at the
moment: Ann, Bill, Cathy, David, Ellen, the elf, and the elf. The rule is that
a elf stops the and are
primitives, so they don’t satisfy the elf. The remaining five elves are experts in

, a user-defined procedure; of the five, Ellen is the lowest-level invocation.)

(By the way, the insistence of on a user-defined procedure to stop is one of the
few ways in which Logo treats such procedures differently from primitive procedures. If
you think about it, you’ll see that it would be useless for to stop just the invocation
of . That would mean that the instruction would never do anything of interest
and there would be no way to stop a procedure of your own conditionally. But you can
imagine other situations in which it would be nice to be able to a primitive. Here’s
one:

If it worked, this instruction would print the word some number of times, up to
100, but with a 20 percent chance of stopping after each time. In fact, though, you can’t
use to stop a invocation.)

Let’s review what’s been printed so far:



☞

his own

172 Chapter 9 How Recursion Works

downup

:word
word thing

word he

print hel
word

hell
hello

downup

inout

hello printed by Ann
hell printed by Bill
hel printed by Cathy
he printed by David
h printed by Ellen

print :word

hello printed by Ann
hell printed by Bill
hel printed by Cathy
he printed by David
h printed by Ellen
he printed by David
hel printed by Cathy
hell printed by Bill
hello printed by Ann

Ellen has just stopped. She reports back to David, the elf who hired her. He’s been
waiting for her; now he can continue with his own work. David is up to the fourth and
final instruction in the definition of :

What word will David print? For David, refers to the contents of pocket
named . That is, when David hires a expert, that expert looks first in David’s
pockets, before trying Cathy’s, Bill’s, and Ann’s. The word in David’s pocket is .
So that’s what David prints.

Okay, now David has reached the end of his instructions. He reports back to his
employer, Cathy. She’s been waiting for him, so that she can continue her own work.
She, too, has one more instruction to evaluate. She has the word in her

pocket, so that’s what she prints.

Cathy now reports back to Bill. He prints his own word, . He reports back to
Ann. She prints her word, .

When Ann finishes, she reports back to the Chief Elf, who prints a question mark on
the screen and waits for you to type another instruction.

Here is the complete effect of this instruction:

You might want to see if the little person metaphor can help you understand the
working of the procedure from Chapter 7. Remember that each elf carrying out
the recursive procedure needs two pockets, one for each input.



Tracing

trace "downup
downup "logo

sequential

tracing

Tracing 173

downup
downup print

downup
downup

downup

downup

( downup "logo )

( downup "log )

( downup "lo )

( downup "l )

downup stops

downup stops

downup stops

downup stops

to downup :word
print :word
if equalp count :word 1 [stop]
downup butlast :word
print :word
end

?
?

logo

log

lo

l

lo

log

logo

Many people find the idea of multiple, simultaneous invocations of a single procedure
confusing. To keep track of what’s going on, you have to think about several “levels” of
evaluation at once. “Where is up to right now?” — “Well, it depends what you
mean. The lowest-level invocation has just evaluated its first instruction.
But there are three other invocations of that are in the middle of evaluating
their recursive instructions.” This can be especially confusing if you’ve always
been taught that the computer can only do one thing at a time. People often emphasize
the nature of the computer; what we’ve been saying about recursion seems to
violate that nature.

If this kind of confusion is a problem for you, it may help to think about a procedure
like by its progress. That is, we can tell the procedure to print out extra
information each time it’s invoked, to help you see the sequence of events.

Just for reference, here’s again:

The trace command takes a procedure name (or a list of procedure names, to trace more
than one) as its input. It tells Logo to notify you whenever that procedure is invoked:



log

lo

l

lo

log

Level and Sequence

downup

downup

l

downup

downup
logo downup log

downup

downup

downup

( downup "log )

downup stops

( downup "lo )

( downup "l )

downup stops

downup stops

level

vertically, sequence

horizontally,
levels

174 Chapter 9 How Recursion Works

To make this result a little easier to read, I’ve printed the lines that are generated by the
tracing in smaller letters than the lines generated by itself. Of course the actual
computer output all looks the same.

Each line of tracing information is indented by a number of spaces equal to the
number of traced procedure invocations already active—the of procedure invocation.
By looking only at the lines between one invocation and the equally-indented
stopping line, you can see how much is accomplished by each recursive call. For example,
the innermost invocation (at level 4) prints only the letter .

The result of tracing is most helpful if you think about it two-dimensionally.
If you read it it represents the of instructions that fits the traditional
model of computer programming. That is, the order of the printed lines represents the
order of events in time. First the computer enters at level 1. Then it prints
the word . Then it enters at level 2. Then it prints . And so on.
Each printed line, including the “official” lines as well as the tracing lines, represents a
particular instruction, carried out at a particular moment. Reading the trace vertically
will help you fit ’s recursive method into your sequential habits of thought.

On the other hand, if you read the trace it shows you the hierarchy
of of ’s invocations. To see this, think of the trace as divided into two
overlapping columns. The left column consists of the official pattern of words printed by
the original . In the right column, the pattern of entering and exiting from each
level is shown. The lines corresponding to a particular level are indented by a number of
spaces that corresponds to the level number. For example, find the line

and the matching

Between these two lines you’ll see this:



☞

Instruction Stepping

log
lo
l
lo
log

log

...

log

log
lo l lo

downup

downup if
print step

downup

( downup "log )

( downup "lo )

downup stops

downup stops

part of

directly

total
direct

Instruction Stepping 175

What this shows is that levels 3 and 4 are level 2. You can see that the traced
invocation and stopping lines for levels 3 and 4 begin further to the right than the ones
for level 2. Similarly, the lines for level 4 are further indented than the ones for level 3.
This variation in indentation is a graphic display of the superprocedure/subprocedure
relationships among the various invocations.

There are two ways of thinking about the lines that aren’t indented. One way is to
look at all such lines within, say, level 2:

This tells you that those five lines are printed somehow within the activity of level 2. (In
terms of the little people metaphor, those lines are printed by Bill, either directly or
through some subordinate elf.) Another way to look at it is this:

What this picture is trying to convey is that only the two lines are within the
control of level 2. The three shorter lines ( , , ) are delegated to level 3.

We’ve seen three different points of view from which to read the trace, one vertical
and two horizontal. The vertical point of view shows the sequence of events in time. The
horizontal point of view can show either the responsibility of a given level or the

responsibility of the level. To develop a full understanding of recursion, the trick is
to be able to see all of these aspects of the program at the same time.

Try invoking the traced with a single-letter input. Make a point of reading
the resulting trace from all of these viewpoints. Then try a two-letter input.

Perhaps you are comfortable with the idea of levels of invocation, but confused about the
particular order of instructions within . Why should the instruction be where
it is, instead of before the first , for example? Logo’s command will allow
you to examine each instruction line within as it is carried out:



>>>

trace step

?
?

ant

an

a

an

ant

?
?
?

ant

an

a

an

ant

176 Chapter 9 How Recursion Works

step "downup
downup "ant

step "downup
trace "downup
downup "ant

After each of the lines ending with , Logo waits for you to press the RETURN or
ENTER key.

You can combine and :

[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[print :word] >>>

[print :word] >>>

( downup "ant )
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
( downup "an )
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
[downup butlast :word] >>>
( downup "a )
[print :word] >>>

[if equalp count :word 1 [stop]] >>>
downup stops

[print :word] >>>

downup stops
[print :word] >>>

downup stops



☞

Instruction Stepping 177

( downup "an )

downup stops

step trace

trace step untrace
unstep

downup
downup downup

print

an if
downup downup

a

downup

In this case, the lines are indented to match the lines.

Once a procedure is d or ped, it remains so until you use the
or command to counteract the tracing or stepping.

Try drawing a vertical line extending between the line

and the equally indented

Draw the line just to the left of the printing, after the indentation. The line you drew
should also touch exactly four instruction lines. These four lines make up the entire
definition of the procedure. If we restrict our attention to one particular
invocation of , like the one you’ve marked, you can see that each of ’s
instructions is, indeed, evaluated in the proper sequence. Below each of these instruction
lines, you can see the effect of the corresponding instruction. The two instructions
each print one line in the left (unindented) column. (In this case, they both print the
word .) The instruction has no visible effect. But the recursive invocation of

has quite a large effect; it brings into play the further invocation of with
the word as input.

One way to use the stepping information is to “play computer.” Pretend you are the
Logo interpreter, carrying out a instruction. Exactly what would you do, step by
step? As you work through the instructions making up the procedure definition, you can
check yourself by comparing your activities to what’s shown on the screen.





10 Turtle Geometry

turtle

but

word,

turtle

179

A Review, or a Brief Introduction

Logo is best known as the language that introduced the as a tool for computer
graphics. In fact, to many people, Logo and turtle graphics are synonymous. Some
computer companies have gotten away with selling products called “Logo” that provided
nothing turtle graphics, but if you bought a “Logo” that provided only the list
processing primitives we’ve used so far, you’d probably feel cheated.

Historically, this idea that Logo is mainly turtle graphics is a mistake. As I mentioned
at the beginning of Chapter 1, Logo’s name comes from the Greek word for
because Logo was first designed as a language in which to manipulate language: words
and sentences. Still, turtle graphics has turned out to be a very powerful addition to
Logo. One reason is that any form of computer graphics is an attention-grabber. But
other programming languages had allowed graphics programming before Logo. In this
chapter we’ll look at some of the reasons why graphics, specifically, was such a major
advance in programming technology.

This chapter can’t be long enough to treat the possibilities of computer graphics
fully. My goal is merely to show you that the same ideas we’ve been using with words and
lists are also fruitful in a very different problem domain. Ideas like locality, modularity,
and recursion appear here, too, although sometimes in different guises.

I’ve been assuming that you’ve already been introduced to Logo turtle graphics, either in
a school or by reading Logo tutorial books. If not, perhaps you should read one of those
books now. But just in case, here is a very brief overview of the primitive procedures for
turtle graphics. Although some versions of Logo allow more than one turtle, or allow



forward 80

cs clearscreen

forward
fd Forward forward

dynamic

first

not

180 Chapter 10 Turtle Geometry

turtles with programmable shapes and speeds, for now I’ll only consider the
traditional, single, static turtle.

Type the command (short for ), with no inputs. The effect of
this command is to initiate Logo’s graphics capability. A turtle will appear in the center
of a graphics window. (Depending on which version of Logo you have, the turtle may
look like an actual animal with a head and four legs or—as in Berkeley Logo—it may
be represented as a triangle.) The turtle will be facing toward the top of the screen.
Any previous graphic drawing will be erased from the screen and from the computer’s
memory.

The crucial thing about the turtle, which distinguishes it from other metaphors for
computer graphics, is that the turtle is pointing in a particular direction and can only
move in that direction. (It can move forward or back, like a car with reverse gear, but not
sideways.) In order to draw in any other direction, the turtle must turn so that it is
facing in the new direction. (In this respect it is unlike a car, which must turn and move
at the same time.)

The primary means for moving the turtle is the command, abbreviated
. takes one input, which must be a number. The effect of is to

move the turtle in the direction it’s facing, through a distance specified by the input.
The unit of distance is the “turtle step,” a small distance that depends on the resolution
of your computer’s screen. (Generally, one turtle step is the smallest line your computer
can draw. This is slightly oversimplified, though, because that smallest distance may be
different in different directions. But the size of a turtle step does depend on the
direction; it’s always the same distance for any given computer.) Try typing the command

Since the turtle was facing toward the top of the screen, that’s the way it moved. The
turtle should now be higher on the screen, and there should be a line behind it indicating
the path that it followed.

The first turtles were actual robots that rolled along the floor. They got the name
“turtle” because of the hard shells surrounding their delicate electronic innards. A robot
turtle has a pen in its belly, which it can push down to the floor, or pull up inside itself.
When the pen is down, the turtle draws a trace of its motion along the floor.



clearscreen dash 14

penup pu

pendown pd

back bk
back

fd bk

Left lt

left 360

turtle’s screen’s

turtle’s

A Review, or a Brief Introduction 181

penup
forward 30

to dash :count
repeat :count [penup forward 4 pendown forward 4]
end

?

When talking about the screen turtle, it’s customary to think of the screen as a kind
of map, representing a horizontal floor. Therefore, instead of referring to the screen
directions as “up,” “down,” “left,” and “right,” we talk about the compass headings North,
South, West, and East. Your turtle is now facing North. Besides fitting better with the
turtle metaphor, this terminology avoids a possible confusion: the word “left” could mean
either the left or the left. (They’re the same direction right now, but they
won’t be the same after we turn the turtle.) To avoid this problem, we use “West” for
the left edge of the screen, and reserve the word “left” for the direction to the left of
whichever way the turtle is facing.

Logo provides primitive commands to raise and lower the turtle’s pen. The command
(abbreviated ) takes no inputs; its effect is to raise the pen. In other words,

after you use this command, any further turtle motion won’t draw lines. Try it now:

Similarly, the command ( ) takes no inputs, and lowers the pen. Here’s a
procedure you can try:

The command (or ) takes one input, which must be a number. The effect
of is to move the turtle backward by the distance used as its input. (What do you
think and will do if you give them noninteger inputs? Zero inputs? Negative
inputs? Try these possibilities. Then look up the commands in the reference manual for
your version of Logo and see if the manual describes the commands fully.)

To turn the turtle, two other commands are provided. (abbreviated ) takes
one input, which must be a number. Its effect is to turn the turtle toward the
own left. The angle through which the turtle turns is the input; angles are measured
in degrees, so will turn the turtle all the way around. (In other words, that
instruction has no real effect!) Another way of saying that the turtle turns toward its own



☞

Local vs. Global Descriptions

repeat 4 [forward 100 right 90]

right rt left

forward back
left right

counterclockwise.

local
global

turtle-relative

Cartesian coordinates.

182 Chapter 10 Turtle Geometry

left is that it turns The command (or ) is just like , except
that it turns the turtle clockwise, toward its own right.

Clear the screen and try this, the classic beginning point of Logo turtle graphics:

This instruction tells Logo to draw four lines, each 100 turtle steps long, and to turn 90
degrees between lines. In other words, it draws a square.

There are many more turtle procedures provided in Logo, but these are the
fundamental ones; with them you can go quite far in generating interesting computer
graphics. If you haven’t had much experience with turtle graphics before, you might
enjoy spending some time exploring the possibilities. There are many introductory
Logo turtle graphics books to help you. Because that part of Logo programming is so
thoroughly covered elsewhere, I’m not going to suggest graphics projects here. Instead I
want to go on to consider some of the deeper issues in computer programming that are
illuminated by the turtle metaphor.

Earlier we considered the difference between variables, which are available only
within a particular procedure, and variables, which are used throughout an entire
project. I’ve tried to convince you that the use of local variables is a much more powerful
programming style than one that relies on global variables for everything. For one thing,
local variables are essential to make recursion possible; in order for a single procedure to
solve a large problem and a smaller subproblem simultaneously, each invocation of the
procedure must have its own, independent variables. But even when recursion is not an
issue, a complex program is much easier to read and understand if each procedure can
be understood without thinking about the context in which it’s used.

The turtle approach to computer graphics embodies the same principle of locality,
in a different way. The fact that the turtle motion commands ( and )
and the turtle turning commands ( and ) are all means that a
graphics procedure need not think about the larger picture.

To understand what that means, you should compare the turtle metaphor with the
other metaphor that is commonly used in computer graphics: This
metaphor comes from analytic geometry, invented by René Descartes (1596–1650). The
word “Cartesian” is derived from his name. Descartes’ goal was to use the techniques



[3 -2]

[-1 4]

[0 0]

setpos
set pos Setpos

forward back

clearscreen
setpos [0 100]
setpos [100 100]
setpos [100 0]
setpos [0 0]

numbers points.

origin;
x-coordinate

y-coordinate

Local vs. Global Descriptions 183

of algebra in solving geometry problems by using to describe In a
two-dimensional plane, like your computer screen, you need two numbers to identify a
point. These numbers work like longitude and latitude in geography: One tells how far
the point is to the left or right and the other tells how high up it is.

This diagram shows a computer screen with a grid of horizontal and vertical lines
drawn on it. The point where the two heavy lines meet is called the it is
represented by the numbers . For other points the first number (the )
is the horizontal distance from the origin to the point, and the second number (the

) is the vertical distance from the origin to the point. A positive x-coordinate
means that the point is to the right of the origin; a negative x-coordinate means that the
point is to the left of the origin. Similarly, a positive y-coordinate means that the point is
above the origin; a negative y-coordinate puts it below the origin. Logo does allow you to
refer to points by their Cartesian coordinates, using a list of two numbers. The origin is
the point where the turtle starts when you clear the screen.

The primary tool for Cartesian-style graphics in Logo is the command (for
ition). requires one input, which must be a list of two numbers. Its

effect is to move the turtle to the point on the screen at those coordinates. If the pen is
down, the turtle draws a line as it moves, just as it does for and . Here is
how you might draw a square using Cartesian graphics instead of turtle graphics:



square

square

184 Chapter 10 Turtle Geometry

to square :size
repeat 4 [forward :size right 90]
end

to face
pendown square 100
penup forward 20
right 90
forward 25
pendown forward 50
penup back 75
left 90
forward 65
right 90
forward 20
pendown square 15
penup forward 45
pendown square 15
penup back 15
right 90
forward 20
left 45
pendown square 20
end

Do you see why I said that the Cartesian metaphor is global, like the use of global
variables? Each instruction in this square takes into account the turtle’s position within
the screen as a whole. The “point of view” from which we draw the picture is that of
an observer standing above the plane looking down on all of it. This observer sees not
only the turtle but also the edges and center of the screen as part of what is relevant to
drawing each line. By contrast, the turtle geometry metaphor adopts the point of view of
the turtle itself; each line is drawn without regard to where the turtle is in global terms.

Using the turtle metaphor, we can draw our square (or any other figure we can
program) anywhere on the screen at any orientation. First I’ll write a command:

Now here’s an example of how can be used in different positions and orientations:

The head and the eyes are upright squares; the nose is a square at an angle (a diamond).
To write this program using Cartesian graphics, you’d have to know the absolute
coordinates of the corners of each of the squares. To draw a square at an unusual angle,
you’d need trigonometry to calculate the coordinates.



☞

The Turtle’s State

repeat 20 [pendown square 12 penup forward 20 right 18]

square

setpos
setheading seth Setheading

Pos
Heading

history

position heading,
state.

The Turtle’s State 185

Here is another demonstration of the same point. Clear the screen and type this
instruction:

You’ll see squares drawn in several different orientations. This would not be a one-line
program if you tried to do it using the Cartesian metaphor!

From a turtle’s-eye point of view, drawing an upright square is the same as drawing a
diamond. It’s only from the global point of view, taking the borders of the screen into
account, that there is a difference.

From the global point of view how can we think about that difference? How do we
describe what makes the same procedure sometimes draw one thing (an upright square)
and sometimes another (a diamond)? The answer, in the most general terms, is that the
result of the command depends on the past of the turtle—its twists and
turns before it got to wherever it may be now. That is, the turtle has a sort of memory of
past events.

But what matters is not actually the turtle’s entire past history. All that counts is the
turtle’s current and its current no matter how it got there. Those two
things, the position and the heading, are called the turtle’s It’s a little like trying to
solve a Rubik’s Cube; you may have turned part of the cube 100 times already, but all that
counts now is the current pattern of colors, not how you got there.

I’ve mentioned the command, which sets the turtle’s position. There is also
a command (abbreviated ) to set the heading. takes
one input, a number. The effect is to turn the turtle so that it faces toward the compass
heading specified by the number. Zero represents North; the heading is measured in
degrees clockwise from North. (For example, East is 90; West is 270.) The compass
heading is different from the system of angle measurement used in analytic geometry, in
which angles are measured counterclockwise from East instead of clockwise from North.

In addition to commands that set the turtle’s state, Logo provides operations to find
out the state. is an operation with no inputs. Its output is a list of two numbers,
representing the turtle’s current position. is also an operation with no inputs.
Its output is a number, representing the turtle’s current heading.

Remember that when you use these state commands and operations, you’re thinking
in the global (Cartesian) style, not the local (turtle) style. Global state is sometimes



☞

Symmetry

186 Chapter 10 Turtle Geometry

setpos
widget

setpos setpos

setpos

forward right

to squiggle
forward 100
right 135
forward 40
right 120
forward 60
right 15
end

repeat 20 [squiggle]

important, just as global variables are sometimes useful. If you want to draw a picture
containing three widgets, you might use to get the turtle into position for each
widget. But the procedure, which draws each widget, probably shouldn’t use

. (You might also use extensively in a situation in which the Cartesian
metaphor is generally more appropriate than the turtle metaphor, like graphing a
mathematical function.) As in the case of global variables, you’ll be most likely to overuse
global graphics style if you’re accustomed to BASIC computer graphics. A good rule
of thumb, if you’re doing something turtleish and not graphing a function, is that you
shouldn’t use with the pen down.

Do you see why?

Very young children often begin playing with Logo simply by moving the turtle around
at random. The resulting pictures usually don’t look very interesting. You can recapture
the days of your youth by alternating and commands with arbitrary
inputs. Here is a sample, which I’ve embodied in a procedure:

This isn’t a very beautiful picture. But something interesting happens when you keep
squiggling repeatedly:



squaggle repeat 20 [squaggle]

☞

Symmetry 187

Squiggle squaggle

repeat
forward right

size

angle

to squaggle
forward 50
right 150
forward 60
right 100
forward 30
right 90
end

to poly :size :angle
forward :size
right :angle
poly :size :angle
end

poly 100 90
poly 80 60
poly 100 144

Instead of filling up the screen with hash, the turtle draws a symmetrical shape and
repeats the same path over and over! Let’s try another example:

turns into a sort of fancy square when you repeat it; turns
into an 18-pointed pinwheel. Does every possible squiggle produce a repeating pattern
this way? Yes. Sometimes you have to the procedure many times, but essentially
any combination of and commands will eventually retrace its steps.
(There’s one exception, which we’ll talk about shortly.)

To see why repetition brings order out of chaos, we have to think about a simpler
Logo graphics procedure that is probably very familiar to you:

Since this is a recursive procedure without a stop rule, it’ll keep running forever. You’ll
have to stop it by pressing the BREAK key, or command-period, or whatever your
particular computer requires. The procedure draws regular polygons; here are some
examples to try:

A little thought (or some experimentation) will show you that the input makes
the picture larger or smaller but doesn’t change its shape. The shape is entirely controlled
by the input.

What angle would you pick to draw a triangle? A pentagon? How do you know?



turtle starts here

turtle ends here

turtle travels
this distance

turtle turns
left 90°

☞

☞

☞

angle

squiggle

squiggle
squiggle

squaggle

squiggle

squiggle

and its original heading

before

188 Chapter 10 Turtle Geometry

to squoggle
forward 50
right 70
forward 10
right 160
forward 35
right 58
end

The trick is to think about the turtle’s state. When you finish drawing a polygon, the
turtle must return to its original position in order to be ready to
retrace the same path. To return to its original heading, the turtle must turn through
a complete circle, 360 degrees. To draw a square, for example, the turtle must turn
through 360 degrees in four turns, so each turn must be 360/4 or 90 degrees. To draw a
triangle, each turn must be 360/3 or 120 degrees.

Now explain why an input of 144 draws a star!

Okay, back to our squiggles. Earlier, I said that the only thing we have to remember
from the turtle’s past history is the change in its state. It doesn’t matter how that change
came about. When you draw a , the turtle moves through a certain distance
and turns through a certain angle. The fact that it took a roundabout path doesn’t
matter. As it happens, turns right through 135 + 120 + 15 degrees, for a total
of 270. This is equivalent to turning left by 90 degrees. That’s why repeating
draws something shaped like a square.

What about ? If repeating it draws a figure with 18-fold symmetry, then
its total turning should be 360/18 or 20 degrees. Is it?

Here’s another bizarre shape. See if you can predict what kind of symmetry it will
show you actually repeat it on the computer.

Suppose you like the shape of , but you want to draw a completed picture
that looks triangular (3-fold symmetry) instead of square (4-fold). Can you do this? Of
course; you can simply change the last instruction of the procedure so that



squiggle protect.heading [squiggle]

Symmetry 189

squiggle

Squiggle
poly

protect.heading

heading setheading
oldheading
protect.heading run

squiggle squaggle

to protect.heading :squig
local "oldheading
make "oldheading heading
run :squig
setheading :oldheading
end

protect.heading [squiggle]
protect.heading [squaggle]

the total turning is 120 degrees instead of 90. (Go ahead, try it. Be careful about left and
right.)

But it’s rather an ugly process to have to edit in order to change not what
a squiggle looks like but how the squiggles fit into a larger picture. For one thing, it
violates the idea of modularity. ’s job should just be drawing a squiggle, and
there should be another procedure, something like , that combines squiggles into
a symmetrical pattern. For another, people shouldn’t have to do arithmetic; computers
should do the arithmetic!

To clean up our act, I’m going to start by writing a procedure that can draw an arbi-
trary squiggle but without changing the turtle’s heading. It’s called
because it protects the heading against change by the squiggle procedure.

This procedure demonstrates the use of and . We remember the
turtle’s initial heading in the local variable . Then we carry out whatever
squiggle procedure you specify as the input to . (The command
takes a Logo instruction list as input and evaluates it.) Here is how you can use it:

Notice that what is drawn on the screen is the same as it would be if you invoked
or directly; the difference is that the turtle’s final heading is the

same as its initial heading.



☞

☞

can

190 Chapter 10 Turtle Geometry

protect.heading poly

spin

squirrel

Squiggle
squirrel squirrel

spin spin

spin

to spin :turns :command
repeat :turns [protect.heading :command right 360/:turns]
end

spin 3 [squiggle]
spin 5 [squiggle]
spin 4 [squaggle]
spin 6 [squoggle]
spin 6 [fd 40 squoggle]
spin 5 [pu fd 50 pd squaggle]

to squirrel
forward 40
right 90
forward 10
right 90
forward 15
right 90
forward 20
right 90
end

Now we can use to write the decorated- procedure that
will let us specify the kind of symmetry we want:

Try out with instructions like these:

Isn’t that better?

I mentioned that there is an exception to the rule that every squiggle will eventually
retrace its steps if you repeat it. Here it is:

Try repeating 20 times. You’ll find that instead of turning around to
its original position and heading, the turtle goes straight off into the distance. Why?
( had four-fold symmetry because its total turning was 90 degrees. What is the
total turning of ?) Of course, if you use in the second input to

, it will perform like the others, because controls the turtle’s heading in that
case.

I’ve been using random squiggles with silly names to make the point that by paying
attention to symmetry, Logo make a silk purse from a sow’s ear. But of course there
is no reason not to apply to more carefully designed pieces. Here’s one I like:



Fractals

Fractals 191

to fingers :size
penup forward 10 pendown
right 5
repeat 5 [forward :size right 170 forward :size left 170]
left 5
penup back 10 pendown
end

spin 4 [fingers 50]
spin 10 [fingers 30]

to tree :size
forward :size
left 20
tree :size/2
right 40
tree :size/2
end

I’d like to write a procedure to draw this picture of a tree:

The trick is to identify this as a recursive problem. Do you see the smaller-but-similar
subproblems? The tree consists of a trunk with two smaller trees attached.

So a first approximation to the solution might look like this:



butfirst

depth

tree

tree

mistake;

state-invariant:

192 Chapter 10 Turtle Geometry

to tree :depth :size
if :depth=0 [stop]
forward :size
left 20
tree (:depth-1) :size/2
right 40
tree (:depth-1) :size/2
end

to tree :size
if :size<4 [stop]
forward :size
left 20
tree :size/2
right 40
tree :size/2
end

If you try running this procedure, you’ll see that we still have some work to do. But let
me remind you that an unfinished procedure like this isn’t a you shouldn’t feel
that you have to have every detail worked out before you first touch the keyboard. The
first obvious problem is that there is no stop rule, so the procedure keeps trying to draw
smaller and smaller subtrees. What should the limiting condition be? In this case there
is no obvious end, like the of a word becoming empty.

There are two approaches we could take to limiting the number of branches of the
tree. One approach would be to choose explicitly how deep we want to get in recursive
invocations. We could do this by adding another input, called , that will be the
number of levels of recursion to allow:

The other approach would be to keep letting the branches get smaller until they go below
a reasonable minimum:

Either approach is reasonable. I’ll choose the second one just because it seems a little
simpler. The cost of that choice is somewhat less control over the final picture; I’m not
sure if it’ll have exactly the number of branches I originally planned.

The modified procedure does come to a halt now, but it still doesn’t draw the
tree I had in mind. The problem is that this version of is not it
doesn’t leave the turtle with the same position and heading that it had originally. That’s
important because when says



tree 50

Fractals 193

tree :size/2
right 40
tree :size/2

to tree :size
if :size<4 [stop]
forward :size
left 20
tree :size/2
right 40
tree :size/2
left 20
back :size
end

to tree :size
if :size < 5 [forward :size back :size stop]
forward :size/3
left 30 tree :size*2/3 right 30
forward :size/6
right 25 tree :size/2 left 25
forward :size/3
right 25 tree :size/2 left 25
forward :size/6
back :size
end

the assumption is that at the end of the first smaller tree the turtle will be back at the top
of the main trunk, in position to draw the second subtree. We can fix the problem by
making the turtle climb back down the trunk (of each subtree):

Voilà! If you try you’ll see something like the picture I had in mind.

You’re probably thinking that this “tree” doesn’t look very tree-like. There are several
things wrong with it: It’s too symmetrical; it doesn’t have enough branches; the branches
should grow partway up the trunk as well as at the top. But all of these problems can be
solved by adding a few more steps to the procedure:

We can embellish the tree as much as we want. The only requirement is that the
procedure be state-invariant: The turtle’s final position and heading must be the same as
its beginning position and heading.



flake 0

flake 3flake 2

flake 1

☞

tree

Further Reading

fractal.

Turtle Geometry,

The Fractal Geometry of Nature,

194 Chapter 10 Turtle Geometry

Because I chose to use a minimum length as the stopping condition, the shape of the
tree depends on the size of its trunk. That’s slightly unusual in turtle graphics programs,
which usually draw the same shape regardless of the size.

A recursively-defined shape (one that contains smaller versions of itself) is called a
Until the 1970s, hardly anybody explored fractals except for kids learning Logo

and a few recreational mathematicians. Today, however, fractals have become important
becase movie producers are using computer graphics as an alternative to expensive sets
and models for fancy special effects. It turns out that programs like are the secret
of drawing realistic clouds, mountains, and other natural backgrounds with a computer.

If you want another challenging fractal project, try writing a program to produce
these fractal snowflakes:

If you’re interested in an intellectually rigorous exploration of turtle geometry, continuing
along the lines I’ve started here, read Abelson and diSessa (MIT Press,
1981). I learned many of the things in this chapter from them. It’s a hard book but
worth the effort.

The standard reference book on fractals is by Benoit
Mandelbrot (W. H. Freeman, 1982). Dr. Mandelbrot gave fractals their name and was
the first to see serious uses for them.



print
first

hello h

11 Recursive Operations

A Simple Substitution Cipher

output effect.

cipher code

195

print first "hello

qwertyuiopasdfghjklzxcvbnm

So far, the recursive procedures we’ve seen have all been commands, not operations.
Remember that an operation is a procedure that has an rather than an In
other words, an operation computes some value that is then used as the input to some
other procedure. In the instruction

is a command, because it does something: It prints its input (whatever that may
be) on the screen. But is an operation, because it computes something: With the
word as input, it computes the letter , which is the first letter of the input.

I’m going to write a program to produce secret messages. The program will take an
ordinary English sentence (in the form of a Logo list) and change each letter into some
other letter. For example, we can decide to replace the letter E with the letter J every
time it occurs in the message. The program will need two inputs: the message and the
correspondence between letters. The latter will take the form of a word of 26 letters,
representing the coded versions of the 26 letters in alphabetical order. For example, the
word

indicates that the letter A in the original text will be represented by Q in the secret
version, B will be represented by W, and so on.

In order to encipher a sentence, we must go through it word by word. (Strictly
speaking, what we’re doing is called a rather than a because the latter is a



The Lord
of the Rings.

196 Chapter 11 Recursive Operations

Codelet

codelet

Codelet
codematch

codematch

output
codelet codematch
codelet

codematch

first codematch first

codematch equalp true
codematch :code

codematch

Codematch

to codelet :letter :code
output codematch :letter "abcdefghijklmnopqrstuvwxyz :code
end

to codematch :letter :clear :code
if emptyp :clear [output :letter] ; punctuation character
if equalp :letter first :clear [output first :code]
output codematch :letter butfirst :clear butfirst :code
end

if equalp :letter first :clear ...

system that substitutes something for an entire word at a time, like a foreign language,
whereas we’re substituting for a single letter at a time, like the Elvish alphabet in

) In order to encipher a word we must go through it letter by letter. So I’ll
begin by writing a procedure to translate a single letter to its coded form.

is an operation that takes two inputs. The first input must be a single-letter
word, and the second must be a code, that is, a word with the 26 letters of the alphabet
rearranged. The output from is the enciphered version of the input letter. (If
the first input is a character other than a letter, such as a punctuation mark, then the
output is the same as that input.)

itself is a very simple procedure. It simply passes its two inputs on to
a subprocedure, , along with another input that is the alphabet in normal
order. The idea is that will compare the input letter to each of the letters in
the regular alphabet; when it finds a match, it will output the letter in the corresponding
position in the scrambled alphabet. Be sure you understand the use of the
command in ; it says that whatever outputs should become the
output from as well.

The job of is to go through the alphabet, letter by letter, looking for the
particular letter we’re trying to encode. The primary tool that Logo provides for looking
at a single letter in a word is . So uses to compare its input
letter with the first letter of the input alphabet:

If the first input to is the letter A, then will output and
will output the first letter of (Q in the example I gave earlier). But

suppose the first input isn’t an A. Then has to solve a smaller subproblem:
Find the input letter in the remaining 25 letters of the alphabet. Finding a smaller, similar
subproblem means that we can use a recursive solution. invokes itself, but



A Simple Substitution Cipher 197

butfirst

codematch

codematch

first
butfirst

codelet codematch

codelet

codeword

codematch "e "abcdefghijklmnopqrstuvwxyz "qwertyuiopasdfghjklzxcvbnm
codematch "e "bcdefghijklmnopqrstuvwxyz "wertyuiopasdfghjklzxcvbnm

codematch "e "cdefghijklmnopqrstuvwxyz "ertyuiopasdfghjklzxcvbnm
codematch "e "defghijklmnopqrstuvwxyz "rtyuiopasdfghjklzxcvbnm

codematch "e "efghijklmnopqrstuvwxyz "tyuiopasdfghjklzxcvbnm
codematch outputs "t

codematch outputs "t
codematch outputs "t

codematch outputs "t
codematch outputs "t

to codelet :letter :code ;; command version
codematch :letter "abcdefghijklmnopqrstuvwxyz :code
end

to codematch :letter :clear :code ;; command version
if emptyp :clear [print :letter stop]
if equalp :letter first :clear [print first :code stop]
codematch :letter butfirst :clear butfirst :code
end

for its second and third inputs it uses the s of the original inputs because the
first letter of the alphabet (A) and its corresponding coded letter (Q) have already been
rejected.

Here is a trace of an example of at work, to help you understand what’s
going on.

The fifth, innermost invocation of succeeds at matching its first input (the
letter E) with the first letter of its second input. That invocation therefore outputs the
first letter of its third input, the letter T. Each of the higher-level invocations outputs the
same thing in turn.

The pattern of doing something to the of an input, then invoking the same
procedure recursively with the as the new input, is a familiar one from
recursive commands. If we only wanted to translate single letters, we could have written

and as commands, like this:

You may find this version a little easier to understand, because it’s more like the recursive
commands we’ve examined in the past. But making an operation is a much
stronger technique. Instead of being required to print the computed code letter, we can
make that letter part of a larger computation. In fact, we have to do that in order to
encipher a complete word. Each word is made up of letters, and the task of



198 Chapter 11 Recursive Operations

codelet
codelet

codeword

codeword map

map

codeword

first print codelet
butfirst Codeword

code

codeword
output stop

print one.per.line one.per.line

to codeword :word :code ;; using higher order function
output map [codelet ? :code] :word
end

to one.per.line :word
if emptyp :word [stop]
print first :word
one.per.line butfirst :word
end

to codeword :word :code
if emptyp :word [output "]
output word (codelet first :word :code) (codeword butfirst :word :code)
end

will be to go through a word, letter by letter, using each letter as input to . The
letters output by must be combined into a new word, which will be the output
from .

We could write using the higher order function :

But to help you learn how to write recursive operations, in this chapter we’ll avoid higher
order functions. (As it turns out, itself is a recursive operation, written using the
techniques of this chapter.)

Recall the structure of a previous procedure that went through a word letter by letter:

Compare this to the structure of the recursive :

There are many similarities. Both procedures have a stop rule that tests for an empty
input. Both do something to the of the input (either or ), and
each invokes itself recursively on the of the input. ( has an extra
input for the code letters, but that doesn’t really change the structure of the procedure.
If that’s confusing to you, you could temporarily pretend that is a global variable
and eliminate it as an input.)

The differences have to do with the fact that is an operation instead of a
command. The stop rule invokes rather than and must therefore specify
what is to be output when the stop condition is met. (In this case, when the input word
is empty, the output is also the empty word.) But the main thing is that the action step
(the in ) and the recursive call (the instruction)



hello

CODEWORDCODELET

WORD

i tssg

itssg

its

A Simple Substitution Cipher 199

print codeword "hello "qwertyuiopasdfghjklzxcvbnm

codelet first :word :code

codeword butfirst :word :code

?
itssg

codeword
word

output codeword output
word

word
word

word

codeword

word
output

codeword

print codeword

output codeword print
codeword

are not two separate instructions in . Instead they are expressions (the two in
parentheses) that are combined by to form the complete output. Here’s a picture:

Remember what you learned in Chapter 2 about the way in which Logo instructions
are evaluated. Consider the instruction in . Before can be
invoked, Logo must evaluate its input. That input comes from the output from .
Before can be invoked, Logo must evaluate inputs. There are two of them. The
first input to is the expression

This expression computes the coded version of the first letter of the word we want to
translate. The second input to is the expression

This expression invokes recursively, solving the smaller subproblem of trans-
lating a smaller word, one with the first letter removed. When both of these computations
are complete, can combine the results to form the translation of the complete
input word. Then can output that result.

Here’s an example of how is used.

Notice that we have to say , not just start the instruction line with ; a
complete instruction must have a command. Suppose you had the idea of saving all
that typing by changing the instruction in to a . What would
happen? The answer is that wouldn’t be able to invoke itself recursively as an
operation. (If you don’t understand that, try it!) Also, it’s generally a better idea to write



☞

More Procedure Patterns

combiner

200 Chapter 11 Recursive Operations

code
codeword

code

codeword code

code
sentence

word code

Code codeword
map

word sentence
sentence

fput Fput
fput

print code [meet at midnight, under the dock.] ~
"qwertyuiopasdfghjklzxcvbnm

procedure

combiner something procedure

to code :sent :code
if emptyp :sent [output []]
output sentence (codeword first :sent :code) (code butfirst :sent :code)
end

?

dttz qz dorfouiz, xfrtk zit rgea.

to :input
if emptyp :input [output :input]
output ( first :input) ( butfirst :input)
end

an operation when you have to compute some result. That way, you aren’t committed to
printing the result; you can use it as part of a larger computation.

For example, right now I’d like to write a procedure that translates an entire
sentence into code. Like , it will be an operation with two inputs, the second
of which is a code (a word of 26 scrambled letters). The difference is that the first input
will be a sentence instead of a word and the output will also be a sentence.

Write using a higher order function. Then see if you can write an equivalent
recursive version.

Just as works by splitting up the word into letters, will work by
splitting up a sentence into words. The structure will be very similar. Here it is:

The main differences are that outputs the empty list, instead of the empty word,
for an empty input and that is used as the combining operation instead of

. Here’s an example of at work.

and are examples of a very common pattern in recursive operations:
They are like using with a particular function. Here is the pattern that they fit.

The is often or , although others are possible. In fact, when
working with lists, the most common combiner is not but another operation
that we haven’t used before, (First PUT). takes two inputs. The first can be
any datum, but the second must be a list. The output from is a list that is equal to
the second input, except that the first input is inserted as a new first member. In other



☞

☞

shape

almost

two

More Procedure Patterns 201

?
[hee hee hee ho ho ho]
?
[[hee hee hee] ho ho ho]

?
[nowhere hereafter afterglow glowworm wormhole]

show sentence [hee hee hee] [ho ho ho]

show fput [hee hee hee] [ho ho ho]

show pairup [now here after glow worm hole]

fput first butfirst

Fput first
butfirst

fput

sentence fput code
fput sentence

Fput sentence
fput
sentence

list fput first butfirst last
butlast if

emptyp wordp output
my-sentence

lput
fput lput

last butlast my-lput
fput first butfirst

map map

map

Map map

words the output from is a list whose is the first input and whose
is the second input.

is a good combiner because the two things we want to combine are the and
the of a list, except that each has been modified in some way. But the of
the final result (a list of so many members) should be the same as the shape of the input,
and that’s what ensures.

When you’re working with sentences—lists of words rather than lists of lists—
and will work equally well as the combiner. For example, could

have been written using instead of . Not until some of the later examples,
when we use tree-structured lists, will the choice really be important.

is actually a “more primitive” operation than , in the sense that the
Logo interpreter actually constructs lists by doing the internal equivalent of . As an
exercise, you might like to try writing your own versions of list combiners like
and out of , , and . You should also be able to write
and using only those three building blocks. (Actually you’ll also need ,

, , and , but you won’t need any other primitive combiners.) Give
your versions distinct names, such as , since Logo won’t let you redefine
primitives.

Another “less primitive” primitive is , an operation that takes two inputs. As for
, the first can be any datum but the second must be a list. The output from

is a list whose is the first input and whose is the second. Write
using and the selectors and .

It may seem silly to learn a recursive pattern for problems that can be solved using
. But sometimes we run into a problem that’s like a , but not exactly. For

example, how would you write the following operation:

Instead of the usual -like situation in which each word in the result is a function of
one word of the input, this time each word of the result is a function of neighboring
input words. won’t solve this problem, but the -like recursion pattern will.



☞

☞

FilterThe Pattern

pairup

numbers

202 Chapter 11 Recursive Operations

show swap [the rain in spain stays mainly on the plain]

show filter "numberp [76 trombones, 4 calling birds, and 8 days]

show numbers [76 trombones, 4 calling birds, and 8 days]

to pairup :words
if emptyp butfirst :words [output []]
output (sentence (word first :words first butfirst :words)

(pairup butfirst :words))
end

?
[rain the spain in mainly stays the on plain]

?
[76 4 8]

to numbers :sent
if emptyp :sent [output []]
if numberp first :sent ~

[output sentence first :sent numbers butfirst :sent]
output numbers butfirst :sent
end

?
[76 4 8]

Compare this procedure with the general pattern on page 200; look for similarities and
differences.

One difference is in the test for the base case. Why is the version in different
from the one in the pattern?

Write an operation that interchanges pairs of words in a sentence, like this:

Don’t forget to think about that leftover word in an odd-length sentence!

In Chapter 5 we saw this example:

To write a recursive operation with the same result, we must handle three cases:
the base case, in which the input is empty; the case in which the first word of the input is
a number; and the case in which the first word isn’t a number.



☞

ReduceThe Pattern

three

The Pattern 203

filter

map

reduce

map

Reduce

procedure

predicate
combiner procedure

procedure

show unique [Paris in the the spring is a joy joy to behold.]

show reduce "word [C S L S]

show reduce "sum [3 4 5 6]

to :input
if emptyp :input [output :input]
if first :input ~

[output first :input butfirst :input]
output butfirst :input
end

?
Paris in the spring is a joy to behold.

?
CSLS
?
18

to wordify :sentence
if emptyp :sentence [output "]
output word (first :sentence) (wordify butfirst :sentence)
end

to addup :numbers
if emptyp :numbers [output 0]
output sum (first :numbers) (addup butfirst :numbers)
end

Here’s the general pattern:

As in the case of the pattern, this one is most useful in situations for which the higher
order function won’t quite do.

Write an operation that looks for two equal words next to each other in a sentence,
and outputs a sentence with one of them removed:

What does your procedure do with consecutive equal words? What should it do?

Other examples from Chapter 5 introduced the higher order function.

Recursive operations equivalent to these examples are very much like the pattern
except that the combiner function is applied to the members of the input directly, rather
than to some function of the members of the input:



☞

☞

identity

204 Chapter 11 Recursive Operations

procedure
identity

combiner procedure

sum product

multiply

multiply

filter reduce

Addup reduce
sum

count

butfirst

count

to :input
if emptyp :input [output ]
output (first :input) ( butfirst :input)
end

to length :thing
if emptyp :thing [output 0]
output 1+length butfirst :thing
end

to vowelcount :word
if emptyp :word [output 0]
if vowelp first :word [output 1+vowelcount butfirst :word]
output vowelcount butfirst :word
end

What are the differences between these two examples? There are two: the combiner
used and the value output in the base case. Here is the pattern:

The in this pattern depends on the combiner; it’s the value that, when
combined with something else, gives that something else unchanged as the result. Thus,
zero is the identity for , but the identity for would be one.

Write a operation that takes a list of numbers as its input and returns the
product of all the numbers.

You can make your procedure more efficient, in some situations, by
having it notice when one of the numbers in the input list is zero. In that case, you can
output zero as the overall result without looking at any more numbers. The resulting
procedure will, in a sense, combine aspects of the and patterns.

is one example of an important sub-category of -like procedures in
which the “combining” operation is arithmetic, usually . The simplest example is a
procedure equivalent to the primitive , which counts the members of a list or the
letters of a word:

In this procedure, as usual, we can see the reduction of a problem to a smaller subproblem.
The length of any word or list is one more than the length of its . Eventually
this process of shortening the input will reduce it to emptiness; the length of an empty
word or list is zero.

Although is a primitive, there are more complicated counting situations in
which not every member should be counted. For example, here is a procedure to count
the number of vowels in a word:



☞

☞

FindThe Pattern

is

selection

The Pattern 205

vowelp

vowelcount length
length true

if

$21,997.00

item
index

filter

Find

procedure

predicate procedure
procedure

print index "seven [four score and seven years ago]

print index "v "aardvark

procedure

predicate something
procedure

to vowelp :letter
output memberp :letter [a e i o u]
end

to :input
if emptyp :input [output 0]
if first :input [output 1+ butfirst :input]
output butfirst :input
end

?
4
?
5

to :input
if emptyp :input [output :input]
if first :input [output first :input]
output butfirst :input
end

(Actually, my predicate is somewhat oversimplified. The letter Y is a vowel in
certain positions in the word, and even some other letters can sometimes play the role of
a vowel. But this isn’t a book on linguistics!)

You can see the similarities between and . The difference is
that, in effect, uses a predicate that is always , so it always carries out the
instruction inside the . Here’s the pattern:

Try writing a procedure that will accept as input a word like and
output the number of digits before the decimal point. (In this case the correct output
is 5.) Don’t assume that there a decimal point; your program shouldn’t blow up no
matter what word it gets as input.

Another counting problem is to output the position of a member in a list. This
operation is the inverse to , a Logo primitive, which outputs the member at a given
position number. What I’m asking you to write is , which works like this:

A variation of the pattern is for operations: ones that pick a single
element out of a list. The general idea looks like this:



french

Codematch
butfirst

print french "computer

something

predicate;

206 Chapter 11 Recursive Operations

to french :word
output lookup :word [[book livre] [computer ordinateur] [window fenetre]]
end

to lookup :word :dictionary
if emptyp :dictionary [output "]
if equalp :word first first :dictionary [output last first :dictionary]
output lookup :word butfirst :dictionary
end

?
ordinateur

first first :dictionary

last first :dictionary

output first :input

output "true

There will generally be extra inputs to these procedures, to indicate the basis for selection.
For example, here is a program that translates English words into French.

The expression

selects the English word from the first word-pair in the list. Similarly,

selects the French version of the same word. (Of course, in reality, the word list in
would be much longer than the three word-pairs I’ve shown.)

, in the example that started this chapter, follows the same pattern of
selection. The only difference is that there are two inputs that are ed in
parallel.

Somewhat similar to the selection pattern is one for a recursive the
difference is that instead of

for a successful match, the procedure simply says

in that case. This pattern is followed by predicates that ask a question like “Does any
member of the input do X?” For example, suppose that instead of counting the vowels



really

The Pattern 207

print about.computersp [this book is about programming]

true

emptyp
now nowhere

ascii

about.computersp

programming.
programming

Find

to hasvowelp :word
if emptyp :word [output "false]
if vowelp first :word [output "true]
output hasvowelp butfirst :word
end

to sort.beforep :word1 :word2
if emptyp :word1 [output "true]
if emptyp :word2 [output "false]
if (ascii first :word1) < (ascii first :word2) [output "true]
if (ascii first :word1) > (ascii first :word2) [output "false]
output sort.beforep butfirst :word1 butfirst :word2
end

?
true

in a word, we just want to know whether or not there is a vowel. Then we’re asking the
question “Is any letter in this word a vowel?” Here’s how to find out.

A more realistic example is also somewhat more cluttered with extra inputs and
sometimes extra end tests. Here’s a procedure that takes two words as input. It outputs

if the first word comes before the second in the dictionary.

The procedure will end on one of the tests if one of the input words is the
beginning of the other, like and . Otherwise, the procedure ends when two
letters are unequal. The recursion step is followed when the beginning letters are equal.
(The operation takes a one-character word as input, and outputs the numeric
value for that character in the computer’s coding system, which is called the American
Standard Code for Information Interchange.)

A combination of the translation kind of operation and the selection kind is
an operation that selects not one but several members of the input. For example,
you sometimes want to examine the words in a sentence in various ways but have
trouble because the sentence includes punctuation as part of some words. But the
punctuation isn’t part of the word. In Chapter 4, for instance, I defined a predicate

and gave this example of its use:

But if the example were part of a larger program, carrying on a conversation with a
person, the person would probably have ended the sentence with a period. The last
word would then have been (including the period). That word, which is
different from without the period, isn’t in the procedure’s list of relevant



☞

CascadeNumerical Operations: The Pattern

only

factorial

208 Chapter 11 Recursive Operations

false

Strip.word

Strip.word word

letterp

about.computersp strip

to strip :sent
if emptyp :sent [output []]
output sentence (strip.word first :sent) (strip butfirst :sent)
end

to strip.word :word
if emptyp :word [output "]
if letterp first :word ~

[output word (first :word) (strip.word butfirst :word)]
output strip.word butfirst :word
end

to letterp :char
output or (inrangep (ascii :char) (ascii "A) (ascii "Z)) ~

(inrangep (ascii :char) (ascii "a) (ascii "z))
end

to inrangep :this :low :high
output and (:this > (:low-1)) (:this < (:high+1))
end

words, so it would have output . The solution is to write a procedure that strips
the punctuation from each word of a sentence. Of course that’s a straightforward case of
the translation pattern, applying a subprocedure to each word of the sentence:

, though, is more interesting. It must select only the letters from a word.

is like the translation pattern in the use of the combining operation
in the middle instruction line. But it’s also like the selection pattern in that there are two
different choices of output, depending on the result of the predicate .

You might want to rewrite so that it uses . Consider an
initialization procedure.

Certain mathematical functions are defined in terms of recursive calculations. It used to
be that computers were used for numerical computation. They’re now much more
versatile, as you’ve already seen, but sometimes the old numerical work is still important.

The classic example in this category is the function. The factorial of a
positive integer is the product of all the integers from 1 up to that number. The factorial



☞

× × × ×

×

print fact 5

Numerical Operations: The Pattern 209

cascade

cascade
cascade #

fact

power cascade

Cascade

to fact :n ;; cascade version
output cascade :n [? * #] 1
end

?
120

to fact :n
if :n=0 [output 1]
output :n * fact :n-1
end

to power :base :exponent
output cascade :exponent [? * :base] 1
end

of 5 is represented as 5! so
5! = 1 2 3 4 5

We can use to carry out this computation:

In this example I’m using a feature of that we haven’t seen before. The
template (the second input to ) may include a number sign ( ) character,
which represents the number of times the template has been repeated. That is, it
represents 1 the first time, 2 the second time, and so on.

Here is a recursive version of that takes one input, a positive integer, and
outputs the factorial function of that number. The input can also be zero; the rule is that
0! = 1.

This procedure works because
5! = 5 4!

That’s another version of reducing a problem to a smaller subproblem.

Chapter 5 gives the following example:

Write a version of using recursion instead of using .

Another classic example, slightly more complicated, is the Fibonacci sequence. Each
number in the sequence is the sum of the two previous numbers; the first two numbers
are 1. So the sequence starts

1, 1, 2, 3, 5, 8, 13, . . .



≥− −n n n

n

0

1

1 2

fib

fib 4

fib 2 fib 4
fib 4 fib 3 fib 3 fib 2 fib 1

fib

F

F

F F F n

n F

list

210 Chapter 11 Recursive Operations

to fib :n
if :n<2 [output 1]
output (fib :n-1)+(fib :n-2)
end

fib 4
fib 3
fib 2
fib 1
fib 0

fib 1
fib 2
fib 1
fib 0

to fiblist :n
if :n<2 [output [1 1]]
output newfib fiblist :n-1
end

A formal definition of the sequence looks like this:

= 1,

= 1,

= + , 2.

Here’s an operation that takes a number as input and outputs .

That procedure will work, but it’s quite seriously inefficient. The problem is that it ends
up computing the same numbers over and over again. To see why, here’s a trace of what
happens when you ask for :

Do you see the problem? is computed twice, once because needs it directly
and once because needs and needs . Similarly, is
computed three times. As the input to gets bigger, this problem gets worse and
worse.

It turns out that a much faster way to handle this problem is to compute a of
all the Fibonacci numbers up to the one we want. Then each computation can take
advantage of the work already done. Here’s what I mean:



Pig Latin

print fiblist 5

n n.

Pig Latin 211

fib fiblist

fib

fiblist

:n-1
butfirst

item
item

index item item

to newfib :list
output fput (sum first :list first butfirst :list) :list
end

?
8 5 3 2 1 1

to fib :n
output first fiblist :n
end

to item :n :list
if equalp :n 1 [output first :list]
output item :n-1 butfirst :list
end

We can then define a faster in terms of :

Convince yourself that the two versions of give the same outputs but that the second
version is much faster. I’m purposely not going through a detailed explanation of this
example; you should use the analytical techniques you learned in Chapter 8. What
problem is trying to solve? What is the smaller subproblem?

The hallmark of numerical recursion is something like in the recursion step.
Sometimes this kind of recursion is combined with the style we’ve seen in
most of the earlier examples. Logo has a primitive operation called , which takes
two inputs. The first is a positive integer, and the second is a list. The output from
is the th member of the list if the first input is (Earlier I suggested that you write

, the opposite of .) If Logo didn’t include , here’s how you could write
it:

When I was growing up, every kid learned a not-very-secret “secret” language called Pig
Latin. When I became a teacher, I was surprised to find out that kids apparently didn’t
learn it any more. But more recently it seems to have come back into vogue. Translating
a sentence into Pig Latin is an interesting programming problem, so I’m going to teach
it to you.

Here’s how it works. For each word take any consonants that are at the beginning
(up to the first vowel) and move them to the end. Then add “ay” at the end. So
“hello” becomes “ellohay”; “through” becomes “oughthray”; “aardvark” just becomes



☞

☞

isn’t

is

212 Chapter 11 Recursive Operations

piglatin

plword code plword

vowelp
y
yarn y

try y

plword

piglatin

if vowelp first :word [output word :word "ay]

to plword :word
if vowelp first :word [output word :word "ay]
output plword word butfirst :word first :word
end

output plword butfirst :word

“aardvarkay.” (Pig Latin is meant to be spoken, not written. You’re supposed to practice
so that you can do it and understand it really fast.)

By now you can write in your sleep the operation , which takes a sentence
and outputs its translation into Pig Latin by going through the sentence applying a
subprocedure to each word. (It’s just like , only different.) It’s
that is the tricky part. The stop rule is pretty straightforward:

If the first letter a vowel, what we want to do is move that letter to the end and try
again. Here’s the complete procedure.

What makes this tricky is that the recursion step doesn’t seem to make the problem
smaller. The word is still the same length after we move the first letter to the end. This
would look more like all the other examples if the recursion step were

That would make the procedure easier to understand. Unfortunately it would also give
the wrong answer. What you have to see is that there something that is getting smaller
about the word, namely the “distance” from the beginning of the word to the first vowel.
Trace through a couple of examples to clarify this for yourself.

By the way, this will work better if you modify (which we defined earlier) so
that is considered a vowel. You’ll then get the wrong answer for a few strange words
like , but on the other hand, if you consider a consonant, you’ll get no answer at
all for words like in which is the only vowel! (Try it. Do you understand what goes
wrong?)

Some people learned a different dialect of Pig Latin. According to them, if the word
starts with a vowel in the first place, you should add “way” at the end instead of just “ay.”
Modify so that it speaks that dialect. (I think the idea is that some words simply
sound better with that rule.) Hint: You’ll want an initialization procedure.

The top-level procedure , which you wrote yourself, is a good candidate
for careful thought about punctuation. You don’t want to see



•
•
•

A Mini-project: Spelling Numbers

list

A Mini-project: Spelling Numbers 213

piglatin strip

isn’t

endpunct

plword
endpunct

number.name

print piglatin [what is he doing?]

print number.name 5513345

print number.name (fact 20)

?
atwhay isway ehay oing?day

atwhay isway ehay oingday?

?
five million five hundred thirteen thousand three hundred forty five
?
two quintillion four hundred thirty two quadrillion nine hundred two
trillion eight billion one hundred seventy six million six hundred
forty thousand

A good first attempt would be to modify to use , to get rid of the
punctuation altogether. But even better would be to remove the punctuation from each
word, translate it to Pig Latin, then put the punctuation back! Then we could get

That’s the right thing to do for punctuation at the end of a word, like a period or a
comma. On the other hand, the apostrophe inside a word like should be treated
just like a letter.

The project I’m proposing to you is a pretty tricky one. Here’s a hint. Write an
operation that takes a word as input and outputs a of two words, first the
“real” word full of letters, then any punctuation that might be at the end. (The second
word will be empty if there is no such punctuation.) Then your new can be
an initialization procedure that invokes a subprocedure with ’s output as its
input.

Write a procedure that takes a positive integer input, and outputs a
sentence containing that number spelled out in words:

There are some special cases you will need to consider:

Numbers in which some particular digit is zero

Numbers like 1,000,529 in which an entire group of three digits is zero.

Numbers in the teens.

Here are two hints. First, split the number into groups of three digits, going from
right to left. Also, use the sentence



☞

SubsetsAdvanced Recursion:

print number.name 1428425

stub

does

larger

214 Chapter 11 Recursive Operations

fifteen 15

number.name

subsets

lit
lights hit

iht hit

lights
word

map

filter
reduce
subsets

[thousand million billion trillion quadrillion quintillion
sextillion septillion octillion nonillion decillion]

? ;; intermediate version
1 million 428 thousand 425

You can write this bottom-up or top-down. To work bottom-up, pick a subtask and
get that working before you tackle the overall structure of the problem. For example,
write a procedure that returns the word given the argument .

To work top-down, start by writing , freely assuming the existence of
whatever helper procedures you like. You can begin debugging by writing procedures
that fit into the overall program but don’t really do their job correctly. For example, as
an intermediate stage you might end up with a program that works like this:

We’ve seen that recursive operations can do the same jobs as higher order functions,
and we’ve seen that recursive operations can do jobs that are similar to the higher order
function patterns but not quite the same. Now we’ll see that recursive operations can do
jobs that are quite outside the bounds of any of the higher order functions in Chapter 5.

I’d like to write an operation that takes a word as input. Its output will be a
sentence containing all the words that can be made using letters from the input word, in
the same order, but not necessarily using all of them. For example, the word counts
as a subset of the word , but doesn’t count because the letters are in the
wrong order. (Of course the procedure won’t know which words are real English words,
so , which has the same letters as in the right order, count.)

How many subsets does have? Write them all down if you’re not sure. (Or
perhaps you’d prefer to count the subsets of a shorter word, such as , instead.)

A problem that follows the pattern is one in which the size of the output is the
same as the size of the input, because each member of the input gives rise to one member
of the output. A problem that follows the pattern is one in which the output is
smaller than the input, because only some of the members are selected. And the
pattern collapses all of the members of the input into one single result. The
problem is quite different from any of these; its output will be much than its input.

If we can’t rely on known patterns, we’ll have to go back to first principles. In Chapter
8 you learned to write recursive procedures by looking for a smaller, similar subproblem
within the problem we’re trying to solve. What is a smaller subproblem that’s similar to



are

Advanced Recursion: 215

lights

ights

lights ights

ights lits
its ights

"
(sentence ")

smaller make

Subsets

to subsets :word ;; incomplete
local "smaller
make "smaller subsets butfirst :word
output sentence :smaller (map [word (first :word) ?] :smaller)
end

to subsets :word
if emptyp :word [output (sentence ")]
local "smaller
make "smaller subsets butfirst :word
output sentence :smaller (map [word (first :word) ?] :smaller)
end

output sentence (subsets butfirst :word) ~
(map [word (first :word) ?] (subsets butfirst :word))

finding the subsets of ? How about finding the subsets of its butfirst? This idea is
the same one that’s often worked for us before. So imagine that we’ve already found all
the subsets of .

Some of the subsets of subsets of . Which ones aren’t? The
missing subsets are the ones that start with the letter L. What’s more, the other letters in
such a subset form a subset of . For example, the word consists of the letter
L followed by , which is a subset of .

This procedure reflects the idea I’ve just tried to explain. The subsets of a given word
can be divided into two groups: the subsets of its butfirst, and those same subsets with the
first letter of the word stuck on the front.

The procedure lacks a base case. It’s tempting to say that if the input is an empty
word, then the output should be an empty sentence. But that isn’t quite right, because
every word is a subset of itself, so in particular the empty word is a subset (the only subset)
of itself. We must output a sentence containing an empty word. That’s a little tricky to
type, but we can represent a quoted empty word as and so a sentence containing an
empty word is .

Why did I use the local variable and a instruction? It wasn’t strictly
necessary; I could have said

The trouble is that this would have told Logo to compute the smaller similar subproblem
twice instead of just once. It may seem that that would make the program take twice as
long, but in fact the problem is worse than that, because each smaller subproblem has a



☞

☞ TM

subsets

true

A Word about Tail Recursion

BEZO
URND
AKAJ
WEOE

?
true
?
false

some

216 Chapter 11 Recursive Operations

print findword "zebra [bezo urnd akaj weoe]

print findword "radar [bezo urnd akaj weoe]

smaller subproblem of its own, and those would be computed four times—twice for each
of the two computations of the first smaller subproblem! As in the case of the Fibonacci
sequence we studied earlier, avoiding the duplicated computation makes an enormous
difference.

Problems like this one, in which the size of the output grows extremely quickly for
small changes in the size of the input, tend to be harder to program than most. Here
are a couple of examples. Like , each of these has a fairly short procedure
definition that hides a very complex computation.

On telephone dials, most digits have letters associated with them. In the United
States, for example, the digit 5 is associated with the letters J, K, and L. (The correspon-
dence is somewhat different in other countries.) You can use these letters to spell out
words to make your phone number easier to remember. For example, many years ago I
had the phone number 492-6824, which spells I-WANT-BH. Write a procedure that takes
a number as its input, and outputs a sentence of all the words that that number can
represent. You may want to test the program using numbers of fewer than seven digits!

In the game of Boggle , the object is to find words by connecting neighboring
letters in a four by four array of letters. For example, the array

contains the words ZEBRA, DONE, and DARK, but not RADAR, because each letter can
be used only once. Write a predicate procedure that takes a word and an array of letters
(in the form of a sentence with one word for each row) as inputs, and outputs if
and only if the given word can be found in the given array.

What I want to talk about in the rest of this chapter isn’t really very important, so you can
skip it if you want. But people think it’s important, so this is for those people.



output

tail recursive.

isn’t
directly

not

A Word about Tail Recursion 217

to one.per.line :thing
if emptyp :thing [stop]
print first :thing
one.per.line butfirst :thing
end

to poly :size :angle
forward :size
right :angle
poly :size :angle
end

to lookup :word :dictionary
if emptyp :dictionary [output "]
if equalp :word first first :dictionary [output last first :dictionary]
output lookup :word butfirst :dictionary
end

Every procedure invocation takes up a certain amount of computer memory, while
the procedure remains active, to hold things like local variables. Since a recursive
procedure can invoke itself many times, recursion is a fairly “expensive” technique to
allow in a programming language. It turns out that if the only recursion step in a
procedure is the very last thing the procedure does, the interpreter can handle that
procedure in a special way that uses memory more efficiently. You can then use as many
levels of recursive invocation as you want without running out of space. Such a procedure
is called It doesn’t make any difference to you as a programmer; it’s just a
matter of what’s happening inside the Logo interpreter.

A tail recursive command is very easy to recognize; the last instruction is an invocation
of the same procedure. Tail recursive commands are quite common; here are a couple
of examples we’ve seen before.

The thing is, many people are confused about what constitutes a tail recursive
operation. It one that is invoked recursively on the last instruction line! Instead, the
rule is that the recursive invocation must be used as the input to , not as
part of a larger computation. For example, this is a tail recursive operation:

But this is tail recursive:



1+

fact

output
fact

both and

218 Chapter 11 Recursive Operations

to length :thing
if emptyp :thing [output 0]
output 1+length butfirst :thing
end

to fact :n
if :n=0 [output 1]
output :n * fact :n-1
end

to fact :n
output fact1 :n 1
end

to fact1 :n :product
if :n=0 [output :product]
output fact1 (:n-1) (:n*:product)
end

It’s that that makes the difference.

It’s sometimes possible to change a nontail recursive operation into a tail recursive
one by tricky programming. For example, look again at :

This is not tail recursive because the input to the final comes from the
multiplication, not directly from . But here is a tail recursive version:

Indeed, this version can, in principle, compute the factorial of larger numbers than the
simpler version without running out of memory. In practice, though, the largest number
that most computers can understand is less than the factorial of 70, and any computer will
allow 70 levels of recursion without difficulty. In fact, not every Logo interpreter bothers
to recognize tail recursive operations. It’s a small point; I only mention it because some
people make a big fuss about tail recursion misunderstand what it means!



pairs

keyword

219

playfair

keyword

12 Example: Playfair Cipher

Program file for this chapter:

This project investigates a cipher that is somewhat more complicated than the simple
substitution cipher of Chapter 11. In the Playfair cipher, there is not a single translation
of each letter of the alphabet; that is, you don’t just decide that every B will be turned
into an F. Instead, of letters are translated into other pairs of letters.

Here is how it works. To start, pick a that does not contain any letter more
than once. For example, I’ll pick the word . Now write the letters of that word
in the first squares of a five by five matrix:

K E Y W O

R D

Then finish filling up the remaining squares of the matrix with the remaining letters of
the alphabet, in alphabetical order. Since there are 26 letters and only 25 squares, we
assign I and J to the same square.



WH YD ON TY OU

YI EA ES VK EZ

juice

WH
Y A B IJ WH

YI YJ

Y
W

Y E K

row

kind

220 Chapter 12 Example: Playfair Cipher

K E Y W O

R D A B C

F G H I J L

M N P Q S

T U V X Z

(Actually, when choosing the keyword, besides making sure that no letter appears twice
you must make sure that I and J do not both appear. For example, wouldn’t do as
a keyword.)

To encipher a message, divide it into pairs of letters. Pay no attention to punctuation
or to spaces between words. For example, the sentence “Why, don’t you?” becomes

Now, find each pair of letters in the matrix you made earlier. Most pairs of letters will
form two corners of a smaller square or rectangle within the matrix. For example, in my
matrix, the first pair of letters ( ) are at two corners of a two-by-three rectangle also
containing , , , and . The enciphering of the pair is the pair at the two other
corners of this rectangle, namely . (I could also have chosen , in this case.) It’s
important to be consistent about the order of the new pair: the one that comes first is
the one on the same as the first of the original pair. In this case, is on the same row
as . We can continue to translate the remaining pairs of letters in the same way, ending
up with

Notice that the letter turned into in the second pair of letters, but it turned into in
the fourth pair.

Part of the strategy for keeping a code secret is to hide even the of code being
used. Pairs of letters, to a cryptographer, are a dead giveaway that a Playfair cipher was



Q W
WQ

CO

CO
CO

CO LC
OZ

CO

EW YO WQ
BX

EE YY
DD

Q

do

Chapter 12 Example: Playfair Cipher 221

Yie ae, svkez.

CO ME TO TH EW IN DO W

LC NK ZK VF YO GQ CE BX

TH EB IG WH EE LQ

TH EB IG WH EQ EL

used, so it’s traditional to insert irrelevant spacing and punctuation in the actual written
version of the message, like this:

Of course the recipient of the message, knowing how the message was encoded, ignores
this spacing and punctuation.

As an illustration of some of the special cases that complicate this scheme, consider
the message, “Come to the window.” First we divide it up into pairs:

The first problem is that the message has an odd number of letters. To solve this problem
we simply add an extra letter at the end, generally . In this example, the final becomes
a pair .

If you look up the first pair of letters, , in my matrix, you’ll find that they do not
determine a rectangle, because they are in the same column. (Strictly speaking, they
determine a one-by-two rectangle, but the two diagonals are the same, so that would
be encoded as if we followed the usual rule.) For two letters in the same column, the
rule is to replace each letter by the one below it, so becomes . (If one of the letters
is at the end of the column, it is replaced by the top letter. So, for example, would
become .) Similarly, for two letters in the same row, each is replaced by the letter to its
right. We can now translate the entire message:

The pair , on a single row, has become ; the final pair , on a single column, has
become .

The final exceptional case is the one in which the same letter appears twice in a pair.
For example, the phrase “the big wheel” divides into

The pair is treated specially. It could be translated into (treating it as two letters in
the same row) or into (if you think of it as two letters in the same column). Instead,
though, the rule is to break up the pair by inserting a between the two letters. This
changes all the pairings after that one in the message. The new version is



be on the same row

pairs

222 Chapter 12 Example: Playfair Cipher

WH YJ YI
J

I J

E T A

K F
D Z Y K E O

T Y F
I IT D A Z T

E K Y
W E

B I J Q X I
Q X

GY FK VF ZK

GY HE
the them then VF TH

ZK TO
FK

RT
worth

or to

VF WD LH YJ WN OG

ZK DW KC SE XM ZK DW VF RV LQ VF WN ED MZ LW QE GY VF KD XF MP WC GO
BF MU GY QF UG ZK NZ IM GK FK GY ZS GQ LN DP AB BM CK OQ KL EZ KF DH
YK ZN LK FK EU YK FK KZ RY YD FT PC HD GQ MZ CP YD KL KF EZ CI ON DP
AC WK QS SY QL UN DU RU GY NS

This version can now be translated into

(Notice that I chose to translate into instead of into . You should use some
of each when coding a message. A cipher with no s at all, or one with a simple pattern
of and alternating, is another giveaway that the Playfair cipher was used.)

What about the frequencies of letters in a Playfair-encoded message? You can’t
simply say that the most common letters are likely to represent or or , because a
letter doesn’t represent a single letter that way. But it is still possible to say that a common
letter in the coded version is likely to as one of the frequent letters in
English. For example, here is a well-known text in Playfair-coded form:

The most commonly occurring letters in this coded text are (19 times), (12 times),
and (tied at 11), and (10 times). is on the same row as both and , and can

also represent in the same-column case. is also on the same row. can represent
(especially in the common pair ); can represent ; can represent . Of all the

letters that might represent , why should and be the popular ones? The answer is
that they have common letters in their columns as well. In order for to represent , for
example, the other letter of the (cleartext) pair must be , , , , or . Of these, only
is particularly common, and and are downright rare.

If you were trying to break a Playfair cipher, one approach you might take would be
to count the frequencies of of letters. For example, in the message above, the only
pairs that occur more than twice are , four times, and , , and , three times
each. It’s a good guess that each of these corresponds to a commonly occurring pair of
letters in English text. In fact, as it turns out, corresponds to , which is not only a
word by itself but also part of , , , and so on. corresponds to , an
extremely common pair; corresponds to , which is again a word in itself as well as a
constituent of many other words. The other pair that occurs three times in the text, ,
corresponds to . This is not such a common English pair, although it does come up in
words like . But it turns out that in the particular sample text I’m using, this pair
of letters comes up mostly as parts of two words, as in the combination .



Data Redundancy

playfair

Playfair

keyword

mditem

Have His Carcase,

Data Redundancy 223

print playfair "keyword [come to the window]?
lcnkzkvfyogqcebx

make "matrix {{k e y w o} {r d a b c} {f g h i l}
{m n p q s} {t u v x z}}

to letter :rowcol
output mditem :rowcol :matrix
end

* In the tic-tac-toe program, I used a one-dimensional array to represent the board, even though
a tic-tac-toe board is drawn in two dimensions. I could have used an array of three arrays of three
numbers each, but that wouldn’t really have fit with the way that program labels the board. In
tic-tac-toe, the nine squares are named 1 to 9. You ask to move in square 8, for example, not in
row 3, column 2. But in the Playfair program, the row and column numbers are going to be very
important.

If you want to know more about how to break a Playfair cipher, you can see an
example in a mystery novel by Dorothy L. Sayers. In this project, I’m
less ambitious: the program merely enciphers a message, given the keyword and the
cleartext as inputs. The first input to must be a word, the keyword. The
second input must be a list of words, the text. The keyword must meet the criterion of
no duplicated letters, and the cleartext input must contain only words of letters, without
punctuation. Here is an example:

is an operation whose output is a single word containing the enciphered
letters of the original text.

In writing this program, the first question I thought about was how to represent in a Logo
program the matrix of letters used in the coding process. The most natural structure is a
two-dimensional array—that is, an array with five members, each of which is an array of
five letters.* So if the keyword is then the program will, in effect, do this:

The position of a letter in the matrix is represented as a list of two numbers, the row
and the column. The Berkeley Logo procedure library includes an operation
that takes such a list as an input, along with a multi-dimensional array, and outputs the
desired member:



make "a [2 3]
make "w [1 4]
make "z [5 5]

redundant

space/time tradeoff;

224 Chapter 12 Example: Playfair Cipher

I J

keyword
T A T [5 1]
A [2 3]

[5 3] [2 1] letter
V R

Letter
letter

row.and.column

matrix make

matrix

(The actual procedure listed at the end of this section includes a slight complication to
deal with the case of and , but that’s not important right now.)

The Playfair process goes like this: The program is given two letters. It finds each
letter in the matrix, determines each letter’s row and column numbers, then rearranges
those numbers to make new row and column numbers, then looks in the matrix again to
find the corresponding letters. For example, suppose we are given the keyword
and the letters and . The first step is to translate into the row and column list ,
and to translate into . Then the program must combine the row of one letter
with the column of the other, giving the new lists and . Finally, the
procedure shown above will find the letters and in the matrix.

handles the last step of the translation process, but what about the first step?
We need the inverse operation of , one that takes a letter as input and provides
its row and column.

It would be possible to write a procedure that would examine
each letter in the matrix until it located the desired letter. But that procedure would
be both slow and complicated. Instead, I decided to keep information about
the matrix in the form of 26 variables, one for each letter, each of which contains the
coordinates of that letter. That is, the variables take the form

and so on. (As in the case of the variable named above, these instructions
are just illustrative. The actual program does not contain explicit data for this particular
matrix, using this particular keyword!)

The letter variables contain the same information as the variable . Strictly
speaking, they are not needed. By creating the redundant variables for the letters, I’ve
made a the extra variables take up room in the computer’s memory, but
the program runs faster. One of the recurring concerns of a professional programmer
is deciding which way to make such tradeoffs. It depends on the amounts of space and
time required and the amounts available. In this case, the extra space required is really
quite small, compared to the memory of a modern computer, so the decision is clear-cut.
For larger programming problems it is sometimes harder to decide.



lowercase reorderjtoi

remove

wordkeyword matrix

abcdefghiklmnopqrstuvwxyz

setkeyword

Composition of Functions

make
matrix

playfair

J
I

word
J

dataflow

Composition of Functions 225

setkeyword jtoi lowercase :keyword

make "matrix reorder word :word (remove :word "abcdefghiklmnopqrstuvwxyz)

to playfair :keyword :message
local [matrix a b c d e f g h i j k l m n o p q r s t u v w x y z]

output encode (reduce "word :message)
end

to setkeyword :word

make "j :i
end

Earlier I showed a instruction to put a particular coding matrix into the variable
. How does the program create a matrix for any keyword given as input? Here

are two of the relevant procedures:

The keyword that is provided by the user as one of the inputs to the toplevel
procedure goes through several stages as it is transformed into a matrix.

This diagram is very similar to a plumbing diagram from Chapter 2 turned on its
side. The format is a little different to put somewhat more emphasis on the inputs and
outputs, so you can follow the “flow” of information through the arrows.

In English, here’s what the diagram tells us. The keyword given by the user must
be converted to lower case letters. (I could have chosen to use capital letters instead;
the goal is to have some uniform convention.) If the keyword happens to contain a , it
will be represented within the program as an instead. Then, to make the matrix, we
combine (with ) two words: the keyword and the result of removing the keyword’s
letters from the alphabet (leaving out ). Finally, that combined word must be rearranged
into a five-by-five square.



226 Chapter 12 Example: Playfair Cipher

lowercase word
Jtoi

Remove

reorder
reorder reorder1

Reorder

J I

to jtoi :word
output map [ifelse equalp ? "j ["i] [?]] :word
end

to remove :letters :string
if emptyp :string [output "]
if memberp first :string :letters [output remove :letters bf :string]
output word first :string remove :letters bf :string
end

to reorder :string
output reorder1 :string (mdarray [5 5]) 1 1
end

to reorder1 :string :array :row :column
if :row=6 [output :array]
if :column=6 [output reorder1 :string :array :row+1 1]
mdsetitem (list :row :column) :array first :string
make first :string (list :row :column)
output reorder1 (butfirst :string) :array :row :column+1
end

The advantage of a view such as this one is that each of the small boxes in the diagram
has a relatively simple task. Indeed, and are primitive operations in
Berkeley Logo. is trivial:

is a straightforward recursive operation that outputs the result of removing one
group of letters from another group of letters.

The job of is somewhat messier. It must keep track of what row and column it’s
up to, so is just an initialization procedure for the recursive helper
that does the real work. also creates the two-dimensional Logo array to provide
another input to its helper procedure.

If I were filling in a matrix by hand, instead of writing a computer program, I’d
use a very different approach. I’d handle one letter at a time. First I’d go through the
keyword a letter at a time, stuffing each letter into the next available slot in the matrix.
(If necessary, I’d convert upper to lower case and to in the process.) Then I’d go
through the alphabet a letter at a time, saying “If this letter isn’t in the keyword, then
stuff it into the matrix.”

Many people would find it natural to use that same technique in writing a computer
program, also:



Composition of Functions 227

foreach
foreach not memberp

jtoi lowercase

jtoi
foreach

make "matrix mdarray [5 5]
local [row column]
make "row 1
make "column 1
foreach :keyword [stuff jtoi lowercase ?]
foreach "abcdefghiklmnopqrstuvwxyz ~

[if not memberp ? jtoi :keyword [stuff ?]]

to playfair :keyword :message ;; sequential version
local [matrix a b c d e f g h i j k l m n o p q r s t u v w x y z]

make "j :i
output encode (reduce "word :message)
end

to stuff :letter
mdsetitem (list :row :column) :matrix :letter
make :letter (list :row :column)
make "column :column+1
if :column=6 [make "row :row+1 make "column 1]
end

[stuff jtoi lowercase ?]

foreach "abcdefghiklmnopqrstuvwxyz ~
[if (ifelse equalp ? "i

[not (or (memberp "i :keyword)
(memberp "j :keyword))]

[not memberp ? :keyword])
[stuff ?]]

In this version, the first instruction handles the letters of the keyword.
The second instruction handles the rest of the alphabet. The
test handles the removal of the keyword letters from the alphabet.

My intent in writing this alternate version was to model my idea of how the problem
would be solved without a computer, processing one letter at a time. So, for example, in
the template

it’s worth noting that the operations and are being applied to single-
letter inputs, even though those operations were designed to accept words of any length
as a unit. I cheated, though, by applying to the entire keyword in the second

instruction. I was trying to make the program more readable; the honest
version would be



playfair

readlist

Conversational Front End

operations composition

conversational front end.

228 Chapter 12 Example: Playfair Cipher

to encode.big.message
local [keyword cleartext]
print [Welcome to the Playfair enciphering program.]
print [What keyword would you like to use?]
make "keyword first readlist
print [Now please enter your message, using as many lines as needed.]
print [When you’re done, enter a line containing only a period (.).]
make "cleartext []
read.big.message
print [Here is the enciphered version:]
print []
print playfair :keyword :cleartext
end

to read.big.message
local "line
make "line readlist
if equalp :line [.] [stop]
make "cleartext sentence :cleartext :line
read.big.message
end

Why am I subjecting you to this? My point is that what may seem to be the most
natural way to think about a problem—in this case, handling one letter at a time—may
not be the easiest, most elegant, or most efficient programming solution.

What makes the dataflow-structured version of possible is the use of
in Logo, and the of these operations by using the output from one

as the input to another. This is an important technique, but one that doesn’t seem to
come naturally to everyone. If you’re not accustomed to writing operations, I think it
really pays to train yourself into that habit.

It’s inconvenient to type a long message into the computer in the form of an input to
a procedure. Another approach would be a This is a procedure
that reads the cleartext message using , perhaps accepting the message over
several lines. It’s not hard to write:

Such a top-level procedure may be justified in a project like this, in which a very large
block of text may be used as a datum. But don’t get carried away. Programming languages
that don’t emphasize composition of functions encourage this sort of programming style,



☞

☞

Further Explorations

square

encode

encode

thing
paircode

only

compute

Further Explorations 229

to square :size
repeat 4 [forward :size right 90]
end

to square
local "size
print [Brian’s square program copyright 1985]
print [What size square would you like me to draw?]
make "size first readlist
repeat 4 [forward :size right 90]
print [Thank you, please come again.]
end

to the point where the part of the program that prompts the user and reads the data gets
to be longer than the part that does the actual computation. This preoccupation with
verbose conversation between the program and the user is sometimes justified by the
idea of “good human engineering,” but I don’t think that’s necessarily true. To take an
extreme case, consider the standard elementary school Logo procedure to draw a square:

Compare that to this “human engineered” version:

Not only is the first version (in my opinion) much more pleasant to use, but it is also
more powerful and flexible. The second version can be used as a top-level program,
carrying on a conversation with a human user. The first version can be run at top level,
but it can also be used as a subprocedure of a more complicated drawing program. If it’s
used at top level, some person types in a number, the size, as the input to on the
instruction line. If it’s used inside another procedure, that procedure can the
input.

I haven’t described the part of the program that actually transforms the message: the
procedure and its subprocedures. Read the listing at the end of the chapter,
then answer these questions:

Why does need two base cases?

What purpose is served by the four invocations of at the beginning of
procedure ?

Of course this program can be improved in many ways.



☞

☞

☞

☞

Program Listing

playfair

playfair

230 Chapter 12 Example: Playfair Cipher

Keywords may not have any letter repeated.

t has no value in paircode

to playfair :keyword :message
local [matrix a b c d e f g h i j k l m n o p q r s t u v w x y z]
setkeyword jtoi lowercase :keyword
output encode (reduce "word :message)
end

One straightforward improvement to this program would be to “bulletproof” it so
that it doesn’t die with a Logo error message if, for example, the user provides a bad
keyword. (Instead, the program should give its own message, making it clear what the
problem is. It’s better for the user to see

than

after making that mistake.) Also, what if the cleartext input contains words with characters
other than letters? The program should just ignore those characters and process the
letters in the words correctly.

Another fairly straightforward improvement would be to take the one long word
output by and turn it into a list of words with spacing and punctuation thrown
in at random. The goal is to have the result look more or less like an actual paragraph of
English text, except for the scrambled letters.

Another direction would be to work on deciphering a Playfair-coded message. There
are two problems here: the easy one, in which you know what the keyword is, and the
hard one, in which you know only that a Playfair cipher was used.

The procedure itself will almost work in the first case. It would work
perfectly were it not for the special cases of letters in the same row and column. It’s a
simple modification to handle those cases correctly. An interesting extension would be
to try to restore the original spacing by using a dictionary to guess where words end.

The much harder problem is to try to guess the keyword. I mentioned earlier some
ideas about the approaches you’d have to take, such as exploring the frequencies of use
of pairs of letters. If you want more advice, you’ll have to study books on cryptography.



Program Listing 231

;; Prepare the code array

to setkeyword :word
make "matrix ~

reorder word :word (remove :word "abcdefghiklmnopqrstuvwxyz)
make "j :i
end

to remove :letters :string
if emptyp :string [output "]
if memberp first :string :letters [output remove :letters bf :string]
output word first :string remove :letters bf :string
end

to reorder :string
output reorder1 :string (mdarray [5 5]) 1 1
end

to reorder1 :string :array :row :column
if :row=6 [output :array]
if :column=6 [output reorder1 :string :array :row+1 1]
mdsetitem (list :row :column) :array first :string
make first :string (list :row :column)
output reorder1 (butfirst :string) :array :row :column+1
end

;; Encode the message

to encode :message
if emptyp :message [output "]
if emptyp butfirst :message [output paircode first :message "q]
if equalp (jtoi first :message) (jtoi first butfirst :message) ~

[output word (paircode first :message "q) (encode butfirst :message)]
output word (paircode first :message first butfirst :message) ~

(encode butfirst butfirst :message)
end



232 Chapter 12 Example: Playfair Cipher

to paircode :one :two
local [row1 column1 row2 column2]
make "row1 first thing :one
make "column1 last thing :one
make "row2 first thing :two
make "column2 last thing :two
if :row1 = :row2 ~

[output letters (list :row1 rotate (:column1+1)) ~
(list :row1 rotate (:column2+1))]

if :column1 = :column2 ~
[output letters (list rotate (:row1+1) :column1) ~

(list rotate (:row2+1) :column1)]
output letters (list :row1 :column2) (list :row2 :column1)
end

to rotate :index
output ifelse :index = 6 [1] [:index]
end

to letters :one :two
output word letter :one letter :two
end

to letter :rowcol
output itoj mditem :rowcol :matrix
end

;; I and J conversion

to jtoi :word
output map [ifelse equalp ? "j ["i] [?]] :word
end

to itoj :letter
if :letter = "i [if (random 3) = 0 [output "j]]
output :letter
end



poker

13 Planning

styles top-down;

bottom-up;

233

Program file for this chapter:

The picture on page 234 shows some of the architecture on the University of California
campus at Berkeley. At the left of the picture is South Hall, one of the original campus
buildings, with red brick, ivy, and many chimneys. The white brick clock tower that
dominates the center of the picture is Sather Tower, popularly called the Campanile
after the building in Venice, Italy, on which it is modeled. Just to its left is Evans Hall,
the concrete fortress that houses the Mathematics Department. Andrews Hall, at the
very front of the picture, is a small, one-floor building with an unusually shaped roof.
Stephens Hall, mostly hidden by the trees behind Andrews, is a yellow-green zigzag.

Page 235 shows a similar view of the Stanford University campus in Palo Alto,
California. Compared to the Berkeley buildings, the ones you see here look very
uniform. At the left in the first photo is a corner of the Quadrangle, the central building
complex of the campus. The School of Education, down the path on the left, follows
the same pattern of rough tan stone with a sloping orange roof. The Meyer Library, at
the rear of the photo, follows the same color scheme, even though it’s obviously a more
recent building. The second photo shows the new School of Law. In this building the
architect has clearly worked to combine the same tan stone, orange roof theme with more
modern details: the texture of the stone is more uniform and the arches are less ornate.

Both of these campuses are the result of architectural planning, but they illustrate
two different of planning. The Stanford campus was planned first came
an overall concept and then the details to fill in that concept. The Berkeley campus
was planned each new building was designed to fit its architect’s idea of the
immediate, local situation. Some of the individual buildings are quite beautiful, but it’s
those buildings, rather than the campus as a unit, that attract attention.

(I’m oversimplifying, of course. In a strictly top-down approach, the entire campus
would be laid out on paper before any building was built. Adding new buildings later,



234 Chapter 13 Planning

University of California, Berkeley



Stanford University

Chapter 13 Planning 235



ttt playgame

236 Chapter 13 Planning

Structured Programming

to ttt
drawboard
choose.x.o
playgame
end

to playgame
move "x
if winp "x [stop]
move "o
if winp "o [stop]
playgame
end

even if they’re made to fit in with the old ones, means that the original plan was defective.
Instead of patching it up, a top-down purist would have the architects begin all over
again, allowing for more buildings from the beginning of the design process. And in
fact the original Berkeley campus was much more uniform than the campus today, but
very rapid growth led to widespread changes in the original plan. Still, the difference in
architectural planning styles is striking and suggestive.)

The same two planning strategies are possible in computer programming. Suppose
you want to write a program to play tic-tac-toe, as I did in Chapter 6. You can start by
saying, “Let’s see if I can draw the board.” You’d write a procedure to draw the four lines
that make up the tic-tac-toe grid. Then you might write procedures to draw an X and an
O in the right size for the boxes you’ve made. And so on. That would be a bottom-up
design. Alternatively, you might start by deciding on the major tasks that your program
will have to carry out. You might then write a top-level procedure like this:

In writing and , I’ve freely used subprocedures that I haven’t written yet.
Later I could fill in the gaps, writing procedures that will do exactly what’s needed to fill
their places in the main procedure.

In recent years the majority of computer scientists have adopted a school of thought
called structured programming. This phrase—the title of a 1972 book by O. J. Dahl,
Edsger Dijkstra, and C. A. R. Hoare—describes an uncompromising top-down philosophy
of programming. Structured programming is more than just the top-down idea, though;
it also includes rules for each step in the program development process. For example,
one potential problem with top-down programming is that it’s hard to test a procedure



Critique of Structured Programming

stubs

object oriented

compiled

Critique of Structured Programming 237

you’ve written until its subprocedures are written also. (By contrast, a subprocedure can
be tested before its superprocedures are written.) Structured programming solves this
problem by recommending the use of —preliminary versions of the subprocedures
that don’t really do the job but provide some result that allows the higher-level procedures
to be tested. For example, an operation that hasn’t been written yet might be replaced
by a stub that always outputs zero, or the empty list, or some other simple, appropriate
value.

More importantly, the structured programming approach tells us not to write any
procedures at all until we’ve first written a detailed specification of the how the program
should behave, and then a detailed plan of how it will be organized to achieve that goal.

The programming language Pascal was designed by Niklaus Wirth in 1970 to promote
a programming style and philosophy like that of structured programming. Pascal is meant
to teach a top-down structured style by providing just the tools needed for that approach
but making it hard to program in other styles. The widespread use of Pascal in college
programming courses reflects the popularity of the structured programming approach.

(As I am preparing the second edition of this book in 1995, Pascal is just beginning
to lose ground as a teaching language; several competing schools of thought about
programming have led to diverse language choices. The best known right now is the
language C++, which exemplifies an approach to program structure. Others
are Ada and Modula, two languages more or less in the Pascal tradition, and Scheme,
which is, like Logo, a dialect of Lisp and represents the artificial intelligence tradition.)

One area of computer science in which the top-down approach has not been accepted so
enthusiastically is artificial intelligence. AI researchers try to program computers to carry
out ill-defined, complex tasks (playing chess is a prototypical example) for which there
is no single, obvious method. In that kind of research project you can’t start by writing
down on paper a complete specification of how the finished program will be organized.
Instead you start with a more or less vague idea, you try programming it, and then you
play around with it to try to improve the results. That’s one reason why the majority of
AI programs are written in Lisp, a language that is interactive, so it encourages you to
“program at the keyboard.” Pascal, on the other hand, was designed to be a
language, in which you must write an entire program before you can carry out a single
instruction.

Logo, a dialect of Lisp, was developed by artificial intelligence researchers. Their
idea was to see if they could use some of their experience with the problem of trying to



238 Chapter 13 Planning

A Sample Project: Counting Poker Hands

* Home computers have become more powerful since I wrote that in 1984. I can now run Logo
in one window and edit the book in another window on the same computer.

get computers to think in order to help human beings learn to think more effectively—at
least about certain kinds of problems. You shouldn’t be surprised, therefore, to learn
that Logoites tend not to be enthusiastic about structured programming.

It’s not that we’re against planning. On the contrary! Planning is one of the
most fundamental problem-solving skills. But there are many kinds of planning. The
kind in which every part of your program’s behavior is written down before you begin
programming isn’t very realistic in many contexts. Even in the large-scale business or
government projects that structured programmers like to talk about, it’s very common
that the ultimate users of a program change their minds about how it should work, once
they have some experience with using it. The wise programmer will anticipate these
changing requirements in the original planning process. Still, one never anticipates
everything; a sensible person faced with an unexpected change in requirements will be
flexible enough to modify the initial plan, not start all over again. And it’s even more true
for people like you, who are just learning to program, that the “goal” of a programming
project is exploratory rather than predetermined.

Sometimes human lives depend on the correct operation of a computer program. In
one famous example, just about the time that the first edition of this book was published,
one person died and others were injured because the program controlling a medical
X-ray machine gave patients massive overdoses of radiation. Certainly, any programming
techniques that can help prevent such accidents are valuable. Still, the techniques
applicable to life-or-death programming situations are not necessarily the best techniques
for beginning learners, nor even for experienced researchers who are exploring a new
area rather than writing production programs.

To make all this more concrete, I’d like to show you an actual planning process for a
programming project. I’m going to write a Logo program and tell you what I’m doing as
I go along. I am sitting at a rather crowded desk; on my left is a microcomputer running
Logo, and on my right is the terminal with which I call up the large computer I use for
text editing. I’ll switch back and forth as I work.* Please understand that I’m not showing



A Sample Project: Counting Poker Hands 239

pokerhand [3s qc 3d 3h qd]

pokerhand [4c 7h 5d 3c 6d]

pokerhand [2h 10d 5s 6s 10s]

?
full house (threes and queens)
?
straight (seven high)
?
pair of tens
?

[a 2 3 4 5 6 7 8 9 10 j q k]

[h s d c]

to pokerhand :cards
if royal.flushp :cards [print [royal flush] stop]
if fourp :cards [print [four of a kind] stop]
if straight.flushp :cards [print [straight flush] stop]
...
print [I suggest you fold.]
end

you the Official Logo Programming Style. I’m showing you one way in which one Logo
programmer approaches a particular project.

The project I have in mind is to announce the value of a poker hand. That is, the
program should behave something like this:

In imagining this sample dialogue, I’m doing a kind of top-down planning. I’ve specified,
for example, the form in which I intend to represent a hand (a list of five cards) and a
card (a word combining a rank from

with a suit from

standing for hearts, spades, diamonds, and clubs). I suppose that means that I’ve decided
we’re playing five-card draw poker rather than seven-card stud. But later I may want to
think again about that choice. I’ve also written down a few of the specific messages the
program can print, although I’m much less certain about these. I may or may not actually
bother with the details in parentheses, for example.

Okay, how will the program work? I envision a series of tests for particular kinds of
poker hands. So in my head there is a vague procedure template like this:



An Initialization Procedure

once,

240 Chapter 13 Planning

if straightp

ranks suits pairs

Read.cards poker.init
pairs threes fours straights

flushes

:ranks :suits

to poker.init :cards ;; first edition version
make "ranks []
make "suits []
make "pairs []
make "threes []
make "fours []
read.cards :cards
end

This isn’t something I’m ready to type into my computer. I’m still thinking about how
the details are likely to work out. One thing that comes to mind is that, as it stands, there
will be a great duplication of effort. The test for a royal flush is just like the test for a
straight flush, plus a particular special condition (ace high). I shouldn’t really make that
test twice. For that matter the test for a straight flush is the test for a straight combined
with the test for a flush. I shouldn’t have another instruction starting
repeating the same test.

I also shouldn’t read through the list representing the hand a million times, each time
pulling out the rank without the suit or vice versa. It seems that I should begin by going
through the hand extracting various kinds of information into a bunch of variables.
I’ll probably have and , along with things like , which will list the
ranks that appear twice in the hand. I’m not sure exactly what variables I’ll need, but I
am now impatient to start programming. What I’m going to do is write an initialization
procedure to set up all this information.

In revising this chapter for the second edition, I find that I have very different ideas
about how to write this initialization procedure. But I think that it’s worthwhile, since this
is a chapter about planning a program and not about the finished product, to preserve
my original version and the reasoning that led me to write it. In the next section I’ll show
another approach.

, when I write it, will insert new members into the lists that
sets up as empty lists. Why , , and but not, for example,
and ? Pairhood is a property of just part of a hand, whereas straighthood is a
property of the entire hand. It doesn’t make sense to say that three of the five cards form
a straight. But the lists and will help in determining whether the hand
is a straight or a flush, respectively. For instance, a flush is a hand in which there is only



name

An Initialization Procedure 241

:suits
:threes :pairs

local

pokerhand local

read.cards

read.card

make fput

butlast first

10s first 1
butlast 10

insert
"ranks :ranks

make Make

to read.cards :cards
foreach :cards "read.card
end

to read.card :card
make "ranks fput butlast :card :ranks
make "suits fput last :card :suits
...

to read.card :card
insert butlast :card "ranks
insert last :card "suits
...

one suit, so if turns out to be a list of length one, the hand is a flush. A full
house is a hand with one rank listed in and another listed in .

I seem to be violating my own rules here, with all these explicit assignments to
variables that are not made . But of course the whole point of an initialization
procedure is that the variables will be used later by some other procedure, not this one
or one of its subprocedures. In a large project, it’s typical for an initialization procedure
to assign values to nonlocal variables. If I’m being careful, when I get around to writing
the top-level I’ll probably put instructions for these variables there.

I can write without thinking about it at all, and I hope you can too.
It’s one of the standard templates: “Do something to each member of a list.”

It’s not obvious what goes inside , but I can imagine some of the
instructions. So I’ll start writing it anyway.

Okay, time to do some thinking. I can see that there are going to be a lot of those
, instructions. I should have a subprocedure to handle it.

(By the way, do you see why I extract the rank of a card with rather than ?
It wouldn’t matter, except for the tens where the rank is two digits. That is, the ten of
spades is represented by the word . The of that word is the single digit ; its

is , the number we really want.)

I know that the second input to has to be the name of the variable (like
) and not the value of the variable (like ) because I’ve used techniques

like this before. That input is going to be used, among other things, as the first input to
a invocation. needs the of the variable in order to be able to change its



call by value call by name

always
before

Always make the most
restrictive test first.

242 Chapter 13 Planning

:ranks "ranks

pairs
pairs

:ranks
:ranks

:threes :fours
:ranks

stop

if
:threes stop if

:pairs :threes
:threes

fours

threes fours

:threes
:pairs

remove insert

if memberp butlast :card :ranks [insert butlast :card "pairs]

to read.card :card
insert last :card "suits
if memberp butlast :card :threes [insert butlast :card "fours stop]
if memberp butlast :card :pairs [insert butlast :card "threes stop]
if memberp butlast :card :ranks [insert butlast :card "pairs stop]
insert butlast :card "ranks
end

value. Although this particular notation is specific to Logo, most programming languages
have some way to distinguish between ( ) and ( )
or some similar mechanism to handle the special cases in which a subprocedure must be
able to modify a superprocedure’s variable.

What about and so on? The idea is that if I’ve seen this particular rank
before, I should insert it in :

But there’s a bug. If I put that instruction after the ones I’ve already written, the rank
will be found in because I’ve just put it there! Instead I have to put
this instruction the one that inserts into . In fact, the same problem will
arise with the other lists. I have to start by testing and inserting into ,
and work my way down to . This illustrates a general rule:

I learned that rule through hours of debugging earlier projects; now I
recognize the situation right away. Here’s the finished procedure:

The commands are just for efficiency. Suppose I’ve found a particular rank three
times already in this poker hand, and the card I’m looking at now is the fourth of the
same rank. Then the first will succeed, since the rank was already a member of

. If the command were omitted, I’d go on to the next instruction,
which would find the rank in and therefore insert it into . But that’s
unnecessary; if I’ve found the rank in , there is no need to insert it there again!
In other words, if I’m about to insert this card in the list of , there is no need to
check to see if it’s in the lists of smaller runs of the same rank. (Of course, it’s sort of
funny having and as lists, since there can’t be more than one of them in
a five-card poker hand! But this structure makes the instructions pleasingly similar.)

I notice another potential bug. When I add a rank to, for example, , I
don’t remove it from . So my data base will claim that I have a pair as well as
three of a kind. I could write a procedure analogous to , but my guess is
that it won’t be necessary. If I follow the “most restrictive test first” principle later in the



name

An Initialization Procedure 243

:pairs

butlast :card

insert

stop
:suits

item thing
thing

thing

make :list
make "list

list
threes

insert list fours
make insert

to read.card :card
local "rank
make "rank butlast :card
...

to insert :item :list
if memberp :item thing :list [stop]
make :list fput :item thing :list
end

insert butlast :card "fours

make "fours fput :item thing "fours

make "fours fput :item :fours

program, I’ll know I have three of a kind before I ever look at . If it turns out to
be a problem later, I’ll fix it then.

I’m slightly annoyed that this procedure computes so many times.
Perhaps it should be

But in fact I haven’t bothered making that change.

Finally, here is the missing subprocedure :

The first instruction is there to ensure that nothing is added to the same list twice. The
commands I mentioned earlier ought to ensure the same thing, except for the

list . But since I need the instruction for that case anyway, I’ll take a “belt and
suspenders” approach for all the lists.

The input that I’ve called here used to be called , because I was thinking,
“Insert a thing into a list.” But I found that using the procedure next to the
variable looked too confusing to me, even though it wouldn’t have bothered the
Logo interpreter.

I hope you noticed that the second instruction starts with rather than
. This is the indirect assignment technique that I mentioned briefly in

Chapter 3. Remember that the variable contains the of another variable, such
as . It is that second variable whose value is changed. For example,

invokes with an input whose name is and whose value is . In this
case, the instruction inside is equivalent to

or



244 Chapter 13 Planning

Second Edition Second Thoughts

ranks

Remdup

pairs threes fours

to poker.init :cards
make "ranks map "butlast :cards
make "suits remdup map "last :cards
...

to poker.init :cards ;; second edition version
make "ranks map [ranknum butlast ?] :cards
make "suits remdup map "last :cards
make "rankarray {0 0 0 0 0 0 0 0 0 0 0 0 0}
foreach :ranks [setitem ? :rankarray (item ? :rankarray)+1]
end

to ranknum :rank ;; turn rank to number
if :rank = "a [output 1]
if :rank = "j [output 11]
if :rank = "q [output 12]
if :rank = "k [output 13]
output :rank
end

I wrote the first edition using versions of Logo without higher order functions. These
functions can be written in Logo, and in fact I did write them later in the book, but I
wasn’t using them in this chapter. But in retrospect, the style of creating a variable named

whose value is an empty list, and then adding the rank of each card by reassigning
a new value to the variable, seems much harder to understand than this:

is an operation, primitive in Berkeley Logo, whose output is the same as its input,
but with duplicate members removed.

As for , , and , I think they are most easily replaced by an array
that keeps track of the number of times each rank appears in the hand.

Since I want to use the card’s rank as an index into an array, I have to use a number from
1 to 13 to represent the ranks inside the program, even though the person using the
program will still represent a rank in the more human-readable form of A for ace and so
on.



poker.init

Planning and Debugging

prove

Planning and Debugging 245

if not emptyp :fours ...

if memberp 4 :rankarray ...

{x o 3 x x 6 7 8 o}

[xo3 xx6 78o xx7 ox8 36o xxo 3x7]

Where the first version of the program would test for four of a kind with

this new version will say

Notice that my second thoughts are about low-level details of the program. I haven’t
changed my mind about the big idea, which is to have a procedure that
examines the hand and converts the information into a format in which the rest of the
program can use it more easily. This is the same idea I used in the tic-tac-toe program of
Chapter 6, in which I converted a human-readable “position” such as

into an internal list of “triples”:

From now on, I won’t show two versions of every procedure. I’ll use the revised data
representation, even though the chapter tells the story of how I wrote the older version
of the program.

Ideally, according to structured programming, you should never have to do any debug-
ging. You should start with a complete, clear program specification. Then you should
use the approved style to translate that specification into a program. Then you should
be able to mathematically that your program is correct! Debugging is a relic of the
dark ages.

That’s not the Logo approach. I’ve already done some debugging in this project.
Programming is sort of like real life: you don’t always get it right the first time. Structured
programmers don’t get it right the first time either; the difference is that Logoites aren’t
embarrassed about it. We think of debugging as part of the process of solving problems
in general.

If you’re a student in a school, the odds are that you aren’t often encouraged to
accept debugging as valuable. When you hand in a paper or a quiz, the teacher doesn’t



246 Chapter 13 Planning

Classifying Poker Hands

fourp royal.flushp

:cards

pokerhand

to fourp
output memberp 4 :rankarray
end

to threep
output memberp 3 :rankarray
end

to pairp
output memberp 2 :rankarray
end

to full.housep
output and threep pairp
end

to pokerhand :cards
poker.init :cards
if fourp [print [four of a kind] stop]
if full.housep [print [full house] stop]
if threep [print [three of a kind] stop]
if pairp [print ifelse paircount = 1 [one pair] [two pairs] stop]
print [something else]
end

point out errors and invite you to try again. Instead he marks your errors in red ink and
takes off points for them. You’re taught that your work has to be perfect the first time.
One of the strong contributions that computer programming in general, and Logo in
particular, has made to education is to provide one context in which you are shown a
more realistic approach to making and correcting mistakes.

The main thing remaining to be done in my project is the collection of predicates like
and to check for particular kinds of poker hands. I decided to

write some of the easy ones, namely the ones for multiples of the same rank.

These are all pretty obvious. Notice, though, that one thing has changed since my initial
idea: these procedures don’t take as an input. They don’t examine the poker
hand directly; they examine the variables set up by the initialization procedure.

Now I want to start putting all these pieces together, so I’m going to write a
preliminary version of .



pokerhand [ah 2c 4d 2s 6h]

evaluates

Classifying Poker Hands 247

memberp
locate :rankarray

locate

pokerhand

pokerhand
one

ifelse ifelse

to paircount
output count locate 2 1
end

to locate :number :index
if :index > 13 [output []]
if (item :index :rankarray) = :number ~

[output fput :index (locate :number :index+1)]
output locate :number :index+1
end

?
I don’t know how to one in pokerhand
[if pairp [print ifelse paircount = 1 [one pair] [two pairs] stop]]

[one pair]

if pairp [print ifelse paircount = 1 [[one pair]] [[two pairs]] stop]

If there’s a pair, I can’t simply use to find out how many pairs are in the hand.
Instead, the procedure looks at each member of and outputs a
list of all the ranks of which there are exactly two cards in the hand. For this purpose I
could have had output the number of pairs, which would be a little easier than
computing the list of ranks of pairs. But I recall that I want to be able to say things like
“pair of sevens,” and for that I’ll need the actual ranks.

Let’s try it:

Looks like a bug. (This really happened; I’m not just making it up to be able to talk about
debugging!) The first step in solving a problem like this is to read the error message
carefully. This message tells me that when the error happened, the immediately active
procedure was . So that’s where I should look for a mistake. (The exact form
of the message will be different in different versions of Logo, but they’ll all give you that
piece of information. In Berkeley Logo, the error message also includes the instruction
line in which the error occurred.) I then edited and looked for the word

. I found it in the list

which is one of the inputs to an operation. Aha! The trouble is that
whichever input is selected by its predicate input, so it’s trying to evaluate that

list as a Logo expression. What I meant was this:



☞

248 Chapter 13 Planning

[[one pair]] [one pair]
print

straightp
flushp

pokerhand royal.flushp
straightp

straightp

pokerhand [ah 2c 4d 2s 6h]

pokerhand [2h 5d 2s 2c 7d]

pokerhand [2h 5d 2s 2c 5h]

pokerhand [3h 4h 5h 6h 7h]

?
one pair
?
three of a kind
?
full house
?
something else

to flushp
output emptyp butfirst :suits
end

to straightp
output nogap (reduce "min :ranks) 5
end

to min :a :b
output ifelse :a < :b [:a] [:b]
end

to nogap :smallest :howmany
if :howmany=0 [output "true]
if not equalp (item :smallest :rankarray) 1 [output "false]
output nogap :smallest+1 :howmany-1
end

Now it should evaluate and come up with the value to use
as the input to . Let’s try again:

So far so good, but of course there is more work to do. We need to write ,
, and their combinations: straight flush and royal flush. I think I shouldn’t have

an instruction in testing as I originally planned; instead I
should test for and, if that’s true, look for special cases within that.

It’s not so obvious how to write . Here’s my plan: First, find the lowest-rank
card in the hand. Then, in order to have a straight, the next four ranks must also be
present in the hand.

This isn’t the only possible way to test for a straight; can you think of, and implement,
another?



Classifying Poker Hands 249

Nogap

:howmany

Straightp

pokerhand

straightp

straightp pairp
pokerhand

pokerhand

pokerhand [3h 6d 7h 5c 4d]

pokerhand [3h 6d 7h 5c 8d]

pokerhand [ah 2d 3c 4c 5h]

pokerhand [9d 10c jh qh kh]

pokerhand [js jh qs qh kd]

if straightp [print [straight] stop]

?
straight
?
something else

?
straight
?
straight
?
two pairs

if straightp [print ifelse flushp [[straight flush]] [[straight]] stop]

starts with the smallest rank in the hand and checks that there is exactly one
card in each of that and the next four ranks. It takes advantage of the fact that I’m
representing ranks internally as numbers; it can just add 1 to a rank to get the next one
in sequence. If reaches zero, it means that we have indeed found all five
consecutive ranks in the hand. If one of the five desired ranks isn’t in the hand, or if the
hand has more than one card in any of the ranks, then the hand isn’t a straight.

There is one problem with this approach. The ace can be used either high card
(10-J-Q-K-A) or low card (A-2-3-4-5) in a straight. thinks that the ace can
only be the low card. We’ll fix that later.

Now let’s try some other cases. I’ve just added the line

to . It doesn’t much matter where I put that line, because there is no danger
of a straight also being found as a multiple of any one rank. This instruction will be
changed, eventually, because we want to test for straight flush and so on. But for now this
will make it possible to debug .

I picked those examples pretty much at random. It’s a good idea, when testing a
procedure, to pick test cases “near the boundaries” of what the program is supposed to
accept. For example, what about an ace-low straight, or a king-high? What about a hand
in which “the next four ranks” don’t exist, because the lowest card is a Jack?

(Actually, that last example may never invoke at all, if the test for
comes first in .) Anyway, it looks okay. I could try more examples but I think
I believe it. I now decide that the instruction I just put into should be



250 Chapter 13 Planning

if flushp

nogap straightp

pokerhand

pokerhand [3h 6h ah kh 7h]

pokerhand [3h 6h ad kh 7h]

pokerhand [3h 6h 4h 5h 7h]

pokerhand [3h 6h 4h 5s 7h]

and that it should be followed by

(The instruction has to come second because of the principle of “most
restrictive first.” If that test came first, a straight flush would be reported as just a flush.)
Time for more tests:

Now it’s time to solve the problem of the ace-high straight. It turns out to be easy; if
the hand has an ace, then I can use , the subprocedure of that checks
for consecutive ranks, to check for the four ranks from 10 to king.

That’s the end of the categories of poker hands, but to put it all together requires a
little editing of :

if flushp [print [flush] stop]

?
flush
?
something else
?
straight flush
?
straight

to ace.highp
if not equalp (item 1 :rankarray) 1 [output "false]
output nogap 10 4
end

to pokerhand :cards
local [ranks suits rankarray]
poker.init :cards
if fourp [print [four of a kind] stop]
if full.housep [print [full house] stop]
if threep [print [three of a kind] stop]
if pairp [print ifelse paircount = 1 [[one pair]] [[two pairs]] stop]
if ace.highp [print ifelse flushp [[royal flush]] [[straight]] stop]
if straightp [print ifelse flushp [[straight flush]] [[straight]] stop]
if flushp [print [flush] stop]
print [nothing!]
end



☞

☞

Embellishments

Embellishments 251

pokerhand [ah 7s 3d 10c 7c]

pair of sixes one pair

sixes 6

pokerhand

one pair two
pairs

nothing queen high

if pokerhand threep

to plural :rank
output item :rank [aces twos threes fours fives sixes

sevens eights nines tens jacks queens kings]
end

if pairp [print ifelse paircount = 1
[sentence [pair of] plural first locate 2 1]
[[two pairs]]

stop]

?
pair of sevens

I’ve now done more or less what I set out to do. It took 14 procedures. I hope you have
a feeling for the process of switching back and forth between thinking about a particular
subproblem and thinking about the overall structure of the program.

I haven’t done every detail of what I first suggested. In particular, I don’t have the
information about particular ranks in what I print. I think perhaps that’s more effort
than this project seems worth to me. (I’m not just being cute by saying “to me”; the
point is that a real poker enthusiast might want to spend a lot of time on this program
and make it as beautiful as possible.) But just to show how a completed program can be
modified, I’ll make it print things like instead of just .

First I have to be able to find words like “ ” starting with a rank indicator like .

The next step is to change one instruction in to use this new tool:

(If you were confused about the double square brackets around and
before, seeing this new version in which one of the possibilities is the output from

a procedure, not a literal list, might help.)

If you’re motivated, you can modify the messages for other categories to include the
specific rank information. You might want to change “ ” to “ ,” for
example.

What if you wanted to use this program on a seven-card-stud hand? In other words,
instead of a list of five cards, you’d be given a list of seven, from which you’d have to pick
the best five. The main thing I can think of is that you’d have to be more careful about
the order of the instructions in . I’ve said that you can test either



play

252 Chapter 13 Planning

Putting the Project in a Context

straightp

pokerhand

[5 7 10]

first

poker

[3h 3s 3d 4d 5s 6h 7c]

[8s 9s 10s js qs kh ad]

to poker
deal.cards
bid
draw.more.cards
bid
pokerhand
end

before or after because they can’t both be true. But that’s not the case for a
seven-card hand:

If you try this challenge, make sure your program announces

as a straight flush, not as an ace-high straight.

I wrote this program because I was looking for an example for this book that would be
not too long, not too short. That’s kind of an artificial reason for starting a project. In
real life, if I wrote a program like this one, it would be part of a larger program that would
actually poker.

In that context the problem would become very different. We wouldn’t want merely
to print the designation of a hand; we’d want to be able to compare several hands and
announce a winner. To do that, we’d have to attach something like a numerical ranking
to the hand, which might become the output from . But it can’t be just a
single number; there are too many possible hands to have a list of all of them in rank
order. Instead, the ranking of a hand might be a list of numbers. might mean
that the hand is a full house (I’m guessing that that would rank about fifth in value), with
three sevens and two tens. To compare two lists of numbers, compare their s; if
those are equal, go on to compare the next members.

The point is that I’m now back to something approaching top-down planning. As the
scale of the project becomes a lot bigger, that kind of advance planning seems necessary.
But this isn’t really top-down because comparing two hands is just one subproblem of
playing poker. Really, according to the top-down view, I should start by designing the
top-level procedure . Perhaps a first attempt might look like this:



pokerhand

Program Listing

Program Listing 253

But it would be premature to type this into a computer. We have to think about issues
like these: Is the computer a player or does it just deal and bank for the other players?
How many people can play? What is a good strategy for bidding?

In the end it might turn out that the we’ve just written wouldn’t fit
into the larger project; it might have to be rewritten for that context. To a structured
programmer, the effort we’ve put in would then be wasted. But I think that even if every
procedure had to be edited, I’d benefit from having taken the time to understand how
to solve this subproblem.

to pokerhand :cards
local [ranks suits rankarray]
poker.init :cards
if fourp [print [four of a kind] stop]
if full.housep [print [full house] stop]
if threep [print [three of a kind] stop]
if pairp [print ifelse paircount = 1 [[one pair]] [[two pairs]] stop]
if ace.highp [print ifelse flushp [[royal flush]] [[straight]] stop]
if straightp [print ifelse flushp [[straight flush]] [[straight]] stop]
if flushp [print [flush] stop]
print [nothing!]
end

to poker.init :cards
make "ranks map [ranknum butlast ?] :cards
make "suits remdup map "last :cards
make "rankarray {0 0 0 0 0 0 0 0 0 0 0 0 0}
foreach :ranks [setitem ? :rankarray (item ? :rankarray)+1]
end

to ranknum :rank
if :rank = "a [output 1]
if :rank = "j [output 11]
if :rank = "q [output 12]
if :rank = "k [output 13]
output :rank
end

to fourp
output memberp 4 :rankarray
end



254 Chapter 13 Planning

to threep
output memberp 3 :rankarray
end

to pairp
output memberp 2 :rankarray
end

to full.housep
output and threep pairp
end

to paircount
output count locate 2 1
end

to locate :number :index
if :index > 13 [output []]
if (item :index :rankarray) = :number ~

[output fput :index (locate :number :index+1)]
output locate :number :index+1
end

to flushp
output emptyp butfirst :suits
end

to straightp
output nogap (reduce "min :ranks) 5
end

to min :a :b
output ifelse :a < :b [:a] [:b]
end

to nogap :smallest :howmany
if :howmany=0 [output "true]
if not equalp (item :smallest :rankarray) 1 [output "false]
output nogap :smallest+1 :howmany-1
end

to ace.highp
if not equalp (item 1 :rankarray) 1 [output "false]
output nogap 10 4
end



255

pour

14 Example: Pitcher Problem Solver

Program file for this chapter:

You have probably seen puzzles like this one many times:

You are at the side of a river. You have a three-liter pitcher and
a seven-liter pitcher. The pitchers do not have markings to allow
measuring smaller quantities. You need two liters of water. How
can you measure two liters?

These puzzles are used in some IQ tests, so many people come across them in schools. To
solve the problem, you must pour water from one pitcher to another. In this particular
problem, there are six steps in the shortest solution:

1. Fill the three-liter pitcher from the river.

2. Pour the three liters from the three-liter pitcher into the seven-liter pitcher.

3. Fill the three-liter pitcher from the river again.

4. Pour the three liters from the three-liter pitcher into the seven-liter pitcher (which
now contains six liters).

5. Fill the three-liter pitcher from the river yet again.

6. Pour from the three-liter pitcher into the seven-liter pitcher until the latter is full.
This requires one liter, since the seven-liter pitcher had six liters of water after step 4.
This step leaves two liters in the three-liter pitcher.

This example is a relatively hard pitcher problem, since it requires six steps in the
solution. On the other hand, it doesn’t require pouring water back into the river, and
it doesn’t have any unnecessary pitchers. An actual IQ test has several such problems,
starting with really easy ones like this:



−

pour [3 7] 4

pour [2 5 10] 1

people

x y

256 Chapter 14 Example: Pitcher Problem Solver

?
Pour from river to 7
Pour from 7 to 3
Final quantities are 3 4
?
Pour from river to 5
Pour from 5 to 2
Pour from 2 to river
Pour from 5 to 2
Final quantities are 2 1 0

You are at the side of a river. You have a three-liter pitcher and
a seven-liter pitcher. The pitchers do not have markings to allow
measuring smaller quantities. You need four liters of water. How
can you measure four liters?

and progressing to harder ones like this:

You are at the side of a river. You have a two-liter pitcher, a five-liter
pitcher, and a ten-liter pitcher. The pitchers do not have markings
to allow measuring smaller quantities. You need one liter of water.
How can you measure one liter?

The goal of this project is a program that can solve these problems. The program
should take two inputs, a list of pitcher sizes and a number saying how many liters we
want. It will work like this:

How do solve these problems? Probably you try a variety of special-purpose
techniques. For example, you look at the sums and differences of the pitcher sizes to
see if you can match the goal that way. In the problem about measuring four liters with
a three-liter pitcher and a seven-liter pitcher, you probably recognized right away that
7 3 = 4. A more sophisticated approach is to look at the remainders when one pitcher
size is divided by another. In the last example, trying to measure one liter with pitchers
of two, five, and ten liters, you might notice that the remainder of 5/2 is 1. That means
that after removing some number of twos from five, you’re left with one.

Such techniques might or might not solve any given pitcher problem. Mathemati-
cians have studied ways to solve such problems in general. To a mathematician, a pitcher
problem is equivalent to an algebraic equation in which the variables are required to take
on integer (whole number) values. For example, the problem at the beginning of this
chapter corresponds to the equation

3 + 7 = 2



−

−

x y

x
y

Diophantine

x y

Chapter 14 Example: Pitcher Problem Solver 257

In this equation, represents the number of times the three-liter pitcher is filled and
represents the number of times the seven-liter pitcher is filled. A positive value means
that the pitcher is filled from the river, while a negative value means that it’s filled from
another pitcher.

An equation with two variables like this one can have infinitely many solutions, but
not all the solutions will have integer values. One integer-valued solution is = 3 and

= 1. This solution represents filling the three-liter pitcher three times from the river
(for a total of nine liters) and filling the seven-liter pitcher once from the three-liter
pitcher. Since the seven-liter pitcher is bigger than the three-liter pitcher, it has to be
filled in stages. Do you see how this analysis corresponds to the sequence of steps I gave
earlier?

An equation with integer-valued variables is called a equation. In general,
a Diophantine equation will have infinitely many solutions, but they won’t all be practical
as solutions to the original problem. For example, another solution to the equation we’ve
been considering is = 4 and = 2. This solution tells us to fill the seven-liter pitcher
from the river twice, and the three-liter pitcher from the seven-liter pitcher four times.
Here’s how that works out as a sequence of steps:

1. Fill the seven-liter pitcher from the river.

2. Fill the three-liter pitcher from the seven-liter pitcher. (This leaves four liters in the
seven-liter pitcher.)

3. Empty the three-liter pitcher into the river.

4. Fill the three-liter pitcher from the seven-liter pitcher. (This leaves one liter in the
seven-liter pitcher.)

5. Empty the three-liter pitcher into the river.

6. Pour the contents of the seven-liter pitcher (one liter) into the three-liter pitcher.

7. Fill the seven-liter pitcher from the river (for the second and last time).

8. Fill the three-liter pitcher (which already had one liter in it) from the seven-liter
pitcher. (This leaves five liters in the seven-liter pitcher.)

9. Empty the three-liter pitcher into the river.

10. Fill the three-liter pitcher from the seven-liter pitcher. This leaves the desired two
liters in the seven-liter pitcher.

This solution works, but it’s more complicated than the one I used in the first place.



y

x

(–2, 1)

(3, –1)
2x+5y=1

−
−

x y

x y x x
y x y

258 Chapter 14 Example: Pitcher Problem Solver

One way to solve Diophantine equations is graphically. For example, consider the
problem about measuring one liter of water with pitcher capacities two, five, and ten
liters. It turns out that the ten-liter pitcher is not actually needed, so let’s forget it for
now and consider the simpler but equivalent problem of using just the two-liter and the
five-liter pitchers. This problem gives rise to the equation

2 + 5 = 1

For the moment, never mind that we are looking for integer solutions. Just graph the
equation as you ordinarily would. The graph will be a straight line; probably the easiest
way to draw the graph is to find the -intercept (when = 0, 2 = 1 so = 1/2) and the
-intercept (when = 0, = 1/5).

Once you’ve drawn the graph, you can look for places where the line crosses the grid
points of the graph paper. In this case, two such points of intersection are ( 2, 1) and
(3, 1). The first of these points represents the solution shown earlier, in which the
five-liter pitcher is filled from the river and then used as a source of water to fill the
two-liter pitcher twice. The second integer solution represents the method of filling the
two-liter pitcher from the river three times, then pouring the water from the two-liter
pitcher to the five-liter pitcher each time. (On the third such pouring, the five-liter
pitcher fills up after only one liter is poured, leaving one liter in the two-liter pitcher.)

What about the original version of this problem, in which there were three pitchers?



− −

[3 4]

Tree Search

What Is
Mathematics?

x y z

tree.

Tree Search 259

* You can find a computational algorithm to solve (or show that there are no solutions to)
any linear Diophantine equation with two variables on page 50 of Courant and Robbins,

(Oxford University Press, 1941).

In this case, we have a Diophantine equation with three variables:

2 + 5 + 10 = 1

The graph of this equation is a plane in a three-dimensional coordinate system. An
example of a solution point that uses all three pitchers is ( 2, 1, 1). How would you
interpret this as a series of pouring steps?

By the way, not all pitcher problems have solutions. For example, how could you
measure one liter with a two-liter pitcher and a ten-liter pitcher? The answer is that you
can’t; since both pitchers hold an even number of liters, any amount of water measurable
with them will also be even.*

My program does not solve pitcher problems by manipulating Diophantine equations.
Instead, it simply tries every possible sequence of pouring steps until one of the pitchers
contains the desired amount of water. This method is not feasible for a human being,
because the number of possible sequences is generally quite large. Computers are better
than people at doing large numbers of calculations quickly; people have the almost
magical ability to notice the one relevant pattern in a problem without trying all the
possibilities. (Some researchers attribute this human ability to “parallel processing”—the
fact that the human brain can carry on several independent trains of thought all at once.
They are beginning to build computers designed for parallel processing, and hope that
these machines will be able to perform more like people than traditional computers.)

The possible pouring steps for a pitcher problem form a The root of the tree
is the situation in which all the pitchers are empty. Connected to the root are as many
branches as there are pitchers; each branch leads to a node in which one of the pitchers
has been filled from the river. Each of those nodes has several branches connected to it,
corresponding to the several possible pouring steps. Here is the beginning of the tree
for the case of a three-liter pitcher and a seven-liter pitcher. Each node is represented in
the diagram by a list of numbers indicating the current contents of the three-liter pitcher
and the seven-liter pitcher; for example, the list means that the three-liter pitcher
is full and the seven-liter pitcher contains four liters.



[0 0]

[3 0] [0 7]

[0 3] [3 7] [3 4] [3 7]

[3 3] [0 4] [3 7]

[3 1][0 6]

7→
7

R
→

R

[0 0]

[0 0]   [0 0]   [0 0]   [3 0]   [0 0]   [0 0]   [0 7]   [0 0]   [0 0]

[3 0]   [0 0]   [3 0]   [3 0]   [3 0]   [3 0]   [3 7]   [0 3]   [0 0]

R
→

R

7→
7

R
→

7
R

→
7

3→
7

3→
7

7→
3

7→
3

3→
3

3→
3

R
→

3
R

→
3

7→
R

7→
R

3→
R

3→
R

260 Chapter 14 Example: Pitcher Problem Solver

Actually, I have simplified this tree by showing only the meaningful pouring steps. The
program must consider, and of course reject, things like the sequence

1. Fill the three-liter pitcher from the river.

2. Empty the three-liter pitcher into the river.

and individual meaningless steps like pouring from a pitcher into itself, pouring from an
empty pitcher, and pouring into a full pitcher. For a two-pitcher problem there are three
possible sources of water (the two pitchers and the river) and three possible destinations,
for a total of nine possible pouring steps. Here is the top of the full tree:

At each level of the tree, the number of nodes is multiplied by nine. If we’re trying
to measure two liters of water, a six-step problem, the level of the tree at which the
solution is found will have 531,441 nodes! You can see that efficiency will be an important
consideration in this program.



children

process
print process

Depth-first and Breadth-first Searching

to depth.first :node
process :node
foreach (children :node) "depth.first
end

searching

depth-first search breadth-first search.

Depth-first and Breadth-first Searching 261

In some projects, a tree is represented within the program by a Logo list. That’s not
going to be the case in this project. The tree is not explicitly represented in the program
at all, although the program will maintain a list of the particular nodes of the tree that
are under consideration at a given moment. The entire tree can’t be represented as a
list because it’s infinitely deep! In this project, the tree diagram is just something that
should be in your mind as a model of what the program is doing: it’s through
the tree, looking for a node that includes the goal quantity as one of its numbers.

Many programming problems can be represented as searches through trees. For example,
a chess-playing program has to search through a tree of moves. The root of the tree is
the initial board position; the second level of the tree contains the possible first moves by
white; the third level contains the possible responses by black to each possible move by
white; and so on.

There are two general techniques for searching a tree. These techniques are called
and In the first technique, the program explores all

of the “descendents” of a given node before looking at the “siblings” of that node. In
the chess example, a depth-first search would mean that the program would explore
all the possible outcomes (continuing to the end of the game) of a particular opening
move, then go on to do the same for another opening move. In breadth-first search, the
program examines all the nodes at a given level of the tree, then goes on to generate and
examine the nodes at the next level. Which technique is more appropriate will depend
on the nature of the problem.

In a programming language like Logo, with recursive procedures and local variables,
it turns out that depth-first search leads to a simpler program structure. Suppose that
we are given an operation called that takes a node as input and gives us as its
output a list of all the children (one level down) of that node. Suppose we also are given
a command called that takes a node as input and does whatever the program
needs to do for each node of the tree. (You can just use in place of if
you want to see what’s in the tree.) Here is how to do a depth-first search:



[TNT 9827]

[T 689827]

[TM 89827]

[TNU 9827]

[TN 89827]

[TNV 9827]

[TO 89827]

[U 689827]

[UM 89827] [UN 89827] [UO 89827]

[VNT 9827]

[V 689827]

[VM 89827]

[VNU 9827]

[VN 89827]

[VNV 9827]

[VO 89827]

[ 8689827]

show children [tnt 9827]

depth.first.

children
children

262 Chapter 14 Example: Pitcher Problem Solver

to children :node
if emptyp last :node [output []]
output map [child (first :node) ? (butfirst last :node)] ~

letters first last :node
end

to letters :digit
output item :digit [[] abc def ghi jkl mno prs tuv wxy]
end

to child :letters :this :digits
output list (word :letters :this) :digits
end

?
[[tntw 827] [tntx 827] [tnty 827]]

In this program, the structure of the tree is reflected in the structure of recursive
invocations of

It might be worthwhile to consider a specific example of how this program works.
One of the suggested activities in Chapter 11 was to write a program that takes a telephone
number as input and prints out all possible spellings of that number as letters. (Each
digit can represent any of three letters. To keep things simple, I’m going to ignore the
problem of the digits zero and one, which don’t represent any letters on telephone dials
in the United States.) Here is a partial picture of the tree for a particular telephone
number. Each node contains some letters and some digits. (In the program, a node will
be represented as a Logo list with two members, a word of letters and a word of digits.)
The root node is all digits; the “leaf” nodes will be all letters.

The operation must output a list of three nodes, selecting each of the
three possible letters for the first remaining digit. If the input to is a leaf node
(one with all letters), it must output the empty list to indicate that there are no children
for that node.



☞

process

process

queue,

Depth-first and Breadth-first Searching 263

to spell :number
depth.first list " :number
end

to process :node
if emptyp last :node [print :node]
end

spell 8689827

to process :node
print :node
end

to breadth.first :root
breadth.descend (list :root)
end

to breadth.descend :queue
if emptyp :queue [stop]
process first :queue
breadth.descend sentence (butfirst :queue) ~

(children first :queue)
end

The top-level procedure has to turn a number into a root node and invoke a depth-first
search:

What about the command? The program wants to print only leaf nodes:

Try this program. To get the tree illustrated above, use the instruction

Then try again, but investigate the order in which the program searches the nodes of the
tree by using a different version of :

This will let you see the order in which the program encounters the nodes of the tree.

Writing a breadth-first search is a little more complicated because the program must
explicitly arrange to process all the nodes of a given level before processing those at the
next level. It keeps track of the nodes waiting to be processed in a a list in which
new nodes are added at the right and the next node to be processed is taken from the
left. Here is the program:



Data Representation

children process

spell breadth.first
depth.first process

process

entire

shortest

state.

pourings.

264 Chapter 14 Example: Pitcher Problem Solver

This breadth-first search program uses the same and subprocedures
as the depth-first version. You can try a breadth-first listing of telephone number spellings
simply by changing the top-level procedure to invoke instead
of . What you’ll find is that (with the version of that only prints
leaf nodes) the two versions produce the same results, but the depth-first program trickles
the spellings out one by one, while the breadth-first version prints nothing for a long
time and then spits out all the spellings at once. If you use the version of that
prints all the nodes, you can see why.

The telephone number speller is an unusual example of a tree-search program for
two reasons. First, the tree is finite; we know in advance that it extends seven levels
below the root node, because a telephone number has seven digits. Second, the goal of
the program requires searching the tree. It’s more common that the program is
looking for a solution that’s “good enough” in some sense, and when a solution is found,
the program stops looking. For example, in the pitcher problem program, once we find
a sequence of steps to measure the desired amount of water, we don’t care if there is also
a second way to do it.

For the pitcher problem solver, I decided that a breadth-first search is appropriate.
The main reason is that I wanted to present the possible solution. To do that, first
I see if any one-step sequences solve the problem, then I see if any two-step sequences
solve it, and so on. This is a breadth-first order.

At first, I thought that I would represent each node of the tree as a list of numbers
representing the contents of the pitchers, as in the diagram I showed earlier. I called this
list of quantities a This information is enough to be able to generate the children
of a node. Later, though, I realized that when I find a winning solution (one that has
the goal quantity as one of the quantities in the state list) I want to be able to print not
only the final quantities but also the sequence of pouring steps used to get there. In
a depth-first search, this information is implicitly contained in the local variables of the
procedure invocations leading to the winning solution. In a breadth-first search, however,
the program doesn’t keep track of the sequence of events leading to a given node. I had
to remember this information explicitly.

The solution I chose was to have an extra member in the list representing a state,
namely a list of A pouring is a list of two numbers representing the source and
the destination of the water being poured. Zero represents the river; numbers greater



pour [3 7] 4

Abstract Data Types

fput

[0 2]
[2 1]

state

:state

:path

state.

path

Abstract Data Types 265

pour [2 5 10] 1

?
Pour from river to 7
Pour from 7 to 3
Final quantities are 3 4

[[[2 1] [0 2]] 3 4]

[3 4]

[[[2 1] [0 2]] 3 4]

than zero are pitcher numbers. (A pitcher number is not the same as the size of the
pitcher. If you enter the instruction

then the two-liter pitcher is pitcher number 1, the five-liter is number 2, and the ten-liter
is number 3.) The list of pourings is the first member of the expanded state list; pourings
are added to that list at the front, with . For example, in the interaction

the extended state information for the final solution state is

In this list, the sublist represents pouring water from the river into pitcher number
2, which is the seven-liter pitcher. The sublist represents pouring water from
pitcher number 2 into pitcher number 1.

Up to this point I’ve continued to call this expanded data structure a That’s what I
did in the program, also, until I found that certain procedures needed the new version,
while other procedures dealt with what I had originally considered a state, with only the
final quantities included in the list. As a result, my program had local variables named

in several procedures, some of which contained the old kind of state, and some
the new kind. I thought this might be confusing, so I did what I should have done in
the first place: I invented a new name for the expanded data structure. It’s now called a

; when you read the program you can confidently assume that represents a
list like

while represents a list like



abstract

266 Chapter 14 Example: Pitcher Problem Solver

first
fput oldpath

:from :to

newstate
fput

first fput
fput make.path

fput first

make.path

make "newpath fput (fput (list :from :to) first :oldpath) ~
(newstate butfirst :oldpath :from :to)

to make.path :moves :state
output fput :moves :state
end

to path.moves :path
output first :path
end

to path.state :path
output butfirst :path
end

make "newpath make.path (fput (list :from :to) path.moves :oldpath) ~
(newstate (path.state :oldpath) :from :to)

The trouble with using a list of lists of lists in a program is that it can become very
complicated to keep track of all the uses of selectors like and constructors like

. For example, suppose the value of the variable is a path, and we decide
to pour water from pitcher number to pitcher number . We now want to
construct a new path, which will include a new state (computed from the old state and the
two pitcher numbers) and a new list of moves, with the new move added to the existing
ones. We’d end up saying

assuming that we have a procedure that computes the new state. This
instruction is hard to read! The two invocations of have quite different purposes.
One adds a new move to a list of moves, while the other connects a list of moves to a state
in order to form a path. We can clarify instructions like this one if we make up synonyms
for procedures like and to be used in particular contexts. For example, we
make a new path using , but we’ll call it when we’re using it for that
purpose. Just as is a constructor, and a selector, for lists, we can invent
constructors and selectors for data types (ones that we make up, rather than ones
built into Logo) such as paths:

That unreadable instruction shown earlier would now be written this way:

At first glance this may not seem like much of an improvement, since the new names are
longer and less familiar than the old ones. But we can now read the instruction and see
that it calls a constructor with two inputs, one that seems to have to do with



☞

Sentence as a Combiner

Finding the Children of a Node

move

sentences

stack,

Finding the Children of a Node 267

sentence
Sentence

sentence
append Sentence

fput

first
fput

lput sentence
children

children

Pour breadth.first

to breadth.descend :queue
if emptyp :queue [stop]
process first :queue
breadth.descend sentence (butfirst :queue) (children first :queue)
end

moves, and the other that seems to have to do with states. If we remember that a path
has two parts, a list of moves and a state, this makes sense.

Invent a constructor and selectors for a data type.

The general breadth-first search program I showed earlier contains this procedure:

The most common use of is in generating English sentences. In that use, the
input and output lists are or flat lists. You’re supposed to think, “
takes two words or sentences as inputs; its output is a sentence containing all the words
of the inputs.” In this program, we’re using in a different way, more like what
is called in Lisp. Here you’re supposed to think, “ takes two lists as
inputs; its output is a list containing the members of the inputs.” Those members could
be words or lists, but in this case they’ll be lists, namely paths.

Recursive procedures that manipulate non-flat lists generally use as the
combiner. That wouldn’t work here for two reasons. First, the queue structure that we
need to implement breadth-first search requires that we add new entries at the opposite
end of the list from where we look for the next node to process. If we use to select
a node and to add new candidate nodes, then instead of a queue we’d be using a

in which the newest entries are processed first instead of the oldest ones first. That
would give us a depth-first tree search algorithm. We could solve that problem by using

as the combiner, but the second reason for choosing is that we don’t
generate new entries one at a time. Instead, gives us several children to add
to the queue at once. That means we must append the list output by to the
list that represents the nodes already queued.

is going to work essentially by invoking on a root node containing
zeros for all the current quantities. But in this case we want to pick a single node that



operation

268 Chapter 14 Example: Pitcher Problem Solver

breadth.first

winnerp true

breadth.first

pour

All.empty

Pour

breadth.first children

to breadth.first :root
output breadth.descend (list :root)
end

to breadth.descend :queue
if emptyp :queue [output []]
if winnerp first :queue [output first :queue]
output breadth.descend sentence (butfirst :queue) ~

(children first :queue)
end

to winnerp :path
output memberp :goal path.state :path
end

to pour :sizes :goal
win breadth.first make.path [] all.empty :sizes
end

to all.empty :list
output map [0] :list
end

satisfies the conditions of the problem, so we must modify to make it
an that outputs the first such node:

The predicate will output if its input is a node that satisfies the problem
conditions:

If runs out of nodes without finding a solution, it returns an empty list
to indicate failure.

Here is a simplified version of :

is an operation that outputs a state in which all of the values are zeros. The
number of zeros in the list is equal to the number of members in its input, which is
the number of pitchers. combines this initial state with an empty list of moves to
produce the first path.

To allow to work, we must have an operation called
that outputs a list of the children of a node. Starting from a particular state, what are the
possible outcomes of a single pouring? As I mentioned earlier, the source of a pouring
can be the river or any of the pitchers, and the destination can also be the river or any



2
n n n

n

n

Finding the Children of a Node 269

pitchers

child
child

children children1
:from :to

children1 sentence
map.se map

children sentence
children1

children1
child child

to children :path
output map.se [children1 :path ?] :pitchers
end

to children1 :path :from
output map.se [child :path :from ?] :pitchers
end

to child :path :from :to
output (list make.path (fput (list :from :to) path.moves :path)

(newstate (path.state :path) :from :to))
end

to children1 :path :from ;; simplified
output map [child :path :from ?] :pitchers
end

to child :path :from :to ;; simplified
output make.path (fput (list :from :to) path.moves :path) ~

(newstate (path.state :path) :from :to)
end

of the pitchers. If there are pitchers, then there are + 1 sources, + 1 destinations,
and therefore ( + 1) possible pourings. Here is how the program structure reflects this.
I’m assuming that we’ve created (elsewhere in the program) a variable called
whose value is a list of all the integers from zero to .

The version of presented here is simpler than the one in the actual project, but
the other procedures are the real versions. We’ll see later how is expanded. The
immediately important point is to see how and ensure that every
possible source ( ) and destination ( ) from zero to the number of pitchers are
used.

You should be wondering, at this point, why uses as a
combiner. (That’s what it means to use rather than .) It makes sense
for to combine using because, as I discussed earlier, the things
it’s combining are lists of nodes, the outputs from invocations of . But

is not combining lists of nodes; it’s combining the outputs from invocations
of . Each invocation of computes a single child node. It would be more
straightforward to write the program this way:



Computing a New State

270 Chapter 14 Example: Pitcher Problem Solver

if equalp :from :to [output []]

local "pitchers
make "pitchers fput 0 (map [#] :sizes)

list child
sentence

sentence children1
child

child
sentence

child

child sentence children1

pitchers pour

map
# map

#

child

to child :path :from :to

output (list make.path (fput (list :from :to) path.moves :path)
(newstate (path.state :path) :from :to))

end

to pour :sizes :goal

win breadth.first make.path [] all.empty :sizes
end

This also eliminates the use of in , needed in the other version to turn a
single node into a singleton (one-member) list of nodes, which is what needs
to function properly as a combiner.

The reason for the use of in is that we are later going to
modify so that sometimes it rejects a possible new node for efficiency reasons.
For example, it makes no sense to have nodes for pourings in which the source and
the destination are the same. When it wants to reject a node, will output the
empty list. Using as the combiner, this empty list simply doesn’t affect the
accumulated list of new nodes. Here is a version of modified to exclude pourings
to and from the same place:

With this version of , the use of in may seem more sensible
to you.

To create the variable we modify the top-level :

Here we are taking advantage of a feature of that I haven’t mentioned earlier. The
number sign ( ) can be used in a template to represent the position in the input,
rather than the value, of a member of the input data list. That is, is replaced by 1 for
the first member, 2 for the second, and so on. In this example, these position numbers
are all we care about; the template does not contain the usual question mark to refer to
the values of the data.

The job of is to produce a new child node, that is to say, a new path. Its inputs are
an old path and the source and destination of a new pouring. The new path consists of



Child

Computing a New State 271

fput (list :from :to) path.moves :path

to newstate :state :from :to
if riverp :to [output replace :state :from 0]
if riverp :from [output replace :state :to (size :to)]
if (water :from) < (room :to) ~

[output replace2 :state ~
:from 0 ~
:to ((water :from)+(water :to))]

output replace2 :state ~
:from ((water :from)-(room :to)) ~
:to (size :to)

end

to replace :list :index :value
if equalp :index 1 [output fput :value butfirst :list]
output fput first :list (replace butfirst :list :index-1 :value)
end

a new state and a new list of pourings. The latter is easy; it’s just the old list of pourings
with the new one inserted. computes that part itself, with the expression

The new state is harder to compute. There are four cases.

1. If the destination is the river, then the thing to do is to empty the source pitcher.

2. If the source is the river, then the thing to do is to fill the destination pitcher to its
capacity.

3. If source and destination are pitchers and the destination pitcher has enough empty
space to hold the contents of the source pitcher, then the thing to do is to add the
entire contents of the source pitcher to the destination pitcher, setting the contents
of the source pitcher to zero.

4. If both are pitchers but there is not enough room in the destination to hold the
contents of the source, then the thing to do is fill the destination to its capacity and
subtract that much water from the source.

Here is the procedure to carry out these computations:

Each instruction of this procedure straightforwardly embodies one of the four numbered
possibilities.

Helper procedures are used to compute a new list of amounts of water, replacing
either one or two old values from the previous list:



More Data Abstraction

show replace [a b c d e] 4 "x

two

272 Chapter 14 Example: Pitcher Problem Solver

Replace

Replace2

newstate
Newstate replace

replace

:from

newstate riverp
room

to replace2 :list :index1 :value1 :index2 :value2
if equalp :index1 1 ~

[output fput :value1 replace butfirst :list :index2-1 :value2]
if equalp :index2 1 ~

[output fput :value2 replace butfirst :list :index1-1 :value1]
output fput first :list ~

replace2 butfirst :list :index1-1 :value1 :index2-1 :value2
end

?
[a b c x e]

if riverp :to [output replace :state :from 0]

takes as inputs a list, a number representing a position in the list, and a
value. The output is a copy of the first input, but with the member selected by the second
input replaced with the third input. Here’s an example:

has a similar purpose, but its output has members changed from their
values in the input list.

Remember that has as one of its inputs a state, that is, a list of numbers
representing quantities of water. uses to change the amount of
water in one of the pitchers. The second input to is the pitcher number, and
the third is the new contents of that pitcher. For example, if the destination is the river
then we want to empty the source pitcher. This case is handled by the instruction

If the destination is the river, the output state is the same as the input state except that
the pitcher whose number is has its contents replaced by zero. The other cases
are handled similarly, except that two replacements are necessary if both source and
destination are pitchers.

The instructions in use some procedures I haven’t written yet, such as
to test whether a source or destination is the river, and to find the amount of empty
space in a pitcher. If we think of a pitcher as an abstract data type, then these can be
considered selectors for that type. Here they are:



Printing the Results

Printing the Results 273

newstate

breadth.first pour win
Win

win reverse

To underscore the importance of data abstraction, here is what would
look like without these selectors. (I actually wrote it this way at first, but I think you’ll
agree that it’s unreadable.)

When finds a winning path, the top-level procedure invokes
with that path as its input. ’s job is to print the results. Since the list of moves is
kept in reverse order, uses the Logo primitive operation to ensure that the
moves are shown in chronological order.

to riverp :pitcher
output equalp :pitcher 0
end

to size :pitcher
output item :pitcher :sizes
end

to water :pitcher
output item :pitcher :state
end

to room :pitcher
output (size :pitcher)-(water :pitcher)
end

to newstate :state :from :to
if equalp :to 0 [output replace :state :from 0]
if equalp :from 0 [output replace :state :to (item :to :sizes)]
if ((item :from :state) < ((item :to :sizes)-(item :to :state))) ~

[output replace2 :state ~
:from 0 ~
:to ((item :from :state)+(item :to :state))]

output replace2 :state ~
:from ((item :from :state)-

((item :to :sizes)-(item :to :state))) ~
:to (item :to :sizes)

end



pour

newstate
room

room

Efficiency: What Really Matters?

274 Chapter 14 Example: Pitcher Problem Solver

to win :path
if emptyp :path [print [Can’t do it!] stop]
foreach (reverse path.moves :path) "win1
print sentence [Final quantities are] (path.state :path)
end

to win1 :move
print (sentence [Pour from] (printform first :move)

[to] (printform last :move))
end

to printform :pitcher
if riverp :pitcher [output "river]
output size :pitcher
end

pour [3 7] 2

(item :to :sizes)-(item :to :state)

The program as described so far would run extremely slowly. The rest of the
commentary in this chapter will be on ways to improve its efficiency. The fundamental
problem is one I mentioned earlier: the number of nodes in the tree grows enormously
as the depth increases. In a problem with two pitchers, the root level has one node, the
next level nine nodes, the third level 81, the fourth level 729, the fifth level 6561, and the
sixth level 59049. A six-step problem like

would strain the memory capacity of many computers as well as taking forever to run!

When you’re trying to make a program more efficient, the easiest improvements
to figure out are not usually the ones that really help. The easy things to see are
details about the computation within some procedure. For example, the
procedure described earlier calls the procedure twice to compute the amount of
room available in the destination pitcher. Each call to computes the quantity

This expression represents the amount of empty space in the destination pitcher. Perhaps
it would be faster to compute this number only once, and store it in a variable? I haven’t
bothered trying to decide, because the effect is likely to be small either way. Improving
the speed of computing each new node is much less important than cutting down the



Avoiding Meaningless Pourings

child

child

state water Water
state

if

number

much

slow down

Avoiding Meaningless Pourings 275

to child :path :from :to

if equalp :from :to [output []]

output (list make.path (fput list :from :to path.moves :path)
(newstate :state :from :to))

end

local "state

make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to ~

[if equalp (water :to) (size :to) [output []]]

of nodes we compute. The reason is that eliminating one node also eliminates all
its descendants, so that the effect grows as the program moves to lower levels of the tree.

The best efficiency improvement is likely to be a complete rethinking of the
algorithm. For example, I’ve mentioned that a numerical algorithm exists for solving
two-variable linear Diophantine equations. This algorithm would be a faster way to
solve two-pitcher problems than even the best tree search program. I haven’t used that
method because I wanted a simple program that would work for any number of pitchers,
but if I really had to solve such problems in practice, I’d use the Diophantine equation
method wherever possible.

We have already modified to avoid one kind of meaningless pouring, namely
ones in which the source is the same as the destination. Two other avoidable kinds of
meaningless pourings are ones from an empty source and ones to a full destination. In
either case, the quantity of water poured will be zero, so the state will not change. Here
is a modified version of that avoids these cases:

The local variable is set up because the procedure needs it. ( relies
on Logo’s dynamic scope to give it access to the variable provided by its caller.)

The important changes are the two new instructions. The first avoids pouring
from an empty pitcher; the second avoids pouring into a full one. In both cases, the test
makes sense only for actual pitchers; the river does not have a size or a current contents.

To underscore what I said earlier about what’s important in trying to improve the
efficiency of a program, notice that these added tests the process of computing
each new node, and yet the overall effect is beneficial because the number of nodes is
dramatically reduced.



[3 3]

pour child

Eliminating Duplicate States

sequences

276 Chapter 14 Example: Pitcher Problem Solver

local [oldstates pitchers]
make "oldstates (list all.empty :sizes)

Pour from river to 6
Pour from 6 to 3

Pour from river to 3
Pour from 3 to 6
Pour from river to 3

to pour :sizes :goal

make "pitchers fput 0 (map [#] :sizes)
win breadth.first make.path [] all.empty :sizes
end

It’s relatively easy to find individual pourings that are absurd. A harder problem is to
avoid of pourings, each reasonable in itself, that add up to a state we’ve already
seen. The most blatant examples are like the one I mentioned a while back about filling
a pitcher from the river and then immediately emptying it into the river again. But there
are less blatant cases that are also worth finding. For example, suppose the problem
includes a three-liter pitcher and a six-liter pitcher. The sequence

leads to the same state ( ) as the sequence

The latter isn’t an absurd sequence of pourings, but it’s silly to pursue any of its children
because they will have the same states as the children of the first sequence, which is one
step shorter. Any solution that could be found among the descendents of the second
sequence will be found one cycle earlier among the descendents of the first.

To avoid pursuing these duplicate states, the program keeps a list of all the states
found so far. This strategy requires changes to and to .



Stopping the Program Early

states paths

removed
add

Stopping the Program Early 277

pour

child

children
child

breadth.first

throw

won false true

local [state newstate]

make "newstate (newstate :state :from :to)
if memberp :newstate :oldstates [output []]
make "oldstates fput :newstate :oldstates

:newstate

to child :path :from :to

if equalp :from :to [output []]
make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to ~

[if equalp (water :to) (size :to) [output []]]

output (list make.path (fput list :from :to path.moves :path) )
end

The change in is simply to initialize the list of already-seen states to include
the state in which all pitchers are empty. There are two important new instructions in

. The first rejects a new node if its state is already in the list; the second adds a new
state to the list. Notice that it is duplicate we look for, not duplicate ; it’s in the
nature of a tree-search program that there can never be duplicate paths.

The breadth-first search mechanism we’re using detects a winning path as it’s
from the front of the queue. If we could detect the winner as we’re about to it to the
queue, we could avoid the need to compute all of the queue entries that come after it:
children of nodes that are at the same level as the winning node, but to its left.

It’s not easy to do this elegantly, though, because we add new nodes to the queue
several at a time, using the procedure to compute them. What we need is a
way to let , which constructs the winning node, prevent the computation of any
more children, and notify that a winner has been found.

The most elegant way to do this in Berkeley Logo uses a primitive called that
we won’t meet until the second volume of this series. Instead, in this chapter I’ll use
a less elegant technique, but one that works in any Logo implementation. I’ll create a
variable named whose value is initially but becomes as soon as a winner
is found. Here are the necessary modifications:



☞

winnerp

Further Explorations

278 Chapter 14 Example: Pitcher Problem Solver

won

make "won "false

if :won [output last :queue]

if :won [output []]

if memberp :goal :newstate [make "won "true]

The procedure is no longer used; we are now checking a state, rather than a
path, for the goal amount.

Is it possible to eliminate more pieces of the tree by more sophisticated analysis
of the problem? For example, in all of the specific problems I’ve presented, the best
solution never includes pouring from pitcher A to pitcher B and then later pouring from
B to A. Is this true in general? If so, many possible pourings could be rejected with an
instruction like

to pour :sizes :goal
local [oldstates pitchers ]
make "oldstates (list all.empty :sizes)
make "pitchers fput 0 (map [#] :sizes)

win breadth.first make.path [] all.empty :sizes
end

to breadth.descend :queue
if emptyp :queue [output []]

op breadth.descend sentence (butfirst :queue) ~
(children first :queue)

end

to child :path :from :to
local [state newstate]

if equalp :from :to [output []]
make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to

[if equalp (water :to) (size :to) [output []]]
make "newstate (newstate :state :from :to)
if memberp :newstate :oldstates [output []]
make "oldstates fput :newstate :oldstates

output (list make.path (fput list :from :to path.moves :path) :newstate)
end



☞

☞

☞

child

Program Listing

Program Listing 279

in .

Do some research into Diophantine equations and the techniques used to solve them
computationally. See if you can devise a general method for solving pitcher problems
with any number of pitchers, based on Diophantine equations.

Think about writing a program that would mimic the way people actually approach
these problems. The program would, for example, compute the differences and
remainders of pairs of pitcher sizes, looking for the goal quantity.

What other types of puzzles can be considered as tree searching problems?

if memberp list :to :from path.moves :path [output []]

;; Initialization

to pour :sizes :goal
local [oldstates pitchers won]
make "oldstates (list all.empty :sizes)
make "pitchers fput 0 (map [#] :sizes)
make "won "false
win breadth.first make.path [] all.empty :sizes
end

to all.empty :list
output map [0] :list
end

;; Tree search

to breadth.first :root
op breadth.descend (list :root)
end

to breadth.descend :queue
if emptyp :queue [output []]
if :won [output last :queue]
op breadth.descend sentence (butfirst :queue) ~

(children first :queue)
end



280 Chapter 14 Example: Pitcher Problem Solver

;; Generate children

to children :path
output map.se [children1 :path ?] :pitchers
end

to children1 :path :from
output map.se [child :path :from ?] :pitchers
end

to child :path :from :to
local [state newstate]
if :won [output []]
if equalp :from :to [output []]
make "state path.state :path
if not riverp :from ~

[if equalp (water :from) 0 [output []]]
if not riverp :to ~

[if equalp (water :to) (size :to) [output []]]
make "newstate (newstate :state :from :to)
if memberp :newstate :oldstates [output []]
make "oldstates fput :newstate :oldstates
if memberp :goal :newstate [make "won "true]
output (list make.path (fput list :from :to path.moves :path) :newstate)
end

to newstate :state :from :to
if riverp :to [output replace :state :from 0]
if riverp :from [output replace :state :to (size :to)]
if (water :from) < (room :to) ~

[output replace2 :state ~
:from 0 ~
:to ((water :from)+(water :to))]

output replace2 :state ~
:from ((water :from)-(room :to)) ~
:to (size :to)

end

;; Printing the result

to win :path
if emptyp :path [print [Can’t do it!] stop]
foreach (reverse path.moves :path) "win1
print sentence [Final quantities are] (path.state :path)
end



Program Listing 281

to win1 :move
print (sentence [Pour from] (printform first :move)

[to] (printform last :move))
end

to printform :pitcher
if riverp :pitcher [output "river]
output size :pitcher
end

;; Path data abstraction

to make.path :moves :state
output fput :moves :state
end

to path.moves :path
output first :path
end

to path.state :path
output butfirst :path
end

;; Pitcher data abstraction

to riverp :pitcher
output equalp :pitcher 0
end

to size :pitcher
output item :pitcher :sizes
end

to water :pitcher
output item :pitcher :state
end

to room :pitcher
output (size :pitcher)-(water :pitcher)
end



282 Chapter 14 Example: Pitcher Problem Solver

;; List processing utilities

to replace :list :index :value
if equalp :index 1 [output fput :value butfirst :list]
output fput first :list (replace butfirst :list :index-1 :value)
end

to replace2 :list :index1 :value1 :index2 :value2
if equalp :index1 1 ~

[output fput :value1 replace butfirst :list :index2-1 :value2]
if equalp :index2 1 ~

[output fput :value2 replace butfirst :list :index1-1 :value1]
output fput first :list ~

replace2 butfirst :list :index1-1 :value1 :index2-1 :value2
end



15 Debugging

kind

specific

283

Using Error Messages

one
pokerhand

in pokerhand

I don’t know how to one in pokerhand

I haven’t talked much, until now, about how to find and fix mistakes in the programs you
write. Except for the chapter-length examples in Chapters 6, 12, and 14, it hasn’t been
much of a problem because the sample programs I’ve shown you have been so small. That
doesn’t mean you can’t make a mistake in a small program! But mistakes are relatively
easy to find when the entire program is one procedure with just a few instruction lines.
In a real programming project, which might have 20 or 200 procedures, it’s harder to
locate an error.

At one point in Chapter 13 I saw the error message

Logo’s error messages were deliberately designed to use an informal, smooth, low-key
style so that beginning programmers won’t find them intimidating. But there is a lot
of information in that message if you learn how to find it. The message tells me three
things. First, it tells me what of error is involved. In this particular message, the
phrase “I don’t know how” suggests that a procedure is missing, and the words “to one”
subtly suggest how the problem could be fixed. Second, the message tells me the
expression that was in error: the word . Third, it tells me that the error was detected
while Logo was carrying out the procedure named .

The precise form of the message may be different in different situations. If you
make a mistake in a top-level instruction (that is, one that you type to a question mark
prompt, not inside a procedure), the part about won’t be included.



found
is.

should

284 Chapter 15 Debugging

I don’t know how to forwrad in poly

I don’t know how to straight in pokerhand

I don’t know how

forward poly

pokerhand
straight

straight
straight pokerhand

pots
straight

map
map

I don’t know how to
map map

ifelse

One very important thing to remember is that the place where an error is may
not be the place where the error really That’s a little vague, so let’s think about the

error. All the Logo interpreter knows is that it has been asked to
invoke a procedure that doesn’t exist. But there can be several possible reasons for that.
The most common reason is that you’ve just misspelled the name of a procedure. When
the message is

you can be pretty sure, just from reading the message, that the problem is a misspelling
of . In this case the mistake is in , just as the message tells you.

On the other hand you might get a message like this about a procedure that really
should exist. For example, I might have seen

If I had been confronted with that message, I might have looked at , and
indeed I would have found an instruction that invokes a procedure named .
But that’s not an error; there be such a procedure. One of two things would be
wrong: either I’d forgotten to define altogether or else I made a spelling
mistake in the title line of rather than in an instruction line of .
To find out, I would type the command (which, as you recall, stands for Print Out
TitleS) and look for a possible misspelling of .

Another way to get the same error message is to write a program using one version
of Logo and then transfer it to another version with somewhat different primitives.
For example, Berkeley Logo includes higher order functions such as that are not
primitive in most other Logo dialects. If you write a program that uses and then try
to run it in another version of Logo, you’ll get a message saying

. In that case you’d have to write your own version of or rewrite the program to
avoid using it—for example, by using a recursive operation instead.

The mistake I actually made in Chapter 13 wasn’t a misspelling, a missing definition,
or a nonexistent primitive. Instead, I failed to quote a list with square brackets. The
particular context in which I did it, in an input to , is a fairly obscure one. But
here is a common beginner’s mistake, especially for people who are accustomed to other
programming languages:



Invalid Data

does
doesn’t

Invalid Data 285

I don’t know how

word

word

butfirst
butfirst

butfirst

print "How are you?"

procedure datum

print word "hello, [old buddy]

?
How
i don’t know how to are

doesn’t like as input

?
word doesn’t like [old buddy] as input

butfirst doesn’t like [] as input

butfirst doesn’t like as input

The moral of all this is that the error message give you some valuable help in
finding your bug, but it tell you the whole story. You have to read the message
intelligently.

I’ve spent a lot of time on the message because it’s probably the
most common one. Another very common kind of message, which will merit some
analysis here, is

In general, this means that you’ve violated the rules about the kinds of data that some
primitive procedure requires as input. (Recall that the type of input is one of the things
I’ve been insisting that you mention as part of the description of a procedure.) For
example, requires words as inputs, so:

There are several special cases, however, that come up more often than something
as foolish as using a list as an input to . The most common message of this form is
this one:

This almost invariably means that you’ve left out the stop rule in a recursive procedure.
The offending input to isn’t an explicit empty list but instead is the result of
evaluating a variable, usually an input to the procedure you’re writing, that’s ed
in the recursive invocation. This is a case where the error isn’t really in the instruction
that caused the message. Usually there is nothing wrong with the actual invocation of

; the error is a missing instruction earlier in the procedure. If the input is a
word instead of a list, this message will take the possibly confusing form



like as

286 Chapter 15 Debugging

to process :instruction
test emptyp :instruction
iftrue [type "|? | process readlist stop]
iffalse [print sentence [|I don’t know how to|] first :instruction]
end

to process :instruction
print sentence [|I don’t know how to|] first :instruction
end

first doesn’t like [] as input in process

/ doesn’t like 0 as input

to second :thing
output first butfirst :thing
end

to swap :list
output list (second :list) (first :list)
end

That’s an invisible empty word between and !

I said that this message is almost always caused by a missing stop rule. You have to
be careful about the “almost.” For example, recall this practical joke procedure from
Chapter 1:

This is not a recursive procedure, and the question of stop rules doesn’t arise. But its
input might be empty, because the victim enters a blank line. If I hadn’t thought of that,
and had written

the result would be

Another case that sometimes comes up in programs that do arithmetic is

For example, if you write a program that takes the average of a bunch of numbers and
you try to use the program with an empty list of numbers as input, you’ll end up trying
to divide zero by zero. The solution is to insert an instruction that explicitly tests for that
possibility.

As always, the procedure that provokes the error message may not actually be the
procedure that is in error. Consider this short program:



two

second
second

swap second

swap swap

swap

defensive programming.

Invalid Data 287

print swap [watch pocket]

print swap [farewell]

* Actually, when you invoke this version of with a bad input, you’ll see error messages.
The procedure itself will print an error message. Then, since it s instead of ting
something to its superprocedure, you’ll get a error message from the Logo
interpreter.

?
pocket watch
?
first doesn’t like [] as input in second
[output first butfirst :thing]

to swap :list
if emptyp :list [pr [empty input to swap] stop]
if emptyp butfirst :list [pr [singleton input to swap] stop]
output list (second :list) (first :list)
end

to swap :list
if emptyp :list [output []]
if emptyp butfirst :list [output :list]
output list (second :list) (first :list)
end

swap
stop output

didn’t output

Although the error was caught during the invocation of , there is nothing wrong
with itself. The error was in the top-level instruction, which provided a bad
input to . That instruction doesn’t even include an explicit reference to .
In this small example it’s easy to see what happened. But in a more complicated program
it can be hard to find errors like this one.

There are two ways you can protect yourself against this kind of difficulty. The first
is I could have written the program this way:

This version checks for bad inputs and gives a more helpful error message.* It would also
be possible to figure out an appropriate output for these cases and not consider them
errors at all:

This version manages to produce an output for any input at all. How should you choose
between these two defensively written versions? It depends on the context in which you’ll
be using . If you are writing a program in which should always get a particular
kind of list as input, which should always have two members, then you should use the
first defensive version, which will let you know if you make an error in the input to .



Incorrect Results

288 Chapter 15 Debugging

show lput "c [a b]

show lput [a b] "c

swap

second

doesn’t like
lput

lput

Lput fput

Arabic
arabic

?
[a b c]

?
lput doesn’t like c as input

to arabic :num
output addup map "digit :num
end

But if is intended as a general tool, which might be used in a variety of situations, it
might be better to accept any input.

The second protective technique, besides defensive programming, is tracing, the
technique we used in Chapter 9. If you get an error message from a utility procedure like

and you have no idea how it was invoked, you can find out by tracing the entry
into all of your procedures.

Another way to get the message is to forget the order of inputs to a
procedure, either a primitive or one that you’ve written. For example, is a primitive
operation that requires two inputs. The first input can be any datum, but the second
must be a list. The output from is a list that contains all the members of the second
input, plus one more member at the end equal to the first input.

takes its inputs in the same order as , with the new member first and then the
old list. But you might get confused and want the inputs to appear left-to-right as they
appear in the result:

Beginning programmers are often dismayed when they see an error message, but more
experienced programmers are relieved. They know that the bugs that cause such
messages are the easy ones to find! Much harder are the bugs that allow a program to
run to completion but produce the wrong answer. In that kind of situation you don’t
have the advantage of knowing which procedure tickled the error message, so it’s hard
to know where to begin looking.

Here’s a short program with a couple of bugs in it. is an operation that takes
one input, a word that is a Roman numeral. The output from is the number
represented by that Roman numeral in ordinary (Arabic numeral) notation.



−

print arabic "MLXVI

Incorrect Results 289

Arabic
digit C

M addup

CLIV
I V I V

I

arabic

digit
digit addup

addup digit digit addup
digit digit

to digit :digit
output lookup :digit [[I 1] [V 5] [X 10] [L 50] [C 100] [D 500] [M 1000]]
end

to lookup :word :dictionary
if emptyp :dictionary [output "]
if equalp :word first first :dictionary [output last first :dictionary]
output lookup :word bf :dictionary
end

to addup :list
if emptyp :list [output 0]
if emptyp bf :list [output first :list]
if (first :list) < (first bf :list) ~

[output sum ((first bl :list)-(first :list)) addup bf bf :list]
output sum first :list addup bf :list
end

?
13

uses two non-primitive subprocedures, dividing its task into two parts. First
translates each letter of the Roman numeral into the number it represents: into

100, into 1000. The result is a list of numbers. Then translates that list into a
single number, adding or subtracting each member as appropriate. The rule is that the
numbers are added, except that a smaller number that appears to the left of a larger one
is subtracted from the total. For example, in the Roman numeral all the letters are
added except for the , which is to the left of the . Since represents 1 and represents
5, and 1 is less than 5, the is subtracted. The result is 100 + 50 + 5 1 or 154.

Here’s what happened the first time I tried :

This is a short enough program that you may be able to find the bug just by reading
it. But even if you do, let’s pretend that you don’t, because I want to use this example to
talk about some ways of looking for bugs systematically.

The overall structure of the program is that is invoked for each letter, and
the combined output from all the calls to is used as the input to . The first
step is to try to figure out which of the two is at fault. Which should we try first? Since

depends on the work of , whereas doesn’t depend on , it’s
probably best to start with . So let’s try looking at the output from directly.



map
digit

map
map.se map

290 Chapter 15 Debugging

?
1000
?
5

?
1000501051

?
[1000 50 10 5 1]

to arabic :num
output addup map.se "digit :num
end

?
1066

?
3
?
17
?
155
?
150
?

print digit "M

print digit "V

show map "digit "MLXVI

show map.se "digit "MLXVI

print arabic "MLXVI

print arabic "III

print arabic "XVII

print arabic "CLV

print arabic "CLIV

So far so good. Perhaps the problem is in the way is used to combine the results
from :

Aha! I wanted a list of numbers, one for each Roman digit, but instead I got all the
numbers combined into one long word. I had momentarily forgotten that if the second
input to is a word, its output will be a word also. As soon as I see this, the solution is
apparent to me: I should use instead of .

This time I got the answer I expected. On to more test cases:

Another error! The result was 150 instead of the correct 154. Since the other three
examples are correct, the program is not completely at sea; it’s a good guess that the bug
has to do with the case of subtracting instead of adding. Trying a few more examples will
help confirm that guess.



how

behavior

correct

know

Incorrect Results 291

?
0
?
1000
?
1080
?
1776
?

?
[5 1 1]
?
[1000 500 100 100 50 10 10 5 1]

MCMLXXXIV CM IV

digit addup

digit addup digit
addup

map digit

digit

digit

print arabic "IV

print arabic "MCM

print arabic "MCMLXXXIV

print arabic "MDCCLXXVI

show map.se "digit "VII

show map.se "digit "MDCCLXXVI

Indeed, numbers that involve subtraction seem to fail, while ones that are purely additive
seem to work. If you look carefully at exactly the program fails, you may notice
that the letter that should be subtracted and the one after it are just ignored. So in the
numeral , which represents 1984, the and the don’t contribute to the
program’s result.

Once again, we must find out whether the bug is in or in , and it makes
sense to start by checking the one that’s called first. (If you read the instructions in the
definitions of and , you’ll see that handles each digit in isolation,
whereas is the one that looks at two consecutive digits to decide whether or not
to subtract. But at first I’m not reading the instructions at all; I’m trying to be sure that I
understand the of each procedure before I look inside any of them. For a simple
problem like this one, the approach I’m using is more ponderous than necessary. But it
would pay off for a larger program with more subtle bugs.)

I’ve started with Roman numerals for which the overall program works. Why not just
concentrate on the cases that fail? Because I want to see what the output from

ping over the Roman numeral is supposed to look like. It turns out to be a
list of numbers, one for each letter in the Roman numeral.

You may wonder why I need to investigate the correct behavior of experi-
mentally. If I’ve planned the program properly in the first place, I should what
it’s supposed to do. There are several reasons why I might feel a need for this sort of
experiment. Perhaps it’s someone else’s program I’m debugging, and I don’t know what
the plan was. Perhaps it’s a program I wrote a long time ago and I’ve forgotten. Finally,
since there is a bug after all, perhaps my understanding is faulty even if I do think I know
what is supposed to do.



292 Chapter 15 Debugging

digit

Digit
addup

addup

if
if

output

roman
I V X X

show map.se "digit "IV

show map.se "digit "MCMLXXXIV

?
[1 5]
?
[1000 100 1000 50 10 10 10 1 5]
?

if (first :list) < (first bf :list) ~
[output sum ((first bl :list)-(first :list)) addup bf bf :list]

first :list

bf bf :list

Now let’s try for some of the buggy cases.

still does the right thing: It outputs the number corresponding to each letter.
The problem must be in .

Now it’s time to take a look at . There are four instructions in its definition.
Which is at fault? It must be one that comes into play only for the cases in which
subtraction is needed. That’s a clue that it will be one of the instructions, although
instructions that aren’t explicitly conditional can, in fact, depend on earlier tests.
(In this procedure, for example, the last instruction doesn’t look conditional. But it is
carried out only if none of the earlier instructions results in an being evaluated.)

Rather than read every word of every line carefully, we should start by knowing the
purpose of each instruction. The first one is an end test, detecting an empty numeral.
The second is also an end test, detecting a single-digit numeral. (Why are two end
tests necessary? How would the program fail if each one were eliminated?) The third
instruction deals with the subtraction case, and the fourth with the addition case. The
bug, then, is probably in the third instruction. Here it is again:

At this point a careful reading of the instruction will probably make the error obvious. If
not, look at each of the expressions used within the instruction, like

and

What number or list does each of them represent?

(If you’d like to take time out for a short programming project now, you might try
writing , an operation to translate in the opposite direction, from Arabic to Roman
numerals. The rules are that can be subtracted from or ; can be subtracted from



Tracing and Stepping

Pausing

tracing stepping

Pausing 293

L C C D M
IV IIII

trace step
Trace step

trace

step

print pons Pons

or ; and can be subtracted from or . You should never need to repeat any symbol
more than three times. For example, you should use rather than .)

In Chapter 9 we used the techniques of and to help you understand how
recursive procedures work. The same techniques can be very valuable in debugging.
Tracing a procedure means making it print an indication of when it starts and stops.
Stepping a procedure means making it print each of its instructions and waiting for you
to type something before evaluating the instruction.

Berkeley Logo provides primitive commands and that automatically
trace or step procedures for you. and take one input, which can be either a
word or a list. If the input is a word, it must be the name of a procedure. If a list, it must
be a list of words, each of which is the name of a procedure. The effect of is to
modify the procedure or procedures named in the input to identify the procedure and
its inputs when it is invoked. The effect of is to modify the named procedure(s) so
that each instruction is printed before being evaluated.

Tracing a procedure is particularly useful in the annoying situation in which a
program just sits there forever, never stopping, but never printing anything either.
This usually means that there is an error in a recursive procedure, which invokes itself
repeatedly with no stop rule or with an ineffective one. If you trace recursive procedures,
you can find out how you got into that situation.

When a program fails, either with an error message or by printing the wrong result, it can
be helpful to examine the values of the variables used within the program. Of course, you
understand by now that “the variables used within the program” may be a complicated
idea; if there are recursive procedures with local variables, there may be several variables
with the same name, one for each invocation of a procedure.

Once a program is finished running, the local variables created by the procedures
within the program no longer exist. You can examine global variables individually by

ing their values or all at once with the command. ( stands for Print
Out NameS; it takes no inputs and prints the names and values of all current variables.)
But it’s too late to examine local variables after a program stops.



make "erract [pause]

ern "erract

?

?

to demo.error
print first :nonesuch
end

still active;

automatically

294 Chapter 15 Debugging

pause

stop output pause

pause
pause

erract

erract ern

continue co
continue

continue pause

To get around this problem, Berkeley Logo provides a command. This
command takes no inputs. Its effect is to stop, temporarily, the procedure in which it
appears. (Like and , is meaningless at top level.) Logo prints a
question mark prompt (along with the name of the paused procedure to remind you
that it’s paused), and you can enter instructions to be evaluated as usual. But the paused
procedure is its local variables still exist. (Any superprocedures of the paused
procedure, naturally, are also still active.) The instructions you type while the procedure
is paused can make use of local variables, just as if the instructions appeared within the
procedure definition.

The main use of is for debugging. If your program dies with an error message
you don’t understand, you can insert a command just before the instruction that
gets the error. Then you can examine the variables that will be used by that instruction.

Better yet, you can ask Logo to pause whenever an error occurs. In fact,
you can ask Logo to carry out any instructions you want, whenever an error occurs, by
creating a variable named (short for error action) whose value is an instruction
list. If you want your program to pause at any error, say

before you run the program. To undo this request, you can erase the variable name
with the (erase name) command:

Once you’ve examined the relevant variables, you may want to continue running the
program. You’ll certainly want to continue if this pause wasn’t the one you’re waiting for,
just before the error happens. Logo provides the command (abbreviated )
for this purpose. If you type with no input, Logo will continue the evaluation
of the paused procedure where it left off.

It is also possible to use with an input, turning the command into
an operation by providing a value for it to output. Whether or not that’s appropriate
depends on which error message you get. If the message complains about a missing
value, you may be able to provide one to allow the program to continue:



stop
stop

throw

Final Words of Wisdom

context

loop

Final Words of Wisdom 295

make "erract [pause]
demo.error

continue "hello

?
?
nonesuch has no value in demo.error
[print first :nonesuch]
Pausing...
demo.error?
h

throw "toplevel

If, after examining variables, you figure out the reason for the bug, you may not
want to bother continuing the buggy procedure. Instead you’ll want to forget about it,
edit the definition to fix the bug, and try again. But you shouldn’t just forget about it
because the procedure is still active. If you don’t want to continue it, you should it
instead, to get back to the “real” top level with no procedures active. (Instead of , a
more definitive way to stop all active procedures is with the instruction

For now just think of this as a magic incantation; we’ll talk more about in the
second volume.)

Berkeley Logo also has a special character that you can type on the keyboard to
cause an immediate pause. The character depends on which computer you’re using; see
Appendix A. This is not as useful a capability as you might think because it’s hard to
synchronize your typing with the activity of the program so that it gets paused in the right

(that is, with the right procedures active and the right local variables available).
But it can be useful if you can see that the program is repeating the same activities over
and over, for example; pausing just about anywhere during that kind of is likely to
give you useful information.

You may be feeling a frustrating sense of incompleteness about this chapter. After the
chapter on variables, for example, you really knew everything there is to know about
variables. (I suppose that’s not strictly true, since you hadn’t thought about recursion
yet, but it’s true enough.) But you certainly don’t know everything there is to know about
debugging. That’s because there isn’t a complete set of rules that will get you through
every situation. You just have to do a lot of programming, meet a lot of bugs, and develop
an instinct for them.

As a beginner, you’ll probably meet bugs with a different flavor from the ones I’ve
been discussing. You’ll put a space after a quotation mark or a colon, before the word



x y

meant

296 Chapter 15 Debugging

to which it should be attached. You’ll leave out a left or right parenthesis or bracket.
(Perhaps you’ll get confused about when to use parentheses and when brackets!) All
of these simple errors will quickly get you error messages, and you can probably find
your mistake just by reading the offending instruction. Later, as your programs get more
complicated, you’ll start having the more interesting bugs that require analysis to find
and fix.

It’s a good idea to program with a partner. Sometimes you can find someone
else’s bugs more easily than your own—when you read your own program, you know
too well what you to say. This advice is not just for beginners; even experienced
programmers often benefit from sharing their bugs with a friend. Another advantage of
such a partnership is that trying to explain your program to someone else will often help
you understand it more clearly yourself. I’ve often discovered a persistent bug halfway
through explaining the problem to someone.

The main point, I think, is one I’ve made in earlier chapters: there is nothing
shameful about a bug in your program. As a teacher, I’ve been astonished to see students
react to a simple bug by angrily erasing an entire program, which they’d spent hours
writing! Teach yourself to expect bugs and approach them with a good-natured spirit.

On the other hand, you can minimize your debugging time by writing the program
in a reasonable style in the first place. If your program is one long procedure, you should
know that you’re making it harder to locate an offending instruction. If all your variables
are named and , you deserve whatever happens to you! And if you can’t figure out,
yourself, which procedure does what, then perhaps you should stop typing in procedures
and spend a little time with paper and pencil listing the tasks each procedure needs to
carry out.



Appendices





299

Getting Berkeley Logo

A Running Berkeley Logo

anarres.cs.berkeley.edu
pub/ucblogo

blogo.exe

One of my reasons for writing a second edition of these books was that all of the Logo
interpreters described in the first edition are now obsolete. Current commercial Logo
implementations are quite different in their user interface from those traditional versions.
Those differences make newer Logo implementations more immediately accessible to
children who want to produce animated graphics, but in many cases the changes have
made the kind of programming I do in these books harder.

My solution has been to produce, along with some of my students, a Logo interpreter
that is available free of charge for most popular computers. The design goal of Berkeley
Logo has been that a program written for one kind of computer should run entirely
unchanged on any other kind. Still, there are slight differences in the user interface and
in the installation process, and this appendix discusses those differences. Since Berkeley
Logo is distributed with source files, I hope that as new computers and operating systems
come along, some enthusiast will make Berkeley Logo available for them even if I don’t
catch them all.

Still, people who are using some other version of Logo for other purposes might well
want to use these books to help them learn more advanced Logo ideas. The programs in
this first volume can be adapted to current commercial Logo dialects with some effort. In
the later volumes I rely more heavily on features that are available only in Berkeley Logo.

Berkeley Logo is available over the Internet, or on diskette from the MIT Press. On the
Internet, make an anonymous FTP connection to and
look in the directory . The relevant files are

Self-extracting archive for DOS machines.



Berkeley Logo for DOS Machines

300 Appendix A Running Berkeley Logo

http://www.cs.berkeley.edu/~bh/

blogo -d c:\

ucblogo.sea.hqx
ucblogo.tar.Z tar

sources

a:install b:install
ucblogo blogo.exe

-d

ucblogo.exe

bl.exe

ucblogo.exe zpm.exe
Zpm

set DOS16M=1
set DOS16M=5
set DOS16M=6

BinHex self-extracting archive for Macintosh.
Compressed archive for Unix.

The files should be transferred in binary (image) mode.

Pointers to these files can also be found on my Web page:

For a diskette, use the order form enclosed with this book.

Within the Logo distribution is a subdirectory (or folder, if you’re a Mac person)
called . This contains the C language source files for the Logo interpreter. If
disk space is tight, you don’t need these files to run Logo; they are provided for people
who want to extend the Logo interpreter or implement it for a different computer system.

If you got Berkeley Logo on diskette, to extract the files you put the diskette in your A or
B drive and give the command or . This will create a directory
named on your C drive. If you got the file from the Internet, type
the command

to expand the archive. Don’t forget the .

Berkeley Logo is provided in two executable versions:

runs on 286-and-up processors, and uses extended memory if you have
it, so you can run large Logo programs.

runs on any PC, but is limited to 640K. That’s not big enough for some
of the larger projects in the later volumes.

In order to run you must have the file (which is provided)
in your DOS path. has to figure out what kind of extended memory interface you
have, and in some cases it needs help. You must use the DOS command

for NEC 98-series
for Fujitsu FMR-60 or 70
for ATT 6300 Plus



xxxx

xxxx

Berkeley Logo for DOS Machines 301

set DOS16M=7
set DOS16M=13
set DOS16M=INBOARD

set DOS16M=10

Ucblogo bl

TOSHIBA
VGA12

bl ucblogo
VESA1

pckscrn
ucl.bat

edit

EDITOR

set FG DISPLAY=

CGAHIRES, CGAMEDRES, EGACOLOR, EGAECD, EGAMONO, EGALOWRES,
HERC, ORCHIDPROHIRE, PARADISEHIRES, TOSHIBA, TRIDENTHIRES,
VEGAVGAHIRES, VESA6A, VESA2, VGA11, VGA12, VGA13, 8514A

for old Phoenix BIOS versions
for Zenith Z-24X with old BIOS
for 386 with Intel Inboard

Even if UCBLOGO runs correctly for you without any of these settings (which will
be the case for most machines) you might try

for faster performance on some systems
but slower on others – experiment.

and also usually figure out correctly what kind of graphics board you
have. But for some obscure clones with nonstandard graphics you might have to tell it
which graphics mode to use. This is also done with a DOS command:

where is the board type and mode, one of the following:

I don’t know anything about any of these except that is for a T3100 and
doesn’t work on my T1200XE. I use on my generic clone.

There are some graphics modes that will work with but not with ,
including for 256 colors of 640x480.

Finally, note that Logo writes directly to the screen and is therefore incompatible
with “screen accelerator” TSRs. (For example, my PC comes with one called
and I had to turn it off before running Logo.) The file is a sample batch file
that I use to disable the screen accelerator, run Logo, then re-enable it. If you have a
different screen accelerator you’ll need different commands, of course, but the idea is
the same.

Ctrl-break or ctrl-Q means stop, ctrl-W means pause.

The Logo command runs a separate editor, starting that editor with a file
containing your selected procedures. Logo will use whatever editor you want, if there is
an variable in your DOS environment. By default, Logo uses Jove, a version of
EMACS, which is provided with Logo. This version of Jove is set up so that typing ctrl-C
will save the file and return to Logo. You need to put



Berkeley Logo for the Macintosh

302 Appendix A Running Berkeley Logo

autoexec.bat Cmds.doc

bl.exe

ucblogo.exe
ucblogo

UCB Logo

Edit

splitscreen fullscreen textscreen

SET JOVERC=C:\UCBLOGO\JOVE\JOVE.RC
SET DESCRIBE=C:\UCBLOGO\JOVE\CMDS.DOC

SET LOGOLIB=C:\UCBLOGO\LOGOLIB\

http://www.ultranet.com/~mills/

in your or something so that Jove will start up right. is the
Jove reference manual, used for its online help.

You also need

(yes, ending with backslash) in your autoexec.bat so that Logo can find its library files.

The version of Logo can be run in a DOS window under Windows, but
it can do graphics only in full-screen mode. For the larger projects, exit Windows and
run under DOS. (In Windows 95, this can be made automatic if you
install as a “DOS mode” program.) There is an offshoot of Berkeley Logo
called MSWLogo, written by George Mills, specifically for Windows. It has a more
point-and-click style interface, and doesn’t work well with those projects that make heavy
use of reading from the keyboard or controlling the position of text on the screen; the
Solitaire and Cryptographer’s Helper projects in Volume 2 and the finite state machine
simulator in Volume 3 are most problematic. But for general use, MSWLogo is a good
option for Windows users. The easiest way to get it is from George Mills’ Web page:

If you got Berkeley Logo on diskette, insert the diskette in your drive, copy the one file
onto your hard disk, and then double-click on it to install the folder. If you
got Logo from the Internet, you must first convert the BinHex format to an executable
file; many file transfer programs do this automatically.

Command-period means stop; command-comma means pause.

On the Mac, Berkeley Logo includes a very simple-minded editor built into Logo
itself. It works in the usual Macintosh way; when you have finished editing, you can select
“accept editor changes” or “cancel editor changes” from the menu.

Macintosh users will find the Berkeley Logo user interface disconcerting, because
it was designed to be Logo-like rather than Macintosh-like. For example, you should
use the Logo commands , , and to rearrange
Logo’s text and graphics windows, rather than trying to resize them with the mouse.



edit EDITOR

Berkeley Logo for Unix

Berkeley Logo for Unix 303

Since there are so many different versions of Unix, Berkeley Logo is distributed in source
form, and must be compiled for your particular machine. A Gnu Autoconf configuration
file is provided, so the compilation process should be reasonably automatic. The X11
library is required for turtle graphics.

Logo uses your system’s interrupt character for stop, and your system’s quit character
for pause.

For the command, Logo uses whatever program is specified in your
environment variable. If your editor exits with nonzero status (indicating an error) then
Logo will not carry out the changes indicated in the edited file.





305

B GNU General Public License

The following software license, written by the Free Software Foundation, applies to
Berkeley Logo and to the Logo programs in this book. I chose to use this license in order
to encourage the free sharing of software—my own and, I hope, yours.

GNU GENERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation,
Inc.
675 Mass Ave, Cambridge, MA 02139, USA

Everyone is permitted to copy and distribute verbatim
copies of this license document, but changing it is
not allowed.

Preamble

The licenses for most software are designed to
take away your freedom to share and change it. By
contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free
software—to make sure the software is free for all its
users. This General Public License applies to most
of the Free Software Foundation’s software and to
any other program whose authors commit to using
it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License
instead.) You can apply it to your programs, too.

When we speak of free software, we are referring
to freedom, not price. Our General Public Licenses
are designed to make sure that you have the freedom
to distribute copies of free software (and charge for
this service if you wish), that you receive source code
or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restric-
tions that forbid anyone to deny you these rights or
to ask you to surrender the rights. These restric-

tions translate to certain responsibilities for you if
you distribute copies of the software, or if you modify
it.

For example, if you distribute copies of such a
program, whether gratis or for a fee, you must give
the recipients all the rights that you have. You must
make sure that they, too, receive or can get the source
code. And you must show them these terms so they
know their rights.

We protect your rights with two steps: (1) copy-
right the software, and (2) offer you this license which
gives you legal permission to copy, distribute and/or
modify the software.

Also, for each author’s protection and ours, we
want to make certain that everyone understands that
there is no warranty for this free software. If the
software is modified by someone else and passed on,
we want its recipients to know that what they have
is not the original, so that any problems introduced
by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened con-
stantly by software patents. We wish to avoid the
danger that redistributors of a free program will in-
dividually obtain patent licenses, in effect making
the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for
everyone’s free use or not licensed at all.

The precise terms and conditions for copying,
distribution and modification follow.



GNU GENERAL PUBLIC LICENSE

306 Appendix B GNU General Public License

TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other
work which contains a notice placed by the copy-
right holder saying it may be distributed under the
terms of this General Public License. The “Pro-
gram”, below, refers to any such program or work,
and a “work based on the Program” means either the
Program or any derivative work under copyright law:
that is to say, a work containing the Program or a
portion of it, either verbatim or with modifications
and/or translated into another language. (Here-
inafter, translation is included without limitation in
the term “modification”.) Each licensee is addressed
as “you”.

Activities other than copying, distribution and
modification are not covered by this License; they are
outside its scope. The act of running the Program
is not restricted, and the output from the Program is
covered only if its contents constitute a work based on
the Program (independent of having been made by
running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies
of the Program’s source code as you receive it, in
any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep
intact all the notices that refer to this License and
to the absence of any warranty; and give any other
recipients of the Program a copy of this License along
with the Program.

You may charge a fee for the physical act of
transferring a copy, and you may at your option offer
warranty protection in exchange for a fee.

2. You may modify your copy or copies of the
Program or any portion of it, thus forming a work
based on the Program, and copy and distribute such
modifications or work under the terms of Section
1 above, provided that you also meet all of these
conditions:

a) You must cause the modified files to carry
prominent notices stating that you changed the
files and the date of any change.

b) You must cause any work that you dis-
tribute or publish, that in whole or in part con-
tains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to
all third parties under the terms of this License.

c) If the modified program normally reads
commands interactively when run, you must cause
it, when started running for such interactive use
in the most ordinary way, to print or display an an-

nouncement including an appropriate copyright
notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that
users may redistribute the program under these
conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself
is interactive but does not normally print such an
announcement, your work based on the Program
is not required to print an announcement.)

These requirements apply to the modified work
as a whole. If identifiable sections of that work are
not derived from the Program, and can be reason-
ably considered independent and separate works in
themselves, then this License, and its terms, do not
apply to those sections when you distribute them as
separate works. But when you distribute the same
sections as part of a whole which is a work based on
the Program, the distribution of the whole must be
on the terms of this License, whose permissions for
other licensees extend to the entire whole, and thus
to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim
rights or contest your rights to work written entirely
by you; rather, the intent is to exercise the right
to control the distribution of derivative or collective
works based on the Program.

In addition, mere aggregation of another work
not based on the Program with the Program (or with
a work based on the Program) on a volume of a
storage or distribution medium does not bring the
other work under the scope of this License.

3. You may copy and distribute the Program (or
a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2
above provided that you also do one of the following:

a) Accompany it with the complete corre-
sponding machine-readable source code, which
must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for
software interchange; or,

b) Accompany it with a written offer, valid for
at least three years, to give any third party, for a
charge no more than your cost of physically per-
forming source distribution, a complete machine-
readable copy of the corresponding source code,
to be distributed under the terms of Sections 1
and 2 above on a medium customarily used for
software interchange; or,

c) Accompany it with the information you re-
ceived as to the offer to distribute corresponding
source code. (This alternative is allowed only for
noncommercial distribution and only if you re-
ceived the program in object code or executable
form with such an offer, in accord with Subsection
b above.)



Appendix B GNU General Public License 307

The source code for a work means the preferred
form of the work for making modifications to it. For
an executable work, complete source code means all
the source code for all modules it contains, plus any
associated interface definition files, plus the scripts
used to control compilation and installation of the
executable. However, as a special exception, the
source code distributed need not include anything
that is normally distributed (in either source or bi-
nary form) with the major components (compiler,
kernel, and so on) of the operating system on which
the executable runs, unless that component itself
accompanies the executable.

If distribution of executable or object code is
made by offering access to copy from a designated
place, then offering equivalent access to copy the
source code from the same place counts as distribu-
tion of the source code, even though third parties
are not compelled to copy the source along with the
object code.

4. You may not copy, modify, sublicense, or
distribute the Program except as expressly provided
under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void,
and will automatically terminate your rights under
this License. However, parties who have received
copies, or rights, from you under this License will not
have their licenses terminated so long as such parties
remain in full compliance.

5. You are not required to accept this License,
since you have not signed it. However, nothing else
grants you permission to modify or distribute the
Program or its derivative works. These actions are
prohibited by law if you do not accept this License.
Therefore, by modifying or distributing the Program
(or any work based on the Program), you indicate
your acceptance of this License to do so, and all
its terms and conditions for copying, distributing or
modifying the Program or works based on it.

6. Each time you redistribute the Program (or
any work based on the Program), the recipient auto-
matically receives a license from the original licensor
to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any
further restrictions on the recipients’ exercise of the
rights granted herein. You are not responsible for
enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or
allegation of patent infringement or for any other
reason (not limited to patent issues), conditions are
imposed on you (whether by court order, agreement
or otherwise) that contradict the conditions of this
License, they do not excuse you from the conditions
of this License. If you cannot distribute so as to
satisfy simultaneously your obligations under this Li-

cense and any other pertinent obligations, then as a
consequence you may not distribute the Program at
all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those
who receive copies directly or indirectly through you,
then the only way you could satisfy both it and this
License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or
unenforceable under any particular circumstance,
the balance of the section is intended to apply and
the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you
to infringe any patents or other property right claims
or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of
the free software distribution system, which is imple-
mented by public license practices. Many people
have made generous contributions to the wide range
of software distributed through that system in re-
liance on consistent application of that system; it is
up to the author/donor to decide if he or she is will-
ing to distribute software through any other system
and a licensee cannot impose that choice.

This section is intended to make thoroughly
clear what is believed to be a consequence of the rest
of this License.

8. If the distribution and/or use of the Program
is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright
holder who places the Program under this License
may add an explicit geographical distribution limita-
tion excluding those countries, so that distribution
is permitted only in or among countries not thus
excluded. In such case, this License incorporates the
limitation as if written in the body of this License.

9. The Free Software Foundation may publish
revised and/or new versions of the General Public
License from time to time. Such new versions will be
similar in spirit to the present version, but may differ
in detail to address new problems or concerns.

Each version is given a distinguishing version
number. If the Program specifies a version number
of this License which applies to it and “any later
version”, you have the option of following the terms
and conditions either of that version or of any later
version published by the Free Software Foundation.
If the Program does not specify a version number
of this License, you may choose any version ever
published by the Free Software Foundation.

10. If you wish to incorporate parts of the
Program into other free programs whose distribution
conditions are different, write to the author to ask
for permission. For software which is copyrighted



308 Appendix B GNU General Public License

<one line to give the program’s name
and a brief idea of what it does.>

Copyright (C) 19yy <name of author>

This program is free software; you can
redistribute it and/or modify it under the terms
of the GNU General Public License as published
by the Free Software Foundation; either version
2 of the License, or (at your option) any later
version.

This program is distributed in the hope that it
will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for
more details.

You should have received a copy of the GNU
General Public License along with this program;
if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

Gnomovision version 69,
Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for
details type ‘show w’. This is free software, and
you are welcome to redistribute it under certain
conditions; type ‘show c’ for details.

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’ (which makes
passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

by the Free Software Foundation, write to the Free
Software Foundation; we sometimes make exceptions
for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our
free software and of promoting the sharing and reuse
of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED
FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTH-
ERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE
THE PROGRAM “AS IS” WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESSED OR IMPLIED, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE EN-
TIRE RISK AS TO THE QUALITY AND PER-
FORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE,
YOU ASSUME THE COST OF ALL NECESSARY
SERVICING, REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY
APPLICABLE LAW OR AGREED TO IN WRIT-
ING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR RE-
DISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, IN-
CLUDING ANY GENERAL, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PRO-
GRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCU-
RATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN
IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it
to be of the greatest possible use to the public, the
best way to achieve this is to make it free software
which everyone can redistribute and change under
these terms.

To do so, attach the following notices to the
program. It is safest to attach them to the start
of each source file to most effectively convey the
exclusion of warranty; and each file should have at
least the “copyright” line and a pointer to where the

full notice is found.

Also add information on how to contact you by
electronic and paper mail.

If the program is interactive, make it output a
short notice like this when it starts in an interactive
mode:

The hypothetical commands ‘show w’ and ‘show
c’ should show the appropriate parts of the General
Public License. Of course, the commands you use
may be called something other than ‘show w’ and
‘show c’; they could even be mouse-clicks or menu
items—whatever suits your program.

You should also get your employer (if you work
as a programmer) or your school, if any, to sign a
“copyright disclaimer” for the program, if necessary.
Here is a sample; alter the names:

This General Public License does not permit
incorporating your program into proprietary pro-
grams. If your program is a subroutine library, you
may consider it more useful to permit linking pro-
prietary applications with the library. If this is what
you want to do, use the GNU Library General Public
License instead of this License.



309

A

B

C

D

Index of Defined Procedures

This index lists example procedures whose definitions are in the text and procedures that
you are asked to write in the text. The general index lists technical terms and primitive
procedures.

65, 207
71

250, 254
89

203, 289
279

127
290

75
75

130
68

50
279

279

280
280

280

128
128
128

200
196

196
198

67
59

44
145, 164

181
147

289
70

140, 144, 158
131, 135, 137, 138, 150, 151, 167

137
137

132
132

130
127

about.computersp
abs
ace.highp
acronym
addup
all.empty
already.wonp
arabic
ask.once
ask.thrice

best.move
better.groupie
bottom
breadth.descend
breadth.first

child
children
children1

choose
chooseo
choosex
code
codelet
codematch
codeword
color
computer.first
converse
countdown

dash
diamond
digit
digitp
down
downup
downup.many
downup.one
downup1
downup2
draw
draw.board



E

F

G

H

I

J

L

M

N

310 Index of Defined Procedures

127
130
130

231

184
209, 218

97, 210, 211
210

129
129

129
191

248, 254
246, 253
128

206
246, 254

70

128
39

67

44
155, 156

207
30

5

46
89

57
205

127
78, 82, 89

140, 143, 144
144

208
243

66
211
232

232

204
223, 232

208
232

247, 254
206

163

281
126

164
127

248, 254
130

156
164, 204

7, 72

57
211

280
248, 254

213
202

drawline
drawo
drawx

encode

face
fact
fib
fiblist
find.advance
find.fork
find.win
fingers
flushp
fourp
freep
french
full.housep
fullp

getmove
greet
groupie

halves
hanoi
hasvowelp
hello
hi

ignore
importantp
increment
index

init
initials
inout
inout.sub
inrangep
insert
integerp
item
itoj

jtoi

length
letter
letterp
letters
locate
lookup
lovepoem

make.path
make.triples
manyprint
meplay
min
move
movedisk
multiply
music.quiz

new.converse
newfib
newstate
nogap
number.name
numbers



O

P

Q

R

S

T

Index of Defined Procedures 311

64
146, 152, 162

232
247, 254

246, 254
202

66
281
281

59
59

129
212
225
236

251
212

252
240, 244, 253

239, 246, 250
187
279

163
43

281
6

189
76

74
73

49
74

244, 253
241, 242

241
70

231
231

231
129

282
282

97
281

281
101, 232

95
95

162
48, 286

225, 231
129
129

281
161

44
207

190
187

184
186
190
188

6
248, 254

208
208

126
202, 286

65
246, 254

127
50

oddp
one.per.line

paircode
paircount
pairp
pairup
past.tensep
path.moves
path.state
person.first
person.move
pickmove
piglatin
playfair
playgame
plural
plword
poker
poker.init
pokerhand
poly
pour
praise
primer
printform
process
protect.heading
prsecond

qa
quadratic
query
quiz

ranknum
read.card

read.cards
realwordp
remove
reorder
reorder1
repeated.number
replace
replace2
reverse
riverp
room
rotate

say
sayrow
scramble
second
setkeyword
singlep
singles
size
slant
soap.opera
sort.beforep
spin
squaggle
square
squiggle
squirrel
squoggle
start
straightp
strip
strip.word
substitute.triple
swap

talk
threep
tiedp
top



U

V

W

Y

312 Index of Defined Procedures

7
191, 192, 193

147
159

126, 236

203
140, 158

158, 160

204
64, 205

281
280

129
281

203

127

total.quiz
tree
triangle
truncate
ttt

unique
up
updown

vowelcount
vowelp

water
win
win.nowp
win1
wordify

youplay



313

A

B

C

General Index

and

array
arraytolist

back

bf

bk

butfirst
butlast

cascade

clearscreen
cleartext

This index lists technical terms and primitive procedures. There is also an index
of defined procedures, which lists procedures whose definitions are in the text and
procedures that you are asked to write.

abbreviation 22
Abelson, Hal xix
absolute value 71
abstract data type 265
actual argument 41
algebraic equation 256
algorithm 275
allocation, storage xv
analytic geometry 182

69
APL xvi
apprenticeship xii
Arabic numeral 288
argument 82
argument, actual 41
array xv, 115

116
116

artificial intelligence 237
assignment, indirect 57

181

BASIC 11, 48, 56, 170, 186
22

Birch, Alison xix
181

bottom-up 233
bracket, square 19, 69
breadth-first search 261, 263

21
22

C++ xv
Carter, Cindy xix
Cartesian coordinates 182

96
character 21
character string 19
cipher, Playfair 219
cipher, simple substitution 195
Clancy, Michael xix

180
2

cognitive psychology 104
colon 40, 43, 55
combiner 200



D

E

F

314 General Index

continue

count

cs
ct

edit

emptyp
end

equalp

false
fd

filter
find
first

for
foreach
forever

forward
fput

command 17
compass heading 181
composition of functions xvi, 15, 225
computer graphics 179
computer literacy xi
computer science xiv
conditional evaluation 64
connective, logical 70
constructor 23
context 252, 295

294
conversational front end 228
coordinates 183
coordinates, Cartesian 182

26
Courant, Richard 259

180
2

Dahl, O. J. 236
Dao, Khang xx
data redundancy 223
data representation 112, 264
data structure 103
data type, abstract 265
datum 20
Davidson, Larry xix
Davis, Jim xix
debugging 245, 247, 283
defensive programming 287
defining a procedure 30
depth-first search 261
Descartes, René 182
describe a procedure, how to 20
Deutsch, Freeman xx
diagram, plumbing 15
Dijkstra, Edsger 236
Diophantine equation 257
domain 82
dots 40, 55
dynamic scope 51

33
editor 33
effect 17
efficiency 274
elves 51, 167
Elvish 196
empty list 22
empty word 22

61
31

environment, programming 1
equal sign 63

62
equation, algebraic 256
equation, Diophantine 257
error message 16, 283
evaluation 11
expression 17
expression, logical 70
extra inputs 30

factorial 208
faith 149

61
180

Fibonacci sequence 96, 209
88, 90, 203

94
21

flag variable 119
flat list 20

79
94
110

formal parameter 41
Fortran xv

180
200

fractal 191, 194
frame 42, 47
Free Software Foundation 305



G

H

I

J

K

L
Have His Carcase

General Index 315

greaterp

heading

if
ifelse
iff
iffalse
ift
iftrue

item

last

left

lessp

list

listp
listtoarray

local

Friedman, Batya xix
front end, conversational 228
function 82
function notation 30
function, higher order 87
functions, composition of xvi, 15, 225

geometry, analytic 182
geometry, turtle 179
Gilham, Fred xx
global variable 56
Goldenberg, Paul xix
Goodman, Paul 74
graph 258
graphics, computer 179
graphics, turtle 179

64

Hanoi, Tower of 153
Harvey, Tessa xix

223
heading 185

185
heading, compass 181
hierarchy of levels 174
higher order function 87
Hoare, C. A. R. 236

64
66, 70, 247

68
68

68
68

increment 57, 79
index variable 79
indirect assignment 57
infix arithmetic 29
initialization procedure 144, 160, 240

input 12, 39
inputs, extra 30
instruction 2, 11, 17, 19
instruction line 32
instruction list 64
intelligence, artificial 237
interaction 44
invocation 14, 28, 39, 49, 170
IQ tests 255

23, 116
iteration, numeric 78

joke 7, 47

Katz, Michael xx
Katz, Yehuda xx
kludge 29

22
Latin, Pig 211

181
Lennon, John 7, 74

64
levels of recursion 192
levels, hierarchy of 174
Levington, David xix
Lewis, Phil xix
limit value 79
Lisp xvi, xv, 237
list 19

24
list, empty 22
list, flat 20

61
116

literacy, computer xi
little person metaphor 51, 167

56
local variable 51, 56, 138, 169



M

N

O

P

316 General Index

lput
lt

make
map
map.se

memberp

not

numberp

or

output

pause

pd

pendown
penup

po

pons
pops
pos

pots
pr

print

product

locality 182
logic, mathematical xvi
logical connective 70
logical expression 70
Logo xvi, xv, 237

201, 288
181

55
84, 90

92
mathematical logic xvi
mathematics xiii
matrix xvi
member 21

63
metaphor 5, 42, 51, 167
Mills, George xx
Minsky, Margaret xix
modularity 56, 109, 189
most restrictive test 242

name 39, 55
70

number 18, 62
number, telephone 262

62
numeral, Arabic 288
numeral, Roman 288
numeric iteration 78
numerical operation 208

operation 17, 48, 61
operation, numerical 208
operation, recursive 195
operation, selection 205

70
origin 183
Orleans, Doug xx

output 14, 17, 195
48, 66, 73

Owings, Sanford xx

parallel processing 259
parameter, formal 41
parentheses 30, 63
Pascal xv, 11, 237
pattern 149, 164, 200, 205, 206
pattern, procedure 163

294
pausing 293

181
pen 181

181
181

Pig Latin 211
planning, style of 233
Playfair cipher 219
plumbing diagram 15

32
pocket 52

293
32

185
position 104, 185

32
22

predicate 61
predicate calculus xvi
predicate, recursive 206
prefix arithmetic 29
primitive 12, 32

11, 49
procedure 4, 11
procedure pattern 163
procedure, defining 30
procedure, initialization 144, 160, 240
procedure, top-level 45
processing, parallel 259

14
program 45
programming environment 1



Q

R

S

T

General Index 317

pu

random

readchar
readlist

reduce

remainder
repeat

right

rt
run

sentence

seth
setheading
setitem
setpos

step

stop

subsets

sum

programming, structured 236
Prolog xvi
prompt 2, 5
psychology, cognitive 104

181

question 61
question, yes-or-no 61
queue 263
quotation mark 18, 55
quote 18, 20

101
range 82

121
44

recursion 131
recursion, levels of 192
recursive call 138, 198
recursive operation 195

89, 90, 203
redundancy, data 223

16
75

representation, data 112, 264
restrictive test 242

182
right to left 28
Robbins, Herbert 259
robot 180
Roman numeral 288

182
189

Sargent, Randy xx
Sayers, Dorothy L. 223
scope of variables 49
scope, dynamic 51
search, breadth-first 261, 263

search, depth-first 261
search, tree 259
selection operation 205
selector 23
semantics 33
sentence 20

23
sequence of instructions 174

185
185

116
183

simple substitution cipher 195
Solomon, Cynthia xix
space/time tradeoff 224
square bracket 19, 69
stack 267
starting value 79
state, turtle 185
state-invariant 192
statement types 11

293
step, turtle 180
stepping 175, 293

73, 171
stop rule 138, 144, 151, 198, 285
storage allocation xv
string, character 19
structure, data 103
structured programming 236
style of planning 233
subprocedure 45, 131
subprocedure/superprocedure diagram

110
214

substitution cipher, simple 195
13

superprocedure 45
symmetry 186
syntax xv, 12, 33

tail recursion 145, 216
telephone number 262



V

W

X

Y

318 General Index

What Is Mathematics?

test

thing
throw

to

trace

true

type

word

wordp

template 92
68

test, most restrictive 242
tests, IQ 255

40, 43
295

tic-tac-toe 58, 103, 236
title line 32

39
top-down 233
top-level procedure 45
Tower of Hanoi 153
trace 173

293
tracing 173, 288, 293
tree 191
tree search 259

61
turtle graphics 179
turtle step 180
turtle-relative 182
Twenty Questions 61

141

value, limit 79
value, starting 79
van Blerkom, Dan xx
variable 39, 40, 49
variable, flag 119
variable, index 79
variable, local 169
variables in the workspace 119

Washington, George 74
259

Wirth, Niklaus 237
word 18

24
word, empty 22

61
Wright, Matthew xx, 117

x-coordinate 183

y-coordinate 183
yes-or-no question 61
Yoder, Sharon xix



General Index 319


	v1ch00.pdf
	v1ch01.pdf
	v1ch02.pdf
	v1ch03.pdf
	v1ch04.pdf
	v1ch05.pdf
	v1ch06.pdf
	v1ch07.pdf
	v1ch08.pdf
	v1ch09.pdf
	v1ch10.pdf
	v1ch11.pdf
	v1ch12.pdf
	v1ch13.pdf
	v1ch14.pdf
	v1ch15.pdf
	v1ch16.pdf

