ANDHRA PRADESH ECET 2015

Set Code :

L2

ET 2015 Booklet Code:

D

Note:	(1)	Answer	all	questions.
1,000	-		Barbard III	7000000000

- (2) Each question carries 1 mark. There are no negative marks.
- (3) Answer to the questions must be enetered only on OMR Response Sheet provided separately by completely shading with **Ball Point Pen (Blue/Black)**, only one of the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question.

	 the circles 1, 2, 3 or 4 provided against each question, and which is most appropriate to the question. (4) The OMR Response Sheet will be invalidated if the circle is shaded using pencil or if more than one circle is shaded against each question.
	MATHEMATICS
1.	The area of the segment cut off from the parabola $x^2 = 8y$ by the line $x - 2y + 8 = 0$ is
2.	(1) 36 (2) 34 (3) 32 (4) 38 The area bounded by the parabola $y = 4 - x^2$, $y = 0$ and $y = 3$ is
	(1) $\frac{26}{3}$ (2) $-\frac{26}{3}$ (3) $-\frac{28}{3}$ (4) $\frac{28}{3}$
3.	The length of the arc of the curve $y = \log \sec x$ from $x = 0$ to $x = \frac{\pi}{3}$ is
	(1) $\log(2+\sqrt{3})$ (2) $\log(2-\sqrt{3})$ (3) $\log(1+\sqrt{3})$ (4) $\log(1-\sqrt{3})$
4.	The degree of the differential equation $\left(\frac{dy}{dx}\right)^3 - \left(\frac{d^2y}{dx^2}\right)^{3/2} + 5x = 0$ is
5.	(1) 3 (2) 6 (3) 1 (4) 2 The differential equation formed by eliminating the arbitrary constant a from $a^2y + ax + 8 = 0$ is
	(1) $8y_1^2 - xy_1 + y = 0$ (2) $8y_1^2 + xy_1 + y = 0$
6.	(3) $8y_1^2 - xy_1 - y = 0$
	(3) $y + \frac{y^3}{3} + x + \frac{x^3}{3} = c$ (4) $\sin^{-1} x + \sin^{-1} y = 0$

(4) I

(1) A (2) 2A (3) -A

16.	If $\frac{1-x+6x^2}{x-x^3} = \frac{1}{x} + \frac{1}{x^2}$	$\frac{3}{1-x} + \frac{A}{1+x} \text{then A} =$		
	(1) 4	(2) 2	(3) -4	(4) -2
17.	If $\frac{x^3}{(x+2)^2(x^2+2)}$ =	$\frac{10}{9(x+2)} - \frac{4}{3(x+2)^2} -$	$\frac{Ax+4}{9(x^2+2)} \text{ then } A =$	to reall was 4 and
	(1) 3	(2) 1	(3) -1	(4) -3
18.	The general solutio	n of the equation tan	$\theta + \tan 4\theta + \tan 7\theta =$	$\tan \theta \tan 4\theta \tan 7\theta$ is
	$(1) \theta = \frac{n\pi}{4}$	$(2) \theta = \frac{n\pi}{12}$	(3) $\theta = \frac{n\pi}{6}$	$(4) \theta = \frac{n\pi}{2}$
19.	If $\cos \theta = \frac{1}{2} \left(a + \frac{1}{a} \right)$), then $\cos 3\theta = K$ ($\left(a^3 + \frac{1}{a^3}\right)$ where K is e	qual to
	$(1) \frac{1}{2}$	(b) $-\frac{1}{2}$	(3) 1	(4) $\frac{3}{2}$
20.	$\tan 20^{0} + \tan 40^{0} +$	$tan 60^0 + \cdots + tan 1$	$80^{0} =$	terrocasio - 1
	(1) 0	(2) 1	(3) 2	(4) 3
*	3 cos A + cos 3A		The test metaling facilities	

(2) $\cot^4 \theta$ (3) $\cot^3 \theta$

If $\sin \theta + \sin 3\theta + \sin 5\theta = 0$, $0 \le \theta \le \frac{\pi}{2}$ then $\theta =$ _____.

(1) $0, \frac{\pi}{3}$ (2) $0, \frac{\pi}{2}$ (3) $1, \frac{\pi}{2}$ (4) $2, \frac{\pi}{3}$

(1) $\frac{5\pi}{4}$ (2) $\frac{3\pi}{4}$ (3) $-\frac{\pi}{4}$ (4) $\frac{-5\pi}{4}$

(3) $\sec \theta$ (4) $\csc \theta$

(4) $2 \cot \theta$

 $3\sin\theta - \sin 3\theta$

(1) $\cot^2 \theta$

23. $\cos^{-1}\left(\cos\left(\frac{5\pi}{4}\right)\right) =$

24. If $u = \log \tan \left(\frac{\pi}{4} + \frac{\theta}{2}\right)$ then $\cosh u =$

(1) $\sin \theta$ (2) $\cos \theta$

22.

25.	In ΔABC, if a cos	$A + b \cos B + c \cos C$	$C = \frac{2\Delta}{1}$ then k =	
	(1) r	(2) R	N.	
26.		$A = a \cos B$ then the t	(3) s	(4) K
		(2) isosceles		(4) scalene
				(1) scarene
27.	If in $\triangle ABC$, tan $\frac{A}{2}$	$\frac{1}{6} = \frac{5}{6}$ and $\tan \frac{C}{2} = \frac{2}{5}$ a,	b, c are in such that	
	(1) $b^2 = ac$	(2) $2b = a + c$	(3) $2ac = b (a + c)$	(4) a + b = c
28.	Imaginary part of	$\frac{4+3i}{(2+3i)(4-3i)} =$		
	(1) $\frac{86}{325}$	$(2) -\frac{86}{325}$	$(3) \frac{27}{325}$	$(4) \frac{29}{325}$
29.	The value of $i^2 + i^2$	$4 + i^6 + \cdots (2n + 1)$ ter	rms =	
		(2) -1		(4) i
30.	The locus of the po	oint equidistant from t	he points (a + b, a -	b) and $(a - b, a + b)$ is
	<u> </u>			
		(2) $bx + ay = 0$		
31.		touches the circle x^2 +		lue of k is
	$(1) \pm 10$	$(2) \pm 20$		8 6 8
32.	The point $(-1, 0)$ is		$y^2 - 4x + 8y + k = 0.$	The radius of the circle
	(1) 4	(2) 5	(3) 3	(4) 2
33.		e axis of the parabola		
	(1) y + 3 = 0	(2) $y - 3 = 0$	(3) $x - 4 = 0$	(4) x + 4 = 0
34.	The eccentricity of	the ellipse $3x^2 + 4y^2$	+6x - 8y = 5 is	•
	(1) 1/3	(2) 1/2	(3) 1/4	(4) 1/5
35.	The length of the	latusrectum of the hy	perbola $16x^2 - 9y^2$	-32x + 36y = 164 is
	$(1) \frac{32}{9}$	16	32	3
	$(1) {9}$	(2) $\frac{16}{3}$	$(3) \frac{32}{3}$	$(4) \frac{3}{16}$
	(2 .			T
36.	$ax^2 - b$,	x < 1	1 1	
30.	If $f(x) = \begin{cases} ax^2 - b, \\ \frac{1}{ x }, \end{cases}$	x ≥1	ble at $x = 1$, then	
	(1) $a = 1/2$, $b = -1$	/2	(2) $a = -1/2$, $b = -$	3/2
	(3) $a = b = 1/2$		(4) $a = b = -1/2$	

37.	If $y = \sin x + \cos x $	$ x $, then $\frac{dy}{dx}$ at $ x = \frac{2}{3}$	$\frac{4\pi}{3}$ is	
	(1) 0	(2) $\frac{-\sqrt{3}+1}{2}$	$(3)^{2} \frac{\sqrt{3}+1}{2}$	$(4) \frac{\sqrt{3}}{2}$
38.	If $y = x^x$, then $\frac{dy}{dx} =$	<u> </u>	The last terms	
	(1) $x^{x}(1 + \log x)$	(2) $x^x (1 - \log x)$	(3) $x^x (\log x - 1)$	(4) x ^x log x
39.	If $y = \tan^{-1} \frac{\cos x}{1 + \sin x}$	then the value of $\frac{dy}{dx}$	<u>/</u> =	
	(1) -1/2	(2) 1/2	(3) x/2	(4) -x/2
40.	If $x = a (\cos \theta + \theta)$	$\sin \theta$), $y = a(\sin \theta - $	θ cos θ), then the va	alue of $\frac{dy}{dx}$ at $\theta = \frac{\pi}{4}$ is
	(1) 0	$(2) \frac{1}{\sqrt{3}}$	(3) 1	(4) √3
41.	Given the function t	$f(x) = x^2 e^{-2x}, x > 0.$	Then $f(x)$ has the ma	ximum value equal to
	(1) e^{-2}	$(2) (2e)^{-1}$	(3) e^{-1}	(4) None of these
42.	If the curves ay $+ x$	$x^2 = 7$ and $x^3 = y$ cut of	orthogonally at (1, 1)	Then a =
	(1) 1	(2) -6	(3) 6	(4) 0
43.		ble area that can be e sector in sq. cm is		length 20cm by bending
	(1) 20 sq.cm	(2) 25 sq.cm	(3) 30 sq.cm	(4) 15 sq.cm
44.	If $u = \frac{x^3 + y^3}{x - y}$ and	if $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = ku$, th	en k =	p at
	(1) 3	(2) -3	(3) 2	(d) -1
45.	If $z = e^{ax + by} \cdot f(ax - b)$	by), then the value	of $b \frac{\partial z}{\partial x} + a \frac{\partial x}{\partial y}$ is	
	(1) abz	(2) 2abz	(3) 3abz	(4) 4abz
46.	$\int \frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx = \underline{\hspace{1cm}}$	enders of the aspect		
	$(1) -\cosh^{-1}(\sin x)$	+ cosx)	$(2) -\cosh^{-1} (\sin x - \frac{1}{2}) = -\cosh^{-1} (\sin x - \frac{1}{2})$	- cos x)
	(3) $\cosh^{-1} (\sin x +$	cos x)	$(4) \cosh^{-1}(\sin x -$	cos x)

47.
$$\int_{1}^{5} \frac{\sqrt{x-1}}{x} dx = \underline{\hspace{1cm}}$$

- (1) $\frac{2}{5}\log 2$ (2) $\frac{1}{5}\log 2$ (3) $\frac{5}{2}\log 5$ (4) $\frac{1}{2}\log 5$

48.
$$\int_{0}^{1} \frac{\sin^{-1} x}{x} dx = \underline{\qquad}$$

- (1) $\frac{\pi}{2}\log 2$ (2) $\frac{\pi}{4}\log 4$ (3) $\frac{\pi}{6}\log 6$ (4) $\frac{\pi}{8}\log 8$

49.
$$\int_{0}^{\pi} \frac{1}{5 + 4\cos x} dx = \underline{\hspace{1cm}}.$$

- (1) $\frac{\pi}{2}$ (2) $\frac{\pi}{3}$ (3) $\frac{\pi}{4}$ (4) π

50.
$$\lim_{n\to\infty} \left(\frac{1}{n^3+1} + \frac{4}{n^3+8} + \frac{9}{n^3+27} + \dots + \frac{r^2}{n^3+r^3} + \dots + \frac{1}{2n} \right) = \underline{\hspace{1cm}}.$$

- (1) $\frac{1}{2}\log 3$ (2) $\log 2$ (3) $\frac{1}{2}\log 2$ (4) $\frac{1}{3}\log 2$

ANSWERS

N	M
2	W
-	2/
	-

1)	1	2) 4	3) 1	4) 1	5) 1
6)	1 -	7) 2	8) none	9) 1	10) 1
11)	3	12) 2	13) 3	14) 1	15) 1
16)	3	17) 2	18) - 2	19) 1	20) 1
21)	3	22) 1 100	23) 2	24) 3	25) 2
26)	2	27) 2	28) 3	29) 2	30) 4
31)	2	32) 2	33) 3	34) 2	35) 3
36)	2	37) 2	38) 1	39) 1	40) 3
41)	1	42) 3	43) 2	44) 3	45) 2
46)	1	47) none	48) 1	49) 2	50) 4

ECET PHYSICS

51.	For an object thrown at 45 ⁰ to the	horizotal, the maximum height (H) and horizontal range (R)
	(1) R = 16 H	
	(3) $R = 4 H$	(2) $R = 8 H$
52.		(4) $R = 2 H$
Ja,	(1) 0	tile, its velocity and acceleration ae at an angle of $(2) 45^0$
	$(3) 90^0$	$(4)\ 180^0$
53.	(1) Both particles will reach at ground(2) Particle A will reach at ground(3) Particle B will reach at ground	tht and another particle B is projected in horizontal direction came height, then correct statement is () and simultaneously first with respect to particle B first with respect to particle A
54.	(4) Both particles will reach at grou	and with same speed
54.		ge with an intial velocity of 20 m/s. If $g = 10 \text{ m/s}^2$, the range
	(1) 20 m	(2) 40 m
	(3)50 m	(4) 60 m
55.	A body of mas 2 kg is kept station. The coefficient of friction between v	nary by pressing to a vertical wall by a force of 100 N. wall and body is 0.3. Then the frictional force is equal to
	(1) 6N	(2) 20 N
	(3) 600N	(2) 20 N
56.	If the normal force is doubled, then	(4) 700 N
	(1) Halved	
	(3)Doubled	(2) Tripled
57.		(4) Remains same
	If the workdone is 25J, then the angle	along a straight line under the action of a 5 N force. e between the force and direction of motion of the body is
/	$(1) 60^{0}$	()
	$(3) 30^0$	(2) 75^0
		$(4) 45^0$
		oving with equal kinetic energies. The ratio of their linear
	(1) 1:2	(2) 1 : 4
	(3) 4: 1	(4) 1:1

59.	If the kinetic energy of a body becomes for	our times of its initial value, then new mor	mentum	will
	(1) Become four times its initial value	(2) Become thrice its initial value	()
	(3) Become twice its initial value	(4) Remain constant		
60.		to nequal parts, thenethe time paried of		
	be	to it equal parts, their the time period of ea	ich part	Will
	(1) $T\sqrt{n}$	(2) T/\sqrt{n}	(,
	(3) nT	(4) T		
61.	In a simple harmonic oscillator, at the med			
	(1) Kinetic energy is minimum, potential of	energy is maximum	()
	(2) Both Kinetic and potential energies are	e maximum		
	(3) Kinetic energy is maximum, potential	energy is minimum		
	(4) Both Kinetic and potential energies are	e minimum		
62.	Source of sound and observer are moving	towards each other than the survey		
)
	(2) III 1 E	(2) Low frequency, Low wavelength		
63.	The two waves of the same frequency	(4) Low frequency, High wavelengt	.h	
	give rise to	moving with same speed in the same	direct	ion
	(1) Beats	(2) Interference	()
	(3) Stationary waves	(4) Diffraction		
64.	The ratio of frequencies of two pendulums		rio (
	$(1) \sqrt{2}/\sqrt{3}$	(2) $\sqrt{3}/\sqrt{2}$) 01	
	(3) 4 / 9			
65.	The first law of thermodynamics confirms	(4) 9 / 4		
	(1) Conservation of momentum of molecul		(
	(2) Conservation of momentum of molecul	les		
	(3) Flow of heat in particular direction			
	(4) Conservation of heat energy and mechanisms			
66.				
00.	A sample of gas expands from volume V greatest, when the expansion is	to V_2 . The amount of work done by	the gas	15
	(1) Isothermal	(2) Isaharia	(
	(3) Adiabatic	(2) Isobaric		
67.	During adiabatic compression of a gas, its t	(4) Equal in all cases		
	(1) Falls		(
	(3) Rises	(2) Remains Constant		
		(4) Becomes Zero		

										55
68.		ves as an ic							()
		essure and				Low press				
69.	(3) High p	ressure and	low temp	erature	(4) I	High press	ure and h	gh temper	ature	
07.	In photoele	ectric effect	, the KE o	of electrons	semitted	from the r	netal surfa	ace depend	ds upon	
	(1) Intensit	v of light			(2) I	E #0.0110# 00	-C: 1	. 1: 1	()
	(3) Velocity		t light			Frequency Both intens				
70.	The propag		_	an optical	fiber is d	Both intens	sity and ve	locity of I	igh	į.
	(1) Polariza	ation of ligh	t	optical		Rectilinear	nronagati	on of light	()
	(3) Total in			ht		nterference		on or right		
71	12				() -		e or ngm			
71.	$\left[\mathrm{ML}^{2}\mathrm{T}^{-2}\right]$	are dimen	sions of						()
	(1) Force				(2) N	Moment of	force			
	(3) Momen					ower				
72.	Out of the	following pa	airs, which	one does	not have	identical o	limensions		()
	(1) Moment	of inertia	and mome	nt of a for	ce (2) V	Vork and t	orque		`	/
72	(3) Angular	momentm	and Planc	k's constar	nt (4) I1	mpulse and	d moment	um		
73.	If the magnivecotrs is	tudes of tw	o vectors a	re 3 and 4	and their	scalar pro	duct is 6,	the angle l	oetween	the
	$(1) 30^0$				(2)	-0			()
	$(3) 60^0$				(2) 45					
74.		fλ in the w	nit vooton (1: + 0 0:	(4) 90					
	The value of		iii vector (0.41 ± 0.8	+ Λ K 1S				()
	(1) (0.12)	2			(2) (0	$(0.2)\frac{1}{2}$				
	$(3)(0.4)\frac{1}{2}$				(4) ((0.8) ½	*			
75.	Vector produ	ict of a vec	tor with it	self is	(1) (1)	0.0)/2				
	(1) 1	ioi oi u vee	tor with it	SCII 15	(2) -1			p 2	()
	(3) 0				$(2)^{-1}$ $(4)_{\infty}$					
					(.) &					
				KE	Υ					
	9				-					
51.	3 52. 3	53. 1	54. 2	55. 2	56. 4	57. 1	58. 1	59. 3	60 -	
						"	36. 1	39. 3	60. 2	
61.	3 62. 3	63. 2	64. 4	65. 4	66. 2	67 2	60 1	60. 3	7 0	
			01. 4	05. 4	00. 2	67. 3	68. 1	69. 2	70. 3	
71.	2 72 1	72 2	74 2	75. 2						
/1.	2 72. 1	73. 3	74. 2	75. 3						

ECET CHEMISTRY

76.	Which one among the following water sampl	e contains more hardness?	(1				
	(1) 5000 ppm of hardness		,)				
	(2) 0.5 g of C _a CO ₃ in 100 ml of water								
	(3) 50 equivalents of C _a CO ₃ in 100 ml of wa	ter							
	(4) 50 moles of C _a CO ₃ in 100 ml of water								
77.	The synthetic polymer which resembles natu	ral rubbar is	,						
	(1) Neoprene	(2) Chloroprene	() .				
	(3) Nylon	(4) Polyphenol							
78.	What is meant by mastification of rubber?	(4) 1 displication	,		,				
	(1) Its softening	.,	()				
	(2) Depression of its freezing point								
	(3) A treatment to retard its deterioration due	to acids							
	(4) Improving its curing rate								
79.	What is the monomer used to make Teflon?		(1				
	(1) Tetra fluoro ethane	(2) Tetra fluoro ethylene	,		,				
	(3) Di fluoro ethylene	(4) Tetra fluoro acetylene							
80.	What are the constituents of coal gas?		(1				
	(1) Methane and carbon dioxide	(2) Methane and Hydrogen	,		,				
	(3) Methane, Hydrogen and Carbonmonoxide	(4) Methane and Butane							
81.	Which one among the following is NOT a gree		(. ,	1				
	(1) CH ₄	(2) CO ₂	,		,				
	(3),60	(4) NO							
82.	Which one among the following causes depleti		()					
	(L) CF ₂ CI ₂	(2) CH ₂ F ₂	,	,					
	(3) CF ₄	(4) C ₂ H ₃ F							
83.	Which part of the atmosphere contains highest		1	-					
	(1) Troposphere	(2) Mesosphere	(,					
	(3) Stratosphere	(4) Thermosphere							
84.	Which one of the following set of quantum num	mbers is not possible for 'p' electron?	()					
	(1) $n = 4$, $l = 1$, $m = +1$ and $m_s = +1/2$	(2) $n = 4$, $l = 1$, $m = 0$ and $m_s = +1/2$							
	(3) $n = 4$, $l = 1$, $m = +2$ and $m_s = +1/2$.	(4) $n = 4$, $l = 1$, $m = -1$ and $m_s = -1/2$							

85.	The first emission line of hydrogen atomic spectrum in Balmer series appears at (Foundation)				
	(1) 5 R / 36 cm ⁻¹	(2) 3 R / 4 cm ⁻¹			
	(3) 7 R / 144 cm ⁻¹	(4) 9 R / 400 cm ⁻¹			
86.	Which ion is iso electronic with 'CO'	'?	()	
	$(1) N_2^+$	(2) O ₂ +			
	(3) O ₂ -	(4) CN ⁻			
87.	Why sodum chloride is more soluble	in water ?	()	
	(1) Sodium chloride is a covalent con				
	(2) Sodium chloride is a ionic compo				
		mpound and water is a non - polar solvent nd and water is a non - polar solvent			
88.	What happened to a solution when a	non - volatile solute is added to a solvent?	()	
	(1) Vapour pressure decreases	(2) Vapour pressure increases			
	(3) Boiling point decreases	(4) No change in vapour pressure			
89.	How much volume of 0.1 M H ₂ SO ₄ : NaOH solution?	solution is required to nuetralize completely 50 m	of 0	2 N	
	(1) 25 ml	(2) 50 ml			
6	(3) 75 ml	(4) 100 ml			
90.	What is the conjugate base of OH -?		()	
	(1) H ₂ O	$(2) H_2O^+$			
	(3) O ⁻	(4) 2.7			
91.	10 ml of 0.05 M H ₂ SO ₄ is diluted solution?	to 100 ml with water. What is the pH of the	result	ant	
	(1) 2.0	(2) 1.0			
	(3) 2.3	(4) 2.7			
92.	Which type of ores are purified by u	sing Froth floatation method?	(·)	
	(1) Oxide Ores	• (2) Carbonate Ores			
	(3) Sulphide Ores	(4) Sulphate Ores			
93.	What is the metal present as major co	onstituent in nichrome alloy?	(()	
	(1) Cr	(2) Ni			
	(3) Cu	(4) Fe			
94.	When one Faraday of electricity is particular a cathode? (Atomic weight of Cu =	passed for CuSO ₄ solution, how much copper is 63.54)	deposi	ted)	
	(1) 63.54 g	(2) 31.72 g			
	(3) 15.86 g	(4) 127.08 g			

9	95. Calculate the emf of the S. H.	ECEI [FDH]	Chemistry
9	(1) + 1.1V (3) + 1.07 V	g cell at 25^{0} C of $Zn/Zn^{2} + (0.1M) // Cu^{2+} (0.1M) /$ and Cu^{2+} Cu / Cu are -0.76 and $+0.34$ respective (2) -1.1 V	Cu standard
	(2) A strip of copper is placed into (3) A strip of silver is placed into	n aqueous solution of zinc nitrate o an aqueous solution sinc nitrate	()
97			
	selected to pre	event corrosion by sacrificial anodic protection me	ethod 2
	(2) Oxidation potential of anode me (3) Reduction potential of anode me	etal is higher than that of protected metal etal is lower than that of protected metal	()
98.	· Which one of the following stateme	ent is come a	
	(1) Aluminum corrodes faster than in (2) Rusting of iron is quicker in salin (3) Corrosion do not conversion.	ne water	()
99.	(3) Corrosion do not occur in steel p (4) Bolts and nuts made of the differ		
	(1) 500 ppm (3) 400 ppm	Ca ² + ions. What is the hardness of the water?	()
100.		(4) 1000 ppm	
1	Which solution is used to regenerate (1) NaOH	the cationic exchange resin?	
	(3) NaCl	(2) HCl (4) KCl	()
		VEW	

KEY

		10. 3	19. 2	80. 3	81. 3	82. 1	83. 4	84. 3	85.
86. 4	87. 2	88. 1	89. 2	90. 3	91. 1	92 3	02 2	0.1	
96. 4	97. 1	98. 2	99. 3	100 2			93. 2	94. 2	95. 1