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Rippling: Meta-Level Guidance for Mathematical Reasoning

Rippling is a radically new technique for the automation of mathematical reasoning. It
is widely applicable whenever a goal is to be proved from one or more syntactically
similar givens. The goal is manipulated to resemble the givens more closely, so that
they can be used in its proof. The goal is annotated to indicate which subexpressions
are to be moved and which are to be left undisturbed. It is the first of many new
search-control techniques based on formula annotation; some additional annotated
reasoning techniques are also described in the last chapter of the book.

Rippling was developed originally for inductive proofs, where the goal was the
induction conclusion and the givens were the induction hypotheses. It has proved
applicable to a much wider class of problems: from summing series via analysis to
general equational reasoning.

The application to induction has especially important practical implications in the
building of dependable IT systems. Induction is required to reason about repetition,
whether this arises from loops in programs, recursive data-structures, or the behavior
of electronic circuits over time. But inductive proof has resisted automation because of
the especially difficult search control problems it introduces, e.g. choosing induction
rules, identifying auxiliary lemmas, and generalizing conjectures. Rippling provides a
number of exciting solutions to these problems. A failed rippling proof can be
analyzed in terms of its expected structure to suggest a patch. These patches automate
so called “eureka” steps, e.g. suggesting new lemmas, generalizations, or induction
rules.

This systematic and comprehensive introduction to rippling, and to the wider
subject of automated inductive theorem proof, will be welcomed by researchers and
graduate students alike.
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Preface

Automated theorem proving has been an active research area since the 1950s
when researchers began to tackle the problem of automating human-like rea-
soning. Different techniques were developed early on to automate the use of
deduction to show that a goal follows from givens. Deduction could be used
to solve problems, play games, or to construct formal, mathematical proofs. In
the 1960s and 1970s, interest in automated theorem proving grew, driven by
theoretical advances like the development of resolution as well as the growing
interest in program verification.

Verification, and more generally, the practical use of formal methods, has
raised a number of challenges for the theorem-proving community. One of
the major challenges is induction. Induction is required to reason about repe-
tition. In programs, this arises when reasoning about loops and recursion. In
hardware, this arises when reasoning about parameterized circuits built from
subcomponents in a uniform way, or alternatively when reasoning about the
time-dependent behavior of sequential systems.

Carrying out proofs by induction is difficult. Unlike standard proofs in first-
order theories, inductive proofs often require the speculation of auxiliary lem-
mas. This includes both generalizing the conjecture to be proven and specu-
lating and proving additional lemmas about recursively defined functions used
in the proof. When induction is not structural induction over data types, then
proof search is also complicated by the need to provide a well-founded order
over which the induction is performed. As a consequence of these compli-
cations, inductive proofs are often carried out interactively rather than fully
automatically.

In the late 1980s, a new theorem-proving paradigm was proposed, that of
proof planning. In proof planning, rather than proving a conjecture by rea-
soning at the level of primitive inference steps in a deductive system, one
could reason about and compose high-level strategies for constructing proofs.

xi



xii Preface

The composite strategy could afterwards be directly mapped into sequences
of primitive inferences. This technique was motivated by studying inductive
proofs and was applied with considerable success to problems in this domain.
Proof planning is based on the observation that most proofs follow a common
pattern. In proofs by induction, if the inductive step is to be proven, then the
induction conclusion (the goal to be proved) must be transformed in such a
way that one can appeal to the induction hypothesis (the given). Moreover,
and perhaps surprisingly, this transformation process, called rippling, can be
formalized as a precise but general strategy.

Rippling is based on the idea that the induction hypothesis (or more gen-
erally hypotheses) is syntactically similar to the induction conclusion. In par-
ticular, an image of the hypothesis is embedded in the conclusion, along with
additional differences, e.g., x might be replaced by x + 1 in a proof by induc-
tion on x over the natural numbers. Rippling is designed to use rewrite rules
to move just the differences (here “+1”) through the induction conclusion in
a way that makes progress in minimizing the difference with the induction
hypothesis. In Chapter 1 we introduce and further motivate rippling.

From this initially simple idea, rippling has been extended and generalized
in a wide variety of ways, while retaining the strong control on search, which
ensures termination and minimizes the need for backtracking. In Chapter 2
we describe some of these extensions to rippling including the application of
rippling to proving noninductive theorems.

In contrast to most other proof strategies in automated deduction, rippling
imposes a strong expectation on the shape of the proof under development.
As previously explained, in each proof step the induction hypothesis must be
embedded in the induction conclusion and the conclusion is manipulated so
that the proof progresses in reducing the differences. Proof failures usually
appear as missing or mismatching rewrite rules, whose absence hinders proof
progress. Alternatively, the reason for failure might also be a suboptimal choice
of an induction ordering, a missing case analysis, or an over-specific formu-
lation of the conjecture. Comparing the expectations of how a proof should
proceed with the failed proof attempt, so-called critics reason about the possi-
ble reasons for the failure and then suggest possible solutions. In many cases
this results in a patch to the proof that allows the prover to make progress. In
Chapter 3 we describe how these proof critics use failure in a productive way.

Since rippling is designed to control the proof search using the restric-
tions mentioned above, it strongly restricts search, and even long and complex
proofs can be found quickly. In Chapter 5 we present case studies exemplify-
ing the abilities of rippling. This includes its successes as well as its failures,
e.g., cases where the restrictions are too strong and thereby prohibit finding
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proofs. We also present examples outside of inductive theorem-proving where
rippling is used as a general procedure to automate deduction.

The above-mentioned chapters introduce techniques, extensions, and case
studies on using rippling in an informal way, and provide a good overview
of rippling and its advantages. In contrast, in Chapters 4 and 6 we formalize
rippling as well as extending it to a more general and powerful proof method-
ology. The casual reader may choose to skip these chapters on the first reading.

In Chapter 4 we present the formal theory underlying rippling. In the same
way in which sorts were integrated into logical calculi at the end of the 1970s,
rippling is based on a specialized calculus that maintains the required contex-
tual information. The restrictions on embeddings are automatically enforced
by using a specialized matching algorithm while the knowledge about differ-
ences between the hypothesis and the conclusion is automatically propagated
during deduction. The explicit representation of differences inside of formulas
allows for the definition of well-founded orderings on formulas that are used
to guarantee the termination of the rippling process.

Rippling is a successful example of the paradigm of using domain knowl-
edge to restrict proof search. Domain-specific information about, for example,
the difference between the induction conclusion and the induction hypothesis,
is represented using term annotation and manipulated by rules of a calculus. In
Chapter 6 we generalize the idea of rippling in two directions. First, we gener-
alize the kinds of contextual information that can be represented by annotation,
and we generalize the calculus used to manipulate annotation. The result is a
generic calculus that supports the formalization of contextual information as
annotations on individual symbol occurrences, and provides a flexible way to
define how these annotations are manipulated during deduction. Second, we
show how the various approaches to guiding proof search can be subsumed
by this generalized view of rippling. This results in a whole family of new
techniques to manage deduction using annotations.

In addition to this book there is a web site on the Internet at

http://www.rippling.org

that provides additional examples and tools implementing rippling. We encour-
age our readers to experiment with these tools.
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1

An introduction to rippling

1.1 Overview

This book describes rippling, a new technique for automating mathematical
reasoning. Rippling captures a common pattern of reasoning in mathemat-
ics: the manipulation of one formula to make it resemble another. Rippling
was originally developed for proofs by mathematical induction; it was used to
make the induction conclusion more closely resemble the induction hypothe-
ses. It was later found to have wider applicability, for instance to problems in
summing series and proving equations.

1.1.1 The problem of automating reasoning

The automation of mathematical reasoning has been a long-standing dream of
many logicians, including Leibniz, Hilbert, and Turing. The advent of elec-
tronic computers provided the tools to make this dream a reality, and it was
one of the first tasks to be tackled. For instance, the Logic Theory Machine
and the Geometry Theorem-Proving Machine were both built in the 1950s and
reported in Computers and Thought (Feigenbaum & Feldman, 1963), the earli-
est textbook on artificial intelligence. Newell, Shaw and Simon’s Logic Theory
Machine (Newell et al., 1957), proved theorems in propositional logic, and
Gelernter’s Geometry Theorem-Proving Machine (Gelernter, 1963), proved
theorems in Euclidean geometry.

This early work on automating mathematical reasoning showed how the
rules of a mathematical theory could be encoded within a computer and how a
computer program could apply them to construct proofs. But they also revealed
a major problem: combinatorial explosion. Rules could be applied in too many
ways. There were many legal applications, but only a few of these led to a
proof of the given conjecture. Unfortunately, the unwanted rule applications

1



2 An introduction to rippling

cluttered up the computer’s storage and wasted large amounts of processing
power, preventing the computer from finding a proof of any but the most trivial
theorems.

What was needed were techniques for guiding the search for a proof:
for deciding which rule applications to explore and which to ignore. Both
the Logic Theory Machine and the Geometry Theorem-Proving Machine
introduced techniques for guiding proof search. The Geometry Machine, for
instance, used diagrams to prevent certain rule applications on the grounds
that they produced subgoals that were false in the diagram. From the earliest
days of automated reasoning research, it was recognized that it would be
necessary to use heuristic proof-search techniques, i.e. techniques that were
not guaranteed to work, but that were good “rules of thumb”, for example,
rules that often worked in practice, although sometimes for poorly understood
reasons.

1.1.2 Applications to formal methods

One of the major applications of automated reasoning is to formal methods
of system development. Both the implemented system and a specification of
its desired behavior are described as mathematical formulas. The system can
then be verified by showing that its implementation logically implies its spec-
ification. Similarly, a system can be synthesized from its specification and an
inefficient implementation can be transformed into an equivalent, but more ef-
ficient, one. Formal methods apply to both software and hardware. The use of
formal methods is mandatory for certain classes of systems, e.g. those that are
certified using standards like ITSEC or the Common Criteria.

The tasks of verification, synthesis, and transformation all require math-
ematical proof. These proofs are often long and complicated (although not
mathematically deep), so machine assistance is desirable to avoid both error
and tedium. The problems of search control are sufficiently hard that it is of-
ten necessary to provide some user guidance via an interactive proof assistant.
However, the higher the degree of automation then the lower is the skill level
required from the user and the quicker is the proof process. This book focuses
on a class of techniques for increasing the degree of automation of machine
proof.

Mathematical induction is required whenever it is necessary to reason about
repetition. Repetition arises in recursive data-structures, recursive or itera-
tive programs, parameterized hardware, etc., i.e. in nearly all non-trivial sys-
tems. Guiding inductive proof is thus of central importance in formal meth-
ods proofs. Inductive proof raises some especially difficult search-control
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problems, which are discussed in more detail in Chapter 3. We show there
how rippling can assist with these control problems.

1.1.3 Proof planning and how it helps

Most of the heuristics developed for guiding automated reasoning are local,
i.e., given a choice of deductive steps, they suggest those that are most promis-
ing. Human mathematicians often use more global search techniques. They
first form an overall plan of the required proof and then use this plan to fill in
the details. If the initial plan fails, they analyze the failure and use this analy-
sis to construct a revised plan. Can we build automated reasoners that work in
this human way? Some of us believe we can. We have developed the technique
of proof planning (Bundy, 1991), which first constructs a proof plan and then
uses it to guide the search for a proof.

To build an automated reasoner based on proof planning requires:

• The analysis of a family of proofs to identify the common patterns of rea-
soning they usually contain.

• The representation of these common patterns as programs called tactics.
• The specification of these tactics to determine in what circumstances they

are appropriate to use (their preconditions), and what the result of using
them will be (their effects).

• The construction of a proof planner that can build a customized proof
plan for a conjecture from tactics by reasoning with the tactics’ specifica-
tions.

A proof planner reasons with methods. A method consists of a tactic together
with its specification, i.e. its preconditions and effects. Methods are often hier-
archical in that a method may be built from sub-methods. Figure 1.1 describes
a method for inductive proofs, using nested boxes to illustrate a hierarchical
structure of sub-methods, which includes rippling.

1.1.4 Rippling: a common pattern of reasoning

Rippling is one of the most successful methods to have been developed within
the proof-planning approach to automated reasoning. It formalizes a particular
pattern of reasoning found in mathematics, where formulas are manipulated in
a way that increases their similarities by incrementally reducing their differ-
ences. By only allowing formulas to be manipulated in a particular, difference-
reducing way, rippling prevents many rule applications that are unlikely to
lead to a proof. It does this with the help of annotations in formulas. These
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induction

�
���

�
���

base case step case

ripple

fertilize

�

Figure 1.1 A proof method for inductive proofs. Each box represents a method.
Arrows represent the sequential order of methods. Nesting represents the hier-
archical structure of the methods. Note the role of rippling within the step case
of inductive proofs. One base and one step case are displayed for illustration; in
general, an inductive proof can contain several of each.

annotations specify which parts of the formula must be preserved and which
parts may be changed and in what ways. They prevent the application of rules
that would either change preserved parts or change unpreserved parts in the
wrong way.

Rippling is applicable whenever one formula, the goal, is to be proved with
the aid of another formula, the given. In the case of inductive proofs, the goal is
an induction conclusion, and the given is an induction hypothesis. More gen-
erally, the goal is the current conjecture and the given might be an assumption,
an axiom, or a previously proved theorem. Rippling attempts to manipulate the
goal to make it more closely resemble the given. Eventually, the goal contains
an instance of the given. At this point, the given can be used to help prove the
goal: implemented by a proof method called fertilization.

To understand rippling, the following analogy may be helpful, which also
explains rippling’s name. Imagine that you are standing beside a loch1 in which
some adjacent mountains are reflected. The reflection is disturbed by some-
thing thrown into the loch. The mountains represent the given and their reflec-
tion represents the goal. The ripples on the loch move outwards in concentric
rings until the faithfulness of the reflection is restored. Rippling is the move-
ment of ripples on the loch: it moves the differences between goal and given to
where they no longer prevent a match. This analogy is depicted in Figure 1.2.

1 Rippling was invented in Edinburgh, so basing the analogy in Scotland has become traditional.
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The mountains repre-
sent the given and the
reflection represents
the goal. The moun-
tains are reflected in
the loch.

The faithfulness of this
reflection is disturbed
by the ripples. As the
ripples move outwards,
the faithfulness of the
reflection is restored.

In proofs, the rippling
of goals creates a copy
of the given within
the goal. This pattern
occurs frequently in
proofs.

Figure 1.2 A helpful analogy for rippling.

1.2 A logical calculus of rewriting

In order to describe rippling we must have a logical calculus for representing
proofs. At this point we need introduce only the simplest kind of calculus: the
rewriting of mathematical expressions with rules.1 This calculus consists of
the following parts.

1 We assume a general familiarity with first-order predicate calculus and build on that. An easy
introduction to first-order predicate calculus can be found in Velleman (1994).
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• The goal to be rewritten. The initial goal is usually the conjecture and sub-
sequent goals are rewritings of the initial one.

• Some (conditional or unconditional) rewrite rules, which sanction the re-
placement of one subexpression in the goal by another.

• A procedure, called the rewrite rule of inference, that specifies how this
replacement process is performed.

In this simple calculus, all quantifiers are universal. Section 4.1.2 gives a more
formal account of rewriting.

Rewrite rules can be based on equations, L = R, implications R → L , and
other formulas. They will be written as L ⇒ R to indicate the direction of
rewriting, i.e. that L is to be replaced by R and not vice versa. Sometimes they
will have conditions, Cond, and will be written as Cond → L = R. We will
use the single shafted arrow → for logical implication and the double shafted
arrow ⇒ for rewriting. We will usually use rewriting to reason backwards from
the goal to the givens. When reasoning backwards, the direction of rewriting
will be the inverse of logical implication, i.e. R → L becomes L ⇒ R.

To see how rewrite rules are formed, consider the following equation and
implication.

(X + Y ) + Z = X + (Y + Z) (1.1)

(X1 = Y1 ∧ X2 = Y2) → (X1 + X2 = Y1 + Y2). (1.2)

Equation (1.1) is the associativity of + and (1.2) is the replacement axiom
for +. These can be turned into the following rewrite rules.

(X + Y ) + Z ⇒ X + (Y + Z) (1.3)

(X1 + X2 = Y1 + Y2) ⇒ (X1 = Y1 ∧ X2 = Y2). (1.4)

The orientation of (1.3) is arbitrary. We could have oriented it in either direc-
tion. However, there is a danger of looping if both orientations are used. We
will return to this question in Section 1.8. Assuming we intend to use it to rea-
son from goal to given, the orientation of (1.4) is fixed and must be opposite to
the orientation of implication.

In our calculus we will adopt the convention that bound variables and con-
stants are written in lower-case letters and free variables are written in upper
case. Only free variables can be instantiated. For instance, in ∀x . x + Y = c
we can instantiate Y to f (Z), but we can instantiate neither x nor c.1 The

1 And nor can we instantiate Y to any term containing x , of course, since this would capture any
free occurrences of x in the instantiation into the scope of ∀x , changing the meaning of the
formula.
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upper-case letters in the rewrite rules above indicate that these are free vari-
ables, which can be instantiated during rewriting.

We will usually present rewrite rules and goals with their quantifiers
stripped off using the validity-preserving processes called skolemization and
dual skolemization, respectively. In our simple calculus, with only universal
quantification, skolemization is applied to rewrite rules to replace their univer-
sal variables with free variables, and dual skolemization is applied to goals to
replace their universal variables with skolem constants, i.e. constants whose
value is undefined.

The conditional version of the rewrite rule of inference is

Cond → Lhs ⇒ Rhs Cond E[Rhsφ]
E[Sub] .

Its parts are defined as follows.

• The usual, forwards reading of this notation for rules of inference is “if
the formulas above the horizontal line are proven, then we can deduce the
formula below the line”. Such readings allow us to deduce a theorem from
a set of axioms. However, we will often be reasoning backwards from the
theorem to be proved towards the axioms. In this mode, our usual reading
of this rewrite rule of inference will be: “if E[Sub] is our current goal and
both Cond → Lhs ⇒ Rhs and Cond can be proven then E[Rhsφ] is our
new goal”.

• E[Sub] is the goal being rewritten and Sub is the subexpression within it
that is being replaced. Sub is called the redex (for reducible expression)
of the rewriting. E[Sub] means Sub is a particular subterm of E and in
E[Rhsφ] this particular subterm is replaced by Rhsφ.

• The φ is a substitution of terms for variables. It is the most general substitu-
tion such that Lhsφ ≡ Sub, where ≡ denotes syntactic identity. Note that φ

is only applied to the rewrite rule and not to the goal.
• Cond is the condition of the rewrite rule. Often Cond is vacuously true in

which case Cond → and Cond are omitted from the rule of inference.

For instance, if rewrite rule (1.3) is applied to the goal

((c + d) + a) + b = (c + d) + 42

to replace the redex (c + d) + 42, then the result is

((c + d) + a) + b = c + (d + 42).
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1.3 Annotating formulas

Rippling works by annotating formulas, in particular, the goals and those oc-
curring in rewrite rules. Those parts of the goal that correspond to the given are
marked for preservation, and those parts that do not are marked for movement.
Various notations have been explored for depicting the annotations. The one
we will use throughout this book is as follows.

• Those parts of the goal that are to be preserved are written without any
annotation. These are called the skeleton. Note that the skeleton must be a
well-formed formula.

• Those parts of the goal that are to be moved are each placed in a grey box
with an arrow at the top right, which indicates the required direction of
movement. These parts are called the wave-fronts. Note that wave-fronts
are not well-formed formulas. Rather they define a kind of context, that is,
formulas with holes. The holes are called wave-holes and are filled by parts
of the skeleton.

This marking is called wave annotation. A more formal account of wave an-
notation will be given in Section 4.4.2.

Wave annotations are examples of meta-level symbols, which we contrast
with object-level symbols. Object-level symbols are the ones used to form ex-
pressions in the logical calculus. Examples are 0, +, = and ∧. Any symbols
we use outside this logical calculus are meta-level. Annotation with meta-level
symbols will help proof methods, such as rippling, to guide the search for a
proof.

For instance, suppose our given and goal formulas are

Given: a + b = 42
Goal: ((c + d) + a) + b = (c + d) + 42,

and that we want to prove the goal using the given. The a, + b =, and 42
parts of the goal correspond to the given, but the (c + d) + part does not. This
suggests the following annotation of the goal

( (c + d) + a
↑
) + b = (c + d) + 42

↑
.

This annotation process can be automated. Details of how this can be done will
be given in Section 4.3.

Note the wave-holes in the two grey boxes. The well-formed formulas in
wave-holes are regarded as part of the skeleton and not part of the wave-fronts.
So the skeleton of the goal is a +b = 42, which is identical to the given. There
are two wave-fronts. Both contain (c + d)+. Each of the wave-fronts has an
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upwards-directed arrow in its top right-hand corner. These arrows indicate the
direction in which we want the wave-fronts to move: in this case outwards,1

which is the default direction. In Chapter 2 we will see situations in which
inwards movement is desirable.

1.4 A simple example of rippling

To illustrate rippling, consider the example in Section 1.3. Suppose the rewrite
rules from Section 1.2 are available. Rule (1.3) can be used to rewrite the
goal

((c + d) + a) + b = (c + d) + 42

in three different ways:

((c + d) + a) + b = c + (d + 42)

(c + (d + a)) + b = (c + d) + 42

(c + d) + (a + b) = (c + d) + 42 (1.5)

but the first two of these are counterproductive. Only the rewriting to (1.5)
moves us towards the successful use of the given: a + b = 42. The other two
rewritings are examples of the kind of unwanted rule applications that would
cause a combinatorial explosion in a more complex example.

Using rippling we can reject the two unwanted rewritings but keep the de-
sired one. We first annotate each of them with respect to the given, a +b = 42:

( (c + d) + a )
↑
) + b = c + (d + 42 )

↑
(1.6)

( c + (d + a )
↑
) + b = (c + d) + 42

↑
(1.7)

(c + d) + ( a + b )
↑ = (c + d) + 42

↑
. (1.8)

Afterwards we compare each of them in turn with the original annotated goal

( (c + d) + a
↑
) + b = (c + d) + 42

↑
.

• In (1.6) the right-hand side wave-front changed in character, but is still in
the same place with respect to the skeleton, i.e. it has not moved from where
it was originally. From the viewpoint of rippling, things are no better.2 This
rewriting can be rejected as representing no progress.

1 Or upwards, if we think of the formula as being represented by its parse tree, cf. Figure 1.3.
2 In fact, as we will see in Section 2.1.3, things are actually worse.
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• In (1.7) the left-hand side wave-front has changed in character, but is also
still in the same place with respect to the skeleton. So this situation is similar
to the previous one.

• In (1.8) the left-hand side wave-front has moved outwards, i.e. it is attached
to the skeleton at a point outside where it was originally. From the view-
point of rippling, things have improved. This rewriting can be welcomed as
representing real progress.

In Section 4.7 we will make precise the concept of progress that we are ap-
pealing to informally above. We will give a well-founded measure that must
be reduced by every rippling step. This measure will be based on the position
of the wave-fronts within the skeleton. It will not only give us a basis for re-
jecting some rewrites as non-progressive or even regressive, it will also ensure
the eventual termination of rippling. Most automated reasoning methods do
not terminate; in general, the attempt to prove a conjecture may continue in-
definitely with neither success nor failure. Termination of a method is a very
desirable property, since it restricts the search space of the method to a finite
size. It will also play a role in Chapter 3, where termination is used to detect
failure, which starts a process that attempts to generate a patch.

We can now apply rewrite rule (1.4) to goal (1.8) and then annotate the
result to check for progress

c + d = c + d ∧ a + b = 42
↑
.

We see that the single wave-front is now attached at the outermost point in
the skeleton, i.e. it has moved outwards as far as it can. This represents real
progress, in fact, as much progress as is possible with rippling, which now
terminates with success.

If we write the three successive rewritings in sequence, we can see more
clearly the rippling effect:

( (c + d) + a
↑
) + b = (c + d) + 42

↑

(c + d) + ( a + b )
↑ = (c + d) + 42

↑

c + d = c + d ∧ a + b = 42
↑
.

With each successive ripple, the wave-fronts get progressively bigger and con-
tain more of the skeleton within their wave-holes. Eventually, the whole of the
skeleton is contained within a single wave-front. Compare this with the picture
of concentric ripples on a loch depicted in Figure 1.2. It may also help to see
the same ripple with the skeletons represented as trees, depicted in Figure 1.3.
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1.5 Using the given: fertilization

When rippling is complete, the goal contains an instance of the given. In our
running example, the goal after rippling is

c + d = c + d ∧ a + b = 42
↑
, (1.9)

which consists of a wave-front, with the given, a + b = 42, as its wave-hole.
To complete the proof it only remains to use the given to help prove goal (1.9).
Since the given is assumed to be true, we can replace its instance in the goal
with the boolean truth value 	. We can also drop the annotation, since it has
served its purpose. In our example, this gives c + d = c + d ∧ 	, which is
trivial to prove. This process is called strong fertilization. It can be regarded as
a rewriting step where the rewrite rule is given ⇒ 	, e.g.

a + b = 42 ⇒ 	.

Sometimes it is not possible to ripple the wave-fronts completely outside
the skeleton, but it is still possible to use the given to complete the proof.
For instance, suppose in our running example that rewrite rule (1.4) was not
available, so that the ripple was stuck at the goal

(c + d) + ( a + b )
↑ = (c + d) + 42

↑
.

We can use the given, a + b = 42, as a rewrite rule left to right

a + b ⇒ 42

to rewrite the goal to

(c + d) + 42 = (c + d) + 42,

which again is trivial to prove. This is called weak fertilization.

1.6 Rewriting with wave-rules

In Section 1.4 we described rippling as a generate-and-test process: first rewrite
the goal in all possible ways, then try to annotate the rewritings, then reject
any rewritings that cannot be annotated or where the wave-fronts have not
made progress. Generate-and-test procedures like this are usually inefficient.
Greater efficiency can often be obtained by incorporating the testing stage into
the generation stage, so that generation produces only results that pass the
test.
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This incorporation of testing within generation can be achieved in rippling
by rewriting only with annotated rewrite rules, called wave-rules. The annota-
tion of a wave-rule Lhs ⇒ Rhs must have the following two properties.

Skeleton preservation: The skeletons of Lhs and Rhs must be the same.1

Measure decreasing: The annotation of the Rhs must represent progress
over the annotation of the Lhs, i.e. the measure of the Rhs must be
strictly less than that of the Lhs under a suitable well-founded ordering.

We will give formal definitions of these two properties in Chapter 4. In the
meantime, an informal account is given in the caption to Figure 1.3. Further-
more, when a wave-rule is applied, its annotation must match the annotation
in the redex. Under these three conditions we will see that successive goals are
also skeleton preserving and measure decreasing. Since the measure is well-
founded it cannot decrease indefinitely, so rippling always terminates (see Sec-
tion 4.6.5). In practice, rippling terminates quite quickly, thus limiting the size
of the search space and making automated reasoning more efficient than ordi-
nary, unconstrained rewriting.

Rippling terminates when no further wave-rules apply. This is either be-
cause the goal is fully rippled or because rippling is stuck because no appro-
priate wave-rule is available. If the goal is fully rippled then the final goal must
consist of a wave-front with an instance of the given in its wave-hole (cf. (1.9)
above) or the wave-fronts have been entirely eliminated.

The rewrite rules from Section 1.2 provide examples of wave-rules. They
can be annotated in several different ways, including the following:2

( X + Y
↑
) + Z ⇒ X + ( Y + Z )

↑
(1.10)

X1 + X2
↑ = Y1 + Y2

↑ ⇒ X1 = Y1 ∧ X2 = Y2
↑
. (1.11)

Notice that they are both skeleton preserving and measure decreasing. The
skeleton on each side of wave-rule (1.10) is Y + Z , and that on each side of
wave-rule (1.11) is X2 = Y2. The wave-fronts are attached to the bottom of
the skeleton on the left-hand sides and the top on the right-hand sides, showing
that progress will be made when these rules are applied.

Consider the applications of wave-rule (1.10) to the annotated goal

( (c + d) + a
↑
) + b = (c + d) + 42

↑
.

1 Later we will relax this requirement slightly.
2 Wave-rule (1.11) is not annotated in the most general way. We will return to the issue of

alternative annotations in Section 2.4.3.
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• Wave-rule (1.10) will not apply to redex (c + d) + 42
↑

because its wave-
fronts do not match those on the left-hand side of the wave-rule.

• Wave-rule (1.10) also will not apply to redex (c + d) + a
↑
, nor do its

wave-fronts match those on the left-hand side of the wave-rule.
• Wave-rule (1.10) will apply to redex (c + d) + a

↑
) + b because its wave-

fronts do match those on the left-hand side of the wave-rule.

So we see that by using wave-rules we do not even generate the unwanted
rewritings of the goal.

1.7 The preconditions of rippling

Rippling is applicable whenever the current goal can be annotated so that its
skeleton matches some given, i.e. some hypothesis, axiom, or previously es-
tablished theorem. As we will see in Chapter 4, this is the case whenever the
given is embedded in the goal. Intuitively, this means that the goal can be made
identical to the given by “hiding” non-matching function symbols in the goal
by placing them within wave-fronts. For example, a + b can be embedded in

s( a + b )
↑

by hiding the subexpression s(. . .) in a wave-front. An algorithm
calculating embeddings and annotating formulas will be given in Chapter 4.

Rippling works by repeated application of the sub-method wave. Each ap-
plication of wave applies a wave-rule to the current goal to derive a new goal.
Before it can be applied, the preconditions of the wave sub-method must be
met. These preconditions are:

(i) The current goal has a redex that contains a wave-front.
(ii) There is a wave-rule whose left-hand side matches this redex.

(iii) If this wave-rule is conditional then its condition must be provable.

In Section 2.2 we will investigate a new kind of rippling, which will require
an additional precondition. In Chapter 3 we will see how different patterns of
failure in these preconditions can suggest different kinds of proof plan patches.

For a wave-rule to rewrite a redex requires matching of the annotation as
well as matching of the expressions. Suppose Lhs ⇒ Rhs is to be applied to
redex, then:

• Any wave-fronts in Lhs must match identical wave-fronts in redex

(e.g. s( X )
↑

and s( a + b )
↑

do match, but s( X )
↑

and s(a + b) do not).
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• Any wave-fronts in redex must match either identical wave-fronts or free

variables in Lhs, e.g. s(X) and s( s( n )
↑
) do match, but s(X) + Y

↑
and

s( a ) + b
↑

do not.

1.8 The bi-directionality of rippling

In Section 1.2 we used (1.1),

(X + Y ) + Z = X + (Y + Z),

as a rewrite rule (1.3), left to right. But note that this equation (like all equa-
tions) is symmetric. Our decision to orient it left to right breaks this symmetry.
Unfortunately, we are just as likely to need to use it right to left. Consider, for
instance, the following problem, which is dual to the one in Section 1.3:

Given: a + b = 42
Goal: a + (b + (c + d)) = 42 + (c + d).

To solve this problem we will need to use, not rewrite rule (1.3), but rule

X + (Y + Z) ⇒ (X + Y ) + Z . (1.12)

In an automated reasoning system it is dangerous to include both (1.3) and
(1.12) as rewrite rules. One can invert the action of the other causing non-
termination. For instance, they can generate the following endless sequence of
rewritings

a + (b + (c + d)) = 42 + (c + d)

(a + b) + (c + d) = 42 + (c + d)

a + (b + (c + d)) = 42 + (c + d)

...

amongst many others.
Rippling can avoid this problem. We can turn (1.1) into two wave-rules, one

for each orientation. The wave annotation will prevent each of them undoing
the action of the other and the termination of rippling will be preserved. These
two wave-rules are

( X + Y
↑
) + Z ⇒ X + ( Y + Z )

↑
(1.13)

X + ( Y + Z
↑
) ⇒ ( X + Y ) + Z

↑
. (1.14)
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Suppose the goal is annotated as

a + ( b + (c + d)
↑
) = 42 + (c + d)

↑
.

Wave-rule (1.14) applies to this to produce

( a + b ) + (c + d)
↑ = 42 + (c + d)

↑
.

Fortunately, wave-rule (1.13) does not apply to this goal; the left-hand side
of the wave-rule does not match any redex in the goal because of mismatches
between the wave-fronts. So the loop that occurred with conventional rewriting
does not occur in rippling. More generally, the termination proof for rippling,
which we will see in Section 4.6.5, still holds even when both (1.13) and (1.14)
are present. The same holds for any other equation that can be annotated in both
directions.

This ability of rippling to permit both orientations of a rewrite rule without
the threat of non-termination, we call bi-directionality. It partially overcomes
one of the major limitations of rewriting, namely that the orientation of rewrite
rules causes incompleteness when the opposite orientation is required for
a proof. In Section 5.1 we will see an example where bi-directionality is
necessary.

This solution to incompleteness is only partial because, as we have seen in
Section 1.6, rippling also prevents certain legal rewritings. The heuristic that
underlies rippling ensures that the rewrites that are prevented are nearly always
ones we did not want. However, sometimes rippling may prevent a rewrite
that we do want. We will see examples and discussion of such situations in
Chapter 5.

1.9 Proofs by mathematical induction

Many of the examples in this book will be drawn from inductive proofs. This is
partly for historical reasons and partly because induction provides a rich source
of examples. For completeness, we therefore include here a brief introduction
to inductive proof.

Many people will have encountered some simple examples of induction in
school mathematics. To prove a theorem for all natural numbers, 0, 1, 2, 3, . . . ,
by induction we consider a base case and a step case. In the base case we prove
the theorem for 0. In the step case, we assume the theorem for n and prove it
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for n + 1. We can represent this inductive rule of inference as

�(0) ∀n:nat. (�(n) → �(n + 1))

∀n:nat. �(n)
,

(1.15)

where nat is the type of natural numbers and n is the induction variable. In
order to specify the types of variables, we have adopted a typed version of
quantification, e.g. ∀n :nat and ∃n :nat both imply that n is of type nat. In the
step case, given by the second premise, �(n) is called the induction hypothesis
and �(n + 1) is called the induction conclusion.

1.9.1 Recursive data types

The natural numbers are an example of a recursive data type, i.e. a set of ob-
jects that are defined recursively. There are induction rules for every recursive
data type. These include not just the natural numbers but also the integers,
rationals, lists, trees, sets, etc.

To define a recursive data type we use a set of functions called constructor
functions. The logician Giuseppe Peano (1858–1932) showed a simple way to
do this for the natural numbers. He introduced two constructor functions: the
constant 0 and the successor function s. The recursive construction rule for nat
is as follows.

• 0 is a natural number.
• If n is a natural number then s(n) is a natural number.

This gives a simple unary representation in which 1 is represented by s(0),
2 by s(s(0)), 3 by s(s(s(0))), etc. You may wonder why we could not stick
to the conventional 0, 1, 2, . . . , 42, . . .. The problem is that this introduces an
infinite number of constants without any built-in connection between them. It
can be made to work, but is messy. We could define a binary or decimal natural
number recursive data type, but they would be a bit more complicated than the
unary one, so we will stick with that.

Similarly, we can define a recursive data type for lists using the following
constructors: the binary, infix function :: and the constant nil. The list [a, b, c]
can then be represented as a :: (b :: (c :: nil)). If τ is a type then let list(τ )

denote the type of lists of elements of type τ .
Natural numbers and lists are examples of free algebras. That is, all syn-

tactically distinct, variable-free terms are unequal, e.g. s(s(0)) �= s(0). Some
recursive data types, however, are non-free. The integers, for instance, can be
defined using the following constructors: the constant 0, the unary successor



18 An introduction to rippling

function, succ, and the unary predecessor function, pred.1 Here 1 is repre-
sented by succ(0) and −1 by pred(0). However, 1 is also represented by
succ(succ(pred(0))). In general, succ(pred(n)) = pred(succ(n)). Induction
can be used for proving theorems over both free and non-free algebras. A lit-
tle more care must be taken when defining recursive functions over non-free
algebras. It is impossible to avoid overlapping cases, i.e. giving two or more
definitions for the same input. Therefore, it is necessary to prove that all the al-
ternative definitions give the same output for the same input (cf. Sengler (1997)
for mechanizing induction on non-free algebras).

1.9.2 Varieties of induction rule

There are induction rules for each recursive data type. Here, for instance, is an
induction rule for lists:

�(nil) ∀h:τ.∀t :list(τ ). �(t) → �(h :: t)
∀l:list(τ ). �(l)

,
(1.16)

and here is one for integers:

�(0) ∀x:int. (�(x) → �(succ(x))) ∀x:int. (�(x) → �(pred(x)))

∀x:int. �(x)
.

Note that the integer rule requires two step cases. These, and rule (1.15), are
examples of structural induction, where there is one inductive case for each
constructor function.

Another dimension of variation is to base the induction on a different way
of ordering the objects. For instance, we can have an induction on the natural
numbers that goes up in steps of 2:

�(0) �(s(0)) ∀n:nat. �(n) → �(s(s(n)))

∀n:nat. �(n)
.

(1.17)

Note that this induction rule requires two base cases and that we have used the
constructor function s(n) instead of n + 1, as in rule (1.15).

Some theorems require quite exotic, custom-built induction rules. For in-
stance, the standard proof that the arithmetic mean of a set of numbers is
greater than or equal to the geometric mean uses the following rule:

�(0) �(s(0)) ∀n:nat. (�(n) → �(2 × n)) ∀n:nat. (�(s(n)) → �(n))

∀n:nat. �(n)
.

1 Note that, since integers are introduced here as a separate data type from the natural numbers,
we have used different functions for the successor and predecessor constructor functions.
Namely, succ and pred have been used for the integers, whereas s and p are used for the
naturals.
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Here the first step case goes up in multiples of 2 and the second one comes
down in steps of 1.

Other dimensions of variation are to have multiple induction variables and
multiple induction hypotheses. The following induction rule illustrates both of
these:

∀n:nat. �(0, n) ∀m:nat. �(s(m), 0)
∀m:nat.∀n:nat. (�(m, n) ∧ �(s(m), n) ∧ �(m, s(n)) → �(s(m), s(n)))

∀m:nat.∀n:nat. �(m, n)
.

All the rules so far have used constructor functions in the induction conclu-
sion. Our final variation is to use destructor functions in the induction hypoth-
esis. Consider:

∀n:nat. (n > 0 → �(p(n)) → �(n))

∀n:nat. �(n)
,

(1.18)

where p is an example of a destructor function, i.e. it breaks down a recursive
object rather than building one. The predecessor function for natural numbers
is p, defined by

p(n) =
{

0 if n = 0
m if n = s(m)

.

Rule (1.18) is the destructor style dual of the constructor style rule (1.15). Note
that it has no base case. A base case will arise during most uses of rule (1.18),
as a result of a case split on n.

All these, and more, induction rules can be derived from the general schema
of Noetherian induction (also known as well-founded induction):

∀x:τ. (∀y:τ. y ≺ x → P(y)) → P(x)

∀x:τ. P(x)
,

(1.19)

where ≺ is some well-founded relation on the type τ , i.e. there are no infinite,
descending chains of the form . . . ≺ a3 ≺ a2 ≺ a1. It follows that ≺ is both
non-reflexive and anti-symmetric.1 Also, ≺ is a well-founded relation if and
only if its transitive closure ≺+ is well-founded. The Noetherian induction
rules for ≺ and ≺+ are inter-derivable. So, in practice, we often limit attention
to transitive well-founded relations, which we call well-founded orders, since
≺+ is a partial order.2 In automated reasoning systems, Noetherian induction

1 Otherwise . . . ≺ a ≺ a ≺ a or . . . ≺ b ≺ a ≺ b ≺ a.
2 I.e., it is non-reflexive, anti-symmetric, and transitive.
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is rarely used directly: rather, it is used to derive customized induction rules
with specific base and step cases.

1.9.3 Rippling in inductive proofs

The step cases of inductive proofs provide an ideal situation for the use of
rippling. The given is the induction hypothesis and the goal is the induction
conclusion. In constructor-style induction rules, the wave-fronts arise from the
functions that surround the induction variable. Rippling is not usually appro-
priate for the base cases of inductive proofs. Simple rewriting with the base
equations of recursive definitions is often sufficient to prove these.

Consider, for instance, the use of induction to prove the distributive law of
reverse over append:

∀k:list(τ ),∀l:list(τ ). rev(k <> l) = rev(l) <> rev(k), (1.20)

where rev is the list reversing function and <> is the infix list appending func-
tion.

If we use induction rule (1.16) with induction variable k, then the base case
is trivial:

rev(nil <> l) = rev(l) = rev(l) <> nil = rev(l) <> rev(nil).

The step case can be represented as the following rippling problem:1

Given: rev(t <> l) = rev(l) <> rev(t)

Goal: rev( h :: t
↑
<> l) = rev(l) <> rev( h :: t

↑
).

Wave-rules for this problem are provided by the recursive definitions of rev
and <>, the associativity of <>, and the replacement axiom for <>:

rev( H :: T
↑
) ⇒ rev(T ) <> (H :: nil)

↑

( H :: T
↑
) <> L ⇒ H :: ( T <> L )

↑

X <> ( Y <> Z
↑
) ⇒ ( X <> Y ) <> Z

↑

( X1 <> X2
↑ = Y1 <> Y2

↑
) ⇒ X1 = Y1 ∧ X2 = Y2

↑
. (1.21)

The full definitions of rev and <>, together with those of all other recursive
functions used in this book, are given in Appendix 2.

1 We will see in Section 2.2.2 that the ls in the goal can, in fact, take different values from those
in the given, but this flexibility is not needed in this example.
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With these wave-rules the rippling of the goal proceeds as follows:

rev( h :: t
↑
<> l) = rev(l) <> rev( h :: t

↑
)

rev( h :: t <> l
↑
) = rev(l) <> ( rev(t) <> (h :: nil)

↑
)

rev(t <> l) <> (h :: nil)
↑ = ( rev(l) <> rev(t) ) <> (h :: nil)

↑

rev(t <> l) = rev(l) <> rev(t) ∧ (h :: nil) = (h :: nil)
↑
.

Note again how the wave-fronts ripple out with each successive ripple. The
contents of their wave-holes grow until there is one wave-hole containing the
whole of the given. Fertilization can now take place, leaving the remaining
goal

	 ∧ (h :: nil) = (h :: nil),

which is trivial to prove.
Nearly all the step cases of inductive proofs follow some or all of this pat-

tern of proof – even those based on non-structural and on destructor-style in-
ductions. So rippling is just the right method for guiding the proofs of these
step cases.

1.10 The history of rippling

The first person to use the term “rippling” was Aubin (1976). He pointed out
that the application of recursive definitions during the step case of inductive
proof usually caused the kind of rippling effect described by the loch analogy
in Section 1.1.4. He called this effect “rippling out”. Bundy (1988) turned this
story on its head and suggested using annotations to enforce the rippling effect,
rather than it be an emergent effect from another mechanism. The advantages
of rippling over rewriting with recursive definitions were:

• Rippling directs the rewriting process towards an eventual fertilization by
preventing rewrites that do not lead in this direction.

• Rippling applies to rewriting with lemmas, axioms, etc., as well as to recur-
sive definitions.

• Rippling allows the bi-directional use of rewrite rules without sacrificing
termination.

The term “fertilization” originated with Boyer and Moore (Boyer & Moore,
1979), who use the term “cross fertilization” to describe the substitution of
equals for equals in an expression. Bundy (1988) identified its key role in
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the step case of an inductive proof as the target of the rippling process. Bundy,
et al. (1990c) later distinguished weak and strong forms of fertilization.

Rippling was independently implemented both within Bundy’s group at Ed-
inburgh and by Hutter at Saarbrücken, the results being presented adjacently
at the CADE-10 conference (Bundy et al., 1990c; Hutter 1990). A longer ver-
sion of Bundy et al. (1990c) appeared as Bundy et al. (1993). These papers also
showed how the ideas could be generalized beyond the simple rippling-out pat-
tern identified by Aubin. For instance, it was sometimes useful to ripple side-
ways and inwards (see Section 2.2). This led to the term “rippling-out” being
replaced by the more general term “rippling”. The development of rippling was
part of the proof planning approach to automated theorem-proving (Bundy,
1988; 1991). Both rippling and fertilization were realized as proof methods.

Hutter’s CADE-10 paper (Hutter, 1990), also started to develop a formal
theory of rippling. Since then, various rival formal theories have been devel-
oped. Basin and Walsh (1996) gave formal definitions for wave annotations
and the wave-measure. They used this to prove soundness and termination of
rippling. They also developed algorithms for inserting wave annotation into
formulas (Basin & Walsh, 1993). Hutter and Kohlhase developed an alterna-
tive account of wave annotation based on labeling terms with colors (Hutter
& Kohlhase, 1997). This gave a very general account that could be applied
to higher-order formulas and to embedded calls to rippling. Smaill and Green
(1996) gave another general account of wave annotation, in which skeletons
were defined as embeddings into formulas. This is also applicable to higher-
order formulas.

Rippling is not guaranteed to succeed. It will fail if fertilization is not yet
possible, but no wave-rule applies to the current goal. Unlike many other auto-
mated proof techniques, rippling carries a strong expectation of how the failed
proof attempt should have proceeded. This expectation can often be used to an-
alyze the cause of failure and suggest a patch to the proof. For instance, we can
say a lot about the structure of any wave-rule that would allow the ripple to con-
tinue. This structure can be used to derive the missing wave-rule as a lemma.
Alternatively, an existing wave-rule may almost apply and may be made ap-
plicable by either changing the form of induction, making a case split, or gen-
eralizing the goal. Automation of this proof analysis and patching process has
been done by Ireland and Bundy (Ireland, 1992; Ireland & Bundy, 1996b).

Rippling has also been applied to help select an appropriate form of in-
duction for a conjecture. The key idea is to choose a form of induction that
will permit rippling to apply in the step case(s) of the inductive proof. A look-
ahead is performed to see which wave-rules could apply in that step case and
which choices of induction term and variable would maximize the chances of
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those wave-rules applying (Bundy et al., 1989). This is called ripple analysis.
Alternatively, a schematic induction rule can be applied in which the induc-
tion term is represented by a meta-variable.1 This meta-variable is instanti-
ated, by higher-order unification, during the application of wave-rules – effec-
tively determining the induction rule as a side-effect of subsequent rippling
(Gow, 2004; Kraan, et al., 1996).

Rippling is well-suited to logical theories based on recursively defined func-
tions: the movement of wave-fronts reflects the way in which function values
are passed as the output of one function to the input of another as its argument.
Unfortunately, in its original form, rippling did not work for theories based on
recursively defined relations, as used, for instance, in logic programming lan-
guages such as Prolog (Kowalski, 1979). In such relational theories, values are
passed from one relation to another via shared, existentially-quantified vari-
ables. A version of rippling, called relational rippling, has been developed for
such relational theories (Bundy & Lombart, 1995).

Although rippling was originally developed for guiding the step cases of
inductive proofs, it was discovered to be applicable to any situation in which a
goal is syntactically similar to a given. Applications have been found to: sum-
ming series (Walsh et al., 1992), limit theorems (Yoshida et al., 1994), proofs
in logical frameworks (Negrete, 1994), and equational theories (Hutter, 1997).
The work on equational reasoning, in particular, offers the prospect of rippling
playing a role in general-purpose theorem-proving. The rippling-based critics
developed for inductive proof can also be applied to non-inductive problems.
For instance, a critic originally developed to repair failed ripples by general-
izing induction formulas, has been adapted to constructing loop invariants for
verifying iterative, imperative programs (Ireland & Stark, 2001).

Rippling has been implemented at Edinburgh in the C LAM (Bundy et al.,
1990b), λC LAM (Richardson et al., 1998) and IsaPlanner (Dixon and Fleu-
riot, 2003) proof planners and at Saarbrücken in the INKA theorem prover
(Hutter & Sengler, 1996). The Edinburgh C LAM implementation used wave-
front context markers, to indicate where wave-fronts begin and end, but
the later λC LAM implementation uses a separate embedding record. The
Saarbrücken INKA implementation uses symbol markers to indicate the status
of each symbol: wave-front or skeleton. There has also been an implementa-
tion in NUPRL (Pientka & Kreitz, 1998). Early implementations predated the
theoretical results described in Chapter 4 and adopted more ad hoc techniques,
but the current implementations are theory-based.

1 This meta-variable is so-called because it is not part of the logical calculus, in which object-
level variables range over the elements of the domain, but is external to it and ranges over
expressions of the calculus.
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Varieties of rippling

The examples of rippling we met in Chapter 1 illustrate only part of the story. In
this chapter we will discuss variations on the rippling theme. We will illustrate
these variations with examples and in doing so we will gradually build up a
more complete picture of what is possible using rippling.

2.1 Compound wave-fronts

Sometimes wave-fronts are compound, that is, they consist of more than a
single function application. It may then be necessary to split the wave-front
into parts and move it in several wave-rule applications.

2.1.1 An example of wave-front splitting

Consider, for instance, the proof of the theorem

∀m:nat.∀n:nat. even(m) ∧ even(n) → even(m + n)

by the two-step induction rule (1.17). The step case produces the following
rippling problem

Given: even(m) ∧ even(n) → even(m + n)

Goal: even( s(s( m ))
↑
) ∧ even(n) → even( s(s( m ))

↑+ n),

where the following wave-rules arise from the recursive definitions1 of even
and +

s( X )
↑+ Y ⇒ s( X + Y )

↑
(2.1)

even( s(s( X ))
↑
) ⇒ even(X). (2.2)

1 See Appendix 2 for the complete definitions of these functions.

24
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Note that, in the even rule, there are no wave-fronts at all on the right-hand side.
This is good, since the removal of wave-fronts always represents a decrease in
the wave-measure and, therefore, progress towards fertilization.

The necessity for wave-front splitting arises in the application of wave-rule

(2.1) to the redex s(s( m ))
↑+ n. There is a mismatch between the wave-front

on the left-hand side of the wave-rule and that in the redex. The solution to this
is to split the compound wave-front in the redex into two nested wave-fronts,

namely s( s( m )
↑

)

↑
+ n. Now the wave-front in wave-rule (2.1) matches

the outer wave-front in the redex and the variable X matches s( m )
↑
. Apply-

ing the wave-rule gives s( s( m )
↑ + n )

↑
. Notice that the outer wave-front

has moved outwards and the inner one has stayed put. Wave-rule (2.1) can now

be applied to the redex s( m )
↑ + n. This moves the inner wave-front out-

wards, giving s( s( m + n )
↑

)

↑
. The complete sequence of rippling steps

proceeds as follows:

even( s(s( m ))
↑
) ∧ even(n) → even( s( s( m )

↑
)

↑
+ n)

even(m) ∧ even(n) → even( s( s( m )
↑ + n )

↑
)

even(m) ∧ even(n) → even( s( s( m + n )
↑

)

↑
)

even(m) ∧ even(n) → even( s(s( m + n ))
↑
)

even(m) ∧ even(n) → even(m + n).

The goal is now reduced to the given and strong fertilization yields �. Note
that, in the penultimate step, we had to merge two nested wave-fronts into one
compound one in order to apply wave-rule (2.2).

2.1.2 Maximally split normal form

To avoid having constantly to split and merge wave-fronts according to the
wave-rules being applied, it is simplest to keep all wave-fronts in a maximally
split normal form, i.e. all wave-fronts are one function symbol thick. However,
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it is unwieldy to write them in this maximally split form, so we will usually
present them in a maximally merged form to reduce clutter. The reader needs
to bear in mind that we are free to regard wave-fronts as split when this is
needed for a wave-rule to apply.

Note that this splitting of wave-fronts is required only when more than one
function symbol intercedes between the outer wave-front and the wave-hole.
Compound terms that are wholly within the wave-front do not need to be split.
To illustrate this distinction contrast the following two annotated terms:

rev( (h1 + h2) :: t
↑
) rev( h1 :: ( h2 :: t

↑
)

↑
).

The left-hand wave-front has only one function symbol, namely ::, interced-
ing between rev and the wave-hole t . Note that + does not intercede between
them. In the right-hand wave-front, in contrast, two occurrences of :: intercede
between rev and t . So here we do need to split the wave-front.

2.1.3 A promise redeemed

We are now in a position to redeem a promise made in footnote 2 of Section
1.4. We claimed there that the two unwanted rewritings:

( (c + d) + a )
↑
) + b = c + (d + 42 )

↑

( c + (d + a )
↑
) + b = (c + d) + 42

↑

were slightly worse than the original goal

( (c + d) + a
↑
) + b = (c + d) + 42

↑
.

If we put all these wave-fronts into the maximally split normal form discussed
in Section 2.1.2 then the original goal is unchanged but the two rewritings
become:

( (c + d) + a )
↑
) + b = c + ( d + 42

↑
)

↑

( c + ( d + a
↑

)

↑
) + b = (c + d) + 42

↑
.

We can now see that each of the rewritings has replaced a single wave-front
with a double one. We will see in Section 4.7 that increasing the number of
wave-fronts at a point in the skeleton leads to an increase in the wave-measure.
These rewritings would, therefore, be rejected as making matters worse.
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2.1.4 Meta-rippling

Sometimes it is necessary to move wave-fronts without changing the under-
lying object-level formula. We call this meta-rippling, since the change is only
visible in the wave annotation. To illustrate the need for this, consider the rip-
pling problem

Given: even(n) ↔ odd(s(n))

Goal: even( s(s( n ))
↑
) ↔ odd(s( s(s( n ))

↑
)),

where the following wave-rules are available:

even( s(s( X ))
↑
) ⇒ even(X) (2.3)

odd( s(s( X ))
↑
) ⇒ odd(X). (2.4)

Wave-rule (2.3) is immediately applicable to the left-hand side of the goal, but
wave-rule (2.4) cannot yet be applied to the right-hand side.

To apply wave-rule (2.4) we must first ripple the goal to

even( s(s( n ))
↑
) ↔ odd( s(s( s(n) ))

↑
)

using the wave-rule

s( s(s( X ))
↑
) ⇒ s(s( s(X) ))

↑
.

Note that this is skeleton preserving and measure decreasing, but causes no
change at the object-level.

2.1.5 Unblocking rippling with simplification

It is sometimes necessary to interleave rippling with simplification steps. How-
ever, only wave-fronts should be simplified; simplifying skeletons will disrupt
the embedding of the given into the goal (unless both are simplified in the
same way). Simplification of wave-fronts is typically required to cleanup the
application of one wave-rule and allow the next one to apply. We call this un-
blocking.

To illustrate the need for unblocking, consider the rippling problem

Given: x × (y + z) = x × y + x × z

Goal: s( x )
↑× (y + z) = s( x )

↑× y + s( x )
↑× z,
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where the following wave-rules are available:

s( X )
↑× Y ⇒ X × Y + Y

↑
(2.5)

A + ( B + C
↑
) ⇒ ( A + B ) + C

↑
(2.6)

( A + B
↑
) + C ⇒ ( A + C ) + B

↑
(2.7)

X1 + Y
↑ = X2 + Y

↑ ⇒ X1 = X2. (2.8)

Applying wave-rules (2.5) (twice), (2.6), and (2.7) to the goal produces

Given: x × (y + z) = x × y + x × z

Goal: x × (y + z) + (y + z)
↑ = (( x × y + x × z ) + y) + z

↑
,

but the goal is now blocked since wave-rule (2.8) cannot be applied. What
is needed is to simplify the right-hand side wave-front with the associativity
rewrite rule

(A + B) + C ⇒ A + (B + C).

After this simplification step, the rippling problem is transformed to

Given: x × (y + z) = x × y + x × z

Goal: x × (y + z) + (y + z)
↑ = ( x × y + x × z ) + (y + z)

↑
,

and wave-rule (2.8) can be applied. This reduces the goal to the given and
allowing a trivial fertilization.

Unblocking has the potential to increase the rippling measure and, hence,
undermine the termination of rippling. Fortunately, it is possible to define mea-
sures that both rippling and unblocking decrease, so that they can be inter-
leaved and are still guaranteed to terminate. More details about termination
can be found in Section 4.6.5.

2.2 Rippling sideways and inwards

Rippling identifies the differences between a goal and a given and moves these
differences out of the way so that the goal contains an instance of the given. So
far “out of the way” has meant moving wave-fronts outwards. In this section,
we will consider other possible movements.
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2.2.1 An example of sideways rippling

Suppose the given contains one or more free variables, e.g. K and L in

Given: qrev(t, K <> L) = qrev(t, K ) <> L
Goal: qrev(h :: t, k <> l) = qrev(h :: t, k) <> l,

where qrev is a tail recursive list reversal function.1 Note that the K and L in
the given denote free variables, and the k and l in the goal denote constants.
There is now an alternative “out of the way” place to move the differences
between the given and the goal. If we can rewrite the goal to

qrev(t, (h :: k) <> l) = qrev(t, h :: k) <> l,

then fertilization can take place by instantiating K to h :: k and L to l in the
given. Instead of moving outwards, the differences have moved sideways.

This kind of situation arises frequently in inductive proofs. For example,
as will be explained in Section 2.2.2, it arises when the induction formula has
universally quantified variables, as skolemization turns these into free vari-
ables in the given (and skolem constants, via dual skolemization, in the goal).
This is typically the case when proving facts about tail recursive functions
such as qrev here. We can readily extend rippling to encompass this situa-
tion. We need to redefine the wave-measure to classify this kind of sideways
movement as a decrease in the measure. We do this by extending the wave
annotation to include both outwards and inwards wave-fronts. Inwards wave-
fronts will be marked with a downwards arrow in the top right-hand corner,

e.g. qrev(T, H :: L
↓
). The wave-measure will be extended so that the mea-

sure now decreases whenever either an inwards wave-front moves inwards or
an outwards-directed wave-front turns into an inwards one.

However, not all inwards movement represents progress. The movement
must be towards a term, such as k, which corresponds to a free variable, such
as K, in the given. So that we can distinguish progress from regress, we will
annotate such terms. We will call them sinks and annotate them as 	k
.2 An
inwards-directed wave-front must have a sink in its wave-hole, i.e. it must have
a target to ripple inwards towards.

Armed with this new annotation we return to our example. Suppose the
following wave-rule is available from the tail recursive definition of qrev:

qrev( H :: T
↑
, L) ⇒ qrev(T, H :: L

↓
). (2.9)

1 See Appendix 2 for the complete definition. For an elementary explanation of tail recursion see
Wikström (1987), Section 18.3.2.

2 The marks are intended to suggest a kitchen sink with a drain at the bottom.
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qrev

h :: t
↑�� ��

<>

	k

�� ��

	l


qrev( h :: t
↑
, 	k
 <> 	l
)

qrev

t
�� ��

h :: ( . . . <> . . . )
↓

	k

�� ��

	l


qrev(t, h :: ( 	k
 <> 	l
 )
↓
)

⇒

qrev

t
�� ��

<>

h :: 	k
 ↓�� ��
	l


qrev(t, ( h :: 	k
 ↓
) <> 	l
)

⇒

Figure 2.1 Rippling towards a sink. The three trees show successive stages of
rippling. Wave-fronts are attached to the appropriate nodes of each tree. Below
each tree is the annotated formula it depicts. The wave-front starts by moving
sideways, but then moves downwards to immediately surround the sink.

This new kind of wave-rule is called a transverse wave-rule because it moves
the wave-front sideways rather than up. Its wave-measure decreases from left
to right because an outwards wave-front has turned into an inwards one.

With the aid of this wave-rule, the rippling in our example proceeds as fol-
lows:

qrev( h :: t
↑
, 	k
 <> 	l
) = qrev( h :: t

↑
, 	k
) <> 	l


qrev(t, h :: ( 	k
 <> 	l
 )
↓
) = qrev(t, h :: 	k
 ↓

) <> 	l
 .

Using wave-rule (2.9) twice, the two outwards wave-fronts move sideways and
become inwards wave-fronts. The right-hand wave-front has now immediately
surrounded the sink 	k
, but the left-hand wave-front is still some way above
it. We need to ripple it inwards one more step. To do this we use an inwards
version of wave-rule (1.21)

H :: ( T <> L )
↓ ⇒ ( H :: T

↓
) <> L

to produce

qrev(t, ( h :: 	k
 ↓
) <> 	l
) = qrev(t, h :: 	k
 ↓

) <> 	l
 .

The ripple of the left-hand wave-front is also represented as movement of
wave-fronts on the tree of the skeleton in Figure 2.1. The wave-fronts have
now reached their final destination. We can represent this by absorbing them
into the sinks

qrev(t, 	h :: k
 <> 	l
) = qrev(t, 	h :: k
) <> 	l
 .
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As required, strong fertilization is now possible. The free variable K is instan-
tiated to the contents of the sink h :: k and L to l. Note that we did not need to
make use of the sink l as a target for wave-fronts.

2.2.2 Universal variables in inductive proofs

Opportunities to ripple into sinks are commonplace, for instance, in inductive
proofs about tail recursive functions. The definitions of tail recursive functions
will provide transverse wave-rules. Any universal variables in conjectures that
are not used as induction variables will create sinks.

To understand this last claim, consider the abstract conjecture

∀x:nat. ∀y:nat. �(x, y).

Suppose induction rule (1.15) on x is applied to this. The step case will take
the form

Induction hypothesis: ∀y:nat. �(x, y)

Induction conclusion: ∀y:nat. �(s(x), y).

Notice that y is universally quantified both in the hypothesis and in the con-
clusion. The induction hypothesis is an assumption, so we can instantiate y in
whatever way would assist the proof. The induction conclusion is a goal, so
we must prove this goal for all values of y. The different status of y in each of
these is realized by the processes of skolemization. The induction hypothesis
is skolemized, which turns y into a free variable Y . The induction conclusion,
being a goal, is dual-skolemized, which turns y into a skolem constant y0,
cf. Section 1.2. This constant y0 is a sink. So the rippling problem is

Given: �(x, Y )

Goal: �( s( x )
↑
, 	y0
).

The rippling problem in Section 2.2.1 would arise, for instance, from the
theorem

∀x:list(τ ).∀k:list(τ ).∀l:list(τ ). qrev(x, k <> l) = qrev(x, k) <> l.

The production of sinks and free variables from non-inductive, universal
variables is an aspect of inductive proofs that we have ignored, so far, in the
interests of simplicity. For instance, the step case of (1.20) in Section 1.9.3
should have given rise to the following rippling problem

Given: rev(t <> L) = rev(L) <> rev(t)

Goal: rev( h :: t
↑
<> 	l
) = rev(	l
) <> rev( h :: t

↑
),
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instead of the rippling problem depicted in Section 1.9.3 without the free vari-
ables and sinks. We omitted this detail then in order not to complicate the story
unnecessarily. In many proofs, as in this one, the sinks are not needed. We may
then choose to omit the sink markers when including them would distract from
the main story. The reader should be aware that rippling towards sinks may,
nevertheless, be a possibility, i.e. a branch in the search space.

2.2.3 Revised preconditions for rippling

In Section 1.7 we described the preconditions of the ripple method and the
wave sub-method. Now that we have extended rippling from rippling-out to
rippling-sideways and rippling-in, we need to update these preconditions. In
particular, we want to allow rippling-in only when this serves some purpose,
namely to ripple a wave-front towards a sink. This suggests adding a fourth
condition to the wave method: that we can only introduce an inwards wave-
front if it has a sink in its wave-hole.

We start by repeating the first three preconditions from Section 1.7, then
add the new condition.

(i) The current goal has a redex that contains a wave-front.
(ii) There is a wave-rule whose left-hand side matches this redex.

(iii) If this wave-rule is conditional then its condition must be provable.
(iv) Any new inwards wave-front should have a sink in its wave-hole.

2.2.4 Cancellation of inwards and outwards wave-fronts

In addition to sinks, there is another possible target for inwards-directed wave-
fronts: they can sometimes be canceled with outwards-directed ones. Consider
the following rippling problem arising in reasoning about permutations

Given: permute(t, t)

Goal: permute( h :: t
↑
, h :: t

↑
)

in the presence of the following wave-rules:

X ∈ Z → permute( X :: Y
↑
, Z) ⇒ permute(Y, del(X, Z )

↓
) (2.10)

X = Y → del(X, Y :: Z
↑
)

↓
⇒ Z . (2.11)
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Since h ∈ h :: t and h = h, wave-rule (2.10) applies to the goal, followed by
wave-rule (2.11), which yields the following rippling proof:

permute( h :: t
↑
, h :: t

↑
)

permute(t, del(h, h :: t
↑
)

↓
(2.12)

permute(t, t).

As all wave-fronts are eliminated, fertilization with the given is possible, com-
pleting the proof.

Unfortunately, note that in line (2.12) there is an inwards wave-front whose
wave-hole does not contain a sink. Precondition (iv) from Section 2.2.3 will,
therefore, prevent this rippling step from being applied. However, what has
happened in this ripple provides an alternative to the absorption of an inwards
wave-front by a sink; the inwards wave-front has canceled with an outwards
wave-front using wave-rule (2.11), in a form of destructive interference of
wave-fronts. Such cancellation steps are quite common and our rippling pre-
conditions must be extended to permit them. The new version of precondition
(iv) is:

(iv)a Any new inwards wave-front should have either a sink or an outwards
wave-front in its wave-hole.

Note that our precondition does not have to cover the case of a nested in-
wards wave-front since that will, in turn, contain an outwards wave-front or a
sink.

2.3 Rippling-in after weak fertilization

Weak fertilization often leaves a residual goal to be proved. Rippling-in can
often help in the proof of that goal.

2.3.1 An abstract example

To see why, consider the abstract rippling problem:

Given: a(b(c(x))) = d(e( f (x)))

Goal: a(b(c( s1( x )
↑
))) = d(e( f ( s1( x )

↑
))).
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Suppose the right-hand side of this goal can be fully rippled, but the left-hand
side is blocked because of a missing wave-rule

a(b( s2( c(x) )
↑

︸ ︷︷ ︸
blocked

)) = s3( d(e( f (x))) )
↑
,

where s2 and s3 are the functions arising from rippling-out the s1s. Weak fer-
tilization can now take place on the right-hand side to give

a(b(s2(c(x)))) = s3( a(b(c(x))) )
↓
.

The wave annotation on the left-hand side has been erased, since it has fully
played its part. The wave annotation on the right-hand side has been retained,
but the direction of the wave-front has been inverted in preparation for rippling
this wave-front inwards. Suppose it is possible to ripple this wave-front past
one occurrence of a, using the inwards-directed wave-rule

s3( a(Y ) )
↓ ⇒ a( s4( Y )

↓
) (2.13)

to produce

a(b(s2(c(x)))) = a( s4( b(c(x)) )
↓
).

The two outermost occurrences of a can now be canceled to leave the simpler
goal

b(s2(c(x))) = s4(b(c(x))). (2.14)

Note that precondition (iv) of the wave sub-method (see Section 2.2.4) pre-
vents this use of rippling-in, so we need to redefine this precondition to be

(iv)b If this wave application is prior to fertilization then any new inwards
wave-front should have a sink or an outwards wave-front in its wave-
hole.

Now rippling-in is permitted after weak fertilization, even if the inwards wave-
front does not contain a sink or an outwards wave-front.

2.3.2 Another way to look at it

Note that the goal (2.14) is an instance of the missing wave-rule, i.e. if the
wave-rule

b( s2( Y )
↑
) ⇒ s4( b(Y ) )

↑
(2.15)
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had been available in the first place then the ripple method would not have
been blocked on the left-hand side. Furthermore, the outwards version of the
inwards wave-rule (2.13)

a( s4( Y )
↑
) ⇒ s3( a(Y ) )

↑

would have enabled that ripple to have been completed.
So if wave-rule (2.15) had been available, the following rippling steps

would have been generated:

a(b(c( s1( x )
↑
))) = d(e( f ( s1( x )

↑
)))

a(b( s2( c(x) )
↑
)) = s3( d(e( f (x))) )

↑
(2.16)

a( s4( b(c(x)) )
↑
) = s3( d(e( f (x))) )

↑
(2.17)

s3( a(b(c(x))) )
↑ = s3( d(e( f (x))) )

↑
(2.18)

a(b(c(x))) = d(e( f (x))),

at which point strong fertilization is possible. In the absence of wave-rule
(2.15), weak fertilization has taken place at step (2.16), the wave-rule used
at step (2.18) has been applied in reverse, and proving the missing wave-rule
(2.15) has been left as a residual goal, i.e. essentially the same proof has taken
place, but constructed in a different order.

2.3.3 A concrete example

This abstract pattern is realized in the proof of

∀n:nat. half (n + n) = n,

where the recursive definitions of + and half provide wave-rule (2.1) and

s( half (X) )
↓ ⇒ half ( s(s( X )

↓
). (2.19)

The step case generates the rippling problem:

Given: half (n + n) = n

Goal: half ( s( n )
↑+ s( n )

↑
) = s( n )

↑
.

The goal can be rippled to

half ( s( n + s( n )
↑
)

↑
) = s( n )

↑
,
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but is then blocked. Fortunately, since the right-hand side is trivially fully rip-
pled, weak fertilization can be applied yielding

half (s(n + s(n))) = s( half (n + n) )
↓
.

The right-hand side wave-front can now be rippled-in using wave-rule (2.19)
and the outer functions canceled:

half (s(n + s(n))) = half ( s(s( n + n ))
↓
)

s(n + s(n)) = s(s(n + n))

n + s(n) = s(n + n).

The result is an instance of the missing wave-rule

X + s( Y )
↑ ⇒ s( X + Y )

↑
.

In Chapter 3 we will see an alternative account in which the process above
is carried out by a critic, called lemma calculation, for calculating the structure
of missing lemmas.

2.4 Rippling towards several givens

It is sometimes possible to ripple towards several givens simultaneously. Both
the need and the opportunity to do this arise, for instance, in inductive proofs
with multiple induction hypotheses.

2.4.1 An example using trees

Consider the following conjecture about binary trees:

∀t :tree(τ ). size(t) = count(nodes in(t)), (2.20)

where tree(τ ) is the type of binary trees whose nodes are labeled by elements
of type τ ; size returns the number of nodes in a tree, nodes in returns a multi-set
of all the nodes in a tree, and count computes the size of a multi-set. Suppose
that the recursive data type tree(τ ) is defined using the constructor functions
leaf and node, and that the recursive data type mset (τ ) is defined using the
constructor functions empty and insert.
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The step case of the structural induction on tree(τ ) produces the rippling
problem

Givens: size(l) = count(nodes in(l))

size(r) = count(nodes in(r))

Goal: size( node(n, l , r )
↑
)

= count(nodes in( node(n, l , r )
↑
)).

Note that there are two givens: one corresponding to an induction hypothesis
for the left subtree, and one for the right. Moreover, the wave-fronts now have
two wave-holes: one corresponding to each of the givens. To handle this, we
need to generalize the concept of skeleton: the skeleton is now defined as a set
of formulas, e.g.

{size(l) = count(nodes in(l)), size(r) = count(nodes in(l)),
size(l) = count(nodes in(r)), size(r) = count(nodes in(r))}, (2.21)

where each member of the set is constructed by choosing one of the wave-
holes of each wave-front. Note that some of the members of the skeleton do
not correspond to givens. We will see how to eliminate this problem by the use
of colored wave-holes in Section 2.4.2.

We will proceed using the following six wave-rules. The first three come
from the recursive definitions of size, nodes in and count; the fourth comes
from the distributive law of count over ∪; and the fifth and sixth come from
the replacements axioms for s and +:

size( node(N , L , R )
↑
) ⇒ s( size(L) + size(R) )

↑

nodes in( node(N , L , R )
↑
) ⇒ insert(N , nodes in(L) ∪ nodes in(R) )

↑

count( insert(E, S )
↑
) ⇒ s( count(S) )

↑

count( X ∪ Y
↑
) ⇒ count(X) + count(Y )

↑

s( X )
↑ = s( Y )

↑ ⇒ X = Y

X1 + X2
↑ = Y1 + Y2

↑ ⇒ X1 = Y1 ∧ X2 = Y2
↑
. (2.22)

Note that four of these wave-rules also have wave-fronts containing two wave-
holes.
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Armed with these wave-rules, rippling proceeds as follows:

size( node(n, l , r )
↑
) = count(nodes in( node(n, l , r )

↑
))

s( size(l) + size(r) )
↑ = count( insert(n, nodes in(l) ∪ nodes in(r) )

↑
)

s( size(l) + size(r) )
↑ = s( count( nodes in(l) ∪ nodes in(r)

↑
) )

↑

size(l) + size(r)
↑ = count( nodes in(l) ∪ nodes in(r)

↑
)

↑

size(l) + size(r)
↑ = count(nodes in(l)) + count(nodes in(r))

↑

size(l) = count(nodes in(l)) ∧ size(r) = count(nodes in(r))
↑
.

Rippling is now complete and strong fertilization is possible with each of the
two givens.

2.4.2 Shaken but not stirred

The successive goals in the above ripple each have the same skeleton, namely
the set of four equations given in (2.21): two members of this set correspond to
the two givens, and the other two are superfluous. Rippling will often reduce
the size of the skeleton set as it proceeds. This is fine as long as at least one
member of the resulting set is identical to at least one of the givens. However,
sometimes all members corresponding to the givens are eliminated and only
superfluous members are retained. To see how this could happen, suppose the
following wave-rule were available:

X1 + X2
↑ = Y1 + Y2

↑ ⇒ X1 = Y2 ∧ X2 = Y1
↑
, (2.23)

which is a permuted variant of wave-rule (2.22). If this variant wave-rule were
used instead of (2.22) then it would produce the goal

size(l) = count(nodes in(r)) ∧ size(r) = count(nodes in(l))
↑
,

whose skeleton is

{size(l) = count(nodes in(r)), size(r) = count(nodes in(l))}.
Here, only the two superfluous members are retained, so fertilization is pre-
vented. We need to stop this kind of thing happening; in the words of James
Bond, we want skeletons to be “shaken, but not stirred”.



Rippling towards several givens 39

One mechanism for doing this is to label skeletons in both goals and wave-
rules. When applying wave-rules, we insist that these labels correspond, in
addition to the other conditions on matching wave annotation. It is conve-
nient to use color names for the labels. For instance, in our example rip-
ple we may label the two givens “red” and “blue”. Those parts of the goal’s
skeleton that correspond solely to the red (blue) given will also be labeled
red (blue). Some parts of the goal’s skeleton correspond to both givens; these
will be labeled with both red and blue. The labels are formally represented
as sets of color names, e.g. {r}, {b} and {r, b}, where r stands for red and
b for blue. With this additional color constraint, the skeleton of our running
example is reduced to a doubleton, with both members corresponding to one
of the givens, {size(l) = count(nodes in(l)), size(r) = count(nodes in(r))}.
Figure 2.2 shows the count rippling problem using this notation. This figure is
used again in Section 5.10 but with the skeleton portrayed in different colors,
rather than the use of superscripts.

The skeletons of wave-rules are labeled with terms containing free variables
ranging over sets. These labels are represented as superscripts below. The la-
beling is done in a way that preserves the integrity of the skeletons. The free
variables are instantiated in the process of matching wave-rules to redexes. For
instance, the wave-rules (2.22) and (2.23) are labeled as

X1
R + X2

B
↑
=R∪B Y1

R + Y2
B

↑
⇒ X1 = Y1

R ∧ X2 = Y2
B

↑
(2.22)

X1
R + X2

B
↑
=R∪B Y1

B + Y2
R

↑
⇒ X1 = Y2

R ∧ X2 = Y1
B

↑
. (2.23)

The goal is labeled as

size(l){r} + size(r){b} ↑

={r,b} count(nodes in(l)){r} + count(nodes in(r)){b} ↑
.

Wave-rule (2.22) will apply to this with R instantiated to {r} and B to {b}.
However, wave-rule (2.23) will not apply since there is no consistent assign-
ment of R and B to the labels of the goal. Thus the colored labels prevent an
unwanted “stirring” of the skeletons.

2.4.3 Weakening wave-fronts

In Section 2.4.2 we used a multi-holed wave-rule based on the replacement
axiom for +, (2.22). In Section 1.6 we used a single-holed version of this
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Givens: size(l){r} ={r} count(nodes in(l)){r}

size(r){b} ={b} count(nodes in(r)){b}

Goal: size( node(n, l{r} , r {b} )
↑
)

{r,b}

={r,b} count(nodes in( node(n, l{r} , r {b} )
↑
))

{r,b}

Ripple:

s( size(l){r} + size(r){b} )
↑

={r,b} count( insert(n, nodes in(l){r} ∪ nodes in(r){b} )
↑
)

{r,b}

s( size(l){r} + size(r){b} )
↑

={r,b} s( count( nodes in(l){r} ∪ nodes in(r){b} ↑
)

{r,b}
)

↑

size(l){r} + size(r){b} ↑

={r,b} count( nodes in(l){r} ∪ nodes in(r){b} ↑
)

{r,b} ↑

size(l){r} + size(r){b} ↑

={r,b} count(nodes in(l)){r} + count(nodes in(r)){b} ↑

size(l) = count(nodes in(l)){r} ∧ size(r) = count(nodes in(r)){b} ↑

Figure 2.2 Rippling with color labels. The goal is simultaneously rippled towards
both the red and the blue given. The color coding keeps the two skeletons from
becoming entangled. Note how large parts of the skeleton are shared initially but
become separated into red and blue skeletons as the rippling proceeds. A version
of this figure in color can be found in Figure 5.10.

wave-rule, (1.11). We reproduce them below:

X1 + X2
↑ = Y1 + Y2

↑ ⇒ X1 = Y1 ∧ X2 = Y2
↑

(2.22)

X1 + X2
↑ = Y1 + Y2

↑ ⇒ X1 = Y1 ∧ X2 = Y2
↑
. (1.11)

We have seen occasions where each one of these wave-rules has been re-
quired, i.e. we need them both. Wave-rule (1.11) is called a weakening of
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X1
{r} + X2

{b} ↑
={r,b} Y1

{r} + Y2
{b} ↑

⇒ X1 = Y1
{r} ∧ X2 = Y2

{b} ↑
(2.22)

X1 + X2
{b} ↑

={b} Y1 + Y2
{b} ↑

⇒ X1 = Y1 ∧ X2 = Y2
{b} ↑

(1.11)

Figure 2.3 Weakening wave-rules by removing colors. Wave-rule (1.11) can be
formed from wave-rule (2.22) by removing the wave-holes around the red skele-
ton and merging this with the wave-front. Another weakening of (2.22) could be
formed by removing the blue skeleton.

wave-rule (2.22). A weakening is formed by erasing the annotation around
one or more wave-holes and merging their contents with the wave-front. This
must be done so that the wave-rules are still skeleton preserving. In terms of
color labels we are erasing the wave-holes containing one or more colors but
preserving at least one other color. Figure 2.3 depicts this.

The implementation of weakened wave-rules involves a space/time trade-
off. Either all the weakenings of a wave-rule can be stored and matched against
any redex, or only full-strength wave-rules need be stored and weakening can
be built into the application process. So, in the latter case, wave-rule (1.11)
would not be stored but any required weakening would be applied to wave-
rule (2.22) when this rule was applied.

2.5 Conditional wave-rules

We have seen how wave-rules are formed by annotating rewrite rules. Some-
times these rewrite rules have conditions and hence produce conditional wave-
rules such as

X = H → X ∈ H :: T
↑ ⇒ X ∈ T

H ∈ S → ( H :: T
↑
) ∩ S ⇒ H :: ( T ∩ S )

↑

X = H → delete(X, H :: T
↑
) ⇒ H :: delete(X, T )

↑
, (2.24)

where ∈, ∩ and delete are the list membership, intersection, and element dele-
tion functions, respectively.

Conditional wave-rules can be used for rippling provided their conditions
are provable. Sometimes a wave-rules’s conditions is unprovable. In order to
apply it, it is then necessary to split the proof into cases. For instance, suppose
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the current goal is

delete(x, h :: ( t <> l )
↑
) = delete(x, h :: t

↑
) <> delete(x, l).

For the ripple to continue we need to apply conditional wave-rule (2.24) to
each side. The condition of both applications is x = h. Unfortunately, this
condition is unprovable, so the ripple is blocked. To unblock it we can split the
proof into two cases, x = h and x = h. In the x = h case, the wave-rules now
apply and the ripple continues:

h :: delete(x, t <> l)
↑ = h :: delete(x, t)

↑
<> delete(x, l)

h :: delete(x, t <> l)
↑ = h :: delete(x, t) <> delete(x, l)

↑

delete(x, t <> l) = delete(x, t) <> delete(x, l),

at which point strong fertilization completes this case.
The x = h case can also proceed, but using the wave-rule for the comple-

mentary case

X = H → delete(X, H :: T
↑
) ⇒ delete(X, T ). (2.25)

Applying this wave-rule on each side produces

delete(x, t <> l) = delete(x, t) <> delete(x, l)

immediately, allowing strong fertilization to complete this case too.
The conditional wave-rules (2.24) and (2.25) form a complementary pair;

each has the same left-hand side, but different right-hand sides and comple-
mentary conditions. If a case split is introduced on these complementary con-
ditions, then each wave-rule enables continued rippling in one of the resulting
cases. The existence of such a complementary pair of wave-rules is a strong
heuristic suggesting a case split; it ensures that rippling will continue for at
least one more step in both cases. More generally, to split into n cases we need
n conditional wave-rules. If one of these conditional wave-rules is missing
then the corresponding case will continue to be blocked. Fortunately, condi-
tional wave-rules often arise from conditional recursive definitions (as here for
∈, ∩ and delete) and the completeness of the definition provides rules for each
of the cases.

Sometimes a complementary rewrite rule is available, but it is not a
wave-rule. Consider, for instance, the complementary rules arising from the
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definition of ∈:

X = H → X ∈ H :: T ⇒ � (2.26)

X = H → X ∈ H :: T
↑ ⇒ X ∈ T . (2.27)

Rule (2.27) is a conditional wave-rule but rule (2.26) is not. Fortunately, we
can still use these complementary rules to suggest a case split. However, due
to the failure of skeleton preservation, one of these cases will cease to be a
rippling problem. Consider, for instance, the goal

x ∈ h :: ( t <> l )
↑ ↔ x ∈ h :: t

↑∨ x ∈ l. (2.28)

The complementary pair of rules (2.26) and (2.27) suggest a case split on x = h
and x = h. The second case continues the ripple. The first case, however,
produces the goal

� ↔ � ∨ x ∈ l,

which is no longer a rippling problem. Fortunately, it can be readily solved
by conventional simplification methods, as is often so for such non-rippling
cases.

Sometimes it is possible to replace a complementary set of conditional rules
with a single wave-rule. For instance, the rules (2.26) and (2.27) can be re-
placed with the single wave-rule

X ∈ H :: T
↑ ⇒ X = H ∨ X ∈ T

↑
. (2.29)

Using such rules we can avoid a case split and, hence, any non-rippling cases.
Applied to the goal (2.28), wave-rule (2.29) produces the ripple

x ∈ h :: ( t <> l )
↑ ↔ x ∈ h :: t

↑∨ x ∈ l

x = h ∨ x ∈ t <> l
↑ ↔ ( x = h ∨ x ∈ t

↑
) ∨ x ∈ l

x = h ∨ x ∈ t <> l
↑ ↔ x = h ∨ ( x ∈ t ∨ x ∈ l )

↑

x ∈ t <> l ↔ x ∈ t ∨ x ∈ l,

which is completed by strong fertilization.
In Chapter 3 we will see an alternative account in which the process above

is carried out by a critic for suggesting case splits.
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2.6 Rippling wave-fronts from given to goal

In all the rippling problems we have considered so far, wave annotation has
appeared in the goal but not in the given. Rippling can also be applied to prob-
lems with wave annotation in the given. Such problems arise, for instance,
from destructor-style inductions, e.g.

Given: p( l )
↑× (m + n) = ( p( l )

↑× m) + ( p( l )
↑× n)

Goal: l × (m + n) = (l × m) + (l × n),

where p is the predecessor function for natural numbers introduced in Section
1.9.

It is tempting to treat such destructor-style rippling problems as entirely
dual to the constructor-style ones we have considered up to now. That is, we
might consider rippling the given and then fertilizing it with the goal. Unfor-
tunately, this will not work. The problem is to prove the goal from the given;
not the other way around. The given is an assumption, while the goal is the
conjecture to be proved. It is not legal to use the conjecture to help prove the
assumption.

Instead, somehow we must shift the wave annotation from given to goal and
then ripple the goal, as before. There are a number of ways to do this. They
all involve introducing wave annotation into the goal. Some of this annotation
will correspond to the annotation already in the given. It will disappear if we
re-embed the given into the goal. Some of the annotation will be new, and will
form the basis for rippling the goal. By this process, the initial destructor-style
problem will be transformed into a constructor-style problem.

The introduction of wave annotation into the goal can be effected by using
annotated destructor-style definitions or similar rewrite rules. In our example
we can use the conditional rule

X = 0 → X ⇒ s(p( X ))
↑

(2.30)

to split the rippling problem into two cases and rewrite the goal in the l = 0
case giving

Given: p( l )
↑× (m + n)= ( p( l )

↑× m) + ( p( l )
↑× n)

Goal: s(p( l ))
↑× (m + n)= ( s(p( l ))

↑× m)+ ( s(p( l ))
↑× n).

Now both the given and goal contain three occurrences of p(l), so if we re-
embed the given into the goal, these subexpressions will form part of the skele-
ton and not the wave-front, as previously. The rippling problem has thus been
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transformed to

Given: p(l) × (m + n) = (p(l) × m) + (p(l) × n)

Goal: s( p(l) )
↑× (m + n)= ( s( p(l) )

↑× m)+ ( s( p(l) )
↑× n).

Rippling of the goal can now proceed as if the original problem had been

Given: l × (m + n) = (l × m) + (l × n)

Goal: s( l )
↑× (m + n) = ( s( l )

↑× m) + ( s( l )
↑× n),

as might have arisen from a constructor-style induction.
Note that rule (2.30) is not a wave-rule; it is skeleton preserving, but not

measure decreasing. Great care must be taken with such measure-increasing
rules since, applied indiscriminately, they can cause non-termination. The key
here is to limit their application to the removal of wave annotation from the
given, as in the above example.

2.7 Higher-order rippling

All our examples of rippling, so far, have been in the context of a first-order
calculus. Can rippling also take place in a higher-order calculus, such as the
λ-calculus? The answer is yes, but there are some additional complications that
must be dealt with.

It is important to generalize rippling to higher-order calculi for two reasons.
Firstly, many concepts from Mathematics and Formal Methods are naturally
higher-order. Higher-order concepts include both induction and well-founded
orderings, for instance. Secondly, as we will see in Chapter 3, to get the most
out of rippling, we will want to use higher-order meta-variables to stand for un-
known structure, for instance, in generalized conjectures, speculated lemmas,
and induction terms.

So what are these additional complications in higher-order calculi? In con-
trast to first-order logic, the λ-calculus has an built-in equality relation on terms
given by the α and β rules, and η-equality (see Figure 2.4).

Two terms are considered as equal if they are syntactically equal modulo
these three laws. Let [t]α,β,η be the class of all terms s that are equal to t mod-
ulo α, β, η-equality. Then, we need a concept of a skeleton that is independent
of the selection of a representative in [t]α,β,η; i.e. s ∈ [t]α,β,η should imply
skel(s) =α,β,η skel(t). It is easy to decide whether two terms are equal modulo
the variable renaming of the α rule. However, the β rule and η equality create
problems.
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f [λx e]
f [λy e{y/x}]

f [(λx e)(t)]
f [e{t/x}] (λy e)(y) = e

α Rule β Rule η Equali t y

Figure 2.4 The laws of lambda calculus. Here f and e are expressions, f [e]
indicates a distinguished occurrence of e in f and e does not contain y.

The α rule allows us to switch bound variables; the β rule allows us to evaluate
expressions; and the β rule and η equality are the two sides of a duality between
function application and λ abstraction. The condition on e not containing y guards
against accidental variable capture.

Consider the annotated term (λX.b)( a ) . It is natural to consider a as its

skeleton. However, if we apply the β rule to (λX.b)( a ) , then it collapses to

b and the skeleton has vanished. Applying the β-rule has removed exactly
the part of the term that contained the skeleton. The underlying problem is
that the property of a symbol occurring in a term is not stable with respect to
function composition. Although a occurs in all members of [a]α,β,η, it does
not occur in all members of [(λX.b)a]α,β,η. Below, we suggest two possible
solutions to this problem.

Our first solution is to resign ourselves to the potential loss of the skeleton
at each ripple step and, therefore, test for skeleton preservation after each step.
To implement such a test, Smaill and Green (1996) developed the notion of
higher-order embeddings. Informally, an expression A embeds into another B
if A could be the skeleton when B was wave-annotated. We denote this as
A E B. Embeddings are discussed in more detail in Section 4.3.1, but this
discussion is restricted to the first-order case. In the higher-order case, E is
defined recursively as follows:

Base case: Each atomic expression B is embedded into itself: B E B.
Application: A term A is embedded into an application (B1 B2) if it is either

embedded into one of its arguments (in this case the application would
be some kind of wave-front) or A is itself an application (A1 A2) and
each Ai is embedded in Bi (in this case the application would be part of
the skeleton).

Lambda abstraction: A is embedded into (λU.B) if either it is embed-
ded into all instantiations (λU.B)C for all C (which interprets λ as a
kind of wave-front), or A is itself an abstraction (λU.A′) and (λU.A′)C
is embedded into (λU.B)C for all C (which interprets λ as part of a
skeleton).
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For instance, a E ((λX.( f X))a) while it is not the case that a E ((λX.b)a),
which illustrates the necessity of checking the skeleton in each step. Thus,
using this notion of higher-order embeddings we are able to implement a
generate-and-test approach for rippling in a higher-order setting. In each step
we have to check whether the skeleton is embedded in the derived formula.

However, compared to the first-order case, we lose some of the attractive
properties of rippling: a first-order term g(h(a, c), b), for instance, is written
in the λ-calculus as ((g((ha)c))b). The relation between a function symbol
and its arguments is blurred in the higher-order notation. Although b is not an
argument of h, (hb) is embedded in ((g((ha)c))b). Thus, we lose expressive-
ness for specifying skeletons. Moreover, we are not able to trace individual
symbol occurrences but have to search for corresponding symbol occurrences
after each rippling step. As a consequence, we have to apply a wave-rule first
in order to check whether it preserves the embedding of the skeleton in the
manipulated term. In first-order logic, theorem 3 in Section 4.6.4 provides a
sufficient condition to guarantee that the application of wave-rules preserves
the skeleton. We do not need this theorem for the generate-and-test approach.
It is trivially complete in the sense that it enables any rewriting provided that
it preserves the embedding of the skeleton. Also, we are free to formulate ar-
bitrary terms as skeletons regardless of the underlying types.

The above solution allows for the specification of arbitrary skeletons, which
results in an expensive propagation of skeletons during rewriting (Hutter &
Kohlhase, 2000). We now describe a second solution that restricts the possi-
ble skeletons in order to allow for the tracking of symbol occurrences. Con-
sider the term t ≡ ((λX.A)B). The term B will only occur in all elements
of [((λX.A)B)]α,β,η if X occurs in A (or B occurs itself in A). Thus, we
cannot ignore (λX.A) completely when computing the skeleton of an anno-
tated term like ( (λX.A) B). To decide whether B is part of the skeleton, we
need to know whether X occurs in A or not. Following the recursion scheme
of higher-order embeddings, we want to compute a skeleton skel((st)) by
composing the skeletons of the arguments {(s′t ′)|s′ ∈ skel(s), t ′ ∈ skel(t)}.
Consequently, skel( (λX.A) ) should return the set {(λX.X)} if X occurs
in A and the empty set otherwise. We achieve this by considering λ and all
occurrences of formal parameters like X as intrinsic parts of the skeleton,
e.g. skel( (λX. f (X)) ) = {(λX.X)}. However, since f (X) and X may have
different types, we have to introduce additional type-conversion functions to
guarantee well-typed skeletons and reduction rules to normalize the consec-
utive occurrences of these type-conversion functions. This second approach
guarantees, in the ground case, that applying skeleton-preserving wave-rules
will preserve the skeleton of the manipulated term.
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However, there is one problem left: using higher-order variables we can-
not guarantee that skeletons are stable with respect to instantiations. Consider
for instance, a wave-rule like F( a ) ⇒ a with F being a higher-order vari-
able. Instantiating F by a projection λx .b/F eliminates the skeleton a on the
left-hand side and results in a non-wave-rule b ⇒ a. Hence, in general, the
instance of a skeleton-preserving wave-rule is not itself skeleton preserving,
but we have to check this property separately. Summing up, the second ap-
proach allows us to classify wave-rules in the same way as in the first-order
case to restrict the number of suitable wave-rules when rewriting the given.
Annotated higher-order matching between the given and the left-hand side of
the wave-rule results in a set of annotated matchers. The wave-rule is instanti-
ated by one of these matchers and the resulting instance is checked to ensure
that it preserves the skeleton. If it does, we use this instance to rewrite the
given, while otherwise we check the remaining set of matchers for admissible
instantiations.

2.8 Rippling to prove equations

Rippling is applicable whenever a goal is to be proved with the aid of struc-
turally similar givens. So far, the givens have been induction hypotheses, or
similar assumptions, axioms, or lemmas. Rippling can be applied to prove
equations by regarding the givens as the identities between the common skele-
tons of the two sides of the equation. Rippling then applies to both sides
of the equation, moving away any differences from that common skeleton.
This movement of the differences often results in an increase in the com-
mon skeleton, i.e. wave-fronts from each side are structurally similar; their
change of position enables part of them to be absorbed into an increased
skeleton. The process is repeated on any remaining differences, producing a
steadily growing common skeleton until eventually all differences have been
removed.

Consider, for example, the problem of proving

length(x <> y) = length(y <> x), (2.31)

using the distributive law of length over <> and the commutativity of +. The
differences and similarities between the two sides of (2.31) can be identified
using the wave annotation

length( x <> y ) = length( y <> x ), (2.32)
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where the common skeleton is {length(x), length(y)}. Next, rippling is used to
move the wave-fronts out, so that the skeleton is contiguous. The distributivity
of length over <>

length( U <> V ) ⇒ length(U ) + length(V )

applies to each side, to produce

length(x) + length(y) = length(y) + length(x) . (2.33)

Comparing both sides, we would like to increase the skeleton by the occur-
rences of + on both sides, but the first argument of + on the left-hand side cor-
responds to the second argument of + on the right-hand side, and vice versa.
Hence, in order to obtain a common skeleton on both sides, we have to use the
commutativity of + to permute the arguments of + on one side of the equation
yielding

length(x) + length(y) = length(x) + length(y) . (2.34)

Now the two sides of the equation are identical and the proof is complete. In
wave annotation terms, + has been moved from the wave-front to the skeleton,
so that the new skeleton is

{length(x) + length(y) = length(y) + length(x)}. (2.35)

A more challenging example of equational rippling is given in Section 5.7.
Equational rippling in its most general form consists of two nested itera-

tions. In the outer iteration, the common skeleton is incrementally enlarged by
incorporating wave-fronts into the skeleton, until no wave-fronts remain and
the two sides of the equation are identical. Each inner iteration prepares the
way for one such a skeleton enlargement. Wave-fronts on each side are rip-
pled into corresponding positions with respect to the common skeleton. Corre-
sponding wave-fronts are then transformed until they are identical and can then
be absorbed into the skeleton. Wave annotations are recalculated with respect
to the new, enlarged, common skeleton, in preparation for the next step in the
outer iteration.

This transformation of wave-fronts into the common skeleton is in contrast
to standard rippling, in which the skeleton generally remains unchanged. The
skeleton serves two purposes in this transformation process. Firstly, as in stan-
dard rippling, skeleton preservation restricts rewriting. Secondly, it allows us to
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reduce the problem of equalizing the two sides of the equation to the problem
of equalizing corresponding wave-fronts. There is often a choice of the com-
mon skeleton. This choice is crucial, since it determines the way the problem
is decomposed.

2.9 Relational rippling

Functions pass values from one to another by nesting one function inside
the other and using the output of the inner function as the argument of the
outer one. For instance, in length(rev([1, 2, 3])) the output of rev([1, 2, 3]),
[3, 2, 1], is passed to length as its argument. The version of rippling we
have developed so far is designed for this environment of value pass-

ing by function nesting. So we might ripple length(rev( H :: T
↑
)) first to

length( rev(T ) <> (H :: nil)
↑
)) and then to s( length(rev(T )) )

↑
, rippling

the wave-front up through the nested functions.
However, in many application domains one works primarily with rela-

tions rather than functions. Examples include logic programming, reason-
ing about logic circuits represented as relations, and relational induction.
In these domains, value passing is accomplished using shared, existentially
quantified variables. For example, we might write ∃R∃N . rev([1, 2, 3], R) ∧
length(R, N ), where, on execution, first R will become instantiated to [3, 2, 1]
and then N to 3. If we want rippling also to work in this case, then it needs to
be modified. We call the new version of rippling relational rippling, and im-
plement it using a variant of rippling called rippling-past (Bundy & Lombart,
1995).

In rippling-past, the wave-fronts move along a conjunction of literals, fol-
lowing the instantiation of the shared existentially quantified variables that
carry the values being passed between conjuncts. Consider, for example, the
relational versions of wave-rules in Figure 2.5 and the worked example of re-
lational rippling in Figure 2.6.

In rippling-past we have to address a number of problems that do not arise
in regular rippling:

(i) Conjunction is associative and commutative and existential quantifica-
tion satisfies permutative laws (e.g., ∃R∃N .φ is equivalent to ∃N∃R.φ)
and permits some movement of quantifiers, as long as they preserve the
scope of the quantification. We have to define skeleton preservation mod-
ulo these properties.
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Figure 2.5 Relational versions of wave-rules. As usual, wave-fronts are repre-
sented by grey boxes and the wave-holes by the white areas within them. The
arrows above variables act like Prolog modalities: down-arrows indicate an input
and up-arrows an output. They impose a direction on the movement of wave-fronts
and, thereby, enforce termination. The Greek letters in the boxes below arguments
show the “real” value of these arguments and allow us to show skeleton preser-
vation by first replacing the actual argument with the contexts of the box. So the
skeleton of the first rule is length(α,β), etc.

(ii) As values are passed via shared variables, the names of variables in the
skeletons are changed, violating skeleton preservation. We have to asso-
ciate with each argument a constant name that is not changed by value
passing, so that we can retain a concept of skeleton preservation. This an-
notation is done via boxes with Greek letters, as illustrated in Figures 2.5
and 2.6.

(iii) Function nesting gives a direction to the value passing: up through the
nested functions. This direction is lost in value passing via shared existen-
tial variables; values can pass in either direction. We have, nevertheless,
to impose some direction on relational wave-fronts, via the annotation, to
ensure that the process terminates. This annotation is done via “modality”
arrows, as illustrated in Figures 2.5 and 2.6.

(iv) An explicit initialization phase is needed to insert wave annotation into
the step case of the proof. This transformation is illustrated in Figure 2.6.

(v) Rippling-past does not automatically move the wave-fronts onto the next
part of the conjunction. It is necessary to have an explicit transformation
to do this. This needs to regroup the conjunction, exploiting its properties
of associativity and commutativity.

Relational rippling has been implemented in the C LAM system and success-
fully tested on a range of examples (Bundy & Lombart, 1995).
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Conjecture: ∀L , N . [∃R. rev(L , R) ∧ length(R, N )] ↔ length(L , N )

Step case:

[∃R. rev(l, R) ∧ length(R, n)] ↔ length(l, n) ,

cons(h, l, l ′ ) � [∃R′
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Rippling-past:

∃R
R
. rev(

�
l
l
,
�
R
R
) ∧ ∃H L

⊥
. cons(h

⊥
, nil

⊥
, H L

⊥
) ∧ ∃N

n
, N1

⊥
. length(

�
R
R
,
�
N
n
)

∧length(H L
⊥

, N1
⊥

) ∧ +(N
n
, N1

⊥
, N ′

n
)

↔ ∃N
n
. length(

�
l
l
,
�
N
n
) ∧ succ(N

n
, N ′

n
)

Rippling-out:

∃H L , N , N1. cons(h, nil, H L) ∧ [ ∃R. rev(l, R) ∧ length(R, N ) ]

∧length(H L , N1) ∧ +(N , N1, N ′)

↔ ∃N . length(l, N ) ∧ succ(N , N ′)

Strong fertilization:

∀N . [∃H L , N1. cons(h, nil, H L) ∧ length(H L , N1) ∧ +(N , N1, N ′)]
↔ succ(N , N ′)

Figure 2.6 An example of relational rippling. This shows the various stages of the
proof of a conjecture using rippling-past and rippling-out. The wave annotation is
as in Figure 2.6, except for the use of l ′ , which marks a candidate induction vari-
able. Initialization sets up the initial wave annotation. Rippling-past then moves
this annotation long the shared variable pathway and rippling-out and strong fer-
tilization finish off the rippling in the conventional way.
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2.10 Summary

In this chapter we have seen that the basic rippling story can be extended in
many different ways. Wave-fronts can be compound objects that can be split,
with the separate parts rippled differently. Rippling can send wave-fronts in
different directions. It can move wave-fronts outwards, so that an instance of
the given appears as a subterm; it can move the wave-fronts inwards towards a
sink or in a phase of post-fertilization rippling; it can move wave-fronts across
from given to goal. Complementary sets of rules can suggest splitting a proof
into cases. It is possible to ripple simultaneously towards several givens, care-
fully preserving the skeletons corresponding to each one. It is also possible to
extend rippling to higher-order logic and relational reasoning and to use it as
the basis of a general procedure to automate equational reasoning.

We need to develop a uniform framework into which all these variants of
rippling fit. This is the subject of Chapter 4. But first, we explore how to make
productive use of the failure of rippling.
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Productive use of failure

The process of proving theorems generally involves many false starts, whether
performed using paper and pencil, or with machine assistance. But failed at-
tempts often provide insight on how to make progress. Andrew Wiles ex-
pressed this phenomenon succinctly with regard to the famous patch of his
proof of Fermat’s Last Theorem: “Out of the ashes seemed to rise the true an-
swer to the problem” (BBC, 1996). Such insights are sometimes referred to as
eureka steps and the informality and reflective nature of the associated discov-
ery process is common to many, whether they are students studying logic or
professional mathematicians like Andrew Wiles. For instance, it is often the
case that analysis of a proof failure suggests a generalization of the original
conjecture that can be proved more easily. What is less common, however,
is to find a symbolic method of proof that directly promotes this discovery
process. We show in this chapter how rippling provides a basis for such a
method.

3.1 Eureka steps

We begin by considering two of the key eureka steps that typically arise dur-
ing the search for an inductive proof: conjecture generalization and lemma
discovery. In terms of deduction,1 both conjecture generalization and lemma
discovery are underpinned by the cut rule of inference, which takes the form

�,ψ � φ � � ψ

� � φ
.

1 Our explanation assumes that a sequent calculus (Gentzen, 1934) is used as a deductive system.
In other deductive systems (like Hilbert or natural deduction), the choice points described here
are manifested in other ways, but the problem is the same: guessing and proving a new, valid
formula, which may be syntactically unrelated to (e.g. is not a subformula of ) the formula
being proven.

54
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We will make our usual assumption of a backwards style of proof construction.
The cut rule allows us to exchange the goal of proving φ from � for two new
sub-goals: (a) proving φ with the additional assistance of ψ , and (b) proving ψ

from �; ψ is called the cut formula, and can be any formula. Thus, the cut rule
introduces an infinite branching point in the search space. Additionally, there
is a danger that ψ is not a consequence of �, so that the proof of sub-goal (b)
will fail. This will occur, for instance, if a conjecture is over-generalized or an
invalid lemma is applied.

In first-order logic, the cut rule is redundant, so these problems of infinite
branching and over-generalization can be avoided. However, within first-order
theories that include induction, the cut rule cannot be eliminated. For instance,
cut elimination within theories of arithmetic is not possible. Moreover, as we
will see below, the cut rule is frequently required for proving even quite simple
theorems.

To illustrate these kinds of eureka steps, consider proving the following
property of the rotate function

∀t :list(τ ). rotate(length(t), t) = t. (3.1)

The function rotate (defined in Appendix 2) takes a number n and a list l and
returns the list built by removing the first n elements of l and concatenating
them onto the end of l.

Conjecture (3.1) states that the rotation of a list by its length returns the
identical list. Although intuitive and simple to state, this property is surpris-
ingly hard to prove. A proof by mathematical induction requires first general-
izing (3.1). The generalization step involves finding a conjecture that is prov-
able by induction and logically implies (3.1). A suitable generalization here
involves introducing an additional universally quantified variable, in particular

∀t :list(τ ).∀l:list(τ ). rotate(length(t), t <> l) = l <> t. (3.2)

The advantage of this generalization is that an inductive proof of (3.2) gives
rise to a stronger induction hypothesis than compared to an inductive proof
attempt of (3.1). The discovery of (3.2) is an example of what we call conjec-
ture generalization. In relationship to the cut rule of inference, (3.2) is the cut
formula. Showing that (3.2) generalizes (3.1) requires establishing that (3.2)
logically implies (3.1). This is relatively straightforward and is achieved by
instantiating l to nil followed by the normalization of the antecedent, which
gives rise to a tautology.

Once a generalized conjecture is discovered, however, it must also be
proved. In the case of (3.2), a 1-step induction on the list t provides the
basis for a proof. In the associated step case, however, the following two



56 Productive use of failure

lemmas are required, each of which must also be proven by induction.

∀x:list(τ ).∀y:list(τ ).∀z:list(τ ). (x <> y) <> z = x <> (y <> z) (3.3)

∀y:τ.∀x:list(τ ).∀z:list(τ ). x <> (y :: z) = (x <> y :: nil) <> z (3.4)

The discovery of (3.3) and (3.4) are examples of what we call lemma discovery.
Relating this back to the cut rule of inference, both (3.3) and (3.4) represent
cut formulas. Although these eureka steps appear to come from nowhere, we
will return to this example in Section 3.7 and see how rippling provides the
key to automating their discovery.

3.2 Precondition analysis and proof patching

The ability to discover eureka steps relies upon having a strong expectation
of the shape the proof should take. As we have seen, rippling defines such an
expectation for a particular family of proofs. In the remainder of this chapter,
we show how rippling can be used to automate the discovery of certain kinds
of eureka steps, including the ones illustrated above.

In proof planning terms, the “strong expectation” mentioned above corre-
sponds to the explicit preconditions that define the applicability of the ripple
method. Previously, we only considered situations where all the ripple precon-
ditions succeeded, i.e.

(i) The current goal has a redex that contains a wave-front.
(ii) There is a wave-rule whose left-hand side matches this redex.

(iii) If this wave-rule is conditional then its condition must be provable.
(iv) If this wave application is prior to fertilization then any new inwards

wave-front should have a sink or an outwards wave-front in its wave-hole.

Here we systematically investigate how the partial success of these precondi-
tions can be used to guide the search for proofs. In particular we will show
that the tight constraints imposed by rippling mean that when rippling fails we
have useful information about how to continue by patching the proof so that
the failed constraints hold.

We present proof patching as a deductive process by which eureka steps are
discovered. There are two kinds of proof patches that we use.

Modification patches: A patch may modify earlier steps within the proof
attempt. This may be a local modification (i.e. involving a single goal)
or a global modification involving subtrees of an existing proof tree.



Precondition analysis and proof patching 57

Discovery patches: A patch may result in the discovery of a lemma that was
not anticipated when the proof attempt began. In essence, we dynami-
cally elaborate our knowledge of a theory during the course of planning
a proof.

A key component of our proof-patching technique is the use of meta-
variables, i.e. variables that range over the object-level syntax. We use
meta-variables – typically higher-order meta-variables – to speculate miss-
ing structure during the planning of a proof. This technique has become
known as middle-out reasoning (Bundy et al., 1990a), as it can be used
to delay decisions within a proof until the later proof steps have been
worked out. Since meta-variables may appear within goals as well as rewrite
rules, middle-out reasoning has similarities to narrowing, and in particular
higher-order narrowing (Prehofer, 1994). We use meta-variables in two com-
plementary ways: to speculate missing structure within goal formulas and
lemmas.

In the case of a goal formula we speculate term structure that we believe
will help the proof progress. For instance, suppose we are given a goal of the
form

f (g(a, b), a).

Now suppose we have reason to believe that, in order to complete the proof,
the second occurrence a should be generalized to a term that also contains c.
This speculation can be expressed as the schematic goal

f (g(a, b), F1(a, c)). (3.5)

By “schematic” we mean that the goal contains a meta-variable, here the
second-order variable F1. In this example, F1(a, c) constitutes a term schema
that can be thought of as representing a family of terms (namely, those substi-
tution instances) that possibly contain both a and c. The expectation is that F1

will become instantiated as a side-effect of planning a proof of (3.5). In terms
of rippling, F1 may be either part of the skeleton or a wave-front. If it is part of
the skeleton then the patching process involves the discovery of a transforma-
tion to the original conjecture. On the other hand, if the missing term structure
is a wave-front then the patching process involves the modification of earlier
proof steps that will generate the required wave-front.

Now we turn to the use of meta-variables within the context of lemmas.
Consider a goal of the form

f (g(a, b), h( c )
↑
). (3.6)
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This goal could be reduced if we had a wave-rule rule of the form

f (X, h( Y )
↑
) ⇒ . . . .

But how can the right-hand side be constructed? Within the context of rippling,
the properties of structure preservation and termination can be used to guide
the construction of a schematic right-hand side, e.g.

f (X, h( Y )
↑
) ⇒ F1(X, Y, f ( F2(X)

↓
, Y ))

↑
.

Here F1 and F2 are second-order meta-variables that denote potential wave-
fronts, i.e. wave-fronts that may or may not exist. To be consistent with the
representation of rippling, we refine our wave-front annotation so that a po-
tential wave-front can be easily distinguished from an actual wave-front. This
distinction is represented here by the use of a dotted box to denote a potential
wave-front and an underline to denote its associated wave-hole. Again, the ex-
pectation is that the meta-variables will become instantiated as a side-effect of
further proof planning.

The introduction of meta-variables eliminates our previous guarantee of
termination with respect to proof search. To address this problem we inter-
leave each wave-rule application with a fertilization step. Fertilization is now
more than simple matching; it must deal with higher-order meta-variables. The
strategy employed is defined such that fertilization instantiates a higher-order
meta-variable to be a projection that preserves the skeleton term structure.
Obviously, adopting such an eager fertilization strategy will lead to failures
within the search space, e.g. it will give rise to candidate lemmas that are non-
theorems. These unproductive paths are filtered-out using a counter-example
finder.

Our proof-patching capability has been realized within the proof critics
(Ireland, 1992) mechanism. Critics complement methods. While a method
characterizes a family of proofs, a proof critic captures the patchable excep-
tions to that family. The ideas described in this chapter are based upon the
development of proof critics for the ripple method (Ireland & Bundy, 1996a,
1996b, 1999).

3.3 Revising inductions

As described in Section 1.10, ripple analysis is a process for suggesting an
appropriate form of induction to prove a conjecture. It works by looking-ahead
to see which wave-rules could apply in the step case of an induction. However,
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ripple analysis only performs a 1-step look-ahead, and this is sometimes not
sufficient. In this section we show how the analysis of a rippling failure can be
used to revise an initial induction suggestion and thereby find a proof.

3.3.1 Failure analysis

We begin by exploring a failed proof attempt. Consider the conjecture

∀t :list(τ ).∀l:list(τ ). even(length(t <> l)) ↔ even(length(l <> t)), (3.7)

where the predicate even holds for the even natural numbers and length com-
putes the length of a list. The recursive definitions of even and length, given in
Appendix 2, provide wave-rules including

even( s(s( X ))
↑
) ⇒ even(X) (3.8)

length( X :: Y
↑
) ⇒ s( length(Y ) )

↑
. (3.9)

We also assume a lemma that relates length and <>, which provides a wave-
rule of the form

length(X <> Y :: Z
↑
) ⇒ s( length(X <> Z) )

↑
.

In proving (3.7), rippling suggests a 1-step induction on the list t . Note that
both t and l are equally good candidates, and our analysis works for either
variable. We focus upon the step case, where the rippling problem is

Given: even(length(t <> l)) ↔ even(length(l <> t))

Goal: even(length( h :: t
↑
<> l)) ↔ even(length(l <> h :: t

↑
)).

Initial rippling of the goal gives rise to

even( s( length(t <> l) )
↑
)︸ ︷︷ ︸

blocked

↔ even( s( length(l <> t) )
↑
)︸ ︷︷ ︸

blocked

.

No more wave-rules are applicable so the wave method fails to apply. This
corresponds to the failure of the second precondition of rippling (see Sections
2.2.3 and 3.2):

(ii) There is a wave-rule whose left-hand side matches this redex.

Since the goal is not fully rippled, neither strong nor weak fertilization are
applicable.
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3.3.2 Patch: wave-front speculation

Our patch is based upon the observation that a partial match exists between
the blocked wave-fronts and one of the available wave-rules. From this partial
match, the structure of missing wave-fronts is calculated. The patch introduces
the missing wave-fronts by revising our initial induction-rule selection. This
analysis is implemented by dynamically constructing a schematic version of
the blockage term in order to determine whether or not a partial match is pos-
sible. Here we need only consider one of the blockage terms in isolation; in
general, this might not be the case. In this case, the schematic blockage term
takes the form

even( s( F1(length(Y <> F2(Z)
↑
))

↑
)

↑

), (3.10)

where F1 and F2 are second-order meta-variables. Recall that dotted boxes
denote potential wave-fronts, i.e. wave-fronts that may or may not exist. The
left-hand side of wave-rule (3.8) unifies with (3.10), instantiating F1 and F2
to be λx .s(x) and λx .x , respectively. This success suggests the need for an
additional wave-front to overcome the blocked goal, i.e. an additional wave-

front of the form s( . . . )
↑

is required. The rippling-in of the composite wave-

front (i.e. s(s( . . . ))
↓
), is used to calculate the source of the missing wave-

fronts.

even( s(s( length(t <> l) ))
↓
) ↔ even( s(s( length(l <> t) ))

↓
)

even( s( length( h2 :: t <> l
↓
) )

↓
) ↔ even( s( length(l <> h2 :: t

↓
) )

↓
)

even( s( length( h2 :: t
↓
<> l) )

↓
) ↔ even(length(l <> h1 :: h2 :: t

↓
))

even(length( h1 :: ( h2 :: t
↓
<> l)

↓
)) ↔ even(length(l <> h1 :: h2 :: t

↓
))

even(length( h1 :: h2 :: t
↓
<> l)) ↔ even(length(l <> h1 :: h2 :: t

↓
)).

The result of the rippling-in is to suggest a 2-step instead of a 1-step induction.
This revision gives rise to an induction hypothesis of the form

even(length(t <> l)) ↔ even(length(l <> t)), (3.11)
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and a successful ripple as shown below.

even(length( h1 :: h2 :: t
↑
<> l)) ↔ even(length(l <> h1 :: h2 :: t

↑
))

even(length( h1 :: ( h2 :: t
↑
<> l)

↑
)) ↔ even( s( length(l <> h2 :: t

↑
) )

↑
)

even( s( length( h2 :: t
↑
<> l) )

↑
) ↔ even( s(s( length(l <> t) ))

↑
)

even( s( length( h2 :: t <> l
↑
) )

↑
) ↔ even( s(s( length(l <> t) ))

↑
)

even( s(s( length(t <> l) ))
↑
) ↔ even(length(l <> t))

even(length(t <> l)) ↔ even(length(l <> t)).

Strong fertilization with (3.11) completes the step-case proof. An alternative
to the revision approach presented here is given in (Kraan et al., 1996) where
second-order function variables are used to delay the initial choice of induction
rule. We will refer to terms constructed using function variables as meta-terms.

3.4 Lemma discovery

As explained in Section 3.1, lemmas play an important role in proving induc-
tive theorems. Unless we know the lemmas required for a proof in advance the
dynamic creation of missing lemmas will be required during the proof attempt.
Here we focus upon how the partial success of rippling can be used to guide
the discovery of missing lemmas.

3.4.1 Failure analysis

Consider the blocked goal

. . . rev(t) <> h :: nil
↑
<> �l�︸ ︷︷ ︸

blocked

. . . , (3.12)

where rev is list reversal (defined in Appendix 2). The schematic version of the
blockage term associated with (3.12) takes the form

F1(rev(Y ))
↑

<> X :: nil
↑
<> �l�.
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Suppose that the search for a wave-rule that matches this schematic goal fails.
This failure tells us that there are no wave-fronts that can be composed with

. . . <> X :: nil
↑

to enable further rippling. This rules out the induction revi-
sion proof patch described in Section 3.3. When partial matching fails, we
use rippling to constrain the search for a missing wave-rule. Two comple-
mentary techniques for guiding the search for missing lemmas are presented
below.

3.4.2 Patch: lemma speculation

To illustrate lemma speculation, consider the following blocked problem.

Given: rev(rev(t) <> l) = rev(l) <> t (3.13)

Goal: rev( rev(t) <> h :: nil
↑
<> �l�︸ ︷︷ ︸

blocked

)

= rev(�l�) <> h :: t
↑

︸ ︷︷ ︸
blocked

(3.14)

Note that neither side of the goal equality is fully rippled. As outlined in Sec-
tion 3.2, in such situations our approach to patching the complete failure of
precondition (ii) involves constructing a schematic wave-rule. The expectation
is that the planning of subsequent proof steps will generate instantiations for
such meta-variables and consequently identify the missing lemma.

Our starting-point is the given blockage term. This forms the basis for the
left-hand side of the missing wave-rule. In our example, this corresponds to

rev(l) <> h :: t
↑ ⇒ . . . .

The skeleton-preserving property (Section 1.3) of rippling provides us with a
partial specification of the right-hand side of the missing wave-rule

. . . ⇒ F1(rev(l), h, t)
↓

<> t.

Finally, we complete the construction of our alternative wave-rule schema by
replacing common subterms in the skeleton by variables. This generalizes the
applicability of the wave-rule and results in

X <> Y :: Z
↑ ⇒ F1(X , Y, Z)

↓
<> Z . (3.15)



Lemma discovery 63

With the addition of this schematic wave-rule, the rippling of goal (3.14) is
unblocked. That is, using wave-rule (3.15), goal (3.14) can be rewritten to

rev( rev(t) <> h :: nil
↑
<> �l�︸ ︷︷ ︸

blocked

) = F1(rev(�l�), h, t)
↓

<> t.

As mentioned above, the expectation is that further rippling will incrementally
instantiate F1. Note that the direction of the potential wave-front coupled with
the surrounding term structure constrains the search for applicable wave-rules.

The next step in the proof comes from the definition of rev that gives rise to
a wave-rule of the form

rev(X) <> Y :: nil
↓ ⇒ rev( Y :: X

↓
). (3.16)

The effect of this wave-rule on the right-hand side of the goal is

. . . = F3(rev(

⌊
F2(rev(l), h, t) :: l

↓⌋
), h, t)

↓
<> t. (3.17)

Here F2 and F3 result from the higher-order unification between

F1(rev(�l�), h, t)
↓

and the left-hand side of (3.16). The result of this ripple

is partially to instantiate wave-rule schema (3.15) to

X <> Y :: Z
↑ ⇒ F3( X <> F2(X, Y, Z) :: nil

↓
, Y, Z)

↓
<> Z .

Here, F1 has been incrementally instantiated to

λw.λx .λy.F3(w <> F2(w, x, y) :: nil, x, y).

In the case of goal (3.17), eager fertilization instantiates F2 and F3 with
λw.λx .λy.x and λw.λx .λy.w, respectively, giving rise to

rev( rev(t) <> h :: nil
↑
<> �l�︸ ︷︷ ︸

blocked

) = rev(

⌊
h :: l

↓⌋
) <> t. (3.18)

The complete instantiation for (3.15) is now

X <> Y :: Z
↑ ⇒ X <> Y :: nil

↓
<> Z . (3.19)

Once determined, the underlying lemma (3.4) must also be proved. In the case
of (3.4), a simple structural induction is all that is required.

We now switch the focus to the left-hand side of (3.18). Note that (3.4) gives
rise to a number of wave-rules including

W <> X :: nil
↑
<> Y ⇒ W <> X :: Y

↓
. (3.20)
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This is precisely the wave-rule that is required to unblock the left-hand side of
(3.18):

rev(rev(t) <>

⌊
h :: l

↓⌋
) = rev(

⌊
h :: l

↓⌋
) <> t.

Note that we have used lemma (3.4) as a wave-rule in both orientations: left-
to-right as wave-rule (3.19), and right-to-left as wave-rule (3.20). This further
illustrates the bi-directionality of rippling (see Section 1.8).

Rippling is complete, and strong fertilization with (3.13) can now take
place. In summary, the analysis of the initial failure to prove (3.14) is used
to guide the discovery of lemma (3.4). To complete the proof of (3.14), the
lemma is used in both orientations and rippling provides the necessary control
to ensure termination.

3.4.3 Alternative lemmas

In the above discussion we side-stepped two choice points with respect to the
construction of speculative wave-rules. First, there will generally exist a choice
as to how much context should be included within the blockage term. This di-
rectly affects the structure of the resulting lemma. Second, there will generally
exist a choice as to the positioning of the potential wave-fronts on the right-
hand side of the wave-rule that is speculated. Using illustrative examples, we
examine each choice point in turn.

To begin, consider the blocked goal

. . . even(length(l <> ( h :: t
↑
))) . . . . (3.21)

In the previous example we simply focused upon the blockage term that gave
rise to the required lemma. Generally there will exist multiple blockage terms;
in the case of (3.21) there are the following three alternatives.

even(length(l <> ( h :: t
↑
)︸ ︷︷ ︸

blocked

)) (3.22)

even(length(l <> ( h :: t
↑
))︸ ︷︷ ︸

blocked

) (3.23)

even(length(l <> ( h :: t
↑
)))︸ ︷︷ ︸

blocked

(3.24)
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Based upon (3.22), a speculative wave-rule is constructed, namely

X <> Y :: Z
↑ ⇒ F1(X <> Z , Y, Z)

↑
,

and rippling suggests

X <> Y :: Z
↑ ⇒ Y :: ( X <> Z )

↑

as an instantiation for this speculation. Our counter-example finder identifies
this speculation as a non-theorem.

Now turning to (3.23), the associated speculative wave-rule takes the form

length(X <> Y :: Z
↑
) ⇒ F1(length(X <> Z), Y, Z)

↑
.

Here, rippling suggests the instantiation

length(X <> Y :: Z
↑
) ⇒ s( length(X <> Z) )

↑
. (3.25)

This is precisely the wave-rule that is required to unblock (3.21), allowing us
to ripple

. . . even(length(l <> ( h :: t
↑
))) . . .

to

. . . even( s( length(l <> t) )
↑
) . . . .

Finally, in the case of (3.24), the speculation takes the form

even(length(X <> Y :: Z
↑
)) ⇒ F1(even(length(X <> Z)), Y, Z)

↑
.

However, in this case the instantiation suggested by rippling again leads to a
non-theorem, namely

even(length(X <> Y :: Z
↑
)) ⇒ even(length(X <> Z)).

The observant reader may have noticed that an alternative induction actually
is required, in addition to wave-rule (3.25), in order to fully ripple (3.21). As
described in Section 3.3, our induction revision critic discovers the alternative
induction.

We now consider the question of positioning potential wave-fronts on the
right-hand side of speculative wave-rules. To illustrate the issue more clearly,
we use the blockage term

a + s( b )
↑

︸ ︷︷ ︸
blocked

.
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Based upon this blockage term, we can construct two wave-rules: one for
rippling-out, and one for rippling-sideways, i.e.

X + s( Y )
↑ ⇒ F1(X + Y , X, Y )

↑
(3.26)

X + s( Y )
↑ ⇒ G1(X , Y )

↓ + Y. (3.27)

Note that in the previous examples we have ignored this choice point, fo-
cusing instead upon the form that produced the correct result. In this example,
however, both speculations lead to success, i.e. in the case of (3.26) we get

X + s( Y )
↑ ⇒ s( X + Y )

↑
.

While in the case of (3.27) we get

X + s( Y )
↑ ⇒ s( X )

↓+ Y.

Combining longitudinal and transverse speculation gives rise to the following
more general wave-rule (lemma) speculation

X + s( Y )
↑ ⇒ F1( G1(X , Y )

↓ + Y , X, Y )

↑
.

To illustrate more concretely, a blocked term of the form a + s(s( b ))
↑

would give rise to wave-rules that include

X + s(s( Y ))
↑ ⇒ s( s( X )

↓ + Y )

↑
.

We delay the discussion of how the search-control issues raised here are
dealt with until Section 3.8.

3.4.4 Patch: lemma calculation

Our second technique is called lemma calculation and is essentially a variant of
the weak fertilization strategy introduced in Section 2.3. To illustrate, consider
the problem

Given: rev(rev(t)) = t (3.28)

Goal: rev( rev(t) <> h :: nil
↑
)︸ ︷︷ ︸

blocked

= h :: t
↑
. (3.29)
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Note that while the left-hand side is blocked, the right-hand side is fully rippled
with respect to the equality. As a consequence, (3.28) can be used to rewrite
the wave-hole on the right-hand side of (3.29). Following the weak fertilization
strategy, this gives us the new goal

rev(rev(t) <> h :: nil) = h :: rev(rev(t)).

Generalizing this goal by replacing rev(t) by a new, universally quantified,
variable gives rise to the lemma from which the missing wave-rule is derived,
i.e.

rev( X <> (Y :: nil)
↑
) ⇒ Y :: rev(X)

↑
.

This wave-rule unblocks (3.29) and leads to a successful proof. In lemma cal-
culation, the generation of the new goal and subsequent generalization is per-
formed as a separate proof attempt. The advantage of this decoupling is the
ease with which lemmas can be reused. This is not the case with weak fertil-
ization where the same lemma may be re-discovered during the same proof
attempt. Note that the half example (presented in Section 2.3.3) is another
example of where lemma calculation is applicable.

3.5 Generalizing conjectures

There are many forms a generalization step may take. For a detailed discussion
of the related literature the interested reader is directed to Hummel (1987) and
Hesketh (1991). Here we focus upon one particular form of generalization that
involves the introduction of new, universally quantified variables.

3.5.1 Failure analysis

In order to illustrate the idea, consider the following conjecture concerning list
reversal,

∀t :list(τ ). rev(t) = qrev(t, nil), (3.30)

where qrev is a tail recursive list reversal function (defined in Appendix 2).
Note that this conjecture is a special case of the conjecture in Section 2.2.1.

The proof of (3.30) is by a 1-step induction on the list t . The associated step
case gives rise to the following rippling problem.

Given: rev(t) = qrev(t, nil) (3.31)

Goal: rev( h :: t
↑
) = qrev( h :: t

↑
, nil) (3.32)
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Using a wave-rule derived from the recursive definition of rev,

rev( X :: Y
↑
) ⇒ rev(Y ) <> (X :: nil)

↑
, (3.33)

the goal (3.32) ripples to

rev(t) <> (h :: nil)
↑ = qrev( h :: t

↑
, nil). (3.34)

Now consider the wave-rule

qrev( X :: Y
↑
, Z) ⇒ qrev(Y, X :: Z

↓
), (3.35)

which comes from the recursive definition of qrev. Note that, while
the left-hand side of (3.35) matches the right-hand side of (3.34)

(i.e. qrev( h :: t
↑
, nil)), it does not lead to a proof. The resulting ripple is

rev(t) <> (h :: nil)
↑ = qrev(t, h :: nil

↓

︸ ︷︷ ︸
blocked

),

and the blockage occurs because the wave-front on the right-hand side is di-
rected downward onto the constant nil, which is neither a sink nor an outwards
wave-front. Any attempt to achieve a match with (3.31) is therefore doomed,
since h :: nil and nil are distinct terms. The observant reader may have noted,
however, that the application of wave-rule (3.35) is actually ruled-out by the
fourth precondition (see Section 3.2) of rippling:

(iv) If this wave application is prior to fertilization then any new inwards
wave-front should have a sink or an outwards wave-front in its wave-hole.

This is clearly not the case in (3.34), where rippling would yield

. . . = qrev(t, h :: nil
↓

︸ ︷︷ ︸
no sink

).

Note that although precondition (iv) fails, preconditions (i) to (iii) of rippling
are satisfied (see Section 2.2.3, defined in Section 3.2).

3.5.2 Patch: sink speculation

Based upon our expectation of how an inductive proof involving sideways rip-
pling should be completed, we can attempt to patch the proof attempt accord-
ingly. In the case of the failure of precondition (iv), we are looking to intro-
duce a fresh, universally quantified variable, e.g. a sink that will absorb the
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h :: . . .
↓

wave-front. The problem is that we do not know how this new uni-
versally quantified variable will relate to the term structure within the origi-
nal conjecture. Here, we can again use middle-out reasoning to adopt a least-
commitment strategy with respect to the placement of the new, universally
quantified variables within the conjecture.

Assuming the new variable is called l, we begin by postulating the
schematic conjecture

∀t :list(τ ).∀l:list(τ ). G1(rev(t), l) = qrev(t, F1(l)). (3.36)

Here, F1 and G1 are second-order meta-variables. Note that we have intro-
duced two occurrences of the sink l. Each is embedded within a meta-term.
The position of the meta-term F1(l) corresponds to the position within the
goal that will make precondition (iv) succeed. (Discussion of the construction
and positioning of the meta-term G1(rev(t), l) is delayed until Section 3.5.3.)

The proof of (3.36) is again by a 1-step induction on the list t . The resulting
rippling problem now takes the form

Given: G1(rev(t), L) = qrev(t, F1(L))

Goal: G1(rev( h :: t
↑
), �l�) = qrev( h :: t

↑
, F1(�l�)). (3.37)

Using wave-rule (3.35), the right-hand side of (3.37) ripples to

. . . = qrev(t, h :: F1(�l�) ↓
). (3.38)

The wave-front on the right-hand side can now be absorbed by the sink l, if F1

is instantiated to be the identity function, i.e. λx .x . This eager fertilization step
completes the proof on the right-hand side and yields

. . . = qrev(t,

⌊
h :: l

↓⌋
).

To complete the step case, we must successfully ripple on the left-hand side,
i.e.

G1(rev( h :: t
↑
), �l�) = . . . .

By wave-rule (3.33) we obtain

G1( rev(t) <> h :: nil
↑
, �l�) = . . . . (3.39)

Rippling now constrains us to consider rules that manipulate outward-directed
wave-fronts of the form . . . <> (h :: nil). If we assume only the definitions of
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rev, <> and the associativity of <> (i.e. (3.3)), then rippling constrains us to
consider just the following three wave-rules:

X :: Y <> Z
↑ ⇒ X :: Y <> Z

↑

X <> ( Y <> Z
↑
) ⇒ (X <> Y ) <> Z

↑

( X <> Y
↑
) <> Z ⇒ X <> ( Y <> Z

↓
). (3.40)

In the current example, it is wave-rule (3.40) that gives rise to a proof as (3.39)
ripples to

rev(t) <> h :: nil <> G2( rev(t) <> h :: nil
↑
, �l�)

↓
= . . . .

Note that the application of (3.40) instantiates G1 to be λx .λy.x <> G2(x, y).
Finally, eager fertilization completes the proof on the left-hand side, instanti-
ating G2 to be a projection onto its second argument. This yields

rev(t) <>

⌊
h :: nil <> l

↓⌋ = . . . .

Simplifying the sink on the left-hand side gives

rev(t) <>

⌊
h :: l

↓⌋ = qrev(t,

⌊
h :: l

↓⌋
).

Hence, the overall effect of this incremental process is to instantiate (3.36)
to

∀t :list(τ ).∀l:list(τ ). rev(t) <> l = qrev(t, l). (3.41)

As a final step, we must show that (3.41) is indeed a generalization of (3.30).
This means proving the conjecture

(∀t :list(τ ).∀l:list(τ ).

(rev(t) <> l = qrev(t, l))) → (∀t :list(τ ). (rev(t) = qrev(t, nil))).

But specializing l to be nil and simplifying the antecedent gives rise to a trivial
tautology.

3.5.3 Alternative generalizations

We now outline some of the alternatives that need to be considered when
searching for an inductive generalization. Rippling imposes structure upon the
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search space of proofs in that different wave-rules suggest different generaliza-
tions. The available definitions and lemmas directly affect the generalizations
that can be suggested through the analysis of failed rippling proofs.

The effect of an additional lemma
To illustrate, consider a speculative generalization of the form

∀t :list(τ ).∀l:list(τ ). rev(rev(t) <> F1(l)) = G1(t, l), (3.42)

where F1 and G1 again are second-order meta-variables. Relying upon the
wave-rules derived from the definitions of rev and <>, together with the wave-
rules provided by lemma (3.4), rippling instantiates (3.42) to

∀t :list(τ ).∀l:list(τ ). rev(rev(t) <> l) = rev(l) <> t.

However, now consider adding the lemma

∀y:τ.∀x:list(τ ). rev(x <> (y :: nil)) = y :: rev(x).

This lemma gives rise to a number of wave-rules, one of which is

Y :: rev(X)
↓ ⇒ rev( X <> (Y :: nil)

↓
). (3.43)

In the preceding instantiation for (3.42), the rippling proof was completed
by instantiating F1 to be the identity function. With the introduction of (3.43),
further rippling is possible, i.e.

rev(rev(t) <> rev( F2(�l�) <> h :: nil
↓
)) = . . . .

Here, eager fertilization terminates rippling by instantiating F2 to be λx .x ,
giving

rev(rev(t) <> rev(

⌊
l <> (h :: nil)

↓⌋
)) = . . . .

Turning to the right-hand side, rippling based upon (3.4) gives

. . . = G2(t, �l�) <> (h :: nil)
↓
<> t.

Eager fertilization now instantiates G2 to be a projection onto its second argu-
ment, resulting in

. . . =
⌊

l <> (h :: nil)
↓⌋

<> t,
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and completing the proof of the step case. The generalization resulting from
this alternative proof is

∀t :list(τ ).∀l:list(τ ). rev(rev(t) <> rev(l)) = l <> t.

The effect of repositioning a meta-variable
In the same way in which we considered alternative positions for potential
wave-fronts on the right-hand side of speculative wave-rules, we also consider
the positioning of meta-terms within the speculation of an inductive generaliza-
tion. As promised, we return to the construction of G1(t, l) within speculation
(3.36). We make a distinction between the wave-fronts that caused the failure
of a sideways ripple and those that did not. We refer to them as primary and
secondary wave-fronts, respectively. This terminology allows us to classify the
blockage in the list reversal example (3.30) as

rev(t) <> (h :: nil)
↑

︸ ︷︷ ︸
secondary

= qrev( h :: t
↑

︸ ︷︷ ︸
primary

, nil).

For all primary wave-fronts, we introduce a set of primary sink terms, one
for each of the blocked sideways ripples. Each primary sink term contains a
new universally quantified variable. For each secondary wave-front we eagerly
attempt to apply a sideways ripple by introducing occurrences of the variables
associated with the primary sink terms. These occurrences are specified using
meta-terms called secondary sink terms. Relating these ideas back to the proof
patch associated with the list reversal example, we get

G1( rev(t) <> (h :: nil)
↑
, �l�)︸ ︷︷ ︸

secondary
sink term

= qrev( h :: t
↑
, F1(�l�)︸ ︷︷ ︸

primary
sink term

).

While the positioning of the primary sink term is fixed by the failure to
apply a sideways wave-rule, the positioning of secondary sink terms will, in
general, be less constrained. To illustrate, consider the left-hand side of the
speculative generalization given above. If we consider the start of the rippling
proof, then we get an alternative speculation of the form

rev(G1( h :: t
↑
, �l�)︸ ︷︷ ︸

secondary
sink term

) = qrev( h :: t
↑
, F1(�l�)︸ ︷︷ ︸

primary
sink term

).

Note that this alternative speculation gives rise to the alternative generalization

∀t :list(τ ).∀l:list(τ ). rev(qrev(l, t)) = qrev(t, l).



Case analysis 73

So again we see that while the constraints of rippling provide guidance, we are
not eliminating all search. However, many of the search paths will succeed,
yielding alternative proofs. We return to the issues of search raised here in
Section 3.8.

3.6 Case analysis

We complete our systematic analysis of precondition failures by considering
the third precondition:

(iii) If this wave-rule is conditional then its condition must be provable.

The failure of this precondition suggests the need for a casesplit. Below we
explore how rippling can be used to guide the application of casesplitting.

3.6.1 Failure analysis

Consider again the following goal, which arose in Section 2.5,

x ∈ h :: ( t <> l )
↑ ↔ x ∈ h :: t

↑∨ x ∈ l, (3.44)

where ∈ is defined by the following conditional formulas:

X ∈ nil ↔ false

X �= Y → X ∈ Y :: Z ↔ X ∈ Z

X = Y → X ∈ Y :: Z ↔ true.

By inspecting the wave-rules that arise from this definition, in particular

X �= Y → X ∈ Y :: Z
↑ ⇒ X ∈ Z , (3.45)

it is clear that the condition x �= h must hold in order that wave-rule (3.45)
can be used to complete the rippling of (3.44). The absence of this condition
corresponds to the failure of precondition (iii).

3.6.2 Patch: casesplit calculation

The suggested patch is to perform a casesplit based upon the disjunction

(x �= h) ∨ (x = h).
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The disjuncts come from the condition attached to the complementary rewrite
rule (see Section 2.5):

X = Y → X ∈ Y :: Z
↑ ⇒ true. (3.46)

Two subgoals are generated by applying the casesplit to (3.44). In the (x �= h)

case, wave-rule (3.45) reduces the subgoal to

x ∈ (t <> l) ↔ x ∈ t ∨ x ∈ l.

Strong fertilization is now applicable. In the (x = h) case, where rippling is
not applicable, (3.46) reduces the goal to the trivial tautology

true ↔ true.

3.7 Rotate length conjecture revisited

We now return to the rotate length conjecture and, as promised in Section 3.1,
we reconsider the associated eureka steps in the light of our rippling-based
proof-patching techniques. In particular, we consider both conjecture general-
ization and lemma discovery in turn.

3.7.1 Rotate length: conjecture generalization

Based upon the definition of length, rippling suggests a 1-step induction on t
for conjecture (3.1). The resulting step case problem takes the form

Given: rotate(length(t), t) = t

Goal: rotate(length( h :: t
↑
), h :: t

↑
) = h :: t

↑
.

While the definition of rotate provides a matching wave-rule, i.e.

rotate( s( X )
↑
, Y :: Z

↑
) ⇒ rotate(X, Z <> (Y :: nil)

↓
). (3.47)

The applicability of this wave-rule is ruled out on heuristic grounds because
the second argument position of rotate within the goal does not contain a sink,
i.e.

rotate( s( length(t) )
↑
, h :: t

↑
︸ ︷︷ ︸
no sink

) = h :: t
↑
.
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At this point, the sink speculation proof patch generates the schematic con-
jecture

∀t :list(τ ).∀l:list(τ ). rotate(length(t), F1(t, l)) = G1(t, l). (3.48)

Now consider an inductive proof of (3.48). Again rippling suggests a 1-step
induction on the list t . The resulting rippling problem is

Given: rotate(length(t), F1(t, l)) = G1(t, l)

Goal: rotate(length( h :: t
↑
), F1( h :: t

↑
, �l�))

= G1( h :: t
↑
, l). (3.49)

The following wave-rules play a role in the instantiation of (3.49):

X :: Y
↑
<> Z ⇒ X :: Y <> Z

↑
(3.50)

(X <> Y ) <> Z
↓ ⇒ X <> Y <> Z

↓
(3.51)

X <> Y :: Z
↑ ⇒ X <> Y :: nil

↓
<> Z . (3.52)

While (3.50) is derived from the recursive definition of <>, (3.51) and (3.52)
come from lemmas (3.3) and (3.4), respectively. Using wave-rules (3.9), (3.50),
(3.47), and (3.51), the rippling on the left-hand side is as follows.

rotate(length( h :: t
↑
), F1( h :: t

↑
, �l�)) = . . .

rotate( s( length(t) )
↑
, F1( h :: t

↑
, �l�)) = . . .

rotate( s( length(t) )
↑
, h :: t <> F2( h :: t

↑
, �l�)

↑
) = . . .

rotate(length(t), (t <> F2( h :: t
↑
, �l�)) <> h :: nil

↓
) = . . .

rotate(length(t), t <> ( F2( h :: t
↑
, �l�) <> h :: nil

↓
)) = . . .

While on the right-hand side, wave-rule (3.52) gives rise to the ripple

. . . = G1( h :: t
↑
, �l�)

. . . = G2( h :: t
↑
, �l�) <> h :: nil

↓
<> t.
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Note that the inward directed wave-fronts on both sides of the goal are di-
rectly above sinks. Consequently, eager fertilization instantiates F2 and G2 to
be projections onto their second arguments. This completes the step case proof,
yielding

rotate(length(t), t <>

⌊
l <> h :: nil

↓⌋
) =

⌊
l <> h :: nil

↓⌋
<> t.

As a side-effect, F1 and G1 are respectively instantiated to

λx .λy. (x <> y) and λx .λy. (y <> x).

In summary, the effect of the patching process is to instantiate (3.48) so that
it is identical to (3.2), yielding the generalized rotate length theorem

∀t :list(τ ).∀l:list(τ ). rotate(length(t), t <> l) = l <> t.

3.7.2 Rotate length: lemma discovery

We now consider the other side of the coin: given the generalized version of
the rotate length conjecture, can we construct an inductive proof without prior
knowledge of lemmas (3.3) and (3.4)? In the case of (3.2), rippling suggests a
1-step list induction on t giving rise to the problem

Given: rotate(length(t), t <> l) = l <> t

Goal: rotate(length( h :: t
↑
), h :: t

↑
<> �l�)

= �l� <> h :: t
↑
.

The corresponding rippling proof is

rotate(length( h :: t
↑
), h :: t

↑
<> �l�) = �l� <> h :: t

↑

rotate( s( length(t) )
↑
, h :: t

↑
<> �l�) = �l� <> h :: t

↑

rotate( s( length(t) )
↑
, h :: t <> �l� ↑

) = �l� <> h :: t
↑

rotate(length(t), t <> �l� <> h :: nil
↓

︸ ︷︷ ︸
blocked

) = �l� <> h :: t
↑

︸ ︷︷ ︸
blocked

.

As no more wave-rules are applicable, lemma speculation is trig-
gered. Based upon the above blockage terms, the following two wave-rule
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speculations are generated:

X <> Y <> Z :: nil
↓ ⇒ X <> F1(Y , X, Z)

↓
(3.53)

X <> Y :: Z
↑ ⇒ G1(X , Y, Z)

↓
<> Z . (3.54)

While (3.53) targets the left-hand side of the blocked goal, (3.54) targets the
right-hand side. The application of these speculative wave-rules unblocks the
goal yielding

rotate(length(t), t <>

⌊
F1(l, h, t)

↓⌋
) =

⌊
G1(l, h, t)

↓⌋
<> t.

Although both sides of the equality are fully rippled, the identity of F1

and G1 remain unknown. Their identity is determined by considering the con-
straints imposed by (3.53) and (3.54): in particular, (3.53) when X is nil and
(3.54) when Z is nil. In addition, strong fertilization also imposes constraints,
i.e. multiple instances of the same sink must be instantiated identically. The
resulting instantiations for F1 and G1 respectively are

λx .λy.λz. (x <> (y :: nil)) and λx .λy.λz. (x <> (y :: nil)).

Applying these instantiations to (3.53) and (3.54) gives rise to the wave-rules

X <> Y <> Z :: nil
↓ ⇒ X <> Y <> (Z :: nil)

↓

X <> Y :: Z
↑ ⇒ X <> (Y :: nil)

↓
<> Z .

Note that these wave-rules correspond to the missing lemmas, i.e. (3.3) and
(3.4). Once discovered, the lemmas must be proved in order to ensure the
soundness of the main proof.

3.7.3 An automated reasoning challenge

The observant reader may have noticed that the lemmas that guided the gener-
alization of the rotate length conjecture are the same lemmas that are discov-
ered during the proof of the generalized conjecture. Discovering the lemmas
and the generalization simultaneously is beyond the current state-of-the-art for
automated reasoning systems. However, the reader should note that the lemma
discovery and generalization techniques can work in concert if the missing
lemmas are not key to the generalization.
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3.8 Implementation and results

The work discussed in this chapter has been implemented within an exten-
sion to the C LAM proof planner (Bundy et al., 1990b). The extension makes
use of the higher-order features of λ-Prolog (Nadathur & Miller, 1988). As
has been indicated throughout this chapter, we use the requirement of skeleton
preservation and the wave annotations to constrain the higher-order unification
problems we pass to λ-Prolog. An alternative to this pragmatic approach is
presented in (Hutter & Kohlhase, 1997), where essentially the structure preser-
vation constraints of rippling are embedded within the unification algorithm.
While this approach has not been applied to the problem of generalization, we
believe that there are no technical reasons why it should not work. As indi-
cated in Sections 3.4 and 3.5, the processes of patch specification and con-
struction both involve search. We manage this search through the use of an
iterative deepening search strategy to enable alternative branches within the
search space to be explored. Moreover, we employ a simple counter-example
finder to filter the candidate instantiations of the schematic conjecture. The
proof planner is used recursively to plan all conjectures.

Our test results are presented in Tables 3.1, 3.2, and 3.3. While Table 3.1
presents the conjectures, Tables 3.2 and 3.3 provide the lemmas and general-
izations, respectively. Note that Table 3.2 contains both the lemmas that are
automatically discovered by the system as well as those used in the generaliz-
ing conjectures.

The proofs of all the example conjectures1 given in Table 3.1 are discov-
ered completely automatically. These proofs are based only upon definitions
supplied by the user. Except for the generalization examples, all additional
lemmas are discovered automatically by the system.

The example conjectures in Table 3.1 are classified under the four critics.
In the case of lemma discovery, conjectures T 1–T 13, T 22–T 26 and T 48–
T 50 required only the relatively weak strategy of lemma calculation. Exam-
ples T 14–T 21 required lemma speculation while T 27–T 35 required general-
ization. Note that different generalizations were obtained depending upon the
available lemmas. All the examples that required induction revision, lemma
speculation or generalization fall into a class of inductive theorem that are
not uncommon but are acutely difficult to prove. Finally, examples T 22–
T 26 and T 48–T 50 illustrate the need for multiple critics in patching some
conjectures.

1 The examples come from a number of sources that include Aubin (1975), Boyer and Moore
(1979), Manna and Waldinger (1985), and Walsh (1994).



Table 3.1 Example conjectures.

The numbered columns denote (i) induction revision (1-step → 2-step), (ii)
lemma discovery, (iii) generalization and (iv) casesplit. Moreover, the refer-
ences in the columns (ii) and (iii) refer to Tables 3.2 and 3.3, respectively.
Note that nth(X, Y ) denotes the list constructed by removing the first X th el-
ements from Y . Note also that fac, exp and × denote factorial, exponentiation
and multiplication, while qfac, qexp and mult denote tail recursive versions,
respectively.

No. Conjecture (i) (ii) (iii) (iv)

T 1 double(X) = X + X L1
T 2 length(X <> Y ) = length(Y <> X) L2
T 3 length(X <> Y ) = length(Y ) + length(X) L1
T 4 length(X <> X) = double(length(X)) L2
T 5 length(rev(X)) = length(X) L3
T 6 length(rev(X <> Y )) L2

= length(X) + length(Y )
T 7 length(qrev(X, Y )) = length(X) + length(Y ) L1
T 8 nth(X, nth(Y, Z)) = nth(Y, nth(X, Z)) L4/5
T 9 nth(W, nth(X, nth(Y, Z))) L6/7

= nth(Y, nth(X, nth(W, Z)))
T 10 rev(rev(X)) = X L8
T 11 rev(rev(X) <> rev(Y )) = Y <> X L9/10
T 12 qrev(X, Y ) = rev(X) <> Y L11
T 13 hal f (X + X) = X L1
T 14 ordered(isort(X)) L12
T 15 X + s(X) = s(X + X) L1
T 16 even(X + X) L1
T 17 rev(rev(X <> Y )) L8

= rev(rev(X)) <> rev(rev(Y ))
T 18 rev(rev(X) <> Y ) = rev(Y ) <> X L11/13
T 19 rev(rev(X)) <> Y = rev(rev(X <> Y )) L8
T 20 even(length(X <> X)) L2
T 21 rotate(length(X), X <> Y ) = Y <> X L11/13
T 22 even(length(X <> Y )) � L14

↔ even(length(Y <> X))
T 23 hal f (length(X <> Y )) � L15

= hal f (length(Y <> X))
T 24 even(X + Y ) ↔ even(Y + X) � L16
T 25 even(length(X <> Y )) � L16

↔ even(length(Y ) + length(X))
T 26 hal f (X + Y ) = hal f (Y + X) � L17
T 27 rev(X) = qrev(X, nil) G1
T 28 rev f lat (X) = qrev f lat (X, nil) G2
T 29 rev(qrev(X, nil)) = X G3/4
T 30 rev(rev(X) <> nil) = X G5/6
T 31 qrev(qrev(X, nil), nil) = X G7/8
T 32 rotate(length(X), X) = X G9

(Cont.)
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No. Conjecture (i) (ii) (iii) (iv)

T 33 fac(X) = qfac(X, 1) G10
T 34 X ∗ Y = mult(X, Y, 0) G11
T 35 exp(X, Y ) = qexp(X, Y, 1) G12
T 36 X ∈ Y → X ∈ (Y <> Z) �
T 37 X ∈ Z → X ∈ (Y <> Z) �
T 38 (X ∈ Y ) ∨ (X ∈ Z) → X ∈ (Y <> Z) �
T 39 X ∈ nth(Y, Z) → X ∈ Z �
T 40 X ⊂ Y → (X ∪ Y = Y ) �
T 41 X ⊂ Y → (X ∩ Y = X) �
T 42 X ∈ Y → X ∈ (Y ∪ Z) �
T 43 X ∈ Y → X ∈ (Z ∪ Y ) �
T 44 (X ∈ Y ) ∧ (X ∈ Z) → (X ∈ Y ∩ Z) �
T 45 X ∈ insert(X, Y ) �
T 46 X = Y → (X ∈ insert(Y, Z) ↔ true) �
T 47 X �= Y → (X ∈ insert(Y, Z) ↔ X ∈ Z) �
T 48 length(isort(X)) = length(X) L18 �
T 49 X ∈ isort(Y ) → X ∈ Y L19 �
T 50 count(X, isort(Y )) = count(X, Y ) L20/21 �

Table 3.2 Lemmas.

No. Lemma

L1 X + s(Y ) = s(X + Y )
L2 length(X <> Y :: Z) = s(length(X <> Z))
L3 length(X <> Y :: nil) = s(length(X))
L4 nth(s(W ), nth(X, Y :: Z)) = nth(W, nth(X, Z))
L5 nth(s(V ), nth(s(W ), X :: Y :: Z)) = nth(s(V ), nth(W, X :: Z))
L6 nth(s(V ), nth(W, nth(X, Y :: Z))) = nth(V, nth(W, nth(X, Z)))
L7 nth(s(U ), nth(V, nth(s(W ), X :: Y :: Z)))

= nth(s(U ), nth(V, nth(W, X :: Z)))
L8 rev(X <> (Y :: nil)) = Y :: rev(X)
L9 rev(X <> (Y <> Z :: nil)) = Z :: rev(X <> Y )
L10 rev((X <> Y :: nil) <> nil) = Y :: rev(X <> nil)
L11 (X <> (Y :: nil)) <> Z = X <> (Y :: Z)
L12 ordered(Y ) → ordered(insert(X, Y ))
L13 (X <> Y ) <> Z :: nil = X <> (Y <> Z :: nil)
L14 even(length(W <> Z)) ↔ even(length(W <> X :: Y :: Z))
L15 length(W <> X :: Y :: Z) = s(s(length(W <> Z)))
L16 even(X + Y ) ↔ even(X + s(s(Y )))
L17 X + s(s(Y )) = s(s(X + Y ))
L18 length(insert(X, Y )) = s(length(Y ))
L19 X �= Y → (X ∈ insert(Y, Z) → X ∈ Z)
L20 count(X, insert(X, Y )) = s(count(X, Y ))
L21 X �= Y → (count(X, insert(Y, Z)) = count(X, Z))
L22 (X <> Y ) <> Z = X <> (Y <> Z)
L23 (X ∗ Y ) ∗ Z = X ∗ (Y ∗ Z)
L24 (X + Y ) + Z = X + (Y + Z)



Summary 81

Table 3.3 Generalized conjectures.

The lemmas used to motivate each generalization are
indicated in the right-hand column.

No. Generalization Lemmas

G1 rev(X) <> Y = qrev(X, Y ) L22
G2 rev f lat (X) <> Y = qrevflat(X, Y ) L22
G3 rev(qrev(X, Y )) = rev(Y ) <> X L11
G4 rev(qrev(X, rev(Y ))) = Y <> X L8&L11
G5 rev(rev(X) <> Y ) = rev(Y ) <> X L11
G6 rev(rev(X) <> rev(Y )) = Y <> X L8&L11
G7 qrev(qrev(X, Y ), nil) = rev(Y ) <> X L11
G8 qrev(qrev(X, rev(Y )), nil) = Y <> X L8&L11
G9 rotate(length(X), X <> Y ) = Y <> X L11&L22
G10 fac(X) ∗ Y = qfac(X, Y ) L23
G11 (X ∗ Y ) + Z = mult(X, Y, Z) L24
G12 exp(X, Y ) ∗ Z = qexp(X, Y, Z) L23

Table 3.4 Precondition failures and patches for rippling.

The association between precondition failure and patches for the ripple
method are shown. Note that �, ◦ and • denote success, partial success and
failure, respectively.

Precondition Generalization Case analyse Induction revision Lemma discovery

1 � � � �
2 � � ◦ •
3 � •
4 •

3.9 Summary

In this chapter we have described how the constraints of rippling can be
used productively to overcome failed proof attempts. In particular, we have
shown how missing lemmas can be discovered, conjectures can be generalized,
induction-rule selection can be revised, and case analyses may be suggested.

The association between precondition failures and patches to the ripple
method is summarized in Table 3.4. The structure of this table reflects the
systematic nature of our analysis. Moreover, it underlies the effectiveness of
rippling as a search control technique.
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A formal account of rippling

As explained in Section 1.1.4, rippling is a heuristic that reflects a common
pattern of reasoning found in theorem-proving: one wants to prove a goal using
a given, and rewriting is used to transform the goal to the point where the given
can be used. As noted in Chapter 2, there are various complications, such as
multiple goals and givens and universally quantified givens with corresponding
sinks. However, the general pattern is the same and can be codified by methods
used in proof-planning.

To mechanize this common pattern of reasoning, rippling generalizes
rewriting, so that semantic information is used to guide proof construction.
The user has expectations (encoded by the proof-plan methods) about how the
proof should proceed, namely that differences between the goal and the givens
should be minimized. Annotations provide a kind of abstraction that is used
to minimize these differences. Under this abstraction, the identity of the dif-
ferent symbols is ignored and one just differentiates whether they belong to
the skeleton or not. Rippling constitutes an extension of rewriting that uses
these annotations to drive proofs forward in a goal-directed way. Differences
are monotonically decreased and rippling terminates with success or failure
depending on whether the givens can be used or not.

In this chapter we consider how the concepts described above can be formal-
ized. There is no one best formalization, so we keep our discussion abstract,
when possible, and first discuss what properties are desired. Afterwards we
consider different formalizations and implementations of rippling with these
properties.

4.1 General preliminaries

Before going into details particular to rippling, we need a few general prelim-
inaries concerning terms and rewriting. We use standard definitions here (see,
for example, Baader and Nipkow (1998)).

82
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4.1.1 Terms and positions

Terms are built from function symbols and variables in the usual way. To make
clear which function symbols are available in a given context, and what arity
they have, we work with signatures. A signature � is a set of function symbols
where each f ∈ � is associated with a non-negative integer n, the arity of
f . We will write �(n) to denote the set of function symbols in � of arity n.
Functions in �(0) are constants. The set of terms T�(X ) built from � and a
set of variables X (disjoint from �) is inductively defined: X ⊆ T�(X ) and if
f ∈ �(n) and t1, . . . , tn ∈ T�(X ), then f (t1, . . . , tn) ∈ T�(X ). We write T�

for ground terms (X = ∅) and omit both � and X and simply write T when
these are implicitly given or their identity is unimportant.

Note that, in many applications, it is helpful to impose a sort discipline
where terms and operations on them are partitioned into different classes. For
instance, in the examples in Chapter 2, the reader will see that terms include
both the terms and formulas in a first-order theory. Here we might use two
sorts to distinguish these two kinds of entities from each other. However, in
order to simplify notation, we will not consider sorted extensions in this book,
although the formalizations of rippling we give can easily be so generalized.

As we have seen, terms may be visualized as trees. It will be useful to refer
to positions in terms and have notation for term replacement. To do this, we
associate a path address, represented by a string of positive integers, with each
node in the tree. Formally, we define Pos(s), the set of positions in the term s,
by

Pos(X) = {ε}
where X ∈ X

Pos( f (s1, . . . , sn)) = {ε} ∪
n⋃

i = 1

{i p |p ∈ Pos(si )}.

The symbol ε denotes the empty string.
Positions can be partially ordered by

p ≤ q ≡ ∃p′. pp′ = q.

The position p is above q if p ≤ q, and p is strictly above q if p < q (i.e.
p ≤ q and p 	= q); below is defined analogously.

For p ∈ Pos(s), the subterm of a term s at position p, written s/p, is defined
by

s/ε = s

f (s1, . . . , sn)/ i p = si/p.
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For p ∈ Pos(s), we write s[t]p to denote the term obtained from s by
replacing the subterm at position p by t as follows:

s[t]ε = t

f (s1, . . . , sn)[t]i p = f (s1, . . . , si [t]p, . . . sn).

Sometimes we will talk about some distinguished occurrence of a subterm t
of s, which means that there is some position p where s/p = t . We often
write this as s[t], leaving p implicit, and write s[t ′] to denote replacing this
occurrence by t ′, i.e. s[t ′]p.

Finally, we write Vars(s) to denote the set of variables occurring in s, i.e.

Vars(s) = {X ∈ X | ∃p ∈ Pos(s). s/p = X}.
For example, let t be the term f (g(X), h(a, X, Y )). Then Pos(t) is the set

{ε, 1, 11, 2, 21, 22, 23}. The position 1 is strictly above 11, but unrelated to 21.
The subterm of t at position 21, i.e. t/21 is a, t[g(b)]21 denotes the replacement
of this term by g(b) and is f (g(X), h(g(b), X, Y )). Finally, Vars(t) = {X, Y }.

4.1.2 Substitution and rewriting

A (T�(X )−) substitution is a function σ : X → T�(X ) such that σ(X) 	= X
for only finitely many X ∈ X . We define the domain of σ , Dom(σ ) by
{X | σ(X) 	= X} and may write σ as the set of pairs {t1/X1, . . . , tn/Xn},
where Xi ∈ Dom(σ ) and ti = σ(Xi ) for all 1 ≤ i ≤ n. Any substitution
σ can be extended to a mapping σ̂ : T�(X ) → T�(X ) in the standard way:
σ̂ (X) = σ(X) for all X ∈ X , and σ̂ ( f (t1, . . . , tn)) = f (σ̂ (t1), . . . , σ̂ (tn)),
for each f ∈ �(n). We will subsequently identify the substitution σ with
its extension σ̂ . Note that there is a simple relationship between substitu-
tion and term replacement: applying the substitution σ to s is equivalent to
simultaneously replacing in s each occurrence of each X in Vars(s) with
σ(X).

We now define several different kinds of relations and orders. Let R be
a binary relation, R ⊆ T�(X ) × T�(X ). R is compatible with �-contexts if
s R s′ implies t[s]p R t[s′]p for all terms t and all positions p ∈ Pos(t).
Note that here, and elsewhere, we often write binary relations (and functions)
using infix notation. R is closed under substitutions if whenever s R t then
σ(s) R σ(t), for every substitution σ and s, t ∈ T�(X ). R is a rewrite relation
iff it is compatible with �-contexts and closed under substitutions. A strict
order is a transitive and irreflexive relation. When R is both a rewrite relation
and a well-founded strict order, then R is called a reduction order.
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Rewrite relations usually are defined indirectly via sets of rewrite rules. A
rewrite rule is a pair of terms 〈l, r〉 in T�(X )×T�(X ), where Vars(r) ⊆ Vars(l).
As is customary, we write such pairs by separating them with the binary sym-
bol ⇒, for example

(X + Y ) + Z ⇒ X + (Y + Z).

Now, given a set of rules R, we can define a rewrite relation ⇒R, where for
all s, t ∈ T�(X ), s ⇒R t iff there exists a l ⇒ r ∈ R, p ∈ Pos(s), and
σ ∈ T�(X )-substitution such that s/p = σ(l) and t = s[σ(r)]p. This is essen-
tially just an alternative formalization of the rewrite rule of inference given in
Section 1.2, without conditions. It is easy to check that ⇒R is a rewrite rela-
tion. In practice, we will often employ certain notational shorthands and leave
details implicit. For example, we say that s[s′] rewrites to s[σ(r)] when it is
the case that σ(l) = s′ for some subterm s′ of s and some rule l ⇒ r ∈ R.
Also, we write s[σ(l)] ⇒R s[σ(r)] leaving implicit that σ(l) matches some
subterm of s. When it does not cause confusion, we may omit the subscript
R from the rewrite relation ⇒R, relying on context to distinguish the rewrite
rule constructor ⇒ from the rewrite relation it defines. It is straightforward to
extend this account to include conditional rewrite rules.

Operationally, one implements rewriting using matching. Given a term s,
one computes terms t where s ⇒R t . This is done by considering in turn
each subterm s′ of s and attempting to match s′ with the left-hand side of
some rewrite rule l ⇒ r ∈ R and proving any condition of the rewrite rule.
When this succeeds, we apply the resulting substitution, in the way described
above, to give t . Since rewrite rules are often applied to terms in T� (without
variables), if the result is also to be a term in T� , then all of the variables in
r must also occur in l. This accounts for the previously stated requirement
that for a set of rewrite rules R, Vars(r) ⊆ Vars(l) for every rewrite rule
l ⇒ r ∈ R.

4.1.3 Notation

The following notation is useful for building sets. Given a set S, P(S) denotes
the powerset of S, and P1(S) denotes the set of non-empty subsets of S, i.e.
P(S)\{∅}. Similarly, F(S) [respectively F1(S)] denotes the set of [non-empty]
finite subsets of S. As shorthand, we will write [n] to represent the set {i | 1 ≤
i ≤ n}.

Finally, a warning about arrows! In order to contrast rippling with rewrit-
ing, in this chapter we will use ⇒ only for rewriting, and introduce a separate
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symbol, �, for rippling. Moreover, analogous to the distinction we just made
in Section 4.1.2 between ⇒, used to define a set of rewrite rules R, and the
rewrite relation ⇒R defined by R, we will make a similar distinction between
the symbol �, used to define a set of wave-rules W, and the rippling relation
�W defined by W. In both cases, we will overload notation by dropping the
subscript when the set of rules is clear from context or unimportant. In subse-
quent chapters we will return to our previous convention, and overload ⇒ for
rippling as well.

4.2 Properties of rippling

4.2.1 Preliminaries

To formalize the properties that we desire from rippling, without committing
ourselves to a particular implementation, we first give an abstract presentation,
assuming only the existence of certain sets and functions. Concrete formaliza-
tions will be given later.

Let a signature �, set of variables X , a set of (unannotated) terms T (=
T�(X )) over � and X , and a rewrite relation ⇒ ⊆ T × T be given. Our
formalization of rippling is based on a set A and a binary relation �W ⊆
A×A over this set. Members of A are annotated terms and �W is the rippling
relation. The requirements on A and �W are weaker than for their unannotated
counterparts. In particular, the elements of A are simply elements of a set and
need not be generated from a signature (so formally we are abusing the phrase
term, although in practice members of A often are terms or can be thought of
as terms over a signature with additional restrictions). We also do not insist
that �W is a rewriting relation. The reason for these weaker requirements will
become clearer in Section 4.4.2 when we commit to a particular formalization
of rippling. The rough intuition, though, is that annotation provides control
information for rippling by labeling parts of terms and only restricted kinds
of labelings are meaningful. It turns out that the collection of meaningfully
labeled terms is a set, but not a freely generated one.

To relate annotated and unannotated terms we require two functions: a func-
tion erase : A → T that computes the erasure of an annotated term, and a
function skel : A → P1(T ) that computes the set of skeletons of an annotated
term. Note that, aside from giving types, we have not said anything about what
annotated terms, rippling, and the erasure and skeleton function actually are.
Later we will give several different instances of these. Our goal now is instead
to specify some relationships that should hold between annotated terms and
rippling and their unannotated counterparts.
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4.2.2 Properties of rippling

We have described rippling as extending rewriting to use semantic informa-
tion to guide proof construction. A natural requirement then is that this addi-
tional information, represented as term annotations, only allows us to prove
what is provable without the annotations. Hence, given a rewrite relation ⇒R

and a corresponding ripple relation �W , this amounts to showing that when-
ever two annotated terms are in the rippling relation �W , then their unan-
notated counterparts are in the rewriting relation ⇒R. In practice this means
that rippling steps can be “simulated” by rewriting steps on their unannotated
erasures.

We have also described rippling as being goal directed and reducing the dif-
ference between the goal and the givens. Goal directedness means that rippling
aims to use the givens, and this corresponds to skeleton preservation: the image
of the givens should remain intact within the goal. In the case of an annotated
term having a single skeleton, this means that the skeleton may not change
during rippling. If there are multiple skeletons (which arises when rippling si-
multaneously towards multiple givens, whereby each given corresponds to a
skeleton (cf. Section 2.4)), then we shall demand something weaker: skeleton
preservation means that no new skeletons are created, although the number of
skeletons may decrease.

We also require that the rippling relation is well-founded. Combined with
skeleton preservation, this means that each rippling step makes progress in
directing the derivation towards at least one of the givens. Termination itself
has other practical benefits. If rippling does not lead to fertilization then, since
we discover this in finite time, we can backtrack and try other possibilities,
e.g. other inductions. We can also use critics (see Chapter 3) to analyze why
rippling has failed.

Summarizing, these requirements are the following.

Simulation: If s ripples to t , then erase(s) rewrites to erase(t) in the origi-
nal (unannotated) theory, i.e.

∀s:A.∀t :A. s �W t → erase(s) ⇒R erase(t).

Skeleton preservation: If s ripples to t , then the skeletons of t are a subset
of the skeletons of s, i.e.

∀s:A.∀t :A. s �W t → skel(t) ⊆ skel(s).

Termination: Rippling terminates, i.e. the relation �W is well founded.

These properties constitute minimal requirements that we will demand
of any formalization (and ultimately implementation) of rippling. The first
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property alone is necessary and sufficient for rippling to be correct in the
sense that we can only use it to prove propositions provable using ⇒R. Taken
together though, the properties are only necessary conditions for rippling to
be effective; they are trivially, but uselessly, satisfied when �W is the empty
set. However, there is a limit to how much more can usefully be formalized.
Rippling is just a heuristic and any notion of effectiveness (when it is short of
completeness) is itself informal; the effectiveness of any implementation must,
in the end, be validated empirically. We address the empirical effectiveness of
rippling in Chapter 5.

4.3 Implementing rippling: generate-and-test

In this section we present a very simple realization of rippling that has the
simulation and skeleton-preservation properties and suffices to carry out the
kinds of proofs considered in Chapters 1 and 2. We shall delay the issue of
termination until Section 4.7. Our presentation here is somewhat artificial in
that it leads to an implementation of rippling that is too inefficient for practical
use. However, it illustrates the main ideas, and is related to other, more realistic,
implementations.

In Section 1.3 we informally motivated annotation as a way of marking
parts of terms. This marking indicates which parts of a term correspond to
the givens (skeletons) and which parts do not (wave-fronts). These mark-
ings guide rippling by highlighting the parts of the term that can be trans-
formed; so under this view, adding annotations adds semantic information that
guides rippling. In this section we will take a different view where annota-
tions serve not as a guide, but rather as a check. This leads to a simple im-
plementation based on generate-and-test. Afterwards, we will show how this
can be made more efficient, essentially by interleaving the generation with the
testing.

Consider the example given in Section 1.4 where we have the given a +b =
42 and the goal ((c+d)+a)+b = (c+d)+42. We can apply the rewrite rule
for the associativity of plus in three different ways to this goal. We annotated
the goal as

( (c + d) + a
↑
) + b = (c + d) + 42

↑
, (4.1)

so that its skeleton is identical to the given. Then we looked at how the re-
sults of each possible rewriting could also be annotated so that a skeleton of
the given remains. All three could be so annotated, but two of the three were
rejected for not making progress.
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Rippling can be understood, and even implemented, as ordinary rewriting
augmented with these additional tests. The test is based on checking that the
skeleton remains after rewriting and that progress is made. Central to formal-
izing this is clarifying exactly what constitutes a skeleton. We first turn our
attention to this question and then afterwards formalize annotated terms and
the rippling relation.

4.3.1 Embeddings

Figure 1.2 in Section 1.1.4 presents the intuitive idea that rippling manipulates
a term (the goal) in which other terms (the givens) are reflected, with possible
disturbances. This corresponds to a formal notion called an embedding. An
embedding is a relation, E ⊆ T × T ; viewing terms as ordered, labeled trees,
then for s, t ∈ T , s E t holds when there is an injective map from the nodes of
s to t that is label- and order-preserving. This can be formalized inductively as
follows. For terms s = f (s1, . . . , sn) and t = g(t1, . . . , tm), s E t holds iff

(i) ∃i. s E ti ; or
(ii) f = g and ∀i ∈ [n]. si E ti .

Some observations are in order here. First, E is decidable. The above in-
ductive definition corresponds to a recursive program: given an s, t ∈ T , we
decide s E t by recursion on t , non-deterministically choosing between cases
(i) and (ii), when both apply. In both cases, the recursive call is on a proper
subterm of t ; hence, this program terminates in non-deterministic linear time
(in the height of t) and this gives rise to a deterministic algorithm that runs in
exponential time. However, since both s and t have only linearly many sub-
terms, there are only quadratically many subproblems that can arise in decid-
ing s E t ; thus using dynamic programming (or, equivalently, memoization
to avoid repeated solutions to subproblems) gives rise to a polynomial time
algorithm.

Second, when executing the above algorithm on inputs s and t , it is a sim-
ple matter to keep track of occurrences of function symbols g in t that are in
the skeleton; these are simply those g that are equal to an f in case (ii). For
example, consider the case when s is a + b = 42 and t is ((c + d) + a) + b =
(c + d) + 42. Then s E t holds, and if we mark the symbols in t that are not in
the skeleton by surrounding them with wave-front markers, then t is annotated
as above in (4.1). We will see that determining the existence of an embedding,
and returning annotations, has many uses.

Third, given t , we can generate in exponential time all possible s that
are embedded in t . To see that this is a lower bound, note that there are
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exponentially many s that are embeddable in the term f1( f2(. . . ( fn(a)) . . .)),
namely any sequence containing any (ordered) combination of the fi followed
by a. To see that this is an upper bound, observe that, given t , there are two
possibilities for each function symbol occurrence in t that is not a leaf: either
it is included in s or not depending on whether case (i) or (ii) is picked. We can
recurse through t and apply each case to each function symbol to generate all
the embeddings. This procedure (actually, a slight generalization of it) will be
used later in Section 4.8 to generate wave-rules from rewrite rules.

Finally, as the reader may check, E is a rewrite relation.

4.3.2 Annotated terms and rippling

Using the notion of an embedding, we can now formalize the kind of simple-
minded generate-and-test implementation described previously. We begin by
concretizing A and �W .

Let �, X , T , and ⇒ be given. Now we define A to be F1(T ) × T ; hence,
each member of A is a pair 〈{s1, . . . , sn}, s0〉, where s0, . . . , sn ∈ T . Under
this construction, the s1, . . . , sn represent the skeletons, and s0 the erasure of
an annotated term. More formally

skel(〈{s1, . . . , sn}, s0〉) = {s1, . . . , sn} (4.2)

erase(〈{s1, . . . , sn}, s0〉) = s0. (4.3)

Now, in this setting, we will define rippling as a relation �W ⊆ A × A
where s �W t iff the following conditions hold:

(i) erase(s) ⇒ erase(t),
(ii) skel(t) ⊆ skel(s), and

(iii) good(s) and good(t), where an annotated term is good when its skeletons
embed into its erasure, i.e.

good(〈{s1, . . . , sn}, s〉) ≡ ∀i ∈ [n]. si E s.

By definition, �W has both the simulation property (the first conjunct) and
the skeleton-preservation property (the second conjunct). As defined though,
rippling may not terminate. To guarantee this we must add another conjunct
(namely that s > t , where > is an appropriate well-founded ordering), for
example, s > t when the outward bounded wave-fronts in t are “higher” in the
skeleton than those in s, as illustrated in Figure 1.3. We will delay formalizing
such an ordering and proving that rippling (under this additional requirement)
terminates, until Section 4.6.5.
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As an example, consider the following sequence of annotated terms where
s �W t and t �W r :

s ≡ 〈{a + b = 42}, ((c + d) + a) + b = (c + d) + 42〉 (4.4)

t ≡ 〈{a + b = 42}, (c + d) + (a + b) = (c + d) + 42〉 (4.5)

r ≡ 〈{a + b = 42}, (c + d = c + d) ∧ (a + b = 42)〉. (4.6)

Equation (4.4), for example, corresponds to the annotated equation

( (c + d) + a
↑
) + b = (c + d) + 42

↑
. (4.7)

4.3.3 Implementation

It is easy to implement rippling based on the above definition of A and �W .
Annotated terms are represented as pairs where the first component (finite sets)
can be implemented, for example, by using lists.

Now suppose we wish to prove some goal g by rippling towards givens
g1, . . . , gn . In the above formalism, we would do this by “lifting” g to
an annotated term, sg , whose skeletons namely are among the gi , sg ≡
〈{g′

1, . . . , g′
m}, g〉 where {g′

1, . . . , g′
m} is the largest subset of {g1, . . . , gn} for

which good(sg) holds. This is trivially computed by testing to see which gi

can be embedded in g. For example, if our given is a + b = 42 and goal is
((c + d) + a) + b = (c + d) + 42, then s is the annotated term given by
(4.4).

Now, suppose we have an s ∈ A such that good(s) holds. Moreover, sup-
pose there is some term u ∈ T such that erase(s) ⇒ u. Let

t = 〈{si | si ∈ skel(s) ∧ si E u}, u〉.

If the first component is empty, we reject t , otherwise we have found a t where
s �W t .

Based on the observations from Section 4.3.1, it follows that, given a u, we
can compute a t (when it exists) in polynomial time. Moreover, for a given s,
we can generate all t where s �W t , provided there are only finitely many u
where s ⇒ u (which is the case whenever ⇒ is the rewrite relation defined
by a finite set of rewrite rules). Such an implementation of rippling is based
on generate-and-test, since we first generate candidate terms t and then test
whether they satisfy the skeleton-preservation property. As previously noted
and illustrated later, we can also enforce termination by testing that s > t
under an appropriate ordering >.
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4.4 Term annotation

4.4.1 The role of annotation

The implementation of rippling just sketched, although potentially effective,
is rather inefficient. As in Section 1.4, we consider every possible rewrite step
and then analyze the result to see if the givens are preserved and if progress
has been made. This is inefficient, since we first generate a candidate rewriting
result, and afterwards test the embedding of the givens in the result. If we add
annotations to terms, it is possible to combine generation and testing. Term
rewriting requires matching, and we can integrate the test for skeleton preser-
vation (and progress) into matching by using annotations to mark what must
be preserved, what may change, and how things may change.

To investigate this further, we need to address the question of how to repre-
sent annotations on terms. This question is open-ended, since the possibilities
for hanging semantic information on terms are also open-ended: how we rep-
resent annotations depends on what the annotations should represent and how
we intend to use them. This topic, and some of the complexities involved, are
considered in detail in Chapter 6. For now, let us concentrate on using annota-
tions to differentiate wave-fronts from skeletons, that is to mark what parts of
terms should remain invariant during rewriting.

As observed in Section 1.3, a wave-front can be seen as a “context”, i.e. a
term with one, or more, proper subterms deleted. Schematically, an outward-

directed wave-front is of the form ξ(µ1 , . . . , µn )
↑
, where n > 0 and the

µi may be similarly annotated. (Inward direct wave-fronts are identical except
that the arrow points downwards.) The use of shaded boxes is a useful tech-
nique for displaying and visualizing contexts, but such a two-dimensional rep-
resentation is poorly suited for symbolic manipulation. However, it is simple
to develop representations that are easier to formalize and manipulate; below
we list several possibilities.

Context markers: Wave-fronts can be represented using markers that state
where contexts begin and end.

Symbol markers: Each occurrence of a function symbol in a wave-front
can be individually marked, i.e. with an annotation that denotes its status.

Embeddings: The formula is not directly annotated, but the embedding of
given into goal is separately recorded.

Under the first approach we might represent the annotated term

( (c + d) + a
↑
) + b = (c + d) + 42

↑
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as

wf up((c + d) + wh(a)) + b = wf up((c + d) + wh(42)), (4.8)

where wf and wh mark the start and end of contexts, and the subscript up
records the direction that the wave-front should move. Wave-fronts with multi-
ple holes correspond to contexts with multiple holes, e.g. multiple occurrences
of wh within a wf .

Under the second approach, we might represent the above term by

((cg +g dg) +g aw) +w bw = (cg +g dg) +g 42w, (4.9)

where the g superscript means “colored grey” (i.e., in a wave-front), and w

means “colored white”, i.e., belonging to the skeletons. Different colors can en-
code different kinds of information. To implement this approach, superscripts
can be associated with extra bits, stored with each function symbol occurrence.

Other representations are certainly possible, and there are pros and cons to
the various approaches. In this chapter, we will take the first approach and con-
sider an implementation based on it. In Chapter 6, we will look at the second
approach.

4.4.2 Formal definitions

Let a signature � and set of variables X be given, and let T be the set of
unannotated terms based on them. We extend � with a binary function wf ,
a unary function wh, and two constant symbols up and dn. The function wf
marks the start of a context (the wave-front) and the second argument, either
up or dn indicates the direction of the wave-front. The function wh marks the
end of a context (the wave-hole). Since wf and the direction define related
semantic information, we will write this argument of wf as a subscript, i.e.
writing wf up(t) as shorthand for wf (t, up). We could also add additional kinds
of constructors and annotations (e.g., sinks), but we avoid these details for now.

It is tempting now to define the set of annotated terms A as freely generated
from those functions in the extended signature. However, as noted in Section
4.2.1, we cannot do this, for it would allow too many terms. The constants
up and dn alone are meaningless, and not all combinations of wf and wh de-
note meaningful contexts. Hence, we define A as a subset of the terms in the
extended signature, reflecting the role of annotations as context markers.

Definition 1 Let a signature � and set of variables X be given. The set of
annotated terms A is the smallest set such that

(i) t ∈ A if t ∈ T .
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(ii) For f ∈ �(n), wf d( f (t1, . . . , tn)) ∈ A if
(a) d ∈ {up, dn},
(b) ∃i ∈ [n]. ∃s ∈ A. ti = wh(s); and
(c) ∀i ∈ [n]. ti ∈ T ∨ ∃s ∈ A. ti = wh(s).

(iii) f (t1, . . . , tn) ∈ A if each ti ∈ A, f ∈ �(n), and f 	∈ {wf , wh, up, dn}.
We use the notation A� to denote those ground annotated terms, A� ⊆ A,
that do not contain variables.

The interesting case of the definition is the second. Case (ii)(b) states that
each wave-front contains at least one immediate subterm that is a wave-hole
(i.e., the leading function symbol is wh). Case (ii)(c) states that every im-
mediate subterm must either be unannotated (and therefore cannot contain a
wave-hole) or is a wave-hole containing a possibly annotated term, i.e., sub-
terms in wave-fronts are unannotated whereas subterms in wave-holes may
be annotated. In Section 4.6.1, we give an example, (4.11), that violates case
(ii)(c). Note that, as discussed in Section 2.1.2, insisting that the wave-holes
occur as immediate subterms of the function symbol in the wave-front eases
the implementation of rippling, since we no longer require wave-front split-
ting. However, we can reduce clutter (without risking confusion) by displaying
wave-fronts in a maximally merged form.

Several additional comments are in order. First, under this definition, a term
like wf up((c + d) + wh(a)) + b is an annotated term, but not a term like
wh(a), since wave-fronts and wave-holes must be properly nested. This ex-
ample shows that annotated terms are not closed under the subterm relation.
That is, if s ∈ A, it is not necessarily the case that s/p ∈ A for p ∈ Pos(s).
Hence, we see one of the drawbacks of explicitly marking contexts: although
annotated terms are terms built over a signature, they are not terms in the con-
ventional sense and one must be careful in applying standard definitions and
concepts (e.g. subterm, subterm replacement, etc.) to them.

Second, to simplify the presentation of annotated terms, we will continue
using grey shading and arrows in their display. However, this is just syntactic
sugar for terms built using these additional symbols. Note, moreover, that when
the direction associated with a wave-front is unimportant (e.g., in proofs about
rippling where the direction is immaterial), we will omit the arrow associated

with this notation, e.g., writing s( y ) for s( y )
↑
.

Third, much of the complexity in our formalism and subsequent proofs
comes from allowing multiple wave-holes, which is necessary for multiple
skeletons. We call a wave-front that contains only a single wave-hole sim-
ply annotated, and it is multi-hole annotated otherwise. A term is said to be
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simply annotated when all its wave-fronts are simply annotated, and is multi-
hole annotated otherwise.

Finally, to simplify notation in proofs we will often make a simplifying as-
sumption: we will assume that given a wave-front like wf up( f (t1, . . . , tn)),
then the arguments of f may be partitioned so that the first j > 0 argu-
ments are headed by a wave-hole (i.e., their leading function symbols are
wh) and the remaining n − j are not. Hence, the term may be written as

f ( t1 , . . . , t j , t j + 1, . . . , tn)
↑
, or even f ( t1 , . . . , tn)

↑
. This is without loss

of generality as the proofs we give do not depend on the order of wave-holes.
The skeleton function is defined by recursion on the structure of annotated

terms.

Definition 2 The skeleton function skel : A → P1(T ) is defined by:

(i) skel(X) = {X}, for all X ∈ X .
(ii) skel(wf d( f (t1, . . . , tn))) = {s | ∃i ∈ [n]. ti = wh(t ′i ) ∧ s ∈ skel(t ′i )},

for d ∈ {up, dn}.
(iii) skel( f (t1, . . . , tn)) = { f (s1, . . . , sn) | ∀i ∈ [n]. si ∈ skel(ti )}, if f 	= wf .

By erasing annotations, we construct the corresponding unannotated term.

Definition 3 The erasure function erase: A → T is defined by:

(i) erase(t) = t , for all t ∈ T ;
(ii) erase(wf d(t)) = erase(t), for d ∈ {up, dn};

(iii) erase(wh(t)) = erase(t);
(iv) erase( f (t1, . . . , tn)) = f (erase(t1), . . . , erase(tn)), if f 	= wf .

Note that the skeleton of a simply annotated term is a singleton set; in this
case, we refer to the member as the skeleton of the term.

We will apply the skeleton and erasure functions to sets of annotated terms
by pointwise application to each element. The erasure function can also be
extended to substitutions by

erase(σ ) = σ ′ where σ ′(x) = erase(σ (x)).

Finally, given a s ∈ A, we say a subterm t at position p is in a wave-front
in s if there is a position q above p where the leading function symbol of s/q
is wf and there is no position r , q < r < p, where the leading symbol of s/r
is wh.

As an example, the skeleton of

wf up((c + d) + wh(a)) + b = wf up((c + d) + wh(42))
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is {a + b = 42} and the erasure is ((c + d) + a) + b = (c + d) + 42. The
subterms (c + d) + wh(a) and c + d are examples of two terms occurring in
wave-fronts.

4.5 Structure-preserving rules

As noted previously, rewrite relations are typically defined by sets of rewrite
rules, s ⇒ t ∈ R, where R ⊆ T × T . Suppose such a set R is given. We
now show how to create a set of wave-rules based on R. We continue to ignore
the question of termination, and simply focus on the structure preservation
requirements.

Definition 4 A structure preserving rule is given by a pair of terms l and r in
A × A, written as l � r , where

(i) erase(l) ⇒ erase(r) ∈ R, and
(ii) skel(r) ⊆ skel(l).

Given a set of rewrite rules R, let W denote the set of all structure-
preserving rules based on R. Note that the first requirement tells us that since
erase(l) ⇒ erase(r) ∈ R, that Vars(r) ⊆ Vars(l).

The set W is easily computed. For each s ⇒ t ∈ R we must find an-
notated terms l, r ∈ A satisfying the above two requirements. Requirement
(i) means that l and r correspond to s and t with additional annotations (i.e.,
wave-fronts and wave-holes). As explained in Section 4.3.1, there are expo-
nentially many possible ways to annotate s and t . Let As and At be the sets
containing these annotations. Then, to satisfy requirement (ii) we form the set
of structure-preserving rules {l � r | l ∈ As ∧ r ∈ At ∧ skel(r) ⊆ skel(l)}.
The set W is the union of these sets of rules, one such set for each rewrite rule
in R.

We call the above procedure for constructing structure-preserving rules a
wave-rule parser. It is not particularly efficient but, as we will later show in
Section 4.8, it can be improved by using a “lazy” procedure where the wave-
rules are created on-demand during rewriting itself.

4.6 Rippling using wave-rules

In this section we shall finish our formalization of rippling by explaining how
wave-rules are applied, and showing that the resulting rippling relation has the
desired properties.
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The reader may wonder whether it is necessary to reinvent the wheel here.
Our present formalism represents annotated terms as a subset of terms built
from an extended signature. Perhaps we can treat these as conventional terms
and manipulate these using conventional rewriting? Unfortunately this is not
possible. As we have already observed, annotated terms have a special struc-
ture, and one cannot directly carry over conventional definitions and results
from rewriting.

We consider below the problems involved as they motivate our formaliza-
tion.

4.6.1 Why ordinary rewriting is not enough

As an example of the problems that can arise, consider applying the wave-rule
associated with the recursive definition of times,

s(U )
↑× V � (U × V ) + V

↑
, (4.10)

to the annotated term s( x )
↑ × s( y )

↑
. Using conventional rewriting, we

match the left-hand side of (4.10) with this term, and this generates the substi-

tutions {x/U } and { s( y )
↑
/V }. Performing these replacements in the right-

hand side yields

x × s( y )
↑ + s( y )

↑
↑
.

Here we have used a darkened wave-front to indicate an improper nesting; the
result is perhaps easier to understand if we desugar the syntax, i.e.

wf up(wh(x × wf up(s(wh(y)))) + wf up(s(wh(y)))). (4.11)

The problem is that the (second occurrence of the) subterm wf up(s(wh(y)))

is improperly nested within a wave-front: there are two nested wave-fronts
without an intermediate wave-hole. Hence, the result of conventional rewriting
is a term with annotations, but it is not an annotated term! That is, the result
does not belong to the set of annotated terms A.

This problem is simple to explain. Substitution has picked up an annotated
term for the variable V . However, annotated terms are not closed under substi-
tution of annotated terms for variables. In particular, we cannot substitute an
annotated term for a variable that occurs within a wave-front. This problem,



98 A formal account of rippling

lack of closure under substitution, can be fixed by defining a new notion of
substitution, which, in such cases, substitutes the erasure, e.g., yielding

x × s( y )
↑ + s(y)

↑

in the above example. However, as this example illustrates, substitutions arise
in rewriting from matching, so a redefinition of substitution will require a re-
definition of matching. By means of such modifications, we develop a for-
malization of rippling that has the desired properties. For unannotated terms
and rewrite rules, our formalization of rippling specializes to conventional
rewriting.

4.6.2 Ground rippling

We first consider rippling using ground rules. As is typical (see, for example,
Dershowitz (1987)), we distinguish between two kinds of variables:

(i) Variables (in rules and, in some cases, in the goal (see Chapter 3)) that can
be replaced by substitution.

(ii) Variables (in the goal) that cannot be instantiated by substitution.

We often call variables of the first kind “meta-variables”, and write them using
upper-case letters, and call variables of the second kind “term variables”, which
we treat as constants and write using lower-case variables, cf. the discussion
of skolemization and dual skolemization in Section 1.2.

Recall that in Section 4.1 we defined s[t]p to denote the term obtained from
s by replacing the subterm at position p by t . Here we extend this to anno-
tated terms. For s, t ∈ A, p ∈ Pos(s), and s/p ∈ A we define annotated
replacement, denoted by s[[t]]p by

s[[t]]p =
{

s[erase(t)]p if p is in a wave-front in s,
s[t]p otherwise.

For example, replacing a in b + s(a)
↑

by s( a )
↑

gives b + s(s(a))
↑
, but

replacing b by s( b )
↑

gives s( b )
↑ + s(a)

↑
. As noted in Section 4.1, sub-

stitution can also be seen as a special case of (iterated) term replacement.
Observe that by requiring s/p ∈ A, we avoid cases where s is an annotated

term like wf up((c + d) + wh(a)) + b and p is the position of the subterm
wh(a), which is not an annotated term. In such a case, replacement of any
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t ∈ A at p (i.e., s[[t]]p) would not result in an annotated term. It is easy to
check that under the above restrictions, replacement of an annotated subterm
by an annotated term always results in an annotated term. Moreover, since
unannotated terms are a special case of annotated terms (i.e., T ⊆ A) and
annotated and unannotated replacement agree on this subset, we can without
confusion write s[t]p for s[[t]]p.

In the remainder of this chapter we shall perform all term replacement, in-
cluding substitutions, using annotated replacement.

Rippling, in the ground case, consists of rewriting using ground structure-
preserving rules, i.e., rules that do not contain meta-variables. Let R be a set
of ground rewrite rules and W a set of ground structure-preserving rules with
respect to R. Then we define the corresponding (ground) rippling relation as
in conventional rewriting: if s, l ∈ A, then rippling s[l] at subterm l with the
rule l � r ∈ W yields s[r ]. We write �G

W to denote this (ground) relation
and write s �G

W t to denote that s is transformed to t by ground rippling using
structure-preserving rules in W.

Ground rippling defines a binary relation on A × A that satisfies the first
two properties required of rippling in Section 4.2.2.

Theorem 1 If s, t ∈ A and s �G
W t , then

(i) erase(s) ⇒ erase(t), and
(ii) skel(t) ⊆ skel(s).

Proof (sketch) If s �G
W t , then s, is of the form s[l], t is of the form s[r ], and

there is a rule l � r ∈ W. The proof of the above properties follows by struc-
tural induction on s. The only non-trivial case occurs when the leading symbol
of s is wf , e.g., s = f ( s1 , . . . , s j , s j + 1, . . . , sn) , and l is a strict subterm

of one of the si . There are two cases, depending on whether i ≤ j . Consider
first the case i ≤ j . By the induction hypothesis, erase(si [l]) ⇒ erase(si [r ]).
As all the other subterms are unchanged by the replacement, their erasures re-
main the same. Thus, erase(s[l]) ⇒ erase(s[r ]). From the induction hypoth-
esis, we also have skel(si [r ]) ⊆ skel(si [l]). Again, since no other subterm is
changed, the union of their skeletons is unchanged and skel(s[r ]) ⊆ skel(s[l]).
If i > j , then si is an unannotated term within the wave-front. Thus, when
we substitute r for l, we will erase annotations on r . Since si is unannotated
and l � r is a structure-preserving rule, erase(si [l]) �G

W erase(si [r ]) and
thus erase(s[l]) ⇒ erase(s[r ]). Finally, from the definition of skel it fol-
lows that term replacement in wave-fronts has no effect on the skeletons, so
skel(s[l]) = skel(s) = skel(s[r ]).
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As a simple example, let h( a )
↑ � a be a structure-preserving rule. We

can apply this rule only to the first subterm of the annotated term

f ( h( a )
↑

, h(a))

↑
(4.12)

because only the first subterm has matching annotations. This application re-

sults in f ( a , h(a))
↑
. Alternatively, we can apply the rule a � h( a )

↑
to

both occurrences of a in (4.12) resulting in

f ( h( h( a )
↑

)

↑
, h(h(a)))

↑

. (4.13)

As required, annotations are erased when substituting h( a )
↑

for the second
occurrence of a. Note too that we can apply this rule arbitrarily often: although
structure-preserving rules have the first two properties required of rippling,
this example shows that their application is not necessarily terminating; for
termination we need further restrictions, which will be introduced later.

4.6.3 Annotated matching

In general, we consider rules that contain (non-term) variables (i.e., W ⊆ A×
A), and these are applied using matching.

Definition 5 For s, t ∈ A, we call a substitution σ : X → A an annotated
match of s with t iff Dom(σ ) = Vars(s) and σ(s) = t .

As explained previously, we have redefined term replacement and this
includes the replacement of variables during substitution. This has impor-

tant implications for matching. Consider, for example, matching X × 0
↑

with s(0) × 0
↑
. Conventional matching between a pattern s (with vari-

ables) and a target t returns, when successful, a unique substitution σ (pro-
vided that Dom(σ )= Vars(s)). However, for this example, both {s(0)/X} and

{ s( 0 )
↑
/X} are annotated matches.

To make annotated matching feasible, we further restrict it so that there
is only a single possible substitution. This restriction is based on defining an
ordering on substitutions: if σ1 and σ2 are substitutions, we write σ1 ≺ σ2 iff
σ1 and σ2 differ on only one variable X , and σ1(X) = erase(σ2(X)). We write
≺+ for the transitive closure of ≺. Intuitively, this states that σ1 ≺+ σ2 agree,
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DELETE:
S ∪ {t = t :Pos} ⇒ S

DECOMPOSE:
S ∪ { f (s1, . . . , sn) = f (t1, . . . , tn) :Pos} ⇒ S ∪ {si = ti :Pos | 1 ≤ i ≤ n}
S ∪ { f ( s1 , . . . , s j , s j+1, . . . , sn) = f ( t1 , . . . , t j , t j+1, . . . , tn) : sk} ⇒

S ∪ {si = ti :sk | 1 ≤ i ≤ j} ∪ {si = ti :wf | j < i ≤ n}

Figure 4.1 Transformation rules for amatch(s, t).

except that some of the terms σ1(X) are stripped of their annotations. With this
in hand, we define when a match is minimal.

Definition 6 For s, t ∈ A, then σ is a minimal match of s with t iff σ is an
annotated match of s with t and there does not exist any annotated match τ

with τ ≺+ σ .

It follows from this definition that if we have a minimal match, then we
cannot remove any annotations and have the result remain a match. It is not
difficult to see that minimal matches are unique: substitutions can only differ
on variables that occur only in wave-fronts (but not in skeletons), and a mini-
mal match maps these variables to unannotated terms. Hence, we can refer to
the minimal match of s and t , since it is uniquely defined, provided that there
is a match.

We now give an algorithm, amatch(s, t), for computing the minimal match
of the pattern s with the target t . It is based on the transformation rules given
in Figure 4.1. Because term replacement, and hence substitution, is dependent
on context (i.e., whether or not the term to be replaced is in a wave-front), our
rules manipulate equations labeled with context information (wf for “in the
wave-front” and sk for “in the skeleton”). As notational shorthand, Pos is a
meta-variable that matches either W f Name or sk.

Starting with the set containing the match problem {s = t :sk}, we apply
these transformation rules exhaustively. An equation set is reduced when no
transformation rule applies. A reduced equation set S is compatible iff

(i) every equation is a variable assignment X = s :Pos, for X ∈ X and
s ∈ A,

(ii) for each X ∈ X there exists at most one equation of the form X = s :sk,
and

(iii) if X = s :sk ∈ S and X = t :wf ∈ S then erase(s) = t .
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If a reduced equation set is not compatible, matching has failed; otherwise
matching has succeeded and we return the answer substitution σ where

σ(X) = s iff X = s :sk ∈ S or (X = s :wf ∈ S and X = t :sk 	∈ S).

As an example, if we match X + X
↑

with s( a )
↑ + s(a))

↑
, then our

initial matching problem is

{ X + X)
↑ = s( a )

↑ + s(a))

↑
: sk}

and applying DECOMPOSE yields {X = s( a )
↑ : sk, X = s(a) : w f }. This

reduced equation set is compatible and yields the answer { s( a )
↑
/X}. Note

that regular matching would fail on this example.
Some comments are in order. First, the application of these rules in any

order terminates in time linear in the size of the smaller of s and t . Second,
the DELETE and the first DECOMPOSE rule implement regular matching.
For unannotated terms, the compatibility check reduces to the requirement that
the reduced equation set contains only variable assignments and each variable
has a single substitution. Finally, as with regular matching, we can also add
two failure rules for greater efficiency: CONFLICT, which causes annotated
matching to fail when the outermost function symbols disagree; and INCOM-
PATIBLE, which causes annotated matching to fail immediately if the set of
equations of the form X = s :Pos is not compatible. These additional failure
rules are not, however, needed for the correctness of annotated matching.

The following theorem states that annotated matching functions correctly.

Theorem 2 For s, t ∈ A, amatch(s, t) = σ iff σ is the minimal match of s
and t. When no such match exists, then amatch fails.

Proof (sketch) The theorem follows from the proof of the following stronger
result. Any set of labeled equations S can be transformed to a compatible set of
equations with the corresponding answer substitution σ iff for all s = t :sk ∈
S, σ(s) = t , and for all s = t :wf ∈ S, erase(σ )(s) = t . The minimality of the
answer substitution extracted holds by construction.

(→) We perform induction on the length of the transformation. If S is al-
ready a reduced compatible set of equations, then the result follows directly
from the way the answer substitution is computed. Alternatively, we must
apply a transformation rule. The interesting case is when DECOMPOSE

is applied, say to f ( s1 , . . . , sn)
↑ = f ( t1 , . . . , tn)

↑:sk, giving the set of
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equations S′. By the induction hypothesis, for all s = t :sk ∈ S′, σ(s) = t , and
for all s = t :wf ∈ S′, erase(σ )(s) = t , e.g., σ(s1) = t1, . . . , erase(σ )(sn) =
tn . It follows that σ( f ( s1 , . . . , sn)

↑
) = f ( t1 , . . . , tn)

↑
.

(←) We perform induction over an ordering defined by the multi-set of
the heights of the left-hand sides of the equations. If all left-hand sides are
atomic then, possibly after applications of DELETE, the equation set will be
compatible. If at least one left-hand side is not atomic, then we can pick one

of the form f (s1, . . . , sn) = t :Pos or f ( s1 , . . . , sn)
↑ = t :sk. In either case,

we can apply DECOMPOSE. The resulting equations are smaller under our
ordering and, hence, we can appeal to the induction hypothesis.

Note that the reduced equation set is not compatible iff either two occur-
rences of a variable in the skeleton need a different substitution, or a variable
in the wave-front needs a substitution that is not the erasure of the substitution
needed by an occurrence in the skeleton, or there is a conflict in function sym-
bols or annotations preventing application of DECOMPOSE. But this occurs
iff s and t do not have an annotated match.

4.6.4 (Non-ground) rippling

We now consider the general case of rippling, which is defined analogously to
conventional rewriting.

Definition 7 Let W ⊆ A × A be a set of structure-preserving rules. We say
that s ripples to t , written s �W t , iff there is some l � r ∈ W, s is of the form
s[s′] with s′ ∈ A, there is a substitution σ = amatch(l, s′), and t = s[σ(r)].

As with normal rewriting, we will write s[σ(l)] �W s[σ(r)] to indicate
that s[σ(l)] ripples to s[σ(r)] under the above conditions.

It is easy to “lift” the results for non-ground rippling to ground-rippling.

Theorem 3 If s, t ∈ A and s �W t , then

(i) erase(s) ⇒ erase(t), and
(ii) skel(t) ⊆ skel(s).

Proof (sketch) Suppose s, t ∈ A and there is a rule l � r ∈ W for which
s[σ(l)] �W s[σ(r)]. An easy induction argument on the structure of annotated
terms shows that the erasure and skeleton-preservation properties of structure-
preserving rules are closed under substitution, i.e., erase(σ (l)) ⇒ erase(σ (r)),
and skel(σ (r)) ⊆ skel(σ (l)). Now, since σ(l) is syntactically identical to a
subterm of s, it is ground (no non-term variables occur in s). Furthermore,
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σ(r) is also ground because l � r is a structure-preserving rule and thus
Vars(r) ⊆ Vars(l). Hence rippling s[σ(l)] �W s[σ(r)] is equivalent to rip-
pling s[σ(l)] with the ground structure-preserving rule σ(l) � σ(r). Thus, by
Theorem 1, (i) and (ii) hold.

Let �∗
W

be the reflexive transitive closure of �W , i.e., s �∗
W

t if s ripples
in zero or more steps to t . By induction on the number of steps of rippling, it
follows from Theorem 3 that rippling using �∗

W
also has these two properties,

i.e., if we erase annotations, we can perform the same (object-level) rewriting
steps and the annotations merely guide rewriting in a skeleton preserving way.

4.6.5 Termination

We now have a formalization of rippling that has the first two desired prop-
erties. Here we address the third property: termination. We define a sufficient
condition, based on orderings, for the application of structure-preserving rules
to terminate and define wave-rules as those rules that satisfy this condition.
In the subsequent section, we give a concrete example of an ordering that has
proven useful in practice.

In conventional rewriting, a standard way to show that a term rewriting
system given by rules R terminates is to show that there is a reduction order
> that satisfies l > r for all l ⇒ r ∈ R. In the case of annotated terms, an
ordering > is a reduction ordering when it is:

compatible with contexts: for all s, l, r ∈ A, if l > r , then s[l] > s[r ].
closed under substitutions: for all l, r ∈ A and σ : X → A, if l > r then

σ(l) > σ(r).
well-founded: > is well-founded.

The reader should bear in mind here that although this is the standard defini-
tion of a reduction ordering,1 replacement and substitution is that of annotated
terms.

We are now finally in a position to define what constitutes a wave-rule.

Definition 8 Let > be a reduction order on annotated terms. Then a structure-
preserving rule l � r is a wave-rule with respect to > iff l > r .

The condition that 1 > r is what we have previously been calling “measure
decreasingness”, e.g., in Section 1.5.

1 Compatibility with contexts is sometimes replaced in the literature with closure under
�-operations. These are identical (see, for example, Baader and Nipkow (1998)).
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With this in hand, we can carry over a standard theorem of term-
rewriting into our setting and show that the final property required of rippling
holds.

Theorem 4 For a reduction order > on annotated terms and W a set of wave-
rules with respect to >, rippling using wave-rules in W is terminating.

Proof Since > is compatible with contexts and closed under substitutions,
then for any t, l, r ∈ A, for which l is a subterm of t , and for any substitution
σ : X → A, we have it that l > r implies t[σ(l)] > t[σ(r)]. Thus, l > r for
all l � r ∈ W implies s1 > s2 for all terms s1, s2 with s1 �W s2. Since >

is well-founded, there cannot be an infinite reduction sequence s1 �W s2 �W

s3 · · · .

4.7 Orders on annotated terms

Theorem 4 was proven for an arbitrary reduction order > on annotated terms.
In this section, we give a concrete example of a reduction ordering that is
useful in practice. We build our ordering in steps, starting with simply an-
notated terms: those whose wave-fronts have a single wave-hole. We de-
fine a measure on such terms and a corresponding order. Afterwards, we
generalize this to measures and orders for terms with general (multi-hole)
annotations.

4.7.1 Simple annotation

As we have seen in Figure 1.3 in Section 1.4, we can view annotated terms
as decorated trees where the tree is the skeleton and the wave-fronts are boxes
decorating the nodes. See, for example, the first tree in Figure 4.2, which rep-

resents s(U )
↑ ≥ s( V )

↑
. Our orders are based on assigning measures to

annotations in these trees. We define orders by progressively simplifying an-
notated trees to capture the notion of progress during rippling that we wish to
measure.

≥

s(U )
↑

s( V )
↑

�⇒
�

s( � )
↑

s( � )
↑

�⇒
0

1 1

�⇒




0

2




Figure 4.2 Defining a measure on annotated terms.
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To begin with, since rippling is skeleton preserving, we need not account
for the contents of the skeleton in our orderings. That is, we can abstract away
function symbols in the skeleton, for example, mapping each to a variadic func-
tion constant “�”. This gives, for example, the second tree in Figure 4.2.

A further abstraction is to ignore the names of function symbols within
wave-fronts and instead assign a numeric weight to each wave-front. For ex-
ample, we may tally up the values associated with each function symbol as in
a Knuth–Bendix ordering (Knuth & Bendix, 1970). Two of the simplest kinds
of weights that we can assign to wave-fronts measure their width and their size.
Width is the number of nested function symbols between the root of the wave-
front and the wave-hole. Size is the number of function symbols and constants
in a wave-front. In what follows we will restrict our attention to the width mea-
sure. This gives, for example, the third tree in Figure 4.2. Of course, there are
problem domains where we want our measure to reflect more of the structure
of wave-fronts; there we might want to consider other measures, e.g., Bundy
(2002a).

Finally, a very simple notion of progress during rippling is that wave-fronts
move up or down through the skeleton. Under this view, the tree structure may
be ignored: it is not important which branch a wave-front is on, only its depth
in the skeleton. Hence, we can apply an abstraction that maps the skeleton tree
onto a list, level by level. For instance, we can use the sum of the weights at
a given depth. Applying this abstraction gives the final list in Figure 4.2, read
bottom to top. Note that depths are relative to the skeleton as opposed to depth
in the erasure. Measuring depth relative to a fixed skeleton is one of the key
ideas in the measure proposed here.

Recall from Section 4.1 that a term has an associated set of positions. If
s is a subterm of t at position p, its depth is the length of the string p. The
height of t , written |t |, is the maximal depth of any subterm in t . During the
remainder of this chapter, positions, depth, and height will always be relative to
the skeleton of simply annotated terms because we are interested in measures
based on weight relative to the skeleton. That is, we picture such terms as
in the first tree in Figure 4.2. The positions in the term tree are only those
in the skeleton; annotation and function symbols in wave-fronts are treated
as markings of function symbols in the skeleton. For example, the term in

Figure 4.2 is s(U )
↑ ≥ s( V )

↑
, which has the skeleton {U ≥ V }. The height

of this term is 1 since the deepest subterms, U and V , have positions “1” and

“2”, respectively. Another example is f (s( f (a, s(b)) ), c)
↑

with the skeleton

{ f (a, s(b))}. The deepest subterm is b at position “21” and, hence, the height
of the annotated term is 2.
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For an annotated term t , the out-weight of a position p is the sum of the
weights of the (possibly nested) outwards-oriented wave-fronts at p. We define
below a measure on terms corresponding to the final list in Figure 4.2, based
on weights of annotations relative to their depths. We also define an analogous
measure for inward-directed wave-fronts, except that we reverse the order in
which we record their weights in the list, for reasons that will be discussed
shortly.

Definition 9 The out-measure, M↑(t), of an annotated term t is a list of length
|t | + 1, the (|t | − i)-th element of which is the sum of out-weights for all
term positions in t at depth i . The in-measure, M↓(t), is a list, the (i + 1)-st
element of which is the sum of in-weights for all term positions in t at depth i .
The measure of a simply annotated term, M(t), is the pair of these measures,
〈M↑(t),M↓(t)〉.

Consider, for example, the palindrome function (“::” is infix cons)

palin( H :: T
↑
, Acc) � H :: palin(T, H :: Acc

↓
)

↑
. (4.14)

The skeleton of both sides is {palin(T, Acc)}. The out-measure of the left-hand
side is [1,0], and that of the right-hand side is [0,1]. The in-measures are [0,0]
and [0,1].

We now define a well-founded ordering on these measures that reflects the
intended progress of rippling. Consider a simple wave-rule like

s(U )
↑× V � (U × V ) + V

↑
.

The left-hand side out-measure is [1, 0], and the right-hand side is [0, 1]. Rip-
pling with this rule makes progress because it moves one wave-front upwards
towards the root of the term. In general, rippling progresses if one outwards-
oriented wave-front moves out or disappears, while nothing deeper moves
inwards. If the out-measure of a term before rippling is [l0, . . . , lk] and af-
ter [r0, . . . , rk] then there must be some depth d where ld > rd and for all
i , 0 ≤ i < d we have li = ri . This is simply the lexicographic ordering
where components are compared using > on the natural numbers. Progress
for inwards-oriented wave-fronts is similar, and reflects that these wave-fronts
should move inwards towards leaves. Of course, both outward- and inward-
oriented wave-fronts may occur in the same rule, e.g., (4.14). To accommodate
both, we define a composite ordering on the out- and in-measures. We order the
out-measure before the in-measure, since this enables us to ripple wave-fronts
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out and either to reach the root of the term, or at some point to turn wave-fronts
down and to ripple-in towards the leaves.

Definition 10 t � s iff M(t) > M(s) and skel(s) = skel(t). Here > rep-
resents the lexicographic extension of >lex (the lexicographic order on lists of
natural numbers) to pairs.

This definition is sensible because the restriction that skel(s) = skel(t)
means that the measure lists are the same length and may be compared. Al-
though a skeleton-independent measure would be desirable, there is a deeper
reason for this restriction: our order would not be closed under substitution

without it. As a simple example, consider the terms s = X + s(s(Y ))
↑

and t = s( X ) + Y )
↑
. If we ignore the skeleton restriction and just com-

pare annotation measures, then s � t . However, under the substitution σ =
{ s(s( a ))

↑
/X} we have σ(t) � σ(s). We shall see that our ordering does not

suffer from problems like this.
Given the well-foundedness of > on the natural numbers and that lexico-

graphic combinations of well-founded orders are well-founded, we can con-
clude:

Theorem 5 The composite ordering � is well-founded.

4.7.2 Multi-hole annotation

We now generalize our order to multi-hole annotation, that is, terms where
multiple wave-holes occur in a single wave-front. We have already seen exam-
ples of wave-rules involving such terms in Section 2.4, e.g.,

binom( s( X )
↑
, s( Y )

↑
) � binom(X, s( Y )

↑
) + binom(X, Y )

↑
.

(4.15)

Both sides have the same skeleton, namely {binom(X, Y )}. In general, how-
ever, the skeletons of the right-hand side of a wave-rule need only be a subset
of the skeletons of the left-hand side.

We define orders for terms with multi-hole annotation in a uniform way
from the ordering M for simply annotated terms by reducing terms with multi-
hole annotations to sets of simply annotated terms and extending M to these
sets. This reduction is accomplished by considering ways that multi-hole an-
notations can be weakened to simple annotations by “erasing” wave-holes. We
have introduced the concept of weakening in Section 2.4.3; weakening terms
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with multi-hole annotations means that in a wave-front with multiple wave-
holes, some (but not all) of the arguments of the form wh(ti ) are replaced with
erase(ti ). A maximally weak wave-front is one which has exactly one wave-
hole. A maximally weak term is one having all its wave-fronts maximally weak.
Maximally weak terms are simply annotated and we can apply the previously
defined measure M to them.

Returning to the binomial example, we see that (4.15) has precisely two
weakenings:

binom( s( X )
↑
, s( Y )

↑
) = binom(X, s( Y )

↑
) + binom(X, Y )

↑
(4.16)

binom( s( X )
↑
, s( Y )

↑
) = binom(X, s(Y )) + binom(X, Y )

↑
. (4.17)

Both are maximally weak as each wave-front has a single hole. As another
example, the left-hand side of (2.23) has four maximal weakenings (and four
non-maximal weakenings) while the right-hand side has two weakenings, both
maximal.

Let weakenings(s) be the set of maximal weakenings of s. It is easily com-
puted by constructing the closure of all weakenings of s, and returning the set
of simply annotated results. As elements of these sets are simply annotated,
we can apply the measure M to them. A natural order to define on such sets is
therefore the multi-set extension of the order used to compare simply annotated
terms. A multi-set extension of an ordering is defined as follows (Dershowitz,
1987).

Definition 11 Let S be a set and > an ordering, > ⊆ S × S. The multi-set
ordering >> ⊆ F(S) × F(S) induced from > is defined as M >> N iff N
can be obtained from M by replacing one or more elements in M by any finite
number of elements each of which is smaller (under >) than one of the replaced
elements.

We extend the ordering on simply annotated terms to multi-hole annotated
terms as follows.

Definition 12 l �� r iff weakenings(l) �� weakenings(r) where �� is the
multi-set extension of the order �.

This order is well-defined, as maximal weakenings are simply annotated
and can be compared using �. Note that if l and r are simply annotated, then
their weakenings are {l} and {r}, and l �� r and l � r are equivalent. Hence,
we will drop the superscript on �� when context makes our intention clear.
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As an example consider (4.15). The left-hand side weakenings are

{binom( s( X )
↑
, s( Y )

↑
)}.

The right-hand side weakenings are

{ binom(X, s( Y )
↑
) + binom(X, Y )

↑
, binom(X + s(Y )) + binom(X, Y )

↑}.

The only member of the first set is �-greater than both members of the second
set. This wave-rule is thus measure decreasing.

4.7.3 Termination under ��

Since �� is defined via a multi-set extension of a well-founded order, it, too, is
well-founded. Hence we immediately have:

Lemma 1 �� is well-founded.

We now show that �� is a reduction order. To simplify proofs, we
ignore complications caused by inwards-oriented wave-fronts. Reincorporat-
ing these is conceptually simple but notationally involved, since measures ex-
pand to pairs.

As measures are lists, term replacement corresponds to operations on lists.
Hence, we begin with relevant terminology. Let l and r be lists of natural num-
bers and l + r be componentwise addition. When one list is shorter than the
other, we “pad” it out by appending additional zeros to the end, so that its
length is the same as the longer list. For n, a natural number, let l ↑n be the
result of “right shifting” l by n positions by appending l to the end of the list
consisting of n zeros. For any natural number d, we define the splice of r into
l at depth d, which we write as l +d r , to be l + (r ↑d). Splicing can result in
a longer list; for example, if l = [l0, l1, l2, l3] and r = [r0, r1, r2], then

l+2r = l+(r ↑2) = [l0, l1, l2, l3]+[0, 0, r0, r1, r2] = [l0, l1, l2+r0, l3+r1, r2].
We will use the following simple properties about splice and list arithmetic

below.

Lemma 2 Let l, l ′, r, r1, . . . , rk be lists of natural numbers and let l >lex l ′.

(i) ∀d ∈ N. (l +d r >lex l ′ +d r) ∧ (r +d l >lex r +d l ′).
(ii) ∀d1 ∈ N. . . . ∀dm ∈ N. (. . . ((l +d1 r1)+d2 r2) . . .+dm rl) >lex (. . . ((l ′+d1

r1) +d2 r2) . . . +dm rl).
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The first part says splicing is monotonic with respect to >lex in both argu-
ment positions. The second part is essentially an iterated version of the first
for performing multiple splices with different lists at multiple positions. We
use these results to prove theorems about closure under substitutions and com-
patibility with contexts, since such theorems can be seen as statements about
splicing measures.

Lemma 3 �� is compatible with contexts.

Proof (sketch) Let s, l, r ∈ A, with l a distinguished subterm of s, i.e., s[l].
We must prove that s[l] �� s[r ] under the assumption that l � r . From the
assumption, l must be annotated and occurs in the skeleton of s. We argue by
cases on the nature of the annotations, and begin with the case where s, l, and
r are simply annotated.

In this case, let c be an arbitrary (unannotated) constant, ms[c] = M↑(s[c]),
ml = M↑(l) and mr = M↑(r). Let d be the depth of c in the skeleton of s.
Since c is unannotated, the measure of s[l] is the measure of s[c] altered by
splicing in at depth d the measure of l, i.e., ms[c] +d ml . Similarly, the measure
of s[r ] is ms[c] +d mr . Since l � r we can conclude, using the first part of
Lemma 2, that s[l] �� s[r ].

Now suppose l and r contain multi-hole annotations and the only multi-
hole annotations in s[l] occur in l itself. Let the maximal weakenings of l and
r be the sets L = {l1, . . . , l j } and R = {r1, . . . , rk}, respectively. The maxi-
mal weakenings of s[l] and s[r ] then are the sets Sl = {s[l1], . . . , s[l j ]} and
Sr = {s[r1], . . . , s[rk]}. Now, under the definition of �� and multi-sets, l �� r
if we can replace some collection of the li ∈ L by smaller elements (under �)
resulting in the set R. But we can do the identical replacements in the context
s[·] hence transforming the set Sl to Sr . Consider such a replacement, say re-
placing l1 ∈ L by r1, . . . , rp; now l1 � ri and it follows (by the previously
considered case) that s[l1] � s[ri ] for each i ∈ {1, . . . , p}. Hence the transfor-
mation of Sl to Sr shows that s[l] �� s[r ].

The final case to consider is when s itself has multiple skeletons, indepen-
dent of the number of skeletons of l. We argue as above, except that rather than
just comparing sets composed from s[li ] and s[ri ] we have to consider weak-
enings of s as well. But any steps in weakening s (not in the subterm l) can be
made identically in both s[li ] and s[ri ] and s[l] �� s[r ] follows.

Lemma 4 �� is closed under substitutions.

Proof (sketch) Let s and t be in A with s �� t . To show that σ(s) �� σ (t) we
can, without loss of generality, consider a substitution σ that replaces a single
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variable x with some r ∈ A. We consider two cases: first, when s, t are simply
annotated, and second, when they may contain multi-hole annotations.

Case 1: Terms s and t are simply annotated. As s � t , both terms have
the same single skeleton. Note that substitutions for occurrences of x in
wave-fronts have no effect on our width measure (although they can change
the size of a wave-front). Assume x occurs p times in each skeleton. If
weakenings(r) = {r1, . . . , rm} then

S = weakenings(σ (s)) = {s1, . . . , sn}
and

T = weakenings(σ (t)) = {t1, . . . , tn},
where n = p ∗ m. Each of these weakenings can be constructed by replacing
the variables x in s and t with maximal weakenings of r ; each si thus has a
“partner”, ti , in which the occurrences of x are replaced by the same weakening
of r . Now to show that S is greater than T under the multi-set ordering we must
give a transformation of S to T where each term is replaced by a finite number
of smaller (under �) terms. Our transformation is simply to replace si by its
partner, ti . If we order (arbitrarily) the occurrences of x in the skeleton of s
(and therefore also t), x1, . . . , x p, then if si and ti were formed by replacing
x j , occurring at depth d j with a weakening of t that has a measure r j , then the
measures of the two terms si and ti are

(. . . ((s +d1 r1) +d2 r2) . . . +dp rp)

and

(. . . ((t +d1 r1) +d2 r2) . . . +dp rp),

respectively. But now, using the second part of Lemma 2, we have that the
former is greater under >lex than the latter; hence, σ(l) � σ(r).

Case 2: All terms may contain multi-hole annotations. Let S = {s1, . . . , s j }
and T = {t1, . . . , tk} be the maximal weakenings of s and t . As s �� t , there
is a transformation (respecting �) of S to T . We must construct a transfor-
mation from the maximal weakenings of σ(s) to the maximal weakenings of
σ(t). We proceed as follows. Consider a replacement of, say, s1 in S with
some t1, . . . , tp that takes place in transforming S to T . Now suppose the max-
imal weakenings of r are {r1, . . . , rm}. Then σ(s1) and the σ(ti ) each have
n maximal weakenings where n is a multiple of m dependent on the number
of occurrences of x in the skeleton of s1. In particular, weakenings(σ (s1)) =
{s1,1, . . . , s1,n} and for each ti , weakenings(σ (ti )) = {ti,1, . . . , ti,n}. Again we
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may speak of “partners”: each s1, j has as partners ti, j , for i ∈ {1, . . . , p} and
j ∈ {1, . . . , n} where the weakenings of ti, j come from weakening the occur-
rences t identically to their weakenings in s1, j . Furthermore, because for each
i ∈ {1, . . . , p}, s1 � ti , we can use case 1 to conclude that each maximal
weakening of σ(s1) is larger than its partners. Hence replacing each s1,i with
its partners defines an appropriate transformation from weakenings(σ (s)) to
weakenings(σ (t)).

From the previous lemmas we can conclude that �� is a reduction ordering
on annotated terms and, hence, by Theorem 4 we have:

Theorem 6 Rippling using wave-rules l � r , with respect to ��, is terminat-
ing.

4.8 Implementing rippling

We have completed our formal account of rippling and termination orderings
for annotated terms. We now turn to the more practical problem of mechanizing
rippling. In particular, given an ordering, how do we recognize wave-rules and
apply them? Below we describe an implementation of the above formalization
of rippling that is part of the Edinburgh C LAM system. To give the reader a
feel for this, and the issues involved, we sketch briefly a couple of the core
routines.

Much of the work in implementing rippling concerns turning unannotated
rewrite rules into wave-rules; as noted in Section 4.5 we call this wave-rule
parsing. A wave-rule parser takes a set of unannotated rewrite rules and re-
turns a corresponding set of wave-rules. By definition, the wave-rules are
annotated copies of the original rules that are skeleton preserving and mea-
sure decreasing. We can achieve these requirements separately. An annota-
tion phase first annotates l and r with unoriented wave-fronts (i.e., making
no commitment to whether the direction is up or dn) in a skeleton-preserving
way. The annotation algorithm works by calculating the maximal skeletons
that can be embedded in both sides of the wave-rule, and encloses the remain-
ing expressions in wave-fronts. Afterwards, an orientation phase augments
each wave-front with a direction so that l �� r . The result is a wave-rule
or, more accurately, a set of wave-rules, since there are choice-points in both
phases.

As an example, consider parsing a rewrite rule such as

s(U ) × V ⇒ (U × V ) + V . (4.18)
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We may proceed by annotating this so the two sides have identical skeletons,
e.g.

s(U ) × V ⇒ (U × V ) + V . (4.19)

Afterwards we can orient the annotations yielding the wave-rule

s(U )
↑× V � (U × V ) + V

↑
. (4.20)

Both sides of (4.20) now have the same skeleton, and the measure of the left-
hand side is greater than that of the right-hand side.

Any implementation, however, must cope with the problem that under our
definition of wave-rules, a given rewrite rule can generate exponentially many
(in the size of the input rule) wave-rules. Computing and storing all possible
wave-rules is expensive both in time and space and complicates efficient wave-
rule lookup. For example, in the previous example, there are other possible
legal parsings such as:

s(U ) × V
↑
� U × V + V

↓
(4.21)

s(U ) × V
↑
� U × V + V

↓
(4.22)

s(U ) × V
↑
� U × V + V

↓
. (4.23)

These additional parsings are problematic, as there are often many of them.
However, they are admissible under our definition, and even find use on rare
occasion, e.g. in unblocking. Rather than trying to say in advance which wave-
rules could be useful in practice, and thereby should be returned by the parser,
our solution to this problem is to compute wave-rules dynamically, by parsing
“on demand”. We describe this in the following section.

4.8.1 Dynamic wave-rule parsing

The implementation of rippling in C LAM is based on a dynamic wave-rule
parser that, given a data-base of unannotated rewrite rule, applies them by an-
notating them only as required during rewriting. That is, given a term s[t] to
be rippled, we look for an unannotated rule l ⇒ r where l matches the erasure
of t . When this is the case, l ⇒ r is a candidate rewrite rule that can be further
processed to become a wave-rule. We proceed by computing annotations for l
that allow for an annotated match with t ; afterwards, based on these annota-
tions and their orientations, we compute annotations and orientations for r so
that l � r is a wave-rule.
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ripple(T,NT) :- % ripple at some term position
subterm(Pos,T,ST), % pick subterm ST in T at position Pos
pick_rule(L,R), % pick a rule L -> R
match_rule(L,R,ST,NR), % can rule be annotated to match ST
replace(Pos,T,NR,NT). % replace ST with NR yielding NT

match_rule(L,R,ST,NR) :-
copy_an(ST,L,AL), % copy annotations from ST onto L
amatch(AL,ST,Sigma), % annotated match of AL with ST
parse(AL,R,AR), % find annotations for R
apply_subs(Sigma,AR,NR) % apply sub to AR yielding NR

parse(AL,R,AR) :-
pick_an(R,A), % annotate R
skel_preserving(AL,A), % skeletons equal?
orient(AL,A,AR). % orient R

Figure 4.3 Wave-rule parser (top-level routines).

Figure 4.3 contains the Prolog program (we assume here that the reader is
familiar with Prolog) that implements the top-level routines for rippling based
on dynamic parsing. We illustrate the procedure through an example. Suppose

we wish to perform one step of rewriting of the term T , given by s( x )
↑ ×

s( y )
↑
. Moreover, suppose that our collection of unannotated rewrite rules

includes (4.18), the recursive definition of multiplication, which is defined by

s(U ) × V ⇒ (U × V ) + V .

ripple picks a subterm ST of T and a rule L ⇒ R. In our example, a so-
lution to this (there may be others that are returned on backtracking) is where
ST is T itself and the rule selected is the above one. In dynamic parsing we
need only generate annotations for the right-hand sides of wave-rules whose
left-hand sides arise during the proof. This is performed in match_rule,
which starts by copying annotations from ST onto L; this yields AL , an an-
notated version of L . Copying annotations fails if ST and L have erasures

that do not match. In our example, AL = s(U )
↑ × V . The program finds

an annotated match of AL with ST , generating a suitable substitution for the

rewriting step. In our example, we get the substitution x for U and s( y )
↑

for

V . Afterwards, parse is called to find an annotation of R with the same skele-

ton as AL , and with a maximum1 orientation, in this case (U × V ) + V
↑
.

1 Maximum under our order. When there are multiple choices with the same measure, the
program returns all of them on backtracking.
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The substitution is then applied to this annotated right-hand side, yielding

( x × s( y )
↑

) + s(y)

↑
. Note that substitution is that for annotated terms;

regular substitution would generate an improperly annotated result. The final
step in ripple replaces the rewritten subterm within the context of the su-
perterm from which it came, again using subterm replacement for annotated
terms.

The supporting subroutines for parsing are fairly straightforward. We used
generate (pick_an) and test (skel_preserving) to generate skeleton-
preserving annotations of the right-hand side of rewrite rules. This takes ex-
ponential time but the efficiency can be considerably improved by interleaving
generation and testing (i.e., testing during generation) or using dynamic pro-
gramming. In our experience, naı̈ve generate-and-test has acceptable perfor-
mance.

The routine orient finds an orientation of the wave-fronts on the right-
hand side that yields a measure smaller than the left-hand side. This can be
implemented naı̈vely by generating orientations (there are two possibilities for
each wave-front) and comparing the two sides of the proposed rule under the
given measure. By comparing possible orientations against each other, we can
return the maximum possible right-hand side orientations. As with annotation,
there are algorithms to implement orientation more efficiently. In practice, it is
often the case that all annotations are simple (single wave-holes), and then it is
possible to orient the right-hand side in linear time.

4.8.2 Sinks and colors

One kind of annotation we have not discussed in our measures or parsing is
sinks. This is deliberate, as we can safely ignore sinks in both the measure
and the parser. Sinks only serve to decrease the applicability of wave-rules by
creating additional preconditions; that is, we only ripple inwards if there is a
sink or nested wave-front within the wave-front (see Section 2.3). Hence sinks
decrease the search space of rippling, and termination without this restriction
implies termination with this restriction. The value of sinks is that they restrict
search without reducing the utility of rippling: their use guides rippling in a
way that allows the givens to be successfully used.

In Section 2.4, we also considered using different colors to distinguish
different skeletons. The motivation behind the introduction of colors is that
rippling only preserves a subset of the skeletons, and colors help prevent us
ending up with the wrong subset. Since colored rippling is a restriction of
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uncolored rippling, termination follows immediately from termination in the
uncolored case. Colors thus also increase the utility of rippling. Although col-
ors are not needed for showing the termination of rippling, they actually im-
plicitly arose in our discussion on termination. Each color has a single skeleton
and the reduction order defined in Section 4.7 compares the measures of dif-
ferent colors separately.

Colored skeletons also suggest an alternative formal account of wave an-
notation. Colors essentially allow us to ripple simultaneously towards several
different givens (or towards the same given in more than one way): each dis-
tinct ripple corresponding to a different color. Therefore, we could replace
multi-holed wave-fronts by multiple single-holed annotations, each of a dif-
ferent color. This would greatly simplify the wave-measure, since only simply
annotated terms would be required. However, we would then need to take into
account multiple simple wave-measures at each ripple step. We would need
to check that none of these wave-measures increased, and that at least one
decreased. This would effectively reintroduce the machinery of multi-sets of
wave-measures.



5

The scope and limitations of rippling

In this chapter we survey applications of rippling, both within and outwith
induction, successful and unsuccessful, by a wide variety of researchers. We
start with examples where rippling has successfully guided a proof attempt and
reduced the amount of search. We will see that rippling is both applicable and
successful in a surprisingly wide variety of situations.

However, we also survey some failures of rippling. The notion of failure
is a fuzzy one. In many of the cases discussed, we speculate on extensions of
rippling that might turn failure into success. We also give examples of where
proof critics can analyze the failure, and suggest a successful patch to the proof
attempt.

Section headers of successful examples are preceded by “Hit” and unsuc-
cessful ones by “Miss”.

5.1 Hit: bi-directionality in list reversal

The following rather artificial example was constructed to illustrate the ability
of rippling to use rewrite rules in both orientations while still guaranteeing
termination:

∀K :list(τ ).∀:list(τ ).qrev(qrev(K , L), [ ]) = rev(L) <> rev(rev(K ))).

The details of the step case of the inductive proof can be found in Figure 5.1.
Note that rewrite rules (5.7) and (5.8) are the same equation oriented in oppo-
site directions. They are applied at steps (5.3) and (5.2), respectively.

This example also illustrates that rippling is not affected by redundant rules.
Suppose the wave-rule

( X <> Y
↑
) <> Z ⇒ X <> ( Y <> Z

↓
) (5.1)

118
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Given:

qrev(qrev(tl, L), [ ]) = rev(L) <> rev(rev(tl))

Goal and ripple:

qrev(qrev( [hd| tl ] ↑
, �l�), [ ]) = rev(�l�) <> rev(rev( [hd| tl ] ↑

))

qrev(qrev(tl, �[hd|l]�), [ ]) = rev(�l�) <> rev( rev(tl) <> [hd] ↑
) (5.2)

qrev(qrev(tl, �[hd|l]�), [ ]) = rev(�l�) <> rev([hd]) <> rev(rev(tl))
↑

qrev(qrev(tl, �[hd|l]�), [ ]) = rev(�l�) <> rev([hd]) ↓
<> rev(rev(tl))

(5.3)

qrev(qrev(tl, �[hd|l]�), [ ]) = rev(�[hd] <> l�) <> rev(rev(tl))

qrev(qrev(tl, �[hd|l]�), [ ]) = rev(�[hd|l]�) <> rev(rev(tl))

Wave-rules:

qrev( X :: Y
↑
, Z) ⇒ qrev(Y, X :: Z

↓
) (5.4)

rev( X :: Y
↑
) ⇒ rev(Y ) <> X :: nil

↑
(5.5)

X <> ( Y <> Z
↑
) ⇒ ( X <> Y

↓
) <> Z (5.6)

rev(K ) <> rev(L)
↓⇒ rev( L <> K

↓
) (5.7)

rev( L <> K
↑
) ⇒ rev(K ) <> rev(L)

↑
(5.8)

Figure 5.1 Bi-directionality in a list-reversal example. The rippling proof starts
with the applications of the recursive definitions of qrev and rev (wave-rules (5.4)
and (5.5)) to the left- and right-hand sides, respectively. The lemmas (5.8), (5.6),
and (5.7) are then applied, in turn, to the right-hand side. Wave-rules (5.7) and
(5.8) are weakened during application, to merge one of their wave-holes into the
wave-front. Finally, the sink on the right-hand side is simplified to make it equal
to the one on the left-hand side.

were available. Wave-rule (5.1) is the associativity of <>, but oriented in the
opposite direction to (5.6) in Figure 5.1. Unannotated, wave-rule (5.1) would
apply at step (5.3), undoing the work of wave-rule (5.6). However, the mis-
match of the wave annotation prevents this application. It is not possible to
annotate rule (5.1) as a wave-rule so that it could undo the work of wave-rule
(5.6).
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Note that rippling can be used to apply lemmas like (5.6), (5.8), and (5.7)
as well as recursive definitions like (5.4) and (5.5).

5.2 Hit: bi-conditional decision procedure

The next example illustrates that rippling scales up to a large problem requir-
ing inductive proof. It arises in the synthesis of a decision procedure for the
bi-conditional fragment of propositional logic (Armando, et al. 1998). Rip-
pling does not completely automate the proof, but it does succeed in automat-
ing the proofs of all the key lemmas. One such lemma requires six inductions
and four generalizations, which rippling completes without backtracking. The
proof provides a nice illustration of the interplay of rippling, fertilization, and
generalization. This lemma is too long to give here, so we have selected a sim-
pler one for our illustration. The lemma

∀s.∀w.�(η(s, w)) � ∀w.∀w′.�(∀s.(s ∈ w → η(s, w′)))

is proved by structural induction on w, where �(A) means A is decidable
and s ∈ A means s occurs in A. The proof of the step case can be found in
Figure 5.2 on p136.

The same group also completed an even harder case study of the synthesis of
a unification algorithm, with a similarly successful performance from rippling
(Armando, et al. 1999).

5.3 Hit: reasoning about imperative programs

Andrew Ireland and Jamie Stark (Ireland & Stark, 1997; 2001; Stark & Ireland,
1998) have used rippling to reason about the correctness of imperative pro-
grams within the context of a Floyd–Hoare-style logic (Floyd, 1967; Hoare,
1969). Specifications in this logic are triples, {P}C{Q}, where P and Q de-
note predicates, while C is imperative program code; P and Q are known as
the precondition and postcondition, respectively. The operational interpreta-
tion of {P}C{Q} is as follows. If C is executed within a state where the pro-
gram variables satisfy precondition P , then, on the termination of C , the pro-
gram variables will satisfy postcondition Q. To illustrate, consider exp given
in Figure 5.3 on p137 for computing exponentiation. The standard approach to
verifying imperative code is to propagate pre-conditions and post-conditions
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so that every atomic statement is sandwiched between two assertions. Once
this is achieved, a set of verification conditions can be extracted automatically,
which collectively implies the correctness of the code with respect to the given
assertions. A verification condition is a purely logical statement and hence
it can be tackled directly using general-purpose theorem-proving techniques.
In the case of the exp example, the verification condition generated for the
while-loop takes the form:

r ∗ exp(x, y) = exp(X ,Y) ∧ (y > 0) →
(r ∗ x) ∗ exp(x, y − 1) = exp(X ,Y).

The proof of this verification conjecture can be presented in terms of rippling,
as shown in Figure 5.4 on p137.

Part of the given associated with such verification conditions (e.g. r ∗
exp(x, y) = exp(X ,Y)), is known as the loop invariant. This particular form is
called a tail-invariant. The challenge of imperative program verification comes
from the fact that discovering loop invariants is in general undecidable. Heuris-
tics for discovering loop invariants are well documented within the literature
(Gries, 1981; Kaldewaij, 1990; Katz & Manna, 1976) and the problem is es-
sentially the same as that of generalization encountered within proof by math-
ematical induction. For this reason, the technique for generalization described
in Section 3.5 can also be used to guide the discovery of tail-invariants, e.g.
the one given above. In addition, the basic idea underlying the induction re-
vision proof patch (see Section 3.3) has also been shown to have relevance
for the replacement of constants heuristic found within the literature (Stark &
Ireland, 1998). The novelty of this approach is that the discovery and verifica-
tion of loop invariants goes hand-in-hand, with the ripple method leading the
way.

5.4 Hit: lim+ theorem

Rippling has also been applied outwith inductive proofs. In this example we
see how it has been applied to theorems from analysis.

Lim+ is the limit theorem stating that “the limit of the sum is the sum of
the limits”. It can be formalized as

∀ f1 : R → R.∀ f2 : R → R lim
X → A

( f1(X) + f2(X))

= lim
X → A

f1(X) + lim
X →A

f2(X),
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where

lim
X → A

f (X) = L ↔
∀ε.(0 < ε → ∃δ.(0 < δ ∧ ∀X.(X �= A ∧ |X − A| < δ → | f (X)− L| < ε))).

Interest in this theorem was sparked by Bledsoe et al. (1972), who introduced
a “limit heuristic” to guide the proofs for a number of similar theorems, of
which Lim+ was the simplest. Lim+ then became a challenge problem for
uniform proof procedures without the use of the “limit heuristic” (Bledsoe,
1990). It proved to be very challenging. The resolution theorem prover Otter
(McCune, 1991), for instance, can only find a proof of the simplest of the six
axiomatizations in Bledsoe (1990), and even then it requires user guidance to
restrict function-nesting. Totally automatic proofs of the simplest two axiom-
atizations have been found, for instance, by Digricoli’s RUE prover; RUE can
also find proofs of the remaining four axiomatizations if a small amount of
user interaction is allowed (Digricoli, 1994).

A rippling proof for Lim+ is given in Yoshida et al. (1994). As this proof
is non-clausal it is not directly comparable to any of the axiomatizations in
Bledsoe (1990). The idea for using rippling on this theorem is due to Woody
Bledsoe. Interestingly, rippling seems to subsume some of the ideas implicit
in the “limit heuristic”. The rippling proof uses wave-rules loosely based on
the clausal axiomatization of Lim+ given in Bledsoe (1990) and requires no
search. The definitions of lim must first be unpacked. The limit of the sum
is treated as the goal and the limits of the two summands as the givens. A
difference unification algorithm (Basin & Walsh, 1993) (which combines the
computation of an embedding, as in Section 4.3.1, with a first-order unifier) is
used to annotate the goal with wave-fronts. The subsequent rippling proof is
shown in Figure 5.5 on p138, and the wave-rules used in this proof are given
in Figure 5.6 on p139.

5.5 Hit: summing the binomial series

Rippling has also been used in several different ways to sum series (Walsh et
al., 1992). For instance, the perturbate method makes an incremental change
to the sum, similar to an induction step, and then ripples the incremented sum
against itself. The standard form method ripples the sum against one or more
previously solved sums. We illustrate the standard form method below with a
binomial series problem.
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The series to be summed is
n∑

i = 0

(
i + 1
m + 1

)
, (5.17)

where

(
n
r

)
is the number of combinations of r things from n. The closed form

of this sum is found with the aid of the previously solved sum
N∑

i = 0

(
i
M

)
=

(
N + 1
M + 1

)
. (5.18)

Difference-unifying the goal (5.17) against the given, i.e. the left-hand side of
(5.18), annotates (5.17) as

n∑
i = 0


 i + 1

↑
⌊

m + 1
↑
⌋

 .

The subsequent rippling proof and the wave-rules used are given in Figure 5.7
on p140. After two fertilizations with the given, this yields the following closed
form for the sum (

n + 1
m + 2

)
+

(
n + 1
m + 1

)
.

5.6 Hit: meta-logical reasoning

Santiago Negrete (1994; 1996) has used rippling to reason in framework log-
ics. The rules of inference of an object-logic are represented as axioms in a
framework or meta-logic, in his case Edinburgh LF (Harper et al., 1992). A
theorem to be proved is first split into given and goal using introduction rules
of natural deduction calculi. The given and goal are then difference-unified,
which inserts wave annotations in both. Rippling is then used to reduce the dif-
ference between them. An example from a simple propositional logic is given
in Figure 5.8 on p141. Several other examples from other logics can be found
in Negrete’s thesis (Negrete, 1996). This example illustrates the use of rippling
on both the given and the goal.

5.7 Hit: SAM’s lemma

Jürgen Cleve and Dieter Hutter have used rippling to prove SAM’s lemma
(Cleve & Hutter, 1994); SAM’s lemma is a theorem known as Bumcroft’s



124 The scope and limitations of rippling

identity in lattice theory:

Let a and b be two elements of a modular lattice with unique complements, and a
and b their unique complements. Assuming the join and the meet of a and b exist,
does the join of a and b exist, and is it the unique complement of the meet of a and
b?

It was the first open conjecture to be proved by an automated theorem prover,
called SAM, hence the name, although user interaction was required (Guard
et al., 1969). It is used still as a standard test problem for resolution theorem
provers.

Let � and � be two associative, commutative, and idempotent functions
satisfying the absorption rules:

X � (X � Y ) = X X � (X � Y ) = X. (5.23)

Furthermore, there are top and bottom elements (0 and 1) of the lattice which
is assumed to be modular:

X � Y → X � (Y � Z) = Y � (X � Z). (5.24)

Finally, complements are defined by

comp(X, Y ) ⇔ (X � Y = 0 ∧ X � Y = 1). (5.25)

Then SAM’s lemma is stated as

comp(a, c�d)∧comp(b, c�d) → (a � (b�c))� (a � (b�d)) = a. (5.26)

Cleve and Hutter used nested applications of rippling within the INKA theo-
rem prover. The axioms and hypotheses are turned into wave-rules. The goal
to be proved is difference unified against a given, which is heuristically se-
lected from the axioms and hypotheses. Rippling is then used to reduce the
difference between them. If this ripple is blocked, then the term immediately
containing the blocked wave-front is difference unified against one side of a
heuristically selected equation. Rippling then proceeds to reduce the differ-
ence between them. This process may nest several levels deep before a proof is
found. An example of the rippling used on one level is given in Figure 5.9 on
p142.

5.8 What counts as a failure?

In the remainder of this chapter we survey some failures of rippling, but first
we discuss what we mean by this.
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As we have seen above, rippling is applicable wherever a goal is to be
proved with the aid of a structurally similar given, so it would be inappro-
priate to count as failures the many situations in which there is no structurally
similar given to ripple towards. We restrict our attention to situations in which
there are such givens and the goal can be rewritten so that some form of fer-
tilization is possible, but rippling fails to produce the required rewriting. We
can summarize this by saying that there is a fertilization proof but no rippling
proof.

In many cases, it will clarify the rippling failure to attempt unsuccessfully
to annotate the rewrite rules or the goals. Ill-annotations of this kind will be
preceded by ∗, similar to the way that linguists mark ungrammatical sentences.
The text will then explain why the annotation fails.

5.9 Miss: mutual recursion

It has been noted for some time that rippling fails for inductive proofs about
mutual recursive functions, and a wide variety of solutions have been proposed,
e.g. abstraction of the skeleton, temporary relaxation of skeleton preservation,
deriving wave-rules from mutually recursive definitions, generalization of the
goal, cycling the skeleton preservation between several givens, etc. Many of
these solutions involve extensions to rippling.

Here is a simple example of the problem. Consider the following two ver-
sions of the even predicate, one defined using mutual recursion and the other
without it:

evenm(0) ⇒ true

oddm(0) ⇒ false

∗ evenm( s( N )
↑
) ⇒ oddm(N ) (5.27)

∗ oddm( s( N )
↑
) ⇒ evenm(N ) (5.28)

evenr (0) ⇒ true

evenr (s(0)) ⇒ false

evenr ( s(s( N ))
↑
) ⇒ evenr (N ).

Note that the two ∗ed rules fail as wave-rules due to non-preservation of skele-
tons.
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Suppose we try to prove these two definitions equivalent, namely

∀x:nat. evenm(x) ↔ evenr (x).

The step case of a 2-step induction provides a non-ripple fertilization proof

evenm( s(s( x ))
↑
) ↔ evenr ( s(s( x ))

↑
)

∗ oddm( s( x )
↑
) ↔ evenr (x) (5.29)

evenm(x) ↔ evenr (x).

This fails to be a rippling proof because skeleton preservation fails in
line (5.29), where the skeleton of the left-hand side is oddm(x) instead of
evenm(x).

This particular example yields to a simple solution: derive some real wave-
rules by resolving (5.27) and (5.28) together.

evenm( s(s( N ))
↑
) ⇒ evenm(N ) (5.30)

oddm( s(s( N ))
↑
) ⇒ oddm(N ) (5.31)

An alternative rippling proof is available. However, this solution does not
work in general. Consider, for instance, mutual recursive definitions of the
form

f1( s( N )
↑
) ⇒ g1(N , f1(N ) , f2(N ) )

↑

f2( s( N )
↑
) ⇒ g2(N , f1(N ) , f2(N ) )

↑
.

A more general-purpose solution is to adapt the definition of a skeleton
so that mutually recursive functions are abstracted to the same equivalence
class. Within the skeleton, evenm and oddm would be abstracted to the same
equivalence class; the abstracted skeleton would now be preserved during the
proof, which could then be directed by rippling.

5.10 Miss: commuted skeletons

To deal with mutually recursive functions it is not always necessary to abstract
the skeleton to preserve it. The following example shows that a lost skeleton
can sometimes be restored.
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Consider the theorem

∀n:nat. evenm(n) ∨ oddm(n),

where evenm and oddm are as defined in Section 5.9. The step case of a
proof of this theorem by structural induction gives the non-rippling fertilization
proof

evenm(�s( n )�) ∨ oddm(�s( n )�)
∗ oddm(n) ∨ evenm(n) (5.32)

evenm(n) ∨ oddm(n). (5.33)

This fails as a rippling proof because the skeleton is disrupted in line (5.32).
However, commuting it in line (5.33) restores the original skeleton and allows
fertilization. The concept of rippling proof might be extended to include this
example if skeleton preservation were defined modulo the commutativity of ∨.
Doubtless there are similar examples involving other commutative functions,
predicates, or connectives. Note that the alternate wave-rules, (5.30) and (5.31),
will yield an alternative rippling proof in this case, but this solution is not
available in general.

5.11 Miss: holeless wave-fronts

Another problem is caused by ill-formed wave-fronts. Consider the following
rewrite rules, which cannot be annotated as wave-rules.

∗ length(W ) = 6 → split list( H :: T
↑
, W )

⇒ W :: split list(T, H :: nil
↓
)

↑

∗ D = 6 → new split( H :: T
↑
, W, D)

⇒ W :: new split(T, H :: nil
↓
, 1

↓
)

↑

The function split list takes a list and splits it into a list of sublists of 6 ele-
ments each (or possibly less than 6 for the last one). The first argument is the
input list, and the second is an accumulator of the current sublist; new split
is a more efficient version of the same function, which keeps a running
count of the current sublist length in its third argument, rather than having to
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recalculate it each time. The two rules above arise from corresponding cases
of the definitions of these two functions. In these cases, the current sublist has
reached length 6. This sublist is then attached to the output and a new sublist is
started.

These rules both fail to be wave-rules because their annotation is ill-formed;
there are no wave-holes in their inward wave-fronts. Without such wave-holes,
no skeletons can be defined for the right-hand sides. This phenomenon usually
happens in the context of accumulators. The inductive proof still goes through
because the free variable arising from the accumulator is able to match with
the holeless wave-front, as in the example below.

A non-rippling fertilization proof arises in the proof of

∀x:list, w:list. new split(x, w, length(w)) = split list(x, w).

In the case length(w) = 6 of the step case, we get the proof steps

new split( h :: t
↑
, �w�, length(�w�)) = split list( h :: t

↑
, �w�)

∗ new split( h :: t
↑
, �w�, length(�w�)) = w :: split list(t, h :: nil

↓
)

↑

new split(h :: t, w, length(w)) = w :: new split(t, h :: nil, length(h :: nil))

w :: new split(t, h :: nil, 1) = w :: new split(t, h :: nil, 1).

This fails to be a rippling proof: (a) because the rewrite rules used are not
wave-rules, and (b) because skeleton preservation cannot be checked since it
is not clear what the skeletons are in the presence of sinks.

One possible solution is based on a revised definition of sink annotation
and, hence, skeleton. Each sink is labeled by the meta-variable to which it
corresponds in the given. This label is used to form the skeleton. This enables
us to annotate the two rules above as wave-rules, that is

length(W ) = 6 → split list( H :: T
↑
, �W�W )

⇒ W :: split list(T, �H :: nil�W )
↑

D = 6 → new split( H :: T
↑
, �W�W �D�D)

⇒ W :: new split(T, �H :: nil�W , �1�D)
↑
.
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The skeletons on each side of these two rules are split list(T, W ) and
new split(T, W, D), respectively, so the skeleton is preserved in both rules.
This change of annotation also turns the above proof steps into the following
rippling proof.

new split( h :: t
↑
, �w�W , length(�w�W )) = split list( h :: t

↑
, �w�W )

new split( h :: t
↑
, �w�W , length(�w�W )) = w :: split list(t, �h :: nil�W )

↑

new split(h :: t, w, length(w)) = w :: new split(t, h :: nil, length(h :: nil))

w :: new split(t, h :: nil, 1) = w :: new split(t, h :: nil, 1).

We are not aware of any disadvantages of this modified definition of sink an-
notation.

5.12 Miss: inverting a tower

The following non-rippling fertilization proof arises in the application of linear
logic to recursive planning (Cresswell et al., 1999).

Linear logic allows reasoning about limited resources. Resources are rep-
resented as hypotheses of the conjecture, whose proof is sought. Hypotheses
representing limited resources cannot be used in a proof more than once. In
planning applications, the conjecture asserts that the goal state can be reached
from the initial state, where the reachability is asserted using the linear logic
implication �. A concrete plan can then be recovered from a proof of the
conjecture.

Consider the conjecture

∀t.∀a. tower(t) ⊗ hn ⊗ tower(a) (5.34)

� tower(empty) ⊗ tower(revput(t, a) ⊗ hn),

where the following rewrite rules are available

∗ tower( H :: T
↑
) ⊗ hn ⇒ tower(T ) ⊗ hold(H) (5.35)

∗ hold(H) ⊗ tower(T ) ⇒ hn ⊗ tower( H :: T
↓
) (5.36)

revput( H :: T
↑
, A) ⇒ revput(T, H :: A

↓
). (5.37)

These rewrite rules define the operators available to the recursive planner. Here,
tower(l) means that l is a tower of blocks; hn means that the robot’s hand is
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free; revput(l, a) is the list a with the reverse of the list l appended to its front,
and hold(h) means that the robot is holding block h. So:

• Rule (5.35) describes the robot’s ability to pick up the top block of a tower.
• Rule (5.36) describes the robot’s ability to place a block it is holding on top

of a tower.
• Rule (5.37) is the step case of a recursive definition of revput.

However, note that rule (5.35) is not skeleton preserving and rule (5.36) is
neither skeleton preserving nor measure decreasing.

The non-rippling fertilization step case of the proof of (5.34) by list induc-
tion is

(tower( h :: t
↑
) ⊗ hn) ⊗ tower(�a�)

� tower(empty) ⊗ (tower(revput( h :: t
↑
, �a�)) ⊗ hn)

∗ (tower(t) ⊗ hold(h)) ⊗ tower(�a�)
� tower(empty) ⊗ (tower(revput(t, �h :: a�)) ⊗ hn)

∗ tower(t) ⊗ (hold(h) ⊗ tower(�a�))
� tower(empty) ⊗ (tower(revput(t, �h :: a�)) ⊗ hn)

∗ tower(t) ⊗ (hn ⊗ tower(�h :: a�))
� tower(empty) ⊗ (tower(revput(t, �h :: a�)) ⊗ hn)

∗ (tower(t) ⊗ hn) ⊗ tower(�h :: a�)
� tower(empty) ⊗ (tower(revput(t, �h :: a�)) ⊗ hn).

Each of the ∗ed steps fails to be skeleton preserving.
A partial solution is available if we move the hn and hold expressions from

the skeletons to the wave-fronts. Rules (5.35) and (5.36) become

tower( H :: T
↑
) ⊗ hn

↑
⇒ tower(T ) ⊗ hold(H)

↑
(5.38)

∗ hold(H) ⊗ tower(T )
↓ ⇒ hn ⊗ tower( H :: T

↓
)

↑
, (5.39)

although rule (5.36) still fails to be measure decreasing.
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The step case becomes

( tower( h :: t
↑
) ⊗ hn

↑
) ⊗ tower(�a�)

� tower(empty) ⊗ ( tower(revput( h :: t
↑
, �a�)) ⊗ hn

↑
)

( tower(t) ⊗ hold(h)
↑
) ⊗ tower(�a�)

� tower(empty) ⊗ ( tower(revput(t, �h :: a�)) ⊗ hn
↑
)

tower(t) ⊗ ( hold(h) ⊗ tower(�a�) ↓
)

� tower(empty) ⊗ ( tower(revput(t, �h :: a�)) ⊗ hn
↑
)

∗ tower(t) ⊗ ( hn ⊗ tower(�h :: a�) ↑
)

� tower(empty) ⊗ ( tower(revput(t, �h :: a�)) ⊗ hn
↑
)

∗ ( tower(t) ⊗ hn
↑
) ⊗ tower(�h :: a�)

� tower(empty) ⊗ ( tower(revput(t, �h :: a�)) ⊗ hn
↑
).

The last two steps still fail to be measure decreasing, but the skeleton-
preservation problems are fixed.

The above problems are not specific to linear logic, but are similar to the
problems with mutual recursion, described in Section 5.9, in that hn and
hold(h) are closely related (e.g. hn could be defined as ∀h.¬hold(h)), and the
rewrite rules tend to switch between these alternative representations disrupt-
ing the skeleton. More of the skeleton would be preserved if hn was replaced
by ∀h.¬hold(h).

5.13 Miss: difference removal

The various difference-removing techniques, such as E-resolution (Morris,
1969), RUE resolution (Digricoli, 1979) and equality graphs (Bläsius & Siek-
mann, 1988), provide a family of non-rippling fertilization proofs. In differ-
ence removal, wave-fronts are transformed into skeleton rather than rippled
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out of the way. To illustrate this, consider the conjecture

∗ (∀w.∀z. p( g(a, w)
↑
, z ↑

)) → p( f (e)
↑
, b

↑
),

where the following equations are available as rewrite rules:

g(X, X) = h(X, b), h(U, V ) = h(V, U ), h(b, a) = f (b), b = c, and c = e.

This yields the following non-rippling fertilization proof

∗ p( f (e)
↑
, �b�)

∗ p( f (c)
↑
, �b�)

∗ p( f (b)
↑
, �b�)

∗ p( h(b, a)
↑
, �b�)

∗ p( h(a, b)
↑
, �b�)

p(g(a, �a�), �b�).
At this point, the goal can be fertilized with the given.

This fails to be a rippling proof for two reasons: the ill-formedness caused
by the holeless wave-fronts, and the non-decrease of the wave-measure. As
discussed in Section 5.11, the definition of wave annotation can be readily
extended to include holeless wave-fronts. We have also experimented with a
wave-measure that can reward the transformation of wave-fronts into skeletons
as well as the moving of wave-fronts in desirable directions (Bundy, 2002b).
These wave-measures succeed in integrating difference removal with differ-
ence moving (rippling), but at the cost of non-termination.

5.14 Best-first rippling

We have experimented with a best-first approach to rippling, which provides a
general solution to many of the rippling failures discussed above. By regarding
the preservation of the skeleton and a decrease in the wave-measure as being
merely heuristics for preferring one rewrite over another, we can tolerate ei-
ther of these deviations from rippling when no rippling step is available, or
when all rippling steps have been tried and failed. In the worst-case, rippling
will degrade gracefully into conventional rewriting. Thus, all non-rippling
fertilization proofs will be encompassed within the wider remit of best-first
rippling.
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The down-side of best-first rippling is that the search space is significantly
increased, although rippling provides some heuristics to control the increased
search. It is also less obvious when to fire the critics, since rippling will rarely
completely fail. Critic preconditions have to be recast as heuristics that may
now fire in preference to some of the weaker forms of rippling.

5.15 Rippling implementations and practical experience

We conclude this chapter with some remarks on the implementations of rip-
pling and our experiences with the resulting systems.

Rippling has been implemented in two different ways: the Edinburgh C LAM
family uses context markers and the Saarbrücken INKA system uses symbol
markers. For more than 10 years, these systems have been used in various aca-
demic and industrial case-studies. In the early 1990s, INKA was integrated into
the VSE system, which is a tool for formal software development. Since its
first release in 1994, VSE has been used in various industrial applications in-
cluding a scheduling system for distributed radio broadcasting, access control
software for nuclear power plants, security models for various smartcard appli-
cations, and communication and security protocols. In each of these industrial
case-studies, typically half of the development time was spent using the VSE

tool to prove the proof obligations that arose. As a consequence, thousands of
proofs have been completed, many of which were inductive proofs concerned
with the properties of specified abstract data types. In more than 95 per cent
of these inductive proofs, rippling is successful, provided that appropriate lem-
mas (to generate appropriate wave-rules) are available. Hutter (1997) gives an
overview of the time the system needs to prove various inductive theorems.
Five years later, making use of hardware improvements, the system typically
needed only between 0.001 and 0.1 s to prove each of the theorems Hutter
mentions. Even if rippling fails to enable the use of the induction hypothesis,
this failure usually becomes obvious in under 1 s. Thus, rippling can be imple-
mented efficiently enough for large practical applications. Rippling imposes
severe constraints on the proof search, and some of these restrictions may be
lifted to enlarge the search space in order to find other rippling-related proofs.
For example, we may allow the system to manipulate wave-fronts to unblock
rippling.

In terms of industrial strength loop invariant verification, rippling has been
successfully applied (Ireland et al., 2004) to SHOLIS (King et al, 2000).
SHOLIS is a safety-critical application which was developed, using the
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SPARK approach (Barnes, 2003), to meet the UK Ministry of Defense Interim
Defense Standards 00-55 and 00-56.

Some improvements have been implemented in order to overcome com-
binatorial explosions during the generation of wave-rules. For instance, the
specification of a record data type rec results in an equation

∀x : rec. f (g1(x), . . . , gn(x)) = x

with g1, . . . , gn denoting the access functions to each of the fields of the record
x . Computing the wave-rules in a naı̈ve way results in about 2n − 1 different
wave-rules depending on which occurrences of x are considered as part of
the skeleton. As a consequence, weakening of a skeleton was built into the
matching algorithm, so that the wave-rule with the largest possible skeleton

f (g1( x ), . . . , gn( x )) = x , replaces all other possible wave-rules.
The failures of rippling in these examples are typically due to:

• missing wave-rules, because the specification of the theory lacked appropri-
ate axioms or lemmas;

• the use of an inappropriate induction ordering or a missing case analysis that
would enable the application of a suitable conditional wave-rule; or

• the problem that recursive function definitions (especially using mutual
recursion) do not satisfy the syntactical requirements to generate wave-
rules.

In many of these cases, critics have been developed to remedy these failures.

5.16 Summary

In this chapter we have illustrated rippling, both successful and unsuccessful
applications, on a series of examples. These examples have served to make
the following points. First, rippling is widely applicable both within and out-
with inductive proof. Second, rippling improves on symbolic evaluation by the
application of (recursive) definitions because it is also able to use previously
proved lemmas. Third, rippling improves on conventional rewriting to normal
form in three respects: (a) some undesirable rewrites are prevented by the wave
annotation; (b) rippling is able to use rewrite rules in both orientations with-
out loss of termination; and (c) rippling has a uniform termination proof that
does not require modification when new wave-rules are added. Finally, when
rippling fails, an analysis of the partial proof is often able to suggest a suitable
patch, e.g. in the form of speculating a missing lemma or a generalization of
the induction formula (cf. Chapter 3).
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However, there are still some non-rippling fertilization proofs, that is proofs
where we would like rippling to apply but it appears not to. Fortunately, there
is hope. Deeper analysis suggests that there are ways to extend rippling in or-
der to encompass these proofs as rippling proofs. Among the techniques that
enable us to extend rippling, best-first rippling stands out as having wide ap-
plicability. It is also necessary to extend wave annotation to permit holeless
wave-fronts. Wave annotation via embeddings is also important as a way of
extending rippling to higher-order logic.

Some of the rippling extensions proposed as solutions to rippling failures
come at a price, namely increased search. It may be possible to recognize when
these extensions are needed and only use them when it is necessary to do so.
For instance, mutual recursion can be recognized syntactically, and rippling
can be adapted dynamically to cope with it.
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Givens:

�(∀s.(s ∈ w1 → η(s,w′))) �(∀s.(s ∈ w2 → η(s,w′)))

Goal and ripple:

�(∀s.(s ∈ w1 ⇐⇒ w2
↑ → η(s,w′)))

�(∀s.( s ∈ w1 ∨ s ∈ w2
↑ → η(s,w′)))

�(∀s.( s ∈ w1 → η(s,w′) ∧ s ∈ w2 → η(s,w′)
↑
))

�( ∀s.(s ∈ w1 → η(s,w′)) ∧ ∀s.(s ∈ w2 → η(s,w′))
↑
)

�(∀s.(s ∈ w1 → η(s,w′))) ∧ �(∀s.(s ∈ w2 → η(s,w′)))
↑

Wave-rules:

S ∈ W1 ⇐⇒ W2
↑ ⇒ S ∈ W1 ∨ S ∈ W2

↑
(5.9)

A ∨ B
↑ → C ⇒ A → C ∧ B → C

↑
(5.10)

∀x.( A ∧ B
↑
) ⇒ ∀x.A ∧ ∀x.B

↑
(5.11)

�( A ∧ B
↑
) ⇒ �(A) ∧ �(B)

↑
(5.12)

Figure 5.2 A rippling sequence from a decision procedure synthesis.

⇐⇒ is the constructor of bi-conditional formulas. The proof proceeds by the ap-
plication of wave-rules (5.9), (5.10), (5.11), and (5.12). Wave-rule (5.9) is part of the
definition of ∈. Wave-rules (5.10), (5.11), and (5.12) are domain-independent logical
wave-rules. Sink markers have been omitted to avoid clutter, since sinks are not used
in this example.
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exp: {x = X ∧ y = Y}
r := 1;
while (y > 0) do
begin

r := r ∗ x ;
y := y − 1

end
{r = exp(X ,Y)}

Figure 5.3 Algorithm for computing exponentiation: x , y, and r denote program
variables while X and Y are constants, sometimes referred to as ghost variables.
Ghost variables are used within the post-condition to refer to the initial values of
programs variables. The function exp, which appears within the post-condition, is
defined as follows:

Y = 0 → exp(X, Y ) = 1

Y > 0 → exp(X, Y ) = X ∗ exp(X, Y − 1)

Given:

r ∗ exp(x, y) = exp(X ,Y)

Goal and ripple:

( r ∗ x)
↑ ∗ exp(x, y − 1

↑
) = exp(X ,Y)

r ∗ (x ∗ exp(x, y − 1
↑
) )

↓
= exp(X ,Y)

r ∗ exp(x, y) = exp(X ,Y)

Wave-rules:

( X ∗ Y )
↑ ∗ Z ⇒ X ∗ (Y ∗ Z )

↓

Y > 0 → X ∗ exp(X, Y − 1
↑
)

↓
⇒ exp(X, Y)

Figure 5.4 The invariance of a loop invariant. The given is the value of the loop
invariant before a traversal of the while loop and the goal is its value afterwards.
The wave-rules are derived from the associativity of multiplication and the defini-
tion of exp.
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X + Y
↑ − A + B

↑ ⇒ ( X − A ) + ( Y − B )
↑

(5.13)

| X + Y
↑ | ⇒ |X| + |Y | ↑

(B-8)

X + Y
↑

< E ⇒ X <
E
2

↓
∧ Y <

E
2

↓
↑

(B-11.3)

A → B ∧ C
↑ ⇒ ( A → B ) ∧ ( A → C )

↑
(5.14)

∀X. A ∧ B
↑ ⇒ ∀X. A ∧ ∀X. B

↑
(5.15)

[∀X.∀Y. A(X) ∧ 0 < Y < X → A(Y )] ∧
[∀X.∀Y. B(X) ∧ 0 < Y < X → B(Y )] →

∃X.0 < X ∧ A ∧ B
↑ ⇒ ∃X.0 < X ∧ A ∧ ∃X.0 < X ∧ B

↑
(5.16)

Figure 5.6 Wave-rules used to prove lim+.

These are the wave-rules used to prove Lim+ in Figure 5.5. They are applied in order
except for the last two steps, which apply wave-rules (5.14) and (5.15) again. The num-
bers (B-n) by some wave-rules correspond to some of the clauses in Bledsoe (1990).
Note that there can be no corresponding rules for the logical wave-rules, (5.14) and
(5.15) since Bledsoe’s axioms are in clausal form. These two wave-rules correspond to
part of the process of clausification itself. Wave-rules (5.13) and (5.16) are special to
this problem. Note that the value of X on the left-hand side of (5.16) is the minimum
of its two values on the right-hand side. This rule is related to clause 10.3 in Bledsoe
(1990).
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Given:
∑N

i = 0

(
i

M

)
Goal and ripple:

n∑
i = 0


 i + 1

↑⌊
m + 1

↑
⌋



n∑
i = 0

(
i

�m + 1�
)

+
(

i
�m�

) ↑

n∑
i = 0

(
i

�m + 1�
)

+
n∑

i = 0

(
i

�m�
) ↑

Wave-rules: 
 A + 1

↑

B + 1
↑


 ⇒

(
A

B + 1
↓
)

+
(

A
B

) ↑

(5.19)

B∑
i = A

U + V
↑ ⇒

B∑
i = A

U +
B∑

i = A

V

↑

(5.20)

Figure 5.7 Summing series using rippling. The first wave-rule is a simple bino-
mial identity, and the second a distributive law of

∑
over +. These are applied in

turn. The final goal contains two copies of the given and can be fertilized twice.
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Given and ripple:

true( a ⊃ b ∧ b ⊃ c
↑
)

true( a ⊃ b
↑
) and true( b ⊃ c

↑
)

true(a) → true(b)
↑

and true(b) → true(c)
↑

Goal and ripple:

true( a ⊃ c
↑
)

true(a) → true(c)
↑

Wave-rules used:

true( A ⊃ B
↑
) ⇒ true(A) → true(B)

↑

true( A ∧ B
↑
) ⇒ true(A) (5.21)

true( A ∧ B
↑
) ⇒ true(B) (5.22)

Figure 5.8 Rippling in meta-logical reasoning.

The term true is a meta-logical truth predicate; ⊃ is implication in the object-logic,
and → is implication in the meta-logic. In Negrete (1994) formulas are also annotated
with polarity markers, but these are omitted here for the sake of uniformity. Note that
rippling takes place in both the given and the goal.
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Given: (b  c)  d = 0
Additional hypothesis: a � (c � d) = 0
Goal, ripple and fertilize:

(a � (b  c) )
↑  (a � (b � d ))

↑ = a

a � ((b  c)  (a � (b � d ))
↑

)

↑
= a

...

a � ((b  c)  (a � (c � d)) � (b � d )
↑

)

↑
= a

a � ((b  c)  (0 � (b � d ))
↑

)

↑
= a

a � ((b  c)  (b � d )
↑

)

↑
= a

a � (b � ((b  c)  d) )
↑ ↑

= a

a � ((b  c)  d)
↑ = a

a � 0
↑ = a

a = a

Wave-rules:

0 � X
↑ ⇒ X

(X � X )
↑ ⇒ X

(X � X )
↑ ⇒ X

X � ( X � Y )
↑ ⇒ X

. . . . . . . . .

(X � Z) = X → (X � Y )
↑  Z ⇒ X � (Y  Z)

↑

Figure 5.9 Rippling in SAM’s lemma. The given is a part of the hypothesis of the
theorem. We use rippling to enable its use on the left-hand side of the goal (red
skeleton). After its application, embedding the left-hand side into the right-hand
side of the goal results in the blue skeleton and rippling is used again to remove the
differences. Rippling is done modulo a built-in associative, commutative idempo-
tent matcher. This makes the ripple steps hard to follow. Above, both rules and
goal have been modified slightly to minimize the need for commutativity to make
the rippling steps easier to follow.
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Givens: size(l) = count(nodes in(l))
size(r) = count(nodes in(r))

Goal: size( node(n, l , r )
↑
) = count(nodes in( node(n, l , r )

↑
))

Ripple:

s( size(l) + size(r) )
↑ = count( insert (n, nodes in(l) ∪ nodes in(r) )

↑
)

s( size(l) + size(r) )
↑ = s( count( nodes in(l) ∪ nodes in(r)

↑
) )

↑

size(l) + size(r)
↑ = count( nodes in(l) ∪ nodes in(r)

↑
)

↑

size(l) + size(r)
↑ = count(nodes in(l)) + count(nodes in(r))

↑

size(l) = count(nodes in(l)) ∧ size(r) = count(nodes in(r))
↑

Figure 5.10 Rippling in color. This is Figure 2.2 on p40 reproduced using actual
colors rather than superscripts. The {r, b} label is indicated in purple.
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From rippling to a general methodology

This book has described rippling: a technique for guiding proof search so that
a given may be used to prove a goal. We will investigate in this chapter other
areas of automated reasoning involving heuristic restrictions on proof search.
We will use problems from these areas to illustrate how the ideas behind rip-
pling can be generalized and used systematically to understand and implement
many different kinds of deductive reasoning.

• In many proof calculi, the application of rules in certain situations is known
to be unnecessary and can be pruned without sacrificing completeness. For
example, in basic ordered paramodulation and basic superposition (Bach-
mair et al., 1992; Nieuwenhuis & Rubio, 1992), paramodulation is forbid-
den into terms introduced by applying substitutions in previous inference
steps.

• In tactic-based theorem-proving, it is sometimes useful to track parts of
the conjecture and use this to restrict proof search. Focus mechanisms
(e.g. Robinson & Staples, 1993; Staples, 1995) for this purpose have been
developed and hardwired into several calculi.

• In analogical reasoning, a previous proof (the source proof) is abstracted to
serve as a proof template for subsequent conjectures (the target conjecture).
Additional information about the source proof (in addition to the proof tree)
is typically required to compute an abstract proof sketch (Kolbe & Walther,
1994; 1998) for a related target conjecture.

In each of the above techniques, there is a need to encode and maintain
information about individual terms and symbols and their inter-relationships.
Historically, each technique provided an individual solution to this general
problem by introducing a specialized calculus. Inspired by the rippling cal-
culus, we will outline a methodology to augment logic calculi with a generic
mechanism to maintain such strategic information. This allows us to describe

144
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various control strategies, including those mentioned above, as abstractions on
annotated formulas.

The key idea behind the general methodology that we propose is that an-
notations can be used to distinguish different occurrences of the same symbol.
For instance, in rippling the same function symbol may occur in a wave front
and a skeleton, and rippling treats these occurrences differently. Abstractions
on annotated terms (like the notion of a skeleton in rippling) can map the same
term in different ways, depending on how they are annotated.

To realize this key idea, an abstraction on annotated terms denotes a map-
ping on occurrences of unannotated terms rather than a mapping on the terms
themselves. Suppose we want to abstract two occurrences of the same sym-
bol in a different way. Attaching different annotations to different occurrences
of the same symbol, an abstraction (operating on annotated terms) is able to
deal with all these occurrences individually. As mentioned in Section 4.2.2,
each rippling step amounts to a rewrite step in the corresponding unanno-
tated calculus. Annotations serve to impose additional restrictions on possible
rule applications. We are free to use arbitrary information that can be encoded
into annotations to restrict the search space. This allows us to formulate many
existing proof-search strategies in terms of abstractions on annotated terms.
The reason is that, in many cases, the proof search depends on the history or
the “semantic context” of individual terms. Annotations provide a technical
means to encode such information about a term and associate it with occur-
rences of individual subterms or even function symbols. By integrating a term
and the information about it into a single annotated term, we can manipu-
late both term and semantic information in a uniform way. Annotated calculi
provide inference rules that infer new annotated formulas from existing ones,
i.e. they infer new formulas together with corresponding deduced semantic in-
formation. Therefore, annotations provide a technical means to formalize and
implement new proof strategies that rely on context or domain-specific knowl-
edge encoded into annotations, which is automatically propagated during the
deduction.

After an introduction to a generalized notion of annotations in Section 6.1,
in Section 6.2 we will provide different examples of how to encode strategic
knowledge into annotations. Our examples are proof strategies from differ-
ent areas, starting with the well-known example of rippling, and ending with
reuse of proofs based on analogical reasoning. After the discussion of rippling,
the examples are selected with respect to the complexity of the annotations
used to encode the necessary knowledge. In Section 6.3 we will show how to
define appropriate abstractions of annotated terms to support the implemen-
tation of various proof strategies. To simplify matters, we will use the same
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examples as presented in Section 6.1. Formalizing the proof strategies with the
help of annotations, we will describe the strategies in terms of abstractions on
annotated formulas. Rather than presenting isolated solutions to various prob-
lems (e.g. basic paramodulation), the examples illustrate the bandwidth of pos-
sible applications for using annotations to guide proof search via abstractions.
Moreover, together with Section A1.2, our ideas provide the basis of a uni-
form framework for describing and implementing application-specific proof
strategies based on contextual knowledge. We will finish this chapter with a
description of different implementations of this methodology.

6.1 A general-purpose annotation language

In order to extend rippling to a general methodology, we start with a discus-
sion of suitable calculi to encode and maintain strategic information. In Sec-
tion 4.4.1, we contrasted two approaches to annotation: context markers and
symbol markers. Although we found it convenient to describe rippling using
context markers, the symbol-marking approach is more readily generalized, so
we will adopt it here for our general methodology.

What language should be used to mark symbols? In the context-marking
approach, we used a finite set of ground annotations (wf up, wf down , wh) to
encode the embeddings of the given in the goal. However, when annotating
wave-rules, we ran into the problem of weakening wave-fronts, as described
in Section 2.4.3. The reason is that the skeleton of a wave-rule encodes the
maximal similarity of the left- and right-hand sides. However, the skeleton of a
wave-rule may be a proper superset of the skeleton of the goal to which it is ap-
plied. In this case, we have to weaken the skeleton of the wave-rule by convert-
ing corresponding skeleton parts of left- and right-hand sides to wave-fronts.
To facilitate this, we introduce annotation variables, which can be instantiated
to either wave-fronts or wave-holes during annotated matching. These annota-
tion variables are used to annotate symbols in wave-rules.

Rippling propagates information about subterm relations between a goal
and a given during rewriting. We only have to consider two cases: either a
symbol occurrence belongs to the skeleton or it does not. However, in the gen-
eral case, we may want to encode more complex information. To implement,
for example, reuse by analogy, as described in Section 6.2.4, we need to ac-
cumulate information about individual symbol occurrences during rewriting.
We will need a more expressive annotation language than just a fixed set of
annotation constants. Therefore we now introduce the notion of a first-order
language parameterized by an annotation signature.



A general-purpose annotation language 147

Definition 13 Let � be an annotation signature and V be a set of annotation
variables. Then the term language T�(V) is the set of annotations.

We use Greek letters such as α, β, and γ to denote annotation variables in
V and use a sans serif font for elements of the annotation signature �, such
as c or d. Using annotations as symbol markers (cf. Section 4) we redefine
annotated terms as follows.

Definition 14 Let T�(V) be a set of annotations, � be a signature, and X be
a set of variables such that �, V , � and X are pairwise disjoint. The set of
annotated terms A is the smallest set where

• U c ∈ A if U ∈ X , c ∈ T�(V), and
• f d(t1, . . . , tn) ∈ A if each ti ∈ A, f ∈ �, and d ∈ T�(V).

Abusing notation, we use T�(V)(t) to refer to the annotation of the top-level
symbol of t , e.g. T�(V)( f c(ab)) = c = T�(V)(U c). Moreover, we denote the
set of all variables of an annotated term t by X (t).

Analogously to the erasure function based on context markers, we define
erasure using symbol markers as follows.

Definition 15 The erasure function erase : A → T�(X ) is defined by
erase(U c) = U and erase( f c(t1, . . . , tn)) = f (erase(t1), . . . , erase(tn)) for
all U ∈ X , c ∈ T�(V) and f ∈ �.

In Section A1.2, we will formalize annotated substitution for symbol markers.
For the moment, we require only that an annotated substitution satisfies the
following substitutability property.

Lemma 5 (substitutability property) Let ρ : A → A be an annotated sub-
stitution. Then, for all annotated terms t1 and t2, it holds that

erase(t1) = erase(t2) implies erase(ρ(t1)) = erase(ρ(t2)).

Analogously to Chapter 4, we define annotated rewriting based on anno-
tated matching and annotated substitution. Let t ⇒ t[ρ(r)]p be an arbitrary
rewrite using the rewrite rule l ⇒ r , where t and t[ρ(r)]p coincide in all po-
sitions that are independent of p and the annotations of corresponding symbol
occurrences coincide. The annotated terms t and t[ρ(r)]p differ only in the
subterm at position p, which is the instantiated left-hand side ρ(l) in t and the
instantiated right-hand side ρ(r) in t[ρ(r)]p. Analogously, the annotations of
subterms t/p and ρ(r) are instantiations of annotations of the corresponding
sides of the rewrite rule l ⇒ r . Thus, the annotations of r determine the anno-
tations of the new subterm ρ(r). Using the same annotation variables on both
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sides of a rule allows us to transfer information from the replaced subterm to
the replacing subterm, since the matcher will instantiate these annotation vari-
ables when applying the rewrite rule. Hence, parts of the annotations in t/p,
which are matched by an annotation variable in l, will occur again in ρ(r).
Hence, also, depending on how we annotate the rewrite rule l ⇒ r , we are
able to propagate different kinds of information during rewriting.

Since we do not need all the technical details of such an annotated calcu-
lus in the following sections, we refrain from discussing more details within
this section. The reader is referred to Section A1.1 for the complete formal
definition of an annotated first-order calculus.

6.2 Encoding constraints in proof search: some examples

To motivate our generalization of rippling, we present various examples where
strategic information is used to guide proof search. For each example we show
how this information can be maintained during rewriting. We show how dif-
ferent ways of annotating rewrite rules realize different kinds of information
propagation. For each of these illustrations we prove the same theorem

s(x) + s(y) = s(s(x) + y) (6.1)

with the help of the following two rewrite rules

s(U ) + V ⇒ s(U + V ) (6.2)

x + s(V ) ⇒ s(x + V ). (6.3)

Here U and V denote meta-variables that can be instantiated by unification,
and x denotes a term variable that is treated as a constant (cf. Section 2.2.2).

6.2.1 Example 1: encoding rippling and difference reduction

In this example, we introduce our general-purpose annotation language by con-
sidering a familiar application of rippling.

Suppose that formula (6.1) denotes the goal of the inductive theorem x +
s(y) = s(x + y), while (6.3) plays the role of the given. Then, using context
markers, we would annotate the goal as

s( x ) + s(y) = s( s( x ) + y). (6.4)

Since rippling has to preserve the skeleton, we must track each symbol oc-
currence of the skeleton in each rewrite step. To implement the notions of
skeletons and wave-fronts using symbol markers, we annotate the skeleton
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symbols by s and wave-fronts by wf. Thus, we can present (6.4) using symbol
markers as

swf(xs) +s ss(ys) = ss(swf(xs) +s ys). (6.5)

As rippling is skeleton preserving, applying rewrite rule (6.2) to the left-
hand side of (6.5) should result in the formula:

swf(xs +s ss(ys)) = ss(swf(xs) +s ys). (6.6)

To apply rewrite rule (6.2), it must be annotated using symbol markers. Using
context markers, we can annotate (6.2) in the following two ways.

s(U ) + V ⇒ s(U + V ) (6.7)

s(U ) + V ⇒ s( U + V ) (6.8)

How do we get the same effect with symbol markers? Each symbol must be
annotated with an annotation variable. To ensure that corresponding symbols
are instantiated to an identical marker during rewriting, we must annotate them
with the same annotation marker. Otherwise, we use different markers to en-
sure maximum flexibility. Suppose we use only annotation variables markers,
linking the corresponding occurrences of s, +, U , and V . This results in

sγ (Uα) +δ V β ⇒ sγ (Uα +δ V β). (6.9)

Applying this rule to (6.5) copies the annotation of s in the replaced term to
the occurrence of s in the replacing term. However, in general, (6.9) does not
preserve the skeleton, as it changes the position of s in the rewritten term. For
example, applying wave-rule (6.9) to ss(xs) +s swf(ys) produces ss(xs +s

swf(ys)), which has changed the skeleton from s(x) + y to s(x + y). The
solution to this problem is to allow only instantiations of (6.9) that enforce that
either s or + is part of a wave-front. Thus, we obtain the following two rules,
which replace (6.9):

swf(Uα) +γ V β ⇒ swf(Uα +γ V β) (6.10)

sγ (Uα) +wf V β ⇒ sγ (Uα +wf V β). (6.11)

These correspond to the context-marked wave-rules (6.7) and (6.8), respec-
tively.

Returning to our running example, (6.10) can be used to ripple-out the
wave-front on the right-hand side, which results in the annotated formula

swf(xs +s ss(ys)) = ss(swf(xs +s ys)). (6.12)
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A special rippling rule that simulates the application of annotated tautologies
(cf. Section 2.1.4) yields

swf(xs +s ss(ys)) = swf(ss(xs +s ys)), (6.13)

which enables (weak) fertilization with the induction hypothesis.

6.2.2 Example 2: encoding basic ordered paramodulation and
basic superposition

Paramodulation (Robinson & Wos, 1969) is a theorem-proving method for
first-order logic with equality, which is refutationally complete provided var-
ious ordering restrictions are imposed. Paramodulation was invented to build
in the notion of equality into a resolution-style calculus. Inference rules like
resolution, paramodulation, and factorization are used to enlarge a given set
of axioms by new inferred formulas until the formula “False” (indicating a
contradiction) is deduced. Given two formulas

� → l = r (6.14)

	[t], (6.15)

paramodulation allows one to infer the formula

σ(�) → σ(	[r ]) (6.16)

provided that σ is the (most general) unifier of t and l. Since derived formulas
are added to the set of axioms without removing their parents (the formulas
used to infer these formulas), in many cases identical formulas can be derived
if we simply permute the inference steps. For instance, suppose there is another
equation

r = s (6.17)

in our set of axioms. Using (6.17) to paramodulate on (6.15) yields

σ(�) → σ(	[s]). (6.18)

However, we can also use (6.17) to paramodulate on (6.14) to obtain

� → l = s. (6.19)

If we use (6.19) to rewrite (6.15), then we obtain (6.18) again.
Basic superposition (Bachmair et al., 1992; Nieuwenhuis & Rubio, 1992)

refines paramodulation in order to reduce such redundancies by forbidding in-
ferences at terms introduced by substitutions from previous inference steps.
Basic ordered paramodulation is a further refinement which also forbids in-
ferences at any term positioned below a former paramodulation inference. For
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example, consider formula (6.16). Since σ(r) (occurring inside σ(	(r))) is
located at the position we applied the paramodulation step, we are not allowed
to paramodulate further at this position, which prohibits our first way of de-
ducing (6.18). We can only deduce (6.18) by paramodulating on (6.14) and
using (6.17) to obtain (6.15). Both refinements are refutationally complete in
the context of deletion rules, as explained in Bachmair et al. (1992).

To illustrate basic superposition and basic ordered paramodulation, we gen-
eralize our running example (6.1) by replacing s(x) with a variable X , yielding

X + s(y) = s(X + y). (6.20)

Moreover, we will now use narrowing to manipulate this formula. Narrow-
ing generalizes rewriting by replacing matching with unification, so that vari-
ables in the goal may be instantiated during inference. Namely, a formula
ρ(t)[ρ(r)]p is deducible from t using narrowing if and only if ρ is a most-
general unifier of t/p and the left-hand side l of some rewrite rule l ⇒ r .

Both basic superposition and basic ordered paramodulation disallow
paramodulation into variables, such as X in our example. Superposition of
the left-hand side of (6.20) with rewrite rule (6.2) yields

s(U + s(y)) = s(s(U ) + y). (6.21)

Basic superposition forbids inferences at any term introduced as part of the
applied substitution. In this case, the substitution is {s(U )/X, s(y)/V }. Thus,
in the rewritten formula, we are not allowed to paramodulate into the term
s(y) on the left-hand side or into the term s(U ) on the right-hand side. Basic
ordered paramodulation introduces further restrictions also forbidding infer-
ences at any term positioned below a former paramodulation inference. In our
example, this forbids any inference on the left-hand side of the rewritten for-
mula.

In the original paper (Bachmair et al., 1992) the authors propose an ex-
tention of the calculus by introducing Boolean flags attached to each term to
implement a marking strategy. Using our general annotation framework we can
directly implement these techniques by providing appropriate annotated wave-
rules. To do so, we must keep track of information about each subterm, namely
whether it was introduced by substitutions from previous inference steps, or
whether it is still part of the original conjecture. To achieve this, we introduce
two annotation constants b and c: b denotes terms that cannot be paramodu-
lated upon (blocked terms), while c denotes terms that can be paramodulated
upon. We allow an inference step on a subterm if and only if its top-level sym-
bol is annotated with c, while an annotation b will block any superposition at
this position.
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At the start of a proof, only paramodulation into variables is forbidden.
Hence all occurrences of variables are labeled with b, while all other symbols
are annotated with c. This results in the annotation of conjecture (6.20) as

Xb +c sc(yc) =c sc(Xb +c yc). (6.22)

If we superimpose the left-hand side of this conjecture with the annotated ver-
sion of (6.2), X is instantiated with s(U ) and V with s(y). Basic superposition
forbids inferences on terms that are introduced as part of an applied substitu-
tion. Thus all symbol occurrences in s(U ) and s(y) must be annotated with
b. Keeping in mind that paramodulation into variables is also forbidden, we
require the annotated formula

sc(Ub +c sb(yb)) =c sc(sb(Ub) +c yc). (6.23)

To automate the process we must account for the following four cases.

(i) Symbol occurrences that descend from the original formula simply in-
herit their annotations from the corresponding symbol occurrences in the
original formula.

(ii) Occurrences of function symbols that are introduced by the right-hand
side of a rewrite rule are annotated by c.

(iii) All terms that are introduced by substitutions are annotated by b.
(iv) All occurrences of variables are annotated by b.

Returning to our running example, note that the annotated right-hand side
of rewrite rule (6.2) is

sc(Ub +c V b). (6.24)

Assume that an annotated variable such as Xb or V b can only be instantiated
with a term that is uniformly annotated with b. This seems to be a reason-
able condition since substitutions should not affect constant annotations and
we must compute annotations for all the individual symbol occurrences of an
instantiated term in a deterministic way. Hence, the annotated unifier generated
during narrowing is {sb(yb)/V b, sb(Ub)/Xb}. The annotated formula (6.23)
is uniquely determined by this annotated unifier, the annotated right-hand side
(6.24), and the original formula (6.22).

Note that the annotated left-hand side of (6.2) will not contribute to the an-
notations of (6.23), since whether a subterm in (6.23) is blocked or not does
not depend on the blocking information of the replaced term. Hence, we do not
care about the annotations of the replaced term except that its top-level sym-
bol is not blocked. We express the “do not care” information by annotating the
non top-level positions of the left-hand side with annotation variables. During
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unification, these annotation variables can be instantiated to arbitrary annota-
tions. Thus, using annotation variables α, β, and γ , we obtain the following
annotated version of (6.2):

sγ (Uα) +c V β ⇒ sc(Ub +c V b). (6.25)

We summarize this approach to implementing superposition using annota-
tions. The procedure for annotating rewrite rules is defined by the following
two annotation rules:

(i) On the left-hand side of a rule, all non-top-level symbol occurrences are
annotated by different annotation variables, while the top-level position is
labeled with c.

(ii) On the right-hand side, all variable occurrences are labeled with b and
function symbols are labeled with c.

It is easy to show that the restrictions on paramodulation imposed by basic
superposition are simulated by the restrictions on rewriting imposed by the
annotations. Terms that must not be rewritten are annotated by b. Initially,
only variables occurring in the conjecture or on the right-hand side of a rule
are annotated with b. Hence, any symbol occurrence annotated with b in a
rewritten conjecture must be originally introduced by a substitution of such
a variable and we only block inferences at terms introduced by substitutions.
Since initially all variables are annotated with b, and since a variable Xb can
only be substituted by a term that is uniquely annotated with b, we inhibit all
inference at any subterm introduced by a substitution.

According to our rules for annotating rewrite rules, rewrite rule (6.3) is
annotated as

xα +c sβ(V γ ) ⇒ sc(xc +c V b).

Basic ordered paramodulation restricts the rewriting further because it also
prohibits paramodulation on subterms that originate from the right-hand side of
previously used rewrite rules. We simulate this behavior by slightly changing
the way of annotating the right-hand side of a rewrite rule. Instead of anno-
tating occurrences of function symbols with c, we mark all symbols on the
right-hand side with b. For example, (6.2) would be annotated as

sγ (Uα) +c V β ⇒ sb(Ub +b V b). (6.26)

Paramodulating (6.23) with this rule results in the formula

sb(Ub +b sb(yb)) =c sc(sb(Ub) +c yc). (6.27)

in which all positions on the left-hand side of the formula are now blocked.
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Summing up, annotated terms allow us to simulate both basic superposi-
tion and basic ordered paramodulation by encoding the given restrictions into
the annotations of the initial conjecture and of the given rewrite rules. The
rewrite rules as well as the conjecture are annotated in a uniform way, which
is easily automated, and in the INKA system (Autexier, 2003) we used a simi-
lar approach to implement an efficient simplification procedure that avoids the
simplification of already simplified terms.

All non-variable positions of the conjecture are annotated by c, while vari-
able positions are annotated by b. All symbol occurrences of the left-hand side
of a rule are annotated by an annotation variable except the top-level position,
which is annotated by c. Variables on the right-hand side are annotated by b,
while the occurrences of function symbols are annotated by c. In the case of
basic ordered paramodulation, the complete right-hand side of a rule is anno-
tated by b. Thus, different restrictions on the inference process are reflected by
different annotations of the right-hand sides of the rules.

6.2.3 Example 3: Encoding window inference

Window inference (Robinson & Staples,, 1993; Staples,, 1995) is a commonly
used technique for transformational reasoning. It supports the temporary fo-
cusing on arbitrary subexpressions of a formula by using decomposition and
recomposition rules, which also provide the logical context of the selected
subexpressions. This results in a hierarchy of subproblems that co-exist at a
single stage of the proof. To implement this technique, the theorem-prover
must track the evolution of subexpressions during inference steps. To illus-
trate the generality of our framework, we will present an implementation of a
simplified version of window inference in our annotation framework.

In the previous example, annotations of the replaced subterm do not con-
tribute to the annotations of the replacing subterm. In this example, we show
how to propagate information from one to the other. For this and the following
examples, we return to a simple rewriting calculus and consider the original
problem of proving conjecture (6.1).

First, we define how subexpressions are tracked during rewriting. Let t be a
term and p and p be positions. Suppose we want to track a subexpression t/p
of a term t and use a rewrite rule l ⇒ r to replace t/p by ρ(r). We distinguish
three cases.

(i) If p and p denote independent positions in t , then (t[ρ(r)]p)/p forms the
new subexpression to be tracked.
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(ii) If t/p is a subterm of t/p, then the inference step rewrites the tracked
subexpression and again (t[ρ(r)]p)/p forms the new subexpression to be
tracked.

(iii) If t/p is a subterm of t/p, we distinguish two cases:
(a) if t/p is some subterm l ′ of l, then we compute all positions p1, . . . , pn

of l ′ in r and consider t/(p p1), . . . , t/(p pn) as new subexpressions to
be tracked;

(b) in the second case, t/p is a subterm ρ(X)/p′′ of some instantiated vari-
able X occurring in l. Then there is a p′ such that p = p′ p′′ holds. Let
p1, . . . , pn be the positions of X in r , then t/(p′ p1), . . . , t/(p′ pn) are
the new subexpressions to be tracked.

Rather than computing the new foci after each inference step, we propose
the use of annotations to transfer foci in each inference step automatically. We
will annotate focus terms with f and non-focus terms with u. For example, if
we wish to track the occurrence of s(y) on the left-hand side of (6.1) with the
help of annotations, then we will annotate the conjecture as

su(xu) +u sf(yf) = su(su(xu) +u yu). (6.28)

After rewriting with an annotated version of (6.2), we require

su(xu +u sf(yf)) = su(su(xu) +u yu), (6.29)

in which the focused subterm s(y) in (6.28) is again annotated by f. We obtain
this result if we guarantee that the occurrences of U (respectively V ) in the
annotated rewrite rule are instantiated by the same annotated term. We enforce
this condition by using the same annotation variable α for both occurrences of
U (and β for both occurrences of V ), so the rewrite rule (6.2) is annotated as

su(Uα) +u V β ⇒ su(Uα +u V β). (6.30)

Since the matching procedure also matches annotations, (6.30) is not applica-
ble to a goal such as

sf(x f) +f sf(yf) = su(su(xu) +u yu) (6.31)

because the annotation of the top-level occurrences of s and + in (6.30) and
(6.31) differ. In particular, using u as annotation for s in (6.30) implies that
this rule is always applied to a position outside the focus. In order to allow for
rewriting in the focus, we would need an additional annotation of rule (6.2) in
which u is replaced by f:

sf(Uα) +f V β ⇒ sf(Uα +f V β). (6.32)
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Again, we can make use of annotation variables to merge both variants (6.30)
and (6.32) into the single rule

sγ (Uα) +γ V β ⇒ sγ (Uα +γ V β), (6.33)

in which γ can be instantiated arbitrarily either to f or to u as required when
applying the rule. However, since γ has to be instantiated in a uniform way,
matching the left-hand side of (6.33) to a term such as sf(x f) +u su(yu) fails.

The restrictions that the annotations impose on the matching process guar-
antee that either a rewrite rule can only be applied in the focus, or a common
proper subterm of the left-hand and right-hand sides of the rewrite rule matches
the focus. This ensures that the foci (i.e. the subexpressions annotated by f) are
always proper terms. This means that once a function symbol is annotated by
f, then all symbols occurring in its arguments are also annotated by f.

Summing up, the above example suggests that we can implement window
inference using annotations. As in the previous examples, the annotation of
the rewrite rules is done in a uniform way and is easily automated. A variant
of this approach has been implemented in the INKA system (Autexier, 2003).
It is up to the user to determine the initial focus by annotating the conjecture.
Common proper subterms between the left-hand and right-hand sides of a rule
are annotated by annotation variables such that their corresponding symbols
share the same annotation variable. Other, non-related symbols are annotated
by u.

6.2.4 Example 4: Proving theorems by reuse

Similar conjectures often have similar proofs. In analogical reasoning (e.g.
Kling (1971); Owen (1990); Melis (1995); Kolbe and Walther (1998)) we ex-
ploit this observation to guide the search for a new target proof with the aid of
an existing source proof. Annotations can also be used to help in the automa-
tion of this proof reuse.

In our setting, a proof is considered to be a sequence of rewrite steps that is
determined by the rewrite rules used and the positions at which they have been
applied. The proof of the source conjecture is transformed into the starting-
point for the target proof. Each of its rewrite steps is translated into the corre-
sponding rewrite rules and positions of the target conjecture (see, for instance,
Kolbe and Walther (1994) for details). However, this first approximation to
the target proof usually has to be modified by adding or deleting intermedi-
ate inference steps. The more sophisticated this modification process is, the
more target conjectures can be tackled by reusing a particular source proof.
However, inserting or deleting inference steps will hamper the computation
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of the corresponding positions between the source and target proofs. Adding
(or deleting) inference steps in the target proof usually alters the appropriate
positions to be used in any subsequent inference steps.

In this section we show how annotations can be employed for reuse. Anno-
tations are used to identify occurrences of subterms in a formula or a proof.
The idea is to attach a unique annotation to each symbol occurrence, and to
use annotations to identify the positions at which rewrite rules are applied. In
Section 6.3.3 we show how this additional information about a (source) proof
can be used to guide the (target) proof of a similar conjecture.

In analogical reasoning, an initial mapping is calculated between symbol
occurrences in the source and the target conjectures. This has to be extended
to a mapping between the source and target proofs because the proofs may
contain symbols that do not occur in the conjectures, and because different
occurrences of the same symbol may need to be mapped differently if they are
treated differently within the source proof. The major advantage of shifting the
mapping problem from positions to annotations is that the annotations provide
additional information that can guide the automatic extension of the mapping
of symbol occurrences between the source and the target proof. To accomplish
this, we will relate positions of corresponding proof steps in source and target
proofs when they result from a “similar treatment”. To identify positions by
their treatment, we will store the “proof history” of each symbol occurrence in
its annotation.

We use our running example as part of a source proof and track the proof
history of each symbol in the proof. To distinguish the different positions in
the initial problem (6.1), we annotate each symbol occurrence with a different
annotation constant; to simplify notation, we use natural numbers to denote
annotation constants:

s2(x3) +1 s4(y5) = s6(s8(x9) +7 y10). (6.34)

During rewriting the new subterms must be annotated in such a way that each
occurrence has a different annotation. Furthermore, each annotation is entirely
determined by the annotations of the initial formulas and by the way the rewrite
rules have been applied to the conjecture. If we use a rewrite rule to replace a
subterm by a new term, then this new subterm is an instance of the right-hand
side of a rule. To distinguish the results of different applications of the same
rule, each rule application has to attach new annotations to each symbol of the
instantiated right-hand side. Therefore, we will use tuples as the annotations
for tracking proof history. These tuples will incorporate information about the
applied rewrite rule, the annotation of the position it has been applied to, and
the annotation of its original symbol. For instance, the occurrence of s in the
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right-hand side of the rewrite rule (6.35) is annotated by [a, α, R]: a is a unique
annotation constant for this occurrence of s in (6.35), α will be instantiated to
the annotation of the position where the rule (6.35) is applied, and R serves as
an identifier for the rewrite rule

sδ(Uβ) +α V γ ⇒ s[a,α,R](U [β,α,R] +[b,α,R] V [γ,α,R]) (6.35)

used in this example. Applying this rule to the left-hand side of (6.34) results
in the modified equation

s[a,1,R](x [3,1,R] +[b,1,R] s[4,1,R](y[5,1,R])) = . . . . (6.36)

The annotations in (6.36) help us to identify the origin of each symbol oc-
currence. For instance, x is annotated by [3, 1, R], which denotes that this
occurrence of x is transferred from the occurrence 3 of x in the original prob-
lem when applying (6.35) to a position denoted by 1. Applying (6.35) to the
right-hand side of the equation yields

. . . = s6(s[a,7,R](x [9,7,R] +[b,7,R] y[10,7,R])). (6.37)

To collect the proof history in the source proof, we annotate each rewrite
rule in the following way: each symbol occurrence on the left-hand side is
annotated by a different annotation variable; each occurrence of a function
symbol on the right-hand side is labeled by a tuple [s, α, P], where s is a
unique annotation constant for this occurrence, α is the annotation variable
attached to the top-level symbol on the left-hand side, and P is the identifier
for this rewrite rule.1 For instance,

xβ +α sδ(V γ ) ⇒ s[c,α,S](x [e,α,S] +[d,α,S] V [γ,α,S]) (6.38)

is another example of an annotated rewrite rule where S is the identifier of the
rewrite rule (6.38). The result of applying this rule to the left-hand side (6.36)
of our conjecture is

s[a,1,R](s[c,[b,1,R],S](x [e,[b,1,R],S] +[d,[b,1,R],S] y[[5,1,R],[b,1,R],S])) = . . . .

(6.39)
Note how the annotations of the symbol occurrences encode the proof
history of each symbol occurrence. For instance, y is annotated with
[[5, 1, R],[b, 1, R], S], which means that it was inherited from the symbol
occurrence labeled with 5 of the original problem by applying the rules (6.35)
and (6.38) at the positions 1 and [b, 1, R], respectively.

1 For the sake of readability, we have simplified the annotations: to distinguish different
occurrences of the same variable symbol on the right-hand side we must introduce a fourth
element to the tuple.
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A position in a manipulated formula is (uniquely) characterized by its an-
notation, which only depends on the annotations of the given conjecture and
rules. If we map the annotations of the initial formulas in the source proof to
annotations of the initial formulas in the target proof, we are able to identify
the corresponding positions of the rewritten source and target conjectures. We
can easily automate the annotation of the rewrite rules. All symbol occurrences
on the left-hand side of a rule are annotated by different annotation variables,
while each symbol occurrence, a, on the right-hand side is annotated by a tu-
ple [c, β, R], where β is the annotation of the top-level symbol of the left-hand
side, and R is the unique identifier of the rule. If a is a variable, then c is
the annotation of one of its occurrences on the left-hand side, otherwise c is a
fresh annotation constant that does not occur elsewhere in the rules or in the
conjecture.

The alert reader may wonder about the complexity of annotations, es-
pecially for long proofs. Annotations can be efficiently managed by using
structure-sharing techniques. For the implementation of such reuse techniques
we reuse annotations of previous proof parts such that we only have to provide
a new instance of a tuple for each symbol occurrence while its elements are
annotations of previously existing formulas. These reuse techniques have been
implemented in Schairer (1998) as part of a more embracing approach to the
general management of change within formal software development.

6.2.5 Summary

In this section we have presented examples of how different kinds of infor-
mation can be encoded into annotations on formulas. Depending on what
information we would like to encode, we adopt different annotations of the
given conjecture and the available rewrite rules. As we have seen in Exam-
ple 1 in Section 6.2.1, we may obtain more than one annotation for each
rewrite rule, but in most cases at most one of them is applicable to a spe-
cific subterm of the problem. As in the previous examples, the annotation of
rewrite rules is done in a uniform way and can be easily automated. Conjec-
tures can often be annotated automatically, but sometimes user interaction is
required.

In the next section we will illustrate that all the presented proof strategies
can be seen as instances of the proof-by-abstraction paradigm. Annotations
will play a vital role to facilitate the formal definition of associated abstrac-
tions because they allow us to distinguish different occurrences of the same
symbol.
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6.3 Using annotations to implement abstractions

According to Giunchiglia and Walsh (1992), abstract proof search is a process
by which, starting from a representation of a problem at a so-called ground
level, we construct a new and simpler representation at a so-called abstract
level, and use this representation to solve the original problem. That is, we
abstract the given goal, prove its abstracted version, and then use the informa-
tion about the resulting abstract proof as an outline to construct the proof at the
ground level. In this section, we discuss the benefits of using annotations to de-
fine a new family of abstractions. We start by explaining the basic limitations
of existing abstraction techniques, and afterward we show how abstractions
based on annotation overcome these limitations and open up a new dimension
of possibilities. Finally, we demonstrate the flexibility of this approach with
the help of the examples introduced in the last section.

Different techniques to abstract-away details have been studied in the lit-
erature. One of the main problems is to find out which details should be
abstracted-away. On the one hand, if we abstract too much information, then
we often obtain abstract solutions that cannot be transferred to the ground level.
Moreover, planning at the abstract level may be even more difficult than plan-
ning at the ground level because the abstraction removes useful “control” in-
formation. On the other hand, if we abstract too little, then the complexity of
finding a proof at the abstract level may be just as hard as at the ground level.

To guide proof search, we demand that abstractions preserve provability;
i.e., if there is a proof at ground level, then there is also a corresponding
proof at the abstract level. Abstractions that preserve provability are called
PI-abstractions.1 Examples of PI-abstractions on standard (i.e. unannotated)
terms are, for instance, to identify constants, functions, or predicate symbols
Hobbs (1985); Plaisted (1980); Giunchiglia & Walsh (1992) or to drop argu-
ments to function or predicate symbols (Melham, 1990).

6.3.1 Limitations of abstractions

In order to illustrate the benefits of annotations for defining abstractions,
we discuss the limitations of standard abstraction techniques on unannotated
terms. Experience has shown that abstractions of unannotated terms are of lim-
ited use (Plaisted, 1980). In particular, the preconditions of PI-abstractions im-
pose severe restrictions on possible abstractions. We illustrate this below with
the help of rewrite systems.

1 PI is an abbreviation for proof invariant, e.g. the abstraction of a proof is a proof at the abstract
level.



Using annotations to implement abstractions 161

Let abs be an abstraction mapping that maps terms at the ground level to
terms at the abstract level. Then, let R be the rewrite system at the ground
level and R′ be another rewrite system at the abstract level consisting of all
abstracted rewrite rules of R that are not tautologies. This means that R′ is
defined by R′ = {abs(l) ⇒ abs(r) | l ⇒ r ∈ R and abs(l) �= abs(r)}. A rule
l ⇒ r with abs(l) = abs(r) can be omitted since the resulting abstracted rule
would be a tautology.

We may ask what are the necessary conditions for abs to be a PI-
abstraction? Suppose abs is a PI-abstraction. Then each rewrite step1 s ⇒l ⇒ r

t at the ground level can be simulated at the abstract level by a sequence of
rewrite steps abs(s) ⇒∗ abs(t). If abs(s) = abs(t), then this property holds
trivially, so we assume abs(s) �= abs(t). Suppose, as an additional precon-
dition, that we wish to use the abstracted rewrite rule abs(l) ⇒ abs(r) to
simulate the inference step s ⇒l ⇒ r t at the abstract level. Hence, there should
be some position p′ in abs(s) and some substitution σ ′ such that the following
holds:

s/p = σ(l) implies abs(s)/p′ = σ ′(abs(l)) (6.40)

abs(s[σ(r)]p) = abs(t) = abs(s)[σ ′(abs(r))]p′ . (6.41)

If we further assume that the top-level position ε at the ground level corre-
sponds to the top-level position ε at the abstract level, then (6.40) can be
simplified to the property that substitutions and the abstraction mapping abs
commute:

abs(σ (l)) = σ ′(abs(l)). (6.42)

As a consequence, (6.41) can be simplified to the property that subterm re-
placement and the abstraction mapping abs commute:

abs(s[w]p) = abs(s)[abs(w)]p′ . (6.43)

Thus, in order to be a PI-abstraction, an abstraction abs has to fulfill the con-
straints (6.42) and (6.43), unless we drop one of our two preconditions. The
first precondition requires that the abstract inference step uses the abstraction
of the rewrite rule. Dropping this condition would hamper the speculation of
suitable rewrite rules at the ground level with the help of the abstract proof.
The second precondition demands that the top-level position of a ground term
corresponds to the top-level position in the abstraction, which is satisfied by
almost all known abstractions.

1 We use the subscript l ⇒ r to indicate the rewrite rule l ⇒ r used to perform the rewrite step.
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Summing up, (6.42) and (6.43) are true in all PI-abstractions of practical
use. Roughly speaking, we are only free to specify how abstractions behave
on signatures, which then determines how abstractions extend to terms, substi-
tutions, and positions. Hence, we usually end up with abstractions that either
identify signature elements, or change their arity. But in practice these kinds
of abstractions are too coarse to allow, for example, hierarchical proof search
(cf. Plaisted (1980)). For instance, consider the proof strategies we presented
before. In rippling, we need additional information to distinguish wave-fronts
and skeletons in order to compute abstractions of formulas that are based on
the positions of the wave-fronts relative to the skeleton. In the reuse example,
additional information about the history of individual terms is needed to define
suitable abstractions expressing the abstract structure of the proof.

6.3.2 Abstractions on annotated terms

The use of annotation facilitates a new dimension of possible abstractions. In-
stead of mapping the signature at the ground level to a signature at the abstract
level, we define abstractions on annotated terms as mappings that operate on
tuples, each containing a signature and annotations. This allows us to distin-
guish different symbol occurrences (labeled with different annotations) and
abstract them in different ways.

Consider the formula (6.4) in the rippling example of Section 6.4. Attach-
ing different annotations to the occurrences of s in (6.4) allows us to map these
occurrences either to an abstract wave-front or to a part of the skeleton. Mov-
ing from abstractions on unannotated terms to abstractions on annotated terms
results in an implicit generalization that allows us to deal with the coincidence
of instantiations of different abstract symbols at the ground level. Thus, ab-
stractions of annotated terms denote mappings on symbol occurrences rather
than mappings on symbols. By attaching different annotations to different oc-
currences of the same symbol, an abstraction may treat these occurrences indi-
vidually. In our example, we can annotate the first occurrence of s with F, and
the second occurrence with G, and then define an abstraction by mapping sF to
F and sG to G. Given a term and its desired abstraction, we can incorporate all
necessary additional information about this abstraction into annotations. Then,
a term, together with its abstraction, is incorporated into a single annotated
term.

The benefits of this approach are obvious. The annotated calculus will auto-
matically propagate the annotations when doing an inference step. Hence, this
inference step will produce the deduced formula together with its abstraction.
Analogously, annotated rules are used to combine rules and their abstractions.
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Figure 6.1 Abstractions on annotated formulas.

During proof search we can select appropriate rules according to their abstrac-
tions and – knowing the inference mechanisms of the annotated calculus – an-
ticipate the resulting abstraction of the deduced formula. Figure 6.1 illustrates
this approach.

Within this approach, we are free to encode arbitrary knowledge into anno-
tations provided that the inference mechanism of annotations “preserves” the
semantics of the encoded knowledge. This allows us to encode many existing
proof strategies in terms of annotated terms that take into account the history
or semantic background of individual terms. Annotations provide the technical
means to incorporate such information about a term into its own representa-
tion. The annotated calculus manipulates both terms and the information about
them in a uniform way.

As mentioned before, control information is encoded into annotations that
enable us to define abstractions that use strategic information from sub-
formulas. While an abstraction may remove information about the term syntax,
it can propagate the strategic information encoded in the annotations to the ab-
stract level.

The definition of appropriate abstractions depends on the strategic informa-
tion that we want to incorporate into annotations. In general, the search at the
ground level can be guided by predicting some properties of the intermediate
steps of the rewriting. In equality reasoning, for instance, we aim to rewrite a
given problem into a trivial equation l = l. Techniques have been developed
that guide the proof by reducing syntactic differences (Digricoli (1980); Quin-
lan & Hunt (1986); Autexier & Hutter (1997)). Thus, syntactic similarities
must be preserved during deduction.

In general, the given proof information is too weak to predict an inter-
mediate result of the rewriting process precisely, but we often know some
properties of it. For instance, manipulating the induction step should result
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in a formula in which the induction hypothesis occurs as a subformula. We
do not know in advance the shape of the wave-fronts in the rewritten for-
mula, but we do know at which positions they may occur. Our aim is to use
such information to speculate properties of intermediate steps in the rewriting
process.

There are different approaches to using abstractions for guiding proof
search depending on the search space at the abstract level. As we show in the
examples that follow, there are abstractions that result in search spaces without
any branching or with only a finite number of branches. For reuse purposes,
the abstraction of the source proof serves also as the abstraction of the target
proof. In such cases, we do not need to reason formally at the abstract level;
instead, it is sufficient to enumerate the finitely many solutions.

If we use a formal system, such as a rewrite system, to reason at the ab-
stract level, then we must take care of the properties mentioned in Section
6.3.1. The abstraction of an annotated rewrite system is basically determined
by the abstraction of annotated symbols, since it has to satisfy the properties
(6.42) and (6.43). But, in contrast to the unannotated case, we are now able
to distinguish between different occurrences of the same symbol by attaching
different annotations to them. Thus, abstractions in the annotated calculus rep-
resent abstractions on symbol occurrences in the unannotated calculus. The
examples given in Section 6.2 illustrate the wide scope and variety of these
abstractions.

Once we find a proof at the abstract level, each abstract proof step has to
be refined to a sequence of proof steps at the ground level. Suppose there is
a rewrite step s′ ⇒ abs(l) ⇒ abs(r)t ′ at the abstract level, then we must find a
sequence s = s0 ⇒ . . . ⇒ sn − 1 ⇒ l → r sn = t at the ground level such that
s′ = abs(s) and t ′ = abs(t). The rewriting s0 ⇒ . . . ⇒ sn − 1 denotes the
preparatory steps that are required to enable the application of l ⇒ r . Dur-
ing these preparatory steps, the abstractions of the intermediate results should
be invariant, i.e. abs(s0) = abs(si ), for all i , 1 ≤ i ≤ n − 1. This infor-
mation can be used to restrict possible rewrite steps in this phase. Thus, we
must identify those rewrite rules whose application is abs-invariant. It is easy
to prove that the properties (6.42) and (6.43), stated in Section 6.3.1, are suffi-
cient to guarantee that all rewrite rules l ⇒ r with abs(l) = abs(r) possess this
property.

Following the description above, we obtain a general procedure to in-
stantiate abstract proofs. Each abstract rewrite step suggests the application
of a corresponding rewrite rule at the ground level. In order to enable its
application, we must first perform some preparatory rewrite steps that are
absinvariant.
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6.3.3 Examples revisited

To illustrate the flexibility of the approach presented above, we return to the ex-
amples given in Section 6.2. We start with the simplest example of implement-
ing basic paramodulation, and end with the more complex example of reusing
former proofs for proof search. For each example, we show how strategic in-
formation can be preserved when mapping the problem to an abstract level.

Basic paramodulation
The simplest way to use annotations is to restrict possible proof steps by using
annotations to encode constraints. Similar to standard unification, an anno-
tated unifier identifies two annotated terms, including their annotations. Non-
unifiable annotations result in a clash during the unification and thus prevent
the application of a rewrite rule. Given an annotated matcher σ of two anno-
tated terms s and t (i.e. σ(s) = t) then erase(σ ) is a matcher of the terms
erase(s) and erase(t) (i.e. erase(σ )(erase(s)) = erase(t)) but not vice versa.

In the implementation of basic paramodulation in Section 6.2.2, for in-
stance, we use the annotation b to denote blocked terms. Annotating the top-
level position of the left-hand side of a rewrite rule by c causes a clash when
matching this term with a subterm labeled with b. This restricts the application
of such rules to non-blocked terms. This is similar to rippling, where rewriting
may change wave-fronts but not the skeleton. From this point of view, basic
paramodulation is a special case of rippling and we can use the same kind of
abstractions to implement both.

Rippling
Rippling provides a hierarchy of different abstractions, depending on how
much detail we wish to be available at the abstract level. The most abstract
level is obtained by using the skeleton as an abstraction. The corresponding
abstraction maps each annotated term to its skeleton (or, more generally, the
set of its skeletons) as illustrated in Section 6.2.1. For instance, we obtain the
set

{x + s(y) = s(x + y)} (6.44)

as an abstraction of conjecture (6.5). This set is also an abstraction of the
rewritten conjecture (6.6). Since rippling requires that each rewrite step pre-
serves the skeleton, the abstraction of a rippling proof results in a trivial
“proof” in which no rewrite steps are made at the abstract level. While the
abstraction restricts possible rewrite steps at the ground level to those steps pre-
serving the skeleton, it provides no information about how to select a suitable
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rewrite rule to ripple wave-fronts into specific positions. Each rewrite step at
the ground level is part of a “preparation” phase that is invariant with respect to
abs. Since the notion of skeleton satisfies the properties (6.42) and (6.43), we
can guarantee that applying skeleton-invariant rewrite rules (i.e. wave-rules)
always results in skeleton-invariant rewriting.

To encode more control information into annotated terms, we present an
abstraction that preserves the location of wave-fronts. This abstraction maps
each wave-front to a unary function •. In our example, we abstract (6.5) to the
singleton

{•(x) + s(y) = s(•(x) + y)}, (6.45)

while (6.6) is abstracted to

{•(x + s(y)) = s(•(x) + y)}. (6.46)

Using this abstraction we are able to describe a rippling-out proof for a con-
jecture P( f1(. . . fn(•(x)))) in an abstract way, namely

P( f1(. . . fn(•(x)))) ⇒ P( f1(. . . •( fn(x)))) ⇒ . . . ⇒ •(P( f1(. . . fn(x)))).

The • abstraction violates the commutativity property formulated in (6.43),
since it is not compatible with term constructors. For example, f s(swf(as)) is
mapped to the abstracted term f (•(a)). But replacing as by swf(bs), which
corresponds to the abstract rule a ⇒ •(b), results in the term f s(swf(swf(bs)))

with an abstraction f (•(b)). Informally speaking, the abstraction provides no
means to reason about the merging or splitting of wave-fronts. Thus, this ab-
straction is unsuitable for planning at an abstract level with the help of a rewrite
system. However, for a given problem, the search space at the abstract level is
finite, since there are only finitely many positions at which • may occur. Thus,
instead of planning abstract proofs, we may enumerate different abstract solu-
tions by a search algorithm. In general, more than one rewrite step is required
to instantiate an abstract step. The abstractions of the intermediate results may
not fit into the abstract proof, as a wave-front may partly already be moved
to the new position but may partly remain at the old position. But when re-
peatedly applying rules that move wave-fronts in the right directions, we will
eventually achieve our goal.

We will next consider a more fine-grained abstraction that keeps track of the
width of wave-fronts as introduced in Section 4.7.1. We abstract wave-fronts
by the number of •, but in this case the abstraction is obtained by replacing
each occurrence of a function between the root of the wave-front and the wave-
hole by an occurrence of •. We can nest arbitrarily many occurrences of •, such
as •(a), •(•(a)), •(•(•(a))), etc. While the abstraction of (6.5) is still equal to



Using annotations to implement abstractions 167

(6.45), the equation

half wf(ss(ss(Uα))) = ss(half wf(Uα)) (6.47)

has the following abstraction in our new notion:

{half (•(•(U ))) = •(half (U ))}. (6.48)

Reasoning about the width of wave-fronts at the abstract level, we lose the nice
property that the search space at the abstract level is finite. But this abstraction
allows us to model appropriately the replacement of as by swf(bs) in a term
f s(swf(as)) at the abstract level by replacing a by •(b) in f (•(a)), which re-
sults in an abstract term f (•(•(b))). As illustrated in Section 4.6.5, this allows
for the definition of termination orderings for annotated rewriting. Moreover,
provided we define an appropriate rewrite relation at the abstract level, the cor-
responding definition of this abstraction will satisfy the conditions (6.42) and
(6.43) on PI-abstractions.

Window inference
In Section 6.2.3, we introduced the notion of focus of attention to track occur-
rences of subterms during rewriting. We use this to track individual subterms
during deduction in order to implement a hierarchical version of a difference-
reduction approach to solving equations. The idea is to identify common sub-
terms on both sides of the equation under consideration, and to focus rewriting
on the remaining differences. During deduction we use the technique of fo-
cusing subterms to track the positions of identical subterms on both sides and
try to minimize the differences of the context in which the corresponding sub-
terms occur. The context of a subterm is given by the sequence of function
symbols (plus the argument position to descend to the subterm) occurring on
the path between the root of the term and the subterm. We illustrate this below,
returning to the example used throughout Section 6.2.

Suppose we wish to prove (6.1) using difference-reduction techniques. We
will assume that the two occurrences of y in (6.1) are related. We focus on both
occurrences of y and obtain the annotated equation

sc(xc) +c sc(yb) = sc(sc(xc) +c yb). (6.49)

To track the symbol occurrences, we use the following annotated versions of
(6.2) and (6.3):

sγ (Uα) +γ V β ⇒ sγ (Uα +γ V β) (6.50)

xα +β sρ(V γ ) ⇒ sρ(xα +β V γ ). (6.51)



168 From rippling to a general methodology

To prove (6.49) using difference reduction techniques, we have to rewrite
the two sides of the equation into identical terms. Suppose y occurs in each
of the subsequent inference steps on both sides of the manipulated equation.
Since, at the end of this process both sides of the equation coincide, the con-
texts in which y occurs will be identical on both sides. Thus, rewriting will
equate the positions of y on both sides and also equate the paths of function
symbols that occur on the way from the top level to the positions of y. Initially,
y occurs in the second argument of + and in the first (and only) argument of
s on the left-hand side, which we denote by a list 〈+2, s1〉. On the right-hand
side we obtain 〈s1,+2〉 as a path description to y. To plan the proof at the ab-
stract level we only consider these paths to y and try to equate these paths. For
this reason we also abstract the given rewrite rules (6.50) and (6.51).

For each rewrite rule and for each subterm that matches with y and occurs
on both sides, we obtain an abstract rewrite rule. In the case of the rewrite rules
(6.50) and (6.51), we obtain the following abstract rewrite rules:

〈+1, s1〉 ⇒ 〈s1,+1〉 from (6.50) and U (6.52)

〈+2〉 ⇒ 〈s1,+2〉 from (6.50) and V (6.53)

〈+2, s1〉 ⇒ 〈s1,+2〉 from (6.51) and V . (6.54)

A path to a specific symbol occurrence is represented as a list over � ×N.
Rules (6.52)–(6.54) represent rewrite rules operating on paths, which are ab-
stractions of the context in which a specific symbol occurrence is located. Us-
ing these rules for rewriting allows us to replace segments of these paths. Since
we use a first-order logic on the ground level, on the abstract level there are no
variables occurring in the abstract rules. The left-hand and right-hand sides
of an abstract rule denote paths to symbol occurrences, which consist only of
function symbols, since first-order logic does not provide any (higher-order)
function variables.

In the given example, we obtain the following abstract proof:

〈+2, s1〉 = 〈s1,+2〉 (6.55)

⇒ (6.53)〈s1,+2, s1〉 = 〈s1,+2〉 (6.56)

⇒ (6.54)〈s1, s1,+2〉 = 〈s1,+2〉 (6.57)

⇒ (6.53)〈s1, s1,+2〉 = 〈s1, s1,+2〉. (6.58)

We find such proofs by implementing difference reduction techniques on lists
(Autexier & Hutter, 1997). The difference between two lists triggers the use of
suitable abstracted rewrite rules.

The abstract proof provides a proof sketch for the proof at the ground level.
In our example, we already obtain the ground-level proof if we simply apply
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the rewrite rules corresponding to those used at the abstract level in an analo-
gous way. We do not have to insert additional preparatory steps.

In general, however, we must search for appropriate preparatory steps that
enable the use of the speculated rewrite rules. Since a preparatory step may
not change the abstraction of the actual problem, it must keep the path to the
focused subterms (such as y in our example) unchanged. This property can be
guaranteed in the following way. First, arbitrary rewrite rules can be applied
only at positions that are independent of the position of the focus. Second, to
manipulate a subterm containing parts of the path, we need appropriate anno-
tated rewrite rules that enforce that the path will not change during a prepara-
tory step. For example,

(Xc +c (Y α +c Zc)) ⇒ (Zc +c (Y α +c Xc))

illustrates the typical form of such a rewrite rule. Corresponding symbol oc-
currences, which posses the same path from the top-level to their positions, are
annotated with common annotation variables, while all other symbol occur-
rences are labeled with c. Using such rules will automatically enforce that the
paths of focused expressions will not change during rewriting.

Reuse of proofs
In proof reuse, an abstract proof for the target conjecture is obtained by abstrac-
tion of the source proof. In contrast to rippling, it is not necessary to search for
a proof at the abstract level. The source proofs instead provide a collection of
abstract proofs that can be reused in subsequent target proofs. The more we
abstract from the source proof, the more general the abstract proof will be, but
the more work we have to do to fit the abstract proof to the target conjecture.

In our example we show how this can work using a simple approach: since
we can distinguish between different symbol occurrences by inspecting their
annotations, we eliminate the function names in the abstractions.

Consider the reuse example in Section 6.2.4. Abstraction from the symbol
names results in the following abstract rewrite rules:

•α(•δ(Uβ), V γ ) ⇒ •[a,α,R](•[b,α,R](U [β,α,R], V [γ,α,R])) (6.59)

•α(•β, •δ(V γ )) ⇒ •[c,α,S](•[d,α,S](•[e,α,S], V [γ,α,S])). (6.60)

Also the source proof is abstracted, which yields the following abstract proof:

•1(•2(•3), •4(•5)) = . . . (6.61)

•[a,1,R](•[b,1,R](•[3,1,R], •[4,1,R](•[5,1,R]))) = . . . (6.62)

•[a,1,R](•[c,[b,1,R],S](•[d,[b,1,R],S](•[e,[b,1,R],S], •[[5,1,R],[b,1,R],S]))) = . . . .

(6.63)
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Below we reuse the original proof in Section 6.2.4 to guide an inductive proof
of the theorem

len(x <> (u:: y)) = s(len(x <> y)), (6.64)

where :: is the usual constructor for lists, <> denotes the concatenation of
lists, and len computes the length of a list. To emphasize the similarity of the
proofs, we will use prefix notation for <> and :: in the following. Hence, we
rephrase our problem as

len(<>(x, ::(u, y))) = s(len(<>(x, y))). (6.65)

In a first step, we map the symbol occurrences of the source problem to
symbol occurrences of the target problem. As mentioned in Section 6.2.4, this
is done by labeling related occurrences with identical annotations. Notice that
there is no unique solution to this problem. Depending on which parts of the
source or target problem are regarded as “similar”, we obtain different solu-
tions. For lack of space, we do not go into the details of how such mappings
are computed; the reader can consult the literature on analogy and reuse, e.g.
Owen (1990); Kolbe and Walther (1994).

Analogously to (6.61), we annotate the given induction conclusion

lenr(<>1(::2(vr, x3), ::4(ur, y5))) = . . . , (6.66)

so that corresponding symbol occurrences of the source and target induction
conclusions share common annotations. We use r to annotate symbol occur-
rences that do not correspond to occurrences in the source proof. Suppose the
definitions of len and <> provide the following rewrite rules:

<>(::(X, U ), V ) ⇒ ::(X,<>(U, V )) (6.67)

len(<>(x, ::(W, V ))) ⇒ s(len(<>(x, V ))). (6.68)

Corresponding to the rewrite rules (6.59) and (6.60) in the source problem, we
obtain annotated versions (6.69) and (6.70) of the rewrite rules above.1

<>α(::δ(Xρ, Uβ), V γ )

⇒ ::[a,α,R](X [r,α,R],<>[b,α,R](U [β,α,R], V [γ,α,R])) (6.69)

lenρ(<>α(xβ, ::δ(W τ , V γ )))

⇒ s[c,α,S](len[r,α,S](<>[d,α,S](x [e,α,S], V [γ,α,S]))) (6.70)

The annotations of (6.70) reflect a non-trivial mapping from the source to the
target problem. Since <> is mapped to +, the top-level symbol len has no

1 Notice that the symbol mapping, which translates the source problem to the target problem,
must be consistent with the translation of annotated source rules to annotated target rules.
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counterpart in the source proof and is annotated with [r, α, S] on the right-
hand side.

In the first step of the abstract proof we applied (6.59) at the position labeled
with 1. Analogously we apply (6.69) to (6.66) at the corresponding position
annotated with 1. This results in the formula

lenr(::[a,1,R](v[r,1,R],<>[b,1,R](x [3,1,R], ::[4,1,R](u[r,1,R], y[5,1,R])))) = . . . .

Symbol occurrences that are annotated with terms containing r are not related
to the source proof symbols. Ignoring these symbol occurrences we obtain
(6.62) as the corresponding abstraction. The next source step uses (6.38) and
thus suggests the use of (6.60) at the position labeled with [b, 1, R]. Under the
mapping of (6.38) to (6.70), we must apply (6.70) at the top-level. But, un-
fortunately, the rule is not applicable because cons occurs inside of len. Thus,
we first carry out a preparatory step that enables the application of (6.70). In
particular, we use a rewrite rule from the definition of len. To preserve the
mapping between symbol occurrences in the source and target proof, we ap-
ply an annotated version of this rule, which is able to inherit the necessary
information:

lenα(::β(Xγ , Y δ)) ⇒ sβ(lenα(Y δ)). (6.71)

This rewrite rule is annotated according to the rules we described in Section
6.2.1. Roughly speaking, rippling tracks the movement of symbol occurrences
during an inference step and this is exactly what we want to do when construct-
ing proofs from first principles. We have to transfer the reuse information until
we are able to resume the reuse process. Applying this “rippling” rewrite rule
at top-level on the left-hand side yields

s[a,1,R](lenr(<>[b,1,R](x [e,1,R], ::[4,1,R](u[r,1,R], y[5,1,R])))) = . . . .

(6.72)
Notice how the use of such generated rewrite rules eases the maintenance of
the symbol mapping when patching the source proof. After each step during
the patch, the annotations provide the appropriate information necessary to
determine the positions at which to apply (6.70) and other rewrite rules. Hence,
we apply (6.70) at the corresponding position to obtain

s[a,1,R](s[c,[b,1,R],S](len[r,[b,1,R],S](<>[d,[b,1,R],S](x [e,[b,1,R],S],
y[[5,1,R],[b,1,R],S])))) = . . . .

In reuse, we use annotations to maintain the mapping between symbol oc-
currences in the source and target proof: symbol occurrences are related if
they share the same annotations. Using terms as annotations, we are able to
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encode sufficient information about the proof history into annotations to allow
for more general versions of analogy. Since annotated rewrite rules, as they are
presented in Section 6.2.1, inherit such information, we are able to maintain
the mapping also when patching the original proof.

Since our main focus is the general methodology behind rippling, we refrain
from a more detailed analysis of this reuse technique, but we would like to
emphasize that, by encoding the proof history into annotations, we are able
to treat different proof histories in the same way by imposing an equational
theory on annotations. For instance, we can ignore the applications of a rewrite
rule R by applying an “annotation” rewrite rule [α, β, R] → α to modify the
annotations occurring in the abstract proof. If the application of two rewrite
rules is permutative, we can ignore the sequence in which rewrite rules are
applied by using some kind of distributivity law on annotations.

6.4 Implementation

The different strategies discussed in this chapter have all been implemented
and tested within a common framework, and are described in detail in Autex-
ier et al. (1999); (2000); (2002). Initially, these different applications of anno-
tations were individually encoded into separate deduction tools. Later, Serge
Autexier designed and implemented a general framework (see Autexier 2003)
for hierarchical contextual reasoning. This framework became the common
underlying proof engine CoRe of the MAYA (Autexier et al., 2002; Autexier
& Hutter, 2002) and OMEGA (Benzmüller et al., 1997) system in 2002. CoRe
uses an annotated higher-order calculus (Hutter & Kohlhase, 2000) based on
the typed λ-calculus. The supported language of annotations is similar to the
language of annotations that we use to define an annotated first-order calculus
in Section A1.2. CoRe supports hierarchical planning by providing hierarchi-
cal proof data-structures as first-class citizens. To implement different proof
strategies (such as those mentioned above), a user has only to provide the fol-
lowing information to CoRe:

(i) the rules defining how to annotate the axiomatization of a problem,
which also implicitly pre-determines how information is maintained dur-
ing proof search;

(ii) the abstraction function;
(iii) tactics to implement a search engine operating on the abstract level and

generating abstract proofs; and
(iv) tactics to refine an individual abstract proof step into a sequence of calcu-

lus steps at the ground level.
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Using CoRe, we do not have to modify the logic engine to make use of do-
main knowledge (as was done in original approaches of implementing reuse,
window inferencing and basic paramodulation). Instead, we encode the re-
quired extra knowledge into formula and rule annotations. Tactics operating
on annotated formulas (or their abstractions) can make use of this knowledge
during deduction. Annotations allow the user to include application-specific
domain knowledge into proof search without changing the underlying proof
systems. Regardless of how tactics or annotations are defined, the soundness
of the underlying calculus is always guaranteed because each proof step is
justified in terms of an inference rule in the underlying (presumed sound)
calculus.

6.5 Summary

In this chapter, we have generalized the rippling methodology by presenting
a framework for embedding and maintaining different kinds of control infor-
mation using annotations. Based on these annotations, we defined various ab-
stractions in order to simulate different kinds of proof strategies within the
proof-by-abstraction paradigm. Considering these different proof strategies as
instances of a common methodology has allowed us to implement them in a
uniform way using a generic framework for proof search based on abstrac-
tions on annotated terms. Diverse illustrative examples were chosen to give the
reader a feeling for the scope of this general methodology.

The main application of our work is to formal methods of system devel-
opment, so our evaluation has been chiefly carried out on the proof obli-
gations arising from formal verification. During this work, we have discov-
ered a number of exciting and productive applications of annotated rewriting,
which improve the automated support of formal methods. Here are two such
applications.

(i) Proof obligations often contain structural information that may be lost
when encoding them in a first-order or higher-order logic. For instance,
each part of a proof obligation corresponds to part of the initial specifica-
tion. Knowing this correspondence eases the selection of an appropriate
subformula with which to start the proof search. We use annotations to
implement this kind of origin-tracking.

(ii) Analyzing the time spent in carrying out large verifications has revealed
that about 50% of the overall time spent on software verification involves
repairing or redoing previously correct proofs that have became invalid
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due to changes in the specification. Appropriate support for the reuse of
proofs is essential when transferring formal methods into industry. Again,
annotations have been successfully used to support the reuse the proofs in
our tools (Melis & Schairer (1998); Schairer (1998)).

Annotated rewriting has provided powerful and discriminating tools for
guiding proof search. Not only have we been able to rapidly reconstruct a wide
range of search-control techniques within a common framework, but we have
also been able to exploit the additional power to abstract different occurrences
of terms in different ways, according to their history. Thus, rippling has opened
the door to a new paradigm for search control.



7

Conclusions

We have come a long way in our investigation of rippling: from the observation
of a common pattern in structural induction proofs, to a new paradigm in proof
search. Firstly, we noted that this common pattern could be enforced, rather
than merely observed, by inserting meta-level annotations into object-level
formulas. These annotations – wave-holes and wave-fronts – marked those
parts of formulas that were to be preserved and moved, respectively. Ensuring
that rewriting respected these annotations enforced additional constraints dur-
ing proof search: restricting that search to those parts of the search space that
made progress towards using the induction hypothesis to prove the induction
conclusion.

Secondly, experimental exploration with these annotations suggested a
wealth of ways to extend and generalize the original idea beyond simple struc-
tural inductions to more complex forms of induction and to many other kinds of
proof. Indeed, whenever proving a goal using one or more structurally similar
“givens”, rippling could help guide the proof through a potential combinatorial
explosion towards a successful conclusion with little or no search.

Thirdly, since rippling imposes such strong expectations on the structure
of a proof, any failure of rippling can be analyzed to suggest how to patch
an initially failed proof attempt. This productive use of failure often suggests
proof patches that had previously been thought beyond the ability of automated
reasoners: so-called, “eureka” steps. These may include, for instance, the sug-
gestion of a novel induction rule, a new lemma, a generalization of the original
conjecture, or a case split.

Fourthly, we have developed a formal theory of rippling, leading to a
deeper understanding of how and why it works. In particular, we can prove
the termination of any application of rippling. This termination result is re-
markable in at least two respects: (a) it applies to an infinite set of rewrite
rules, consisting of all rewrite rules that can be annotated as wave-rules, and
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(b) this set may include the same equation twice: annotated both left-to-right
and right-to-left. The wave annotations prevent the looping that would cause
non-termination in conventional rewriting.

Fifthly, we have presented a family of new applications for the insertion of
meta-level annotations into object-level formulas. These applications include
basic ordered paramodulation and basic superposition; the tracking of focus
during inference; and the analogical reuse of proofs of old theorems to guide
the proofs of new ones. From these examples, it is clear that we have only
scratched the surface of the use of annotations to guide proof search. We antic-
ipate that many more such applications remain to be discovered. It is for this
reason that we claim to have developed a new paradigm for proof search.

Lastly, all the above ideas have been extensively tested in practical appli-
cations. The INKA system has successfully applied rippling to a wide range of
industrial-scale verification problems. Rippling has proved its worth by signifi-
cantly reducing search, bringing hard problems into the range of a state-of-the-
art inductive theorem prover, without excluding the proof being sought from
that search space. The INKA system has also been successfully used to thor-
oughly test the family of new applications of annotated reasoning described in
the last chapter. The C LAM system has been used to apply rippling to the wide
range of inductive and non-inductive problems, as illustrated, for instance, in
Chapter 5. It has also been used to explore the productive use of failure using
critics that was described in Chapter 3.

This story is not yet finished. Apart from the many further extensions
and generalizations to rippling and its theoretical foundations that constantly
present themselves, two major challenges remain. One is to develop new appli-
cations of annotated reasoning. From the new applications we have presented
in the last chapter, the range and potential of this new paradigm seem enor-
mous. We urge readers to see if it can be applied to their current search prob-
lems. The other is to further explore the productive use of failure, e.g. arising
in new applications of annotated reasoning. The starting-point is a declarative
specification of the preconditions of the new proof methods. Systematic falsi-
fication of each precondition may then suggest an appropriate patch to recover
from such a failure. Further analysis of each failure may suggest how to in-
stantiate the patch to the current situation. The experience of rippling shows
that such analysis can lead to imaginative new proof steps, usually considered
beyond automation.

We hope you have enjoyed reading this book and have come to share some
of our enthusiasm for rippling and related forms of annotated reasoning. More
importantly, we hope you will find these ideas useful in your own work and
will join us in the further exploration and development of rippling.



Appendix 1

An annotated calculus and a unification
algorithm

In this appendix, we formalize a specific annotation calculus that is able to
deal with all the examples that we have presented in Chapter 6. This calculus is
based on a first-order proof calculus and a corresponding unification procedure.

We wish to emphasize that the approach presented is an example of a more
general technique to combine annotations and logic calculi. Another example
is Hutter & Kohlhase (2000), which describes how to incorporate annotations
into a calculus based on higher-order logic. Both approaches share the same
principal mechanisms to incorporate annotations into calculi.

A1.1 An annotation calculus

The integration of annotations into a calculus is determined by the definition
of annotated substitution, which we have only sketched in Section 6.1. As seen
in Section 6.2.3, annotated substitutions instantiate both meta-variables and
annotation variables. Note that, in contrast to the formalization in Chapter 4,
instantiations of meta-variables are independent of instantiations of annota-
tions, since we have separated signatures and variables for annotation terms
and object terms.

To cope with these different kinds of variables, an annotated substitution
consists of a substitution for meta-variables as well as a family of substitutions
for annotation variables. The definition of annotated substitutions determines
the possible ways to inherit information during an inference step. To guarantee
that an annotated inference step corresponds to a sound inference step in the
non-annotated calculus, an annotated substitution has to denote a “standard”
substitution if we erase all annotations.

In an annotated calculus (the annotated rewrite system considered here is
just an instance of it) the information flow is realized by using annotation
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variables to annotate rewrite rules. Each annotation occurring in the instance
of a variable has to be an instance of the annotation of the variable. In particu-
lar, matching the left-hand side of a rule with a subexpression instantiates the
annotation variables. The instantiations of the individual annotation variables
denote the particular bits of information in the original formula that are trans-
ferred to the new formula. Using a term language to represent annotations, we
are free to use these bits of information as building blocks for more complex
information.

However, there are restrictions on how the information flow can be orga-
nized. Consider a rewrite rule in which a meta-variable U occurs on both sides.
Let α be its annotation on the left-hand side, and let t[α] be some annota-
tion term of U on the right-hand side. Matching Uα with an annotated term
f c(ad, be), results, in general, in different instantiations of α inside the anno-
tations c, d, and e. The instantiation of α may depend on the position where α

occurs in f c(ad, be). For instance, we can instantiate U t[α] to f t[c](at[d], bt[e]).
We can also come up with a solution in which the instantiation of α is indepen-
dent of the position of the symbol occurrence. In this case, the annotated sub-
stitution has to identify the annotations c, d, and e. The question arises whether
the instantiation of an annotation variable should depend on the variable’s con-
text, i.e. are annotation variables instantiated in different ways depending on
whether they occur as the annotation of a function symbol or a variable? There
is no single answer to this question.

(i) In the reuse example reference of Section 6.2.4, we needed a notion of
instantiation that is independent of the symbols to which annotation vari-
ables are attached. We used annotation variables to propagate the position
of the rule application to all symbol occurrences of the new subterm. This
means that an instantiation of these variables is global to all its occur-
rences. We call such an annotation variable a rigid variable.

(ii) In the examples in Sections 6.2.2 and 6.2.3, we used a term Uα as a place-
holder for an arbitrary annotated term. If α must always be instantiated
in the same way, then Uα could only be instantiated to annotated terms
with identical annotations. Thus, there would be no possible annotation
of a variable that allows us to instantiate the resulting annotated term to
an arbitrary annotated term. Hence, there is also a need for what we will
call flexible annotation variables that can be instantiated in different ways,
depending, for instance, on the symbol to which they are attached. If the
annotation variable α occurs in the annotation of a variable U that is in-
stantiated to a compound term, then it is helpful to consider separately
the instantiation of α to the annotations of the different symbols in that
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compound term. For example, when instantiating Uα to sc(xb) we have to
distinguish between the instantiation of α to obtain the annotation c of the
top-level symbol s, and the instantiation of α to obtain the annotation b
of x .

Our formal definition of annotation variables allows us to handle both kinds of
examples.

Definition 16 The set of annotation variables V consists of two disjoint infinite
sets of rigid (annotation) variables VR and flexible (annotation) variables VF .

Abusing notation, we write VF (t) (VR(t)) to denote all flexible (rigid) variables
of an annotated term or an annotation t ; VF,a(t) ⊂ VF denotes all flexible
variables occurring in the annotations of symbol a in t , and Va is defined by
Va(t) := VR(t) ∪ VF,a(t). We use the expression α ∈ Va(t) to denote that α

is either a rigid variable occurring in t , or a flexible variable occurring in some
annotation of a in t .

Annotated substitutions are split into an X -substitution operating on meta-
variables and V-substitutions operating on annotation variables. Since anno-
tated terms are ordinary terms when their annotations are erased, substitutions
on annotated terms denote substitutions on terms if we erase all annotations
(cf. Section 6.1).

X -substitutions, representing the underlying substitutions on (non-
annotated) terms, are defined in the usual way as functions, which are rep-
resented as finite sets of variable/term pairs.

Definition 17 An X -substitution σ is a function from X to T�(X ) such that
σ(U ) = U for all but finitely many U ∈ X .

Examples of X -substitutions are {x/U, s(y)/V } and {x/U }.
In a similar way, we define V-substitutions on annotated variables. Ad-

ditionally, V-substitutions must not instantiate rigid variables by annotations
containing flexible variables:

Definition 18 A V-substitution κ is a function from V to T�(V) such that
κ(α) = α for all but finitely many α ∈ V , and α ∈ VR implies that
VF (κ(α)) = ∅.

An example of a V-substitution is {b/α, c/β}, whereas {β/α} is only a V-
substitution if either β is rigid or α is flexible.
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Since the instantiation of rigid variables is global to all their occurrences,
an annotated substitution provides a V-substitution ζR to instantiate these vari-
ables.

In contrast to rigid variables, the instantiation of flexible variables depends
on the symbols they annotate. For each function symbol f we obtain a sep-
arate V-substitution ζ f that defines the instantiation of the flexible variables
occurring in the annotations of f .

An annotation c of a meta-variable X containing flexible variables can be
considered simply as a pattern for admissible annotations occurring in later
instances ρ(X) of the meta-variable. We use the same pattern to compute
the annotations of the individual positions in ρ(X). However, we may use
different instances of this pattern in different positions. Thus, the instantiation
of a flexible variable depends on the underlying meta-variable and on the
position of the designated instantiation of that variable. Hence, annotated
substitutions provide families of V-substitutions ζU,p that instantiate flexible
variables occurring in the annotation of a variable U for a specific position p
in the instance σ(U ).

Definition 19 A V-annotation family ζ with respect to a X -substitution σ is a
family of V-substitutions consisting of

(i) a V-substitution ζR with DO M(ζR) ⊂ VR,
(ii) V-substitutions ζ f with DO M(ζ f ) ⊂ VF for all f ∈ �, and

(iii) V-substitutions ζU,p with DO M(ζU,p) ⊂ VF for U ∈ X and positions
p ∈ Pos(σ (U )).

Using these definitions, we define annotated substitutions as follows.

Definition 20 An annotated substitution ρ = (σ, ζ ) is a pair consisting of a
X -substitution σ and a V-annotation family ζ with respect to σ .

Example Consider the first rewrite step in Section 6.2.4. Suppose that α and
δ are rigid variables, and that β and γ are flexible variables. When match-
ing sδ(Uβ) +α V γ with s2(x3) +1 s4(y5) we obtain the following annotated
substitution (σ, ζ ):

σ = {x/U, s(y)/V },
ζR = {1/α, 2/δ},
ζ f = {} for all f ∈ �,

ζU,ε = {3/β},
ζV,ε = {4/γ }, and

ζV,〈1〉 = {5/γ }.
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Definition 21 An annotated substitution ρ = (σ, ζ ) defines a mapping from
A → A by:

(i) ρ( f c(t1, . . . , tn)) = f ζ f (ζR(c))(ρ(t1), . . . , ρ(tn)).
(ii) ρ(U c) = t with erase(t) = σ(U ) and T�(V)(t/p) = ζU,p(ζR(c)) for all

p ∈ Pos(t).

Notice that Definition 21 is based on the restriction that flexible variables
must not occur in the codomain of instantiations of rigid variables. Thus, the
successive application of ζR-substitutions and ζF -substitutions is identical to
the application of the combination of both substitutions.

The annotation calculus is an extension of the underlying calculus, since we
add annotations to individual symbol occurrences and formulate additional
cases when defining the unification and matching processes. Given an anno-
tated substitution, its X -substitution is exactly the corresponding substitution
in the non-annotated case. Definition 21 trivially guarantees that if an annotated
substitution is applicable to an annotated term, then its X -substitution is appli-
cable to the erasure of that term. Hence, the annotated calculus always simu-
lates inference steps of the underlying non-annotated calculus, which guaran-
tees the soundness of the approach.

Based on annotated substitutions, we lift the usual notions of first-order uni-
fication theory to the annotated case. An annotated substitution ρ = (σ, ζ ) is
a renaming if and only if its components σ and ζ are renamings. The compo-
sition ρ′ ◦ ρ of two annotated substitutions ρ and ρ′ is the mapping that maps
each annotated term t to ρ′(ρ(t)). It is straightforward to prove that ρ′ ◦ ρ is
again an annotated substitution.

Definition 21, which describes the application of annotated substitutions,
causes some intrinsic problems in connection with most general unifiers. Sup-
pose α is a flexible variable that occurs in an annotated term U k(α). Then k(α)

represents a pattern for all annotations occurring in some instantiation of U k(α).
Depending on the position in the instantiation of U , we may instantiate α dif-
ferently. For instance, sk(a)(sk(b)(0k(c))) is an admissible instance of U k(α) us-
ing an annotated substitution (σ, ζ ), with σ = {s(s(0))/U }, ζU,ε = {a/α},
ζU,〈1〉 = {b/α}, and ζU,〈11〉 = {c/α}. But if we instantiate U by s(s(0)) with-
out specifying any substitution of α explicitly, we obtain sk(α)(sk(α)(0k(α))),
which cannot be instantiated to sk(a)(sk(b)(0k(c))) because of the clash of a/α

and b/α in ζs . Copying the annotations attached to a variable U to function
symbols, we must rename the VF variables in all positions to obtain the in-
tended instance sk(β)(sk(γ )(0k(α))). This renaming is not built into the notion
of annotated substitutions but has to be done explicitly. We must explicitly
rename the flexible variables occurring in the annotation of a meta-variable
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that has to be instantiated by the substitution. Definition 23 computes such an
explicit renaming when instantiating a meta-variable. Since we aim at a finite
representation of annotated substitutions, we are only able to specify renam-
ings for a finite set of flexible variables. Thus, we always restrict the use of
annotated substitutions to the finite set of flexible variables occurring in the
annotation of a variable.

To keep track of the flexible variables to be considered during unification,
we define contexts.

Definition 22 A context � is a finite set of terms Uα , with U ∈ X and α ∈
VF . The required context �(t) of an annotated term t is defined by �(t) =
{Uα | U ∈ X (t) and α ∈ VF,U (t)}. The context �U of a variable U with
respect to � is defined by �U = {α | Uα ∈ �}.

The following definition provides an annotated substitution corresponding
to a substitution {t/U } that takes care of such a renaming for a set of flexible
variables {α1, . . . , αn}.
Definition 23 Let x ∈ X , t ∈ T�(X ). An annotated substitution ({t/U }, ζ ) is
an annotation renaming of {t/U } with respect to a context �U iff

(i) ζR = {} and ζ f = {} for all f ∈ �, and
(ii) for all positions p, p′ of t and α ∈ �U :

(a) ζU,p(α) ∈ VF \ �U , and
(b) ζU,p(α) = ζU ′,p′(α′) implies that U = U ′, p = p′, and α = α′.

For example, let {α, β, γ } be flexible variables. Then an annotation renaming
of {s(y)/V } with respect to {α} is a pair ({s(y)/V }, ζ ) with

ζR = {}, ζ f = {} for all f ∈ �, and ζV,ε = {β/α}, ζV,〈1〉 = {γ /α}.
Applying this annotation renaming to an annotated term V α results in an

annotated term sβ(yγ ), which is annotated with flexible variables that are not
in �V = {α}.

As a consequence of the necessary explicit renaming of flexible variables,
we must do some bookkeeping about the flexible variables that are in the scope
of an explicit renaming. Therefore we define:

Definition 24 Two annotated substitutions ρ and ρ′ are equal with respect to
a context �, written ρ =� ρ′ for short, iff ρ(t) = ρ′(t) for all t ∈ A with
�(t) ⊂ �.
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We are now ready to introduce the notion of most general annotated unifier:

Definition 25 An annotated substitution ρ is an annotated unifier of two an-
notated terms s and t iff ρ(s) = ρ(t); ρ is a most-general annotated unifier of
s and t with respect to a context � iff for all unifiers ρ′ of s and t there exists
an annotated substitution λ with λ ◦ ρ =� ρ′.

A1.2 Unification algorithm

In the following we develop a unification algorithm for first-order annotated
terms. As usual, we define the unification algorithm as a set of transforma-
tion rules operating on a set of annotated term pairs denoting the unification
problem. Each member of this set is either a pair of annotated terms or a pair
ac = ad of annotated function or variable symbols. The latter kind repre-
sents a unification problem that is purely concerned with annotation variables.
The symbol a is used to denote the context in which the annotated unification
problem occurs. Unifying this pair imposes constraints on the corresponding
substitutions of flexible variables ζa .

Definition 26 An annotated substitution ρ is an annotated unifier of a unifica-
tion problem E = {s1 = t1, . . . , sn = tn} iff ρ(si ) = ρ(ti )1 for all 1 ≤ i ≤ n.
The set of annotated unifiers of E is denoted by U(E).

A unification problem is simplified by iteratively applying transformation
rules to the problem until the result is in a so-called solved form, i.e. we can
easily read the resulting unifier from this set or a clash occurs, i.e. there is a
pair that is not unifiable.

A solved form consists of two different kinds of equations. The first kind
denotes the usual X -substitutions, i.e. a variable U is replaced by a term t .
Additionally, we encode the V-substitutions on flexible variables occurring in
the annotations of U into such equations. Thus, for each annotation variable α

under consideration, we obtain an equation Uα = t ′ with erase(t ′) = t . The
annotations in t ′ specify the different instantiations of α with respect to the
positions in t ′. The second kind of equation is concerned with the instantia-
tion of rigid annotation variables and flexible annotation variables attached to
function symbols. We denote such instantiations by equations like aα = ad.

Definition 27 A pair L is in a solved form with respect to a set of equations
E and a context � iff

1 We extend the application of annotated substitutions to term fragments ac in the obvious way.
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(i) L has the form Uα = t with U ∈ X \ X (t) and α ∈ �U . Furthermore,
for all β ∈ �U there is exactly one literal Uβ = t ′ ∈ E with erase(t) =
erase(t ′) and U occurs nowhere else in E.

(ii) L has the form aα = ac, a ∈ � ∪ X , α ∈ V , and α �∈ Va(c) ∪ Va(E).

The definition of solved forms reflects the different kinds of variables. The
first clause deals with term variables. All pairs containing U must share a com-
mon erasure, and U must not occur in t . In general, we need different pairs for
U to encode the instantiation of the flexible variable attached to U . The sec-
ond clause deals with annotation variables. Since the instantiation of flexible
variables depends on the symbol they are attached to, the unification algo-
rithm operates on annotated symbols. To simplify matters, we use the same
representation for rigid and flexible variables. The condition of the second
clause guarantees that we do not obtain more than one pair for the same rigid
variable.

Definition 28 A unification problem E is in solved form with respect to a
context � iff all its pairs L are in solved form with respect to E \ {L} and
�.

For example, the unification problem

{sδ = s2,+α = +1, Uβ = x3, V β = sβ ′
(yβ ′′

), V γ = s4(y5)} (A1.1)

is in solved form with respect to {Uβ, V β, V γ }. Notice that this unification
problem is not solved with respect to the context {Uβ, V β, V γ , V δ} since it
does not provide an instantiation for δ attached to V . A unification problem in
solved form denotes an annotated substitution.

Definition 29 Given a unification problem E in solved form with respect to
a context �, then the canonical annotated substitution ρE = (σ, ζ ) of E with
respect to � is defined as follows:

(i) σ(U ) = erase(t) if some literal Uα = t ∈ E, otherwise σ(U ) = U.
(ii) ζR(α) = c if aα = ac ∈ E with a ∈ � ∪ X and α ∈ VR; otherwise

ζR(α) = α.
(iii) ζ f (α) = c if f α = f c ∈ E with α ∈ VF and f ∈ �, otherwise ζ f (α) =

α.
(iv) ζU,p(α) = c if Uα = t ∈ E with α ∈ VF and T�(V)(t/p) = c; otherwise

ζU,p(α) = α.

The unification problem (A1.1) provides the following canonical annotated
substitution (σ, ζ ):
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(i) σ = {x/U, s(y)/V }.
(ii) ζR = {1/α, 2/δ}.

(iii) ζ f = {} for all f ∈ �.
(iv) ζU,ε = {3/β}.
(v) ζV,ε = {β ′/β, 4/γ }, and ζV,〈1〉 = {β ′′/β, 5/γ }.

Obviously, the canonical annotated substitution ρE with respect to � is a
most general annotated unifier of E with respect to �. The definition of a
solved form ensures that the definition of the canonical annotated substitution
is unique up to variable renaming.

We use this definition to denote annotated substitutions as a set of re-
placements {t1/s1, . . . , tn/sn} iff the corresponding unification problem {s1 =
t1, . . . , sn = tn} is in solved form.

We are now ready to introduce the transformation rules of the unification
procedure. Each rule will operate on a pair E ;� consisting of a unification
problem E and a context �. We apply these rules with the understanding that
the operator = is symmetric and that trivial pairs may be dropped. Finally, no
rule may be applied to a solved pair.

The first two transformation rules decompose a unification problem based
on the structure of the terms or their annotations. Since both X -substitutions
and V-substitutions are homomorphic extensions of mappings on X and V , the
unification of compound terms or annotations can be reduced to the unification
of their components:

�-Decomposition:

{ f c(t1, . . . , tn) = f d(s1, . . . , sn)} ∪ E ; �

{ f c = f d, t1 = s1, . . . , tn = sn} ∪ E ; �

�-Decomposition:

{ak(t1,...,tn) = ak(s1,...,sn)} ∪ E ; �

{at1 = as1 , . . . , atn = asn} ∪ E ; �

with a ∈ � ∪ X and c, d ∈ T�(V).

Both rules allow us to decompose unification problems until we either en-
counter a clash, i.e. there is an equation with two different function symbols
on left-hand and right-hand sides, or with a pair where at least one side con-
sists of a term variable or an annotation variable. Owing to the homomorphic
extension of X -substitutions and V-substitutions to annotated terms, it is easy
to see that both transformations will keep the set of unifiers unchanged.
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For example, consider the previous unification problem

{sδ(Uβ) +α V γ = s2(x3) +1 s4(y5)}; {Uβ, V β, V γ }. (A1.2)

Applying the decomposition rules results in the unification problem

{sδ = s2,+α = +1, Uβ = x3, V γ = s4(y5)}; {Uβ, V β, V γ }. (A1.3)

Annotation variables are treated in the unification process like first-order
term variables in standard unification theory. Suppose there is an annotation
equation aα = ac in the problem set E . Either α occurs in c and thus both
terms are not unifiable, or we replace each relevant (depending whether α is
rigid or flexible) occurrence of α in E by c. As an additional restriction we
must guarantee that if α is a rigid variable then c does not contain any flexible
variables.

V-Substitution:
{aα = ac} ∪ E ; �

{aα = ac} ∪ {ac/aα}(E) ; �

if a ∈ � ∪ X , α ∈ Va(E) \ V(c) and α ∈ VR implies VF (c) = ∅.

In the example of (A1.3), the V-Substitution rule is not applicable since both δ

and α only occur once in already solved pairs.
If α is a rigid variable and c contains flexible variables, then the above rule

is not applicable because the rigid variables may not be instantiated by flexible
annotations. But we can, of course, instantiate the flexible variables of c to
rigid variables. Thus, we imitate the annotation of the right-hand side until we
succeed in isolating the flexible variables occurring on the right-hand side.

�-Imitation:

{aα = ak(t1,...,tn)} ∪ E ; �

{aα = ak(α1,...,αn), ak(α1,...,αn) = ak(t1,...,tn)} ∪ E ; �

if a ∈ � ∪ X , α ∈ VR , VF (k(t1, . . . , tn)) �= ∅, and α1, . . . , αn are fresh,
pairwise distinct rigid annotation variables.

We are left with the case of U c = t . Obviously, this equation requires that
the term substitution σ unifies U and erase(t). Analogous to standard first-
order unification, we will simplify the problem set by replacing occurrences
of U by appropriate annotated versions of erase(t). The problem remains of
how to annotate erase(t) to replace an occurrence U c. If c does not contain
any flexible variables, then the definition of annotated substitutions requires
that each symbol of t is annotated with the same instance of c. If c contains a
flexible variable α, then we are free to instantiate α differently for each position
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in erase(t). Thus, to obtain a most general unifier, we have to rename α in
c by new fresh flexible variables for each position in erase(t). We use the
definition of annotated renamings to replace all (annotated) occurrences of a
term variable U in the problem set, once we find an equation U c = t .

X -Substitution:
{U c = t} ∪ E ; �

{Uα = τ(Uα)|α ∈ �U } ∪ {τ(U c) = τ(t)} ∪ τ(E) ; � ∪ ⋃
α∈�U

�(τ(Uα))

if U ∈ X \ X (t), U c = t is not in solved form with respect to E and τ is an
annotation renaming of {erase(t)/U } with respect to �U .

The pairs {Uα = τ(Uα)|α ∈ �U } represent the instantiation of the variants
of U by variants of t that determine the substitutions ζU,p, for all the positions
p in t . Since the annotated renaming τ introduces new flexible variables, we
have to extend the context � by the newly introduced annotated variables.

Consider our example of solving the unification problem (A1.3). If we se-
lect the equation Uβ = x3 to apply the X -Substitution rule, then we obtain an
annotated renaming τ with τV,ε = {β ′/β, γ ′/γ } and τV,〈1〉 = {β ′′/β, γ ′′/γ }.
Since τ(Uα) does not contain any term variables, �(τ(Uα)) is empty. Thus,
we obtain

{V γ = sγ ′
(yγ ′′

), V β = sβ ′
(yβ ′′

), sδ = s2,

+α = +1, Uβ = x3, sγ ′
(yγ ′′

) = s4(y5)}; {Uβ, V β, V γ }. (A1.4)

Applying the �-Decomposition rule yields

{V γ = sγ ′
(yγ ′′

), V β = sβ ′
(yβ ′′

), sδ = s2,

+α = +1, Uβ = x3, sγ ′ = s4, yγ ′′ = y5}; {Uβ, V β, V γ }. (A1.5)

After applying the V-Substitution rule twice we finally obtain the solved form

{V γ = s4(y5), V β = sβ ′
(yβ ′′

), sδ = s2,

+α = +1, Uβ = x3, sγ ′ = s4, yγ ′′ = y5}; {Uβ, V β, V γ }. (A1.6)

All the presented transformation rules form the unification algorithm:

Definition 30 The rules R for annotated unification are �-Decomposition,
�-Decomposition, V-Substitution, �-Imitation, and X -Substitution.

Given two sets E, E ′ of equations and two contexts �, �′ then E;� � E ′;�′
holds iff

(i) E = E ′ and � = �′; or
(ii) there is a set of equation E ′′ and a context �′′ such that E;�

E ′′;�′′ ∈ R and
E ′′;�′′ � E ′;�′ holds.
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A1.2.1 Soundness and completeness

We now prove the soundness and completeness of the annotated unification
algorithm in the usual way. We prove that the set of annotated unifiers for a
unification problem is invariant with respect to the transformation rules.

As a prerequisite, we prove a lemma that guarantees that applying explicit
renamings of flexible variables does not change a unification problem in an
essential way. In particular, suppose σ is an annotated unifier of U and t , and
ρ is an annotated renaming of {t/U } with respect to some context �. Then our
lemma states that we can reduce the unification problem U = t to a unification
problem ρ(U ) = t without losing any potential unifiers.

Lemma 6 Let U ∈ X , t ∈ A, and τ = (λ, κ) be an annotation renaming of
{erase(t)/U } with respect to some context �. Let ρ = (σ, ζ ) be an annotated
substitution with σ(U ) = σ(t). Then there is an annotated substitution ρ′ =
(σ ′, ζ ′) with ρ =� ρ′ ◦ τ .

Proof We sketch the proof by defining an appropriate annotated substitution
ρ′ = (σ ′, ζ ′) satisfying the requirements of lemma 6.

Let σ ′ = σ . Then, obviously, σ = σ ′ ◦ λ holds. Let ζ ′ be ζ except for those
flexible variables that occur in the codomain of κ . Let β be such a variable.
There is a unique annotation variable α ∈ VF and position p ∈ Pos(λ(U ))

such that T�(V)(τ (Uα)/p) = β holds. If λ(U )/p is a variable V , then we
(re-)define ζ ′

V,p′(β) = ζU,p′◦p(α) for all p′ ∈ Pos(σ (V )). If λ(U )/p is a
function symbol f ∈ � then we define ζ ′

f (β) = ζU,p(α).

We are now ready to prove the soundness of the annotated unification al-
gorithm. The usual proviso is that the unification problem does not contain
variables that are introduced by one of the transformation rules as a “new”
variable. Hence we postulate:

Theorem 7 Let E;� �R E ′, �′. Then U(E) =� U(E ′).

Proof sketch: We prove this theorem by induction on the length of the transfor-
mation. Suppose there is a transformation E = E1 → . . . → En = E ′.

In the base case, for n = 1, the postulated theorem holds trivially. In the
induction step we assume that the property holds for all steps except the last
one, and perform a case analysis according to the last transformation rule used.

Obviously, the �-Decomposition and �-Decomposition rules keep the set
of unifiers invariant because of the definition of annotated substitutions as ho-
momorphic extensions on mappings on term and annotation variables.

In the case of the V-Substitution rule, we employ the standard proof tech-
nique for variable elimination from first-order unification theory. Each unifier
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of aα = ac has to identify α and c either globally, if α ∈ VR , or locally to oc-
currences of a, if α ∈ VF .1 Thus, we can replace occurrences of α by c without
changing the annotated unifier set, since aα = ac, which is also a member of
the new unification problem, enforces the identification of both.

Consider next the X -Substitution rule, which replaces all occurrences of U
by annotated versions of t using an annotated renaming τ . Suppose that there
is an annotated unifier ρ of En − 1. Then, according to lemma 6, there is also
an annotated substitution ρ′ such that ρ =� ρ′ ◦ τ , and ρ′ unifies also each
Uαi = τ(Uα) with α ∈ �U . Hence, ρ′ ◦ τ is a unifier of En . Suppose there is
an annotated unifier ρ of En , then obviously ρ is also an annotated unifier of
En − 1

As mentioned above, the X -Substitution rule must keep track of the neces-
sary renamings of flexible variables occurring in the annotations of the variable
to be replaced.

Theorem 7 guarantees that applying the transformation rules will keep the
set of unifiers invariant. In order to assure completeness of the approach we
must also prove that the unification procedure terminates. For each unification
problem, the algorithm will terminate with a unification problem that is either
in solved form or contains a clash. This proof is analogous to corresponding
proofs in standard unification theory using lexicographical ordering combining
the ordering on the number of variables that occur in non-solved forms and the
complexity of the occurring terms.

To ease readability, we have presented a simple version of the unification
algorithm and have not incorporated any improvements, for instance more so-
phisticated book keeping of flexible variables.

1 We do not need to distinguish both cases in the rule because the notation of Va takes care of
this.
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Definitions of functions used in this book

• X : nat + Y : nat computes the sum of two naturals:

X + Y = Y

s(X) + Y = s(X + Y )

• X : nat × Y : nat computes the product of two naturals:

0 × Y = 0

s(X) × Y = Y + (X × Y )

• half (X : nat) computes the half of a natural:

half (0) = 0

half (s(0)) = 0

half (s(s(X))) = s(half (X))

• odd(X : nat) checks whether a natural X is odd:

odd(0) ↔ false

odd(s(0)) ↔ true

odd(s(s(X))) ↔ odd(X)

• even(X : nat) checks whether a natural X is even:

even(0) ↔ true

even(s(0)) ↔ false

even(s(s(X))) ↔ even(X)
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• binom(X : nat, Y : nat) computes the binomial:

binom(X, 0) = s(0)

binom(0, s(Y )) = 0

binom(s(X), s(Y )) = binom(X, s(Y )) + binom(X, Y )

• length(X : list) computes the length of a list X :

length(nil) = 0

length(X :: Y ) = s(length(Y ))

• X : list <> Y : list concatenates the two lists X and Y :

nil <> Z = Z

(X :: Y ) <> Z = X :: (Y <> Z)

• del(X : elem, Y : list) deletes the first occurrence of X in Y :

del(X, nil) = nil

X = Y → del(X, Y :: Z) = Z

X �= Y → del(X, Y :: Z) = Y :: del(X, Z)

• rotate(X : nat, Y : list) moves the first X elements of Y to the end of Y :

rotate(0, Z) = Z

rotate(s(X), nil) = nil

rotate(s(X), Y :: Z) = rotate(X, (Z <> (Y :: nil)))

• rev(X : list) reverses the list X

rev(nil) = nil

rev(X :: Y ) = rev(Y ) <> (X :: nil)

• qrev(Y : list, Z : list) appends the reversed list of Y in front of Z :

qrev(nil, Z) = Z

qrev(X :: Y, Z) = qrev(Y, X :: Z)

• permute(Y : list, Z : list) tests whether Y is a permutation of Z

permute(nil, Z) ↔ Z = nil

X �∈ Z → permute(X :: Y, Z) ↔ false

X ∈ Z → permute(X :: Y, Z) ↔ permute(Y, del(X, Z))
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• palin(X : list, Y : list) appends X and the reverse of X to Y :

palin(nil, Acc) = Acc

palin(H :: T, Acc) = H :: palin(T, H :: Acc)

• size(X : tree) computes the number of leafs in a tree:

size(leaf ) = s(0)

size(node(N , L , R)) = s(size(L) + size(R))

• nodes in flattens a tree to a multi-set:

nodes in(empty) = nil

nodes in(node(N , L , R)) = insert(N , nodes in(L) ∪ nodes in(R))

• count computes the number of elements in a multi-set:

count(empty) = 0

count(insert(E, S)) = s(count(S))
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