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Preface

The emergence of virtual reality applications and human-like interfaces has
given rise to the necessity of producing realistic models of the human body.
Building and animating a synthetic, cartoon-like, model of the human body has
been practiced for many yearsin the gaming industry and advancesin the game
platforms have led to more realistic models, although still cartoon-like. The
issue of building avirtual human cloneisstill amatter of ongoing research and
relies on effective algorithms which will determine the 3D structure of an ac-
tual human being and duplicate this with athree-dimensional graphical model,
fully textured, by correct mapping of 2D images of the human on the 3D model.

Realistic human animation is also amatter of ongoing research and, in the case
of human cloning, relies on accurate tracking of the 3D motion of a human,
which has to be duplicated by his 3D model. The inherently complex articula-
tion of the human body imposes great difficultiesin both the tracking and ani-
mation processes, which are being tackled by specific techniques, such as mod-
eling languages, as well as by standards devel oped for these purposes. Particu-
larly the human face and hands present the greatest difficultiesin modeling and
animation due to their complex articulation and communicative importance in
expressing the human language and emaotions.

Within the context of this book, we present the state-of-the-art methods for
analyzing the structure and motion of the human body in parallel with the most
effective techniques for constructing realistic synthetic models of virtual hu-
mans.
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The level of detail that follows is such that the book can prove useful to stu-
dents, researchers and software developers. That is, a level low enough to
describe modeling methods and al gorithms without getting into image process-
ing and programming principles, which are not considered as prerequisite for
the target audience.

The main objective of this book is to provide areference for the state-of-the-
art methods delivered by leading researchersin the area, who contribute to the
appropriate chapters according to their expertise. The reader is presented with
the latest, research-level, techniques for the analysis and synthesis of still and
moving human bodies, with particular emphasis on facial and gesture charac-
teristics.

Attached to this preface, the reader will find an introductory chapter which
revisesthe state-of-the-art on established methods and standards for the analysis
and synthesis of images containing humans. The most recent vision-based hu-
man body modeling techniques are presented, covering the topics of 3D human
body coding standards, motion tracking, recognition and applications. Although
this chapter, as well as the whole book, examines the relevant work in the
context of computer vision, references to computer graphics techniques are
given, aswell.

The most relevant international standard established, MPEG-4, is briefly dis-
cussed in the introductory chapter, while its latest amendments, offering an
appropriate framework for the animation and coding of virtual humans, is de-
scribed in detail in Chapter 2. In particular, in this chapter Preda et al. show
how this framework is extended within the new MPEG-4 standardization pro-
cess by allowing the animation of any kind of articulated models, while address-
ing advanced modeling and animation concepts, such as*“ Skeleton, Muscle and
Skin”-based approaches.

Theissue of cameracalibration is of generic importance to any computer vision
application and is, therefore, addressed in a separate chapter by Lei, Hendriks
and Katsaggelos. Thus, Chapter 3 presents a comprehensive overview of pas-
sive camera calibration techniques by comparing and evaluating existing ap-
proaches. All algorithms are presented in detail so that they can be directly
implemented.

The detection of the human body and the recognition of human activities and
hand gestures from multiview images are examined by Ozer, Lv and Wolf in
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Chapter 4. Introducing the subject, the authors provide a review of the main
components of three-dimensional and multiview visual processing techniques.
The real-time aspects of these techniques are discussed and the ways in which
these aspects affect the software and hardware architectures are shown. The
authors also present the multiple-camera system developed by their group to
investigate the relationship between the activity recognition algorithms and the
architectures required to perform these tasks in real-time.

Gesture analysisis also discussed by Karpouzis et al. in Chapter 5, along with
facial expression analysiswithin the context of human emotion recognition. A
holistic approach to emotion modeling and analysisis presented along with ap-
plicationsin Man-Machine Interaction, aiming towards the next-generation in-
terfaces that will be able to recognize the emotional states of their users.

Theface, being the most expressive and complex part of the human body, isthe
object of discussion in the following five chapters as well. Chapter 6 examines
techniques for the analysis of facial motion aiming mainly to the understanding
of expressions from monoscopic images or image sequences. In Chapter 7
Eisert also addresses the same problem with his methods, paying particular
attention to understanding and normalizing the illumination of the scene.
Kalberer, Mlller and Van Gool present their work in Chapter 8, extending the
state-of-the-art in creating highly realistic lip and speech-related facial motion.

The deformation of three-dimensional human face models guided by the facial
features captured from images or image sequences is examined in Chapters 9
and 10. Kampmann and Zhang propose a sol ution of varying complexity appli-
cable to video-conferencing systems, while Wen et al. present a framework,
based on machine learning, for the modeling, analysis and synthesis of facial
deformation.

The book concludeswith Chapter 11, by Karatzoulis, Davarakis and Tzovaras,
providing a reference to current relevant R&D projects worldwide. This clos-
ing chapter presents a number of promising applications and provides an over-
view of recent developments and techniquesin the area of analysis and synthe-
sis techniques for the human body. Technical details are provided for each
project and the provided results are also discussed and eval uated.
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Advancesin
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Body M odeling

Angel Sappa
Computer Vision Center, Spain
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Informatics & Telematics Institute, Greece

Nikos Grammalidis
Informatics & Telematics Institute, Greece

Sotiris Malassiotis
Informatics & Telematics Institute, Greece

Abstract

This chapter presents a survey of the most recent vision-based human body
modeling techniques. It includes sections covering the topics of 3D human
body coding standards, motion tracking, recognition and applications.
Short summaries of various techniques, including their advantages and
disadvantages, are introduced. Although this work is focused on computer
vision, some references from computer graphics are also given. Considering
that it is impossible to find a method valid for all applications, this chapter

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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intends to give an overview of the current techniques in order to help in the
selection of the most suitable method for a certain problem.

| ntroduction

Human body modelingisexperiencing acontinuousand accel erated growth. This
is partly due to the increasing demand from computer graphics and computer
vision communities. Computer graphics pursue arealistic modeling of both the
human body geometry and its associated motion. Thiswill benefit applications
such as games, virtual reality or animations, which demand highly realistic
Human Body Models (HBMs). At the present, the cost of generating realistic
human modelsisvery high, therefore, their applicationiscurrently limitedtothe
movie industry where HBM’s movements are predefined and well studied
(usually manually produced). The automatic generation of arealistic and fully
configurable HBM is still nowadays an open problem. The major constraint
involved is the computational complexity required to produce realistic models
with natural behaviors. Computer graphics applications are usually based on
motion capturedevices(e.g., magnetic or optical trackers) asafirst step, inorder
to accurately obtain the human body movements. Then, asecond stageinvolves
the manual generation of HBMs by using editing tools (several commercial
products are available on the market).

Recently, computer vision technology has been used for the automatic genera-
tion of HBMs from a sequence of images by incorporating and exploiting prior
knowledge of the human appearance. Computer vision also addresses human
body modeling, butin contrast to computer graphicsit seeksmorefor an efficient
than an accurate model for applications such as intelligent video surveillance,
motion analysis, telepresence or human-machine interface. Computer vision
applicationsrely onvision sensorsfor reconstructing HBMs. Obviously, therich
information provided by a vision sensor, containing all the necessary data for
generating a HBM, needs to be processed. Approaches such as tracking-
segmentation-model fitting or motion prediction-segmentation-model fitting
or other combinations have been proposed showing different performances
according to the nature of the sceneto be processed (e.g.. indoor environments,
studio-like environments, outdoor environments, single-person scenes, etc). The
challengeisto produceaHBM ableto faithfully follow the movements of areal
person.

Vision-based human body modeling combines several processing techniques
from different research areas which have been developed for a variety of
conditions (e.g., tracking, segmentation, model fitting, motion prediction, the

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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study of kinematics, the dynamics of articulated structures, etc). In the current
work, topics such as motion tracking and recognition and human body coding
standardswill be particularly treated dueto their direct rel ation with human body
modeling. Despite the fact that this survey will be focused on recent techniques
involving HBMs within the computer vision community, some references to
works from computer graphics will be given.

Duetowidespreadinterest, there hasbeen an abundance of work on human body
modeling during the last years. This survey will cover most of the different
techniques proposed in the bibliography, together with their advantages or
disadvantages. The outline of thiswork is asfollows. First, geometrical primi-
tives and mathematical formalism, used for 3D model representation, are
addressed. Next, standards used for coding HBMss, as well as a survey about
human motiontracking and recognitionaregiven. Inaddition, asummary of some
applicationworksispresented. Finally, asectionwithaconclusionisintroduced.

3D Human Body M odeling

Modeling a human body first implies the adaptation of an articulated 3D
structure, in order to represent the human body biomechanical features. Sec-
ondly, it implies the definition of a mathematical model used to govern the
movements of that articulated structure.

Several 3D articulated representations and mathematical formalisms have been
proposedintheliteratureto model both the structure and movements of ahuman
body. An HBM can be represented as a chain of rigid bodies, called links,
interconnected to one another by joints. Links are generally represented by
means of sticks (Barron & Kakadiaris, 2000), polyhedrons (Y amamoto et al.,
1998), generalized cylinders (Cohen, Medioni & Gu, 2001) or superquadrics
(Gavrila& Davis, 1996). A joint interconnectstwo links by means of rotational
motions about the axes. The number of independent rotation parameters will
define the degrees of freedom (DOF) associated with a given joint. Figure 1
(left) presentsanillustration of an articulated model defined by 12 links (sticks)
and ten joints.

In computer vision, where models with only medium precision are required,
articulated structures with less than 30 DOF are generally adequate. For
example, Delamarre & Faugeras (2001) use amodel of 22 DOF in amulti-view
tracking system. Gavrila & Davis (1996) also propose the use of a 22-DOF
model without modeling the palm of the hand or the foot and using arigid head-
torso approximation. The model isdefined by three DOFsfor the positioning of
the root of the articulated structure, three DOFsfor the torso and four DOFsfor

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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Figure 1. Left: Stick representation of an articulated model defined by 22

DOF. Right: Cardboard person model.

each arm and each leg. Theillustration presented in Figure 1 (left) corresponds
to an articulated model defined by 22 DOF.

Onthe contrary, in computer graphics, highly accurate representations consist-
ing of more than 50 DOF are generally selected. Aubel, Boulic & Thalmann
(2000) propose an articul ated structure composed of 68 DOF. They correspond
tothereal humanjoints, plusafew global mobility nodesthat are used to orient
and position the virtual human in the world.

Thesimplest 3D articulated structureisastick representation with no associated
volume or surface (Figure 1 (left)). Planar 2D representations, such as the
cardboard model, have also been widely used (Figure 1 (right)). However,
volumetric representations are preferred in order to generate more realistic
models (Figure 2). Different volumetric approaches have been proposed,
depending upon whether the applicationisinthecomputer vision or thecomputer
graphics field. On one hand, in computer vision, where the model is not the
purpose, but the means to recover the 3D world, there is a trade-off between
accuracy of representation and complexity. The utilized models should be quite
realistic, but they should have a low number of parameters in order to be
processed in real-time. Volumetric representations such as parallel epipeds,

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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Figure 2. Left: Volumetric model defined by 10 cylinders — 22 DOF. Right:
Volumetric model built with a set of superquadrics — 22 DOF.

cylinders (Figure 2 (left)), or superquadrics (Figure 2 (right)) have been largely
used. Delamarre & Faugeras (2001) propose to model a person by means of
truncated cones (arms and legs), spheres (neck, joints and head) and right
parallelepipeds (hands, feet and body). Most of these shapes can be modeled
using acompact and accuraterepresentation called superquadrics. Superquadrics
areafamily of parametric shapesthat can model alarge set of blob-like objects,
such asspheres, cylinders, parallel epipesand shapesin between. Moreover, they
can be deformed with tapering, bending and cavities (Solina & Bajcsy, 1990).

On the other hand, in computer graphics, accurate surface models consisting of
thousands of polygons are generally used. Plankers & Fua (2001) and Aubel,
Boulic & Thalmann (2000) present a framework that retains an articulated
structure represented by sticks, but replace the simple geometric primitives by
soft objects. The result of this soft surface representation is a realistic model,
where body parts such as chest, abdomen or biceps muscles are well modeled.

By incorporating a mathematical model of human motion in the geometric
representation, theHBM comesalive, so that an application such ashuman body
tracking may beimproved. There are awide variety of waysto mathematically
model articul ated systemsfrom akinematics and dynamics point of view. Much
of these materials come directly from the field of robotics (Paul, 1981; Craig

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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1989). A mathematical model will includethe parametersthat describethelinks,
aswell asinformation about the constraints associated with each joint. A model
that only includesthisinformationiscalled akinematic model and describesthe
possible static states of asystem. The state vector of akinematic model consists
of the model state and the model parameters. A system in motion is modeled
when the dynamics of the system are modeled as well. A dynamic model
describes the state evolution of the system over time. In a dynamic model, the
state vector includes linear and angular velocities, aswell as position (Wren &
Pentland, 1998).

After selecting an appropriate model for a particular application, it isnecessary
to develop a concise mathematical formulation for a general solution to the
kinematics and dynamics problem, which are non-linear problems. Different
formalism have been proposed in order to assign local reference frames to the
links. Thesimplest approachistointroducejoint hierarchiesformed by indepen-
dent articulation of one DOF, described intermsof Euler angles. Hence, thebody
postureis synthesized by concatenating the transformation matrices associated
withthejoints, starting fromtheroot. Despitethefact that thisformalism suffers
from singularities, Delamarre & Faugeras (2001) propose the use of composi-
tions of translations and rotations defined by Euler angles. They solve the
singularity problems by reducing the number of DOFs of the articulation.

3D Human Body Coding Standards

As it was mentioned in the previous section, an HBM consists of a number of
segmentsthat are connected to each other by joints. This physical structure can
be described in many different ways. However, in order to animate or inter-
changeHBMs, astandard representationisrequired. Thisstandardization allows
compatibility between different HBM processing tools (e.g., HBMs created
using oneediting tool could beanimated using another completely differenttool).
In the following, the Web3D H-anim standards, the MPEG-4 face and body
animation, as well as MPEG-4 AFX extensions for humanoid animation, are
briefly introduced.

The Web3D H-Anim Standards

The Web3D H-anim working group (H-anim) was formed so that developers
could agree on a standard naming convention for human body parts and joints.
The human form has been studied for centuries and most of the parts already

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.
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have medical (or Latin) names. This group has produced the Humanoid
Animation Specification (H-anim) standards, describing a standard way of
representing humanoids in VRML. These standards allow humanoids created
using authoring tools from one vendor to be animated using tools from another.
H-anim humanoids can be animated using keyframing, inverse kinematics,
performance animation systems and other techniques. The three main design
goals of H-anim standards are:

e Compatibility: Humanoidsshould beableto display/animateinany VRML
compliant browser.

. Flexibility: No assumptions are made about the types of applications that
will usehumanoids.

*  Simplicity: Thespecification should contain only what isabsolutely neces-
sary.

Upto now, three H-anim standardshave been produced, following devel opments
in VRML standards, namely the H-anim 1.0, H-anim 2.0 and H-anim 2001
standards.

TheH-anim 1.0 standard specified astandard way of representing humanoidsin
VRML 2.0format. TheVRML Humanoidfilecontainsaset of Joint nodes, each
defining the rotation center of ajoint, which are arranged to form a hierarchy.
Themost commonimplementationfor ajointisaVRML Transform node, which
isused to define the relationship of each body segment to itsimmediate parent,
although more complex implementations can al so be supported. Each Joint node
can contain other Joint nodes and may also contain a Segment node, which
containsinformation about the 3D geometry, color and texture of the body part
associated with that joint. Joint nhodes may also contain hints for inverse-
kinematics systemsthat wish to control the H-anim figure, such asthe upper and
lower joint limits, the orientation of the joint limits, and a stiffness/resistance
value. The file also contains a single Humanoid node, which stores human-
readable dataabout the humanoid, such asauthor and copyrightinformation. This
node al so storesreferencesto all the Joint and Segment nodes. Additional nodes
can beincludedinthefile, such as Viewpoints, which may be used to display the
figure from several different perspectives.

The H-anim 1.1 standard has extended the previous version in order to specify
humanoids in the VRML97 standard (successor of VRML 2.0). New features
include Site nodes, which define specific locations relative to the segment, and
Displacer nodes that specify which vertices within the segment correspond to
aparticular feature or configuration of vertices. Furthermore, a Displacer node
may contain“hints” astothedirectioninwhich each vertex should move, namely

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.
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a maximum 3-D displacement for each vertex. An application may uniformly
scal e these displacements before applying them to the corresponding vertices.
For example, thisfield is used to implement Facial Definition and Animation
Parameters of the MPEG-4 standard (FDP/FAP).

Finally, the H-anim 2001 standard does not introduce any major changes, e.g.,
new nodes, but provides better support of deformation engines and animation
tools. Additional fields are provided in the Humanoid and the Joint nodes to
support continuous mesh avatars and a more general context-free grammar is
used to describethe standard (instead of pure VRML97, whichisusedinthetwo
older H-anim standards). More specifically, askeletal hierarchy can be defined
for each H-anim humanoid figure within a Skeleton field of the Humanoid node.
Then, an H-anim humanoid figure can be defined as a continuous piece of
geometry, within a Skin field of the Humanoid node, instead of a set of discrete
segments (corresponding to each body part), asin the previous versions. This
Skinfield containsanindexed face set (coordinates, topology and normal sof skin
nodes). Each Joint node also contains a SkinCoordWeight field, i.e., alist of
floating point val ues, which describesthe amount of “weighting” that should be
used to affect a particular vertex from a SkinCoord field of the Humanoid node.
Each item in this list has a corresponding index value in the SkinCoordIndex
field of the Joint node, which indicates exactly which coordinate is to be
influenced.

Face and Body Animation in the MPEG-4 Standard

TheMPEG-4 SNHC (Syntheticand Natural Hybrid Coding) group has standard-
ized two types of streams in order to animate avatars:

* The Face/Body Definition Parameters (FDP/BDP) are avatar-specific
and based on the H-anim specifications. More precisely the MPEG-4 BDP
Node contains the H-anim Humanoid Node.

*  The Face/Body Animation Parameters (FAP/BAP) are used to animate
face/body models. More specifically, 168 Body Animation Parameters
(BAPs) are defined by MPEG-4 SNHC to describe almost any possible
body posture. A single set of FAPs/BAPs can be used to describe the face/
body posture of different avatars. MPEG-4 has also standardized the
compressed form of the resulting animation stream using two techniques:
DCT-based or prediction-based. Typical bit-rates for these compressed
bit-streams are two kbps for the case of facial animation or 10 to 30 kbps
for the case of body animation.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Advances in Vision-Based Human Body Modeling 9

In addition, complex 3D deformations that can result from the movement of
specific body parts(e.g., musclecontraction, clothing folds, etc.) canbemodeled
by using Face/Body Animation Tables (FAT/BATS). These tables specify a set
of verticesthat undergo non-rigid motion and afunction to describe this motion
with respect to the values of specific FAPSYBAPs. However, a significant
problemwithusing FAT/BAT Tablesisthat they are body model -dependent and
require a complex modeling stage. On the other hand, BATs can prevent
undesired body animation effects, such as broken meshes between two linked
segments. In order to solve such problems, MPEG-4 addresses new animation
functionalitiesin the framework of AFX group (apreliminary specification has
beenreleased in January 2002) by including al so ageneric seaml essvirtual model
definition and bone-based animation. Particularly, the AFX specification de-
scribes state of the art components for rendering geometry, textures, volumes
and animation. A hierarchy of geometry, modeling, physics and biomechanical
models are described along with advanced tools for animating these models.

AFX Extensions for Humanoid Animation

The new Humanoid Animation Framework, defined by MPEG-4 SNHC (Preda,
2002; Preda & Préteux, 2001) is defined as a biomechanical model in AFX and
is based on arigid skeleton. The skeleton consists of bones, which are rigid
objects that can be transformed (rotated around specific joints), but not de-
formed. Attached to the skeleton, a skin model is defined, which smoothly
follows any skeleton movement.

More specifically, defining a skinned model involves specifying its static and
dynamic (animation) properties. From ageometric point of view, askinned model
consists of a single list of vertices, connected as an indexed face set. All the
shapes, which form the skin, sharethe samelist of vertices, thusavoiding seams
at the skinlevel during animation. However, each skin facet can containitsown
set of color, texture and material attributes.

The dynamic properties of a skinned model are defined by means of a skeleton
and its properties. The skeleton is a hierarchical structure constructed from
bones, each having an influence on the skin surface. When bone position or
orientation changes, e.g., by applying a set of Body Animation Parameters,
specific skin vertices are affected. For each bone, the list of vertices affected
by thebone motion and correspondingweight valuesare provided. Theweighting
factors can be specified either explicitly for each vertex or more compactly by
defining two influence regions (inner and outer) around the bone. The new
position of each vertex iscal culated by taking into account theinfluence of each
bone, withthe corresponding weight factor. BAPsare now appliedtobonenodes

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
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and the new 3D position of each point in the global seamless mesh is computed
as aweighted combination of the related bone motions.

The skinned model definition can also be enriched with inverse kinematics-
related data. Then, bone positions can be determined by specifying only the
position of an end effector, e.g., a 3D point on the skinned model surface. No
specific inverse kinematics solver isimposed, but specific constraints at bone
level aredefined, e.g., related to the rotation or translation of abonein acertain
direction. Also muscles, i.e., NURBS curves with an influence region on the
model skin, aresupported. Finally, interpol ation techniques, such assimplelinear
interpolation or linear interpol ation between two quaternions (Preda & Préteux,
2001), can be exploited for key-val ue-based animation and animation compres-
sion.

Human Motion Tracking and
Recognition

Tracking and recognition of human motion has become an important research
areain computer vision. Its numerous applications contributed significantly to
this devel opment. Human motion tracking and recognition encompasses chal -
lenging andill-posed problems, which areusually tackled by making simplifying
assumptions regarding the scene or by imposing constraints on the motion.
Constraints, such as making sure that the contrast between the moving people
and the background should be high and that everything in the scene should be
static except for the target person, are quite often introduced in order to achieve
accurate segmentation. Moreover, assumptions such as the lack of occlusions,
simple motionsand knowninitial position and posture of the person, are usually
imposed on the tracking processes. However, in real-world conditions, human
maotion tracking constitutes acomplicated problem, considering cluttered back-
grounds, gross illumination variations, occlusions, self-occlusions, different
clothing and multi plemoving objects.

Thefirst step towardshuman tracking i sthe segmentation of human figuresfrom
the background. This problem is addressed either by exploiting the temporal
relation between consecutive frames, i.e., by means of background subtraction
(Sato & Aggarwal, 2001), optical flow (Okada, Shirai & Miura, 2000) or by
modeling the image statistics of human appearance (Wren et al., 1997). The
output of the segmentation, which could be edges, silhouettes, blobs etc.,
comprises the basis for feature extraction. In tracking, feature correspondence
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isestablishedin order tolocatethe subject. Tracking through consecutiveframes
commonly incorporates prediction of movement, which ensures continuity of
maotion, especially when some body parts are occluded. Some techniques focus
on tracking the human body as awhole, while other techniquestry to determine
the precise movement of each body part, which is more difficult to achieve, but
necessary for some applications. Tracking may be classified as 2D or 3D. 2D
tracking consistsinfollowing the motionin theimage plane either by exploiting
low-level image features or by using a 2D human model. 3D tracking aims at
obtaining the parameters, which describe body motioninthree dimensions. The
3D tracking process, which estimatesthe motion of each body part, isinherently
connected to 3D human pose recovery. However, tracking either 2D or 3D may
also compriseaprior, but significant, step to recognition of specific movements.

3D pose recovery aims at defining the configuration of the body partsin the 3D
space and esti mating the orientation of the body with respect to the camera. Pose
recovery techniques may be roughly classified as appearance-based and model -
based. Our survey will mainly focus on model-based techniques, since they are
commonly used for 3D reconstruction. Model-based techniques rely on a
mathematical representation of human body structure and motiondynamics. The
type of the model used depends upon the requisite accuracy and the permissible
complexity of pose reconstruction. Model -based approachesusually exploit the
kinematics and dynamics of the human body by imposing constraints on the
model’s parameters. The 3D pose parameters are commonly estimated by
iteratively matching a set of image features extracted from the current frame
with the projection of the model on the image plane. Thus, 3D pose parameters
are determined by means of an energy minimization process.

Instead of obtaining the exact configuration of the human body, human motion
recognition consists of identifying the action performed by a moving person.
Most of the proposed techniques focus on identifying actions belonging to the
same category. For example, the objective could beto recognize several aerobic
exercises or tennis strokes or some everyday actions, such as sitting down,
standing up, or walking.

Next, some of the most recent results addressing human motion tracking and 3D
human pose recovery in video sequences, using either one or multiple cameras,
are presented. In this subsection, mainly 3D model-based tracking approaches
are reviewed. The following subsection introduces whole-body human motion
recognitiontechniques. Previoussurveysof vision-based human motionanalysis
havebeencarried out by Cédras& Shah (1995), Aggarwal & Cai (1999), Gavrila
(1999), and Moeslund & Granum (2001).
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Human Motion Tracking and 3D Pose Recovery

The majority of model-based human motion tracking techniques may be classi-
fiedintotwomaincategories. Thefirst oneexplicitly poseskinematic constraints
to the model parameters, for example, by means of Kalman filtering or physics-
based modeling. The second oneisbased on |earning the dynamics of |ow-level
features or high-level motion attributes from a set of representative image
sequences, which are then used to constrain the model motion, usually within a
probabilistic tracking framework. Other subdivisions of the existing techniques
may rely on the type of the model or the type of image features (edges, blobs,
texture) used for tracking.

Tracking relies either on monocular or multiple cameraimage sequences. This
comprises the classification basis in this subsection. Using monocular image
sequencesisquite challenging, dueto occlusionsof body partsand ambiguity in
recovering their structure and motion from a single perspective view (different
configurations have the same projection). On the other hand, single camera
views are more easily obtained and processed than multiple camera views.

In one of the most recent approaches (Sminchisescu & Triggs, 2001), 3D human
motion tracking from monocular sequences is achieved by fitting a 3D human
body model, consisting of tampered superel li psoids, onimagefeaturesby means
of aniterative cost function optimization scheme. The disadvantage of iterative
model fitting techniquesisthepossibility of being trappedinlocal minimainthe
multidimensional space of DOF. A multiple-hypothesis approach is proposed
with the ability of escaping local minimain the cost function. This consists of
observingthat local minimaaremost likely to occur alonglocal valleysinthe cost
surface. In comparison with other stochastic sampling approaches, improved
tracking efficiency isclaimed.

Inthe same context, the algorithm proposed by Cham & Rehg (1999) focuseson
2D image plane human motion using a2D model with underlying 3D kinematics.
A combination of CONDENSATION style sampling with local optimizationis
proposed. The probability density distribution of thetracker stateisrepresented
as a set of modes with piece-wise Gaussians characterizing the neighborhood
around these modes. The advantage of thistechniqueisthat it does not require
the use of discrete features and is suitable for high-dimensional state-spaces.

Probabilistic tracking such as CONDENSATION has been proven resilient to
occlusions and successful in avoiding local minima. Unfortunately, these ad-
vances come at the expense of computational efficiency. To avoid the cost of
learning and running a probabilistic tracker, linear and linearised prediction
techniques, such as Kalman or extended Kalman filtering, have been proposed.
Inthis case, astrategy to overcome self-occlusionsisrequired. More details on
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CONDENSATION algorithms used in tracking and a comparison with the
Kalman filters can be found in Isard & Blake (1998).

In Wachter & Nagel (1999), a 3D model composed of right-elliptical conesis
fitted to consecutive frames by means of an iterated extended Kalman filter. A
motion model of constant velocity for all DOFsisused for prediction, whilethe
update of the parameters is based on a maximum a-posteriori estimation
incorporating edge and region information. This approach is able to cope with
self-occlusions occurring between the legs of awalking person. Self-occlusions
are also tackled in a Bayesian tracking system presented in Howe, Leventon &
Freeman (1999). This system tracks human figures in short monocular se-
guences and reconstructs their motion in 3D. It uses prior information learned
from training data. Training data consists of a vector gathered over 11 succes-
sive frames representing the 3D coordinates of 20 tracked body points and is
used to build amixture-of -Gaussians probability density model. 3D reconstruc-
tion is achieved by establishing correspondence between the training data and
thefeaturesextracted. Sidenbladh, Black & Sigal (2002) also use aprobabilistic
approachto addressthe problem of modeling 3D human motionfor synthesisand
tracking. They avoid thehigh dimensionality and non-linearity of body movement
modeling by representing the posterior distribution non-parametrically. Learning
statetransition probabilitiesisreplaced with an efficient probabilistic searchin
a large training set. An approximate probabilistic tree-search method takes
advantage of the coefficientsof alow-dimensional model and returnsaparticular
sample human motion.

In contrast to single-view approaches, multiple camer a techniques are able to
overcome occl usionsand depth ambiguitiesof the body parts, since useful motion
information missing from one view may be recovered from another view.

A rich set of featuresisused in Okada, Shirai & Miura(2000) for the estimation
of the 3D translation and rotation of the human body. Foreground regions are
extracted by combining optical flow, depth (which is calculated from a pair of
stereo images) and prediction information. 3D pose estimation isthen based on
the position and shape of the extracted region and on past states using Kalman
filtering. The evident problem of pose singularitiesistackled probabilistically.

A framework for person tracking in variousindoor scenesis presented in Cai &
Aggarwal (1999), using three synchronized cameras. Though there are three
cameras, tracking is actually based on one camera view at a time. When the
system predicts that the active camera no longer provides a sufficient view of
the person, it is deactivated and the camera providing the best view is selected.
Feature correspondence between consecutive frames is achieved using Baye-
sian classification schemesassociated with motion analysisin aspatial-temporal
domain. However, thismethod cannot deal with occlusionsaboveacertainlevel.
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Dockstader & Tekalp (2001) introduce a distributed real-time platform for
tracking multiple interacting people using multiple cameras. The features
extracted from each camera view are independently processed. The resulting
state vectors comprise theinput to a Bayesian belief network. The observations
of each camera are then fused and the most likely 3D position estimates are
computed. A Kalmanfilter performsstate propagationintime. Multi-viewpoints
and a viewpoint selection strategy are also employed in Utsumi et al. (1998) to
cope with self-occlusions and human-human occlusions. In this approach,
trackingisbased on Kalmanfiltering estimationaswell, butitisdecomposedinto
three sub-tasks (position detection, rotation angle estimation and body-side
detection). Each sub-task hasitsown criterionfor selecting viewpoints, whilethe
result of one sub-task can help estimation in another sub-task.

Delamarre & Faugeras (2001) proposed a technique which is able to cope not
only with self-occlusions, but al so with fast movementsand poor quality images,
using two or morefixed cameras. Thisapproach incorporates physical forcesto
each rigid part of a kinematic 3D human body model consisting of truncated
cones. These forces guide the 3D model towards a convergence with the body
postureintheimage. Themodel’ s projectionsare compared with the silhouettes
extracted from the image by means of a novel approach, which combines the
Maxwell’ s demons algorithm with the classical |CP algorithm.

Some recently published papers specifically tackle the poserecovery problem
using multiple sensors. A real-time method for 3D posture estimation using
trinocular images is introduced in lwasawa et al. (2000). In each image the
human silhouette is extracted and the upper-body orientation is detected. With
aheuristic contour analysisof thesilhouette, somerepresentative points, such as
the top of the head are located. Two of the three views are finally selected in
order to estimate the 3D coordinates of the representative pointsand joints. Itis
experimentally shown that the view-selection strategy resultsin more accurate
estimates than the use of all views.

Multiple viewsin Rosaleset al. (2001) are obtained by introducing the concept
of “virtual cameras”, which isbased on the transformation invariance of the Hu
moments. One advantage of this approach is that no camera calibration is
required. A Specialized MappingsArchitectureisproposed, which allowsdirect
mapping of the image features to 2D image locations of body points. Given
correspondencesof themost likely 2D joint locationsinvirtual cameraviews, 3D
body pose can be recovered using a generalized probabilistic structure from
maotion technique.
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Human Motion Recognition

Human motion recognition may also be achieved by analyzing the extracted 3D
pose parameters. However, because of the extra pre-processing required,
recognition of human motion patternsisusually achieved by exploiting low-level
features (e.g., silhouettes) obtained during tracking.

Continuoushuman activity (e.g., walking, sitting down, bending) isseparatedin
Ali & Aggarwal (2001) into individual actions using one camera. In order to
detect the commencement and termination of actions, the human skeleton is
extracted and the angles subtended by the torso, the upper leg and thelower leg,
are estimated. Each action is then recognized based on the characteristic path
that these angles traverse. Thistechnique, though, relies on lateral views of the
human body.

Park & Aggarwal (2000) propose a method for separating and classifying not
one person’ s actions, but two humans' interactions (shaking hands, pointing at
the opposite person, standing hand-in-hand) in indoor monocular grayscale
imageswith limited occlusions. Theaimisto interpret interactions by inferring
the intentions of the persons. Recognition is independently achieved in each
frame by applying the K-nearest-neighbor classifier to a feature vector, which
describes the interpersonal configuration. In Sato & Aggarwal (2001), human
interactionrecognitionisal so addressed. Thistechnique usesoutdoor monocular
grayscale images that may cope with low-quality images, but is limited to
movements perpendicular to the camera. It can classify nine two-person
interactions (e.g., one person leaves another stationary person, two people meet
from different directions). Four features are extracted (the absolute velocity of
each person, their average size, therelative distance and itsderivative) from the
trajectory of each person. Identificationisbased onthefeature’ ssimilarity toan
interaction model using the nearest mean method.

Actionandinteraction recognition, such asstanding, walking, meeting peopleand
carrying objects, isaddressed by Haritaoglu, Harwood & Davis (1998, 2000). A
real-time tracking system, which is based on outdoor monocular grayscale
images taken from a stationary visible or infrared camera, is introduced.
Grayscal e textural appearance and shape information of aperson are combined
to atextural temporal template, which isan extension of the temporal templates
defined by Bobick & Davis (1996).

Bobick & Davis (1996) introduced a real-time human activity recognition
method, whichisbased on atwo-component imagerepresentation of motion. The
first component (Motion Energy Image, MEI) isabinary image, which displays
where motion has occurred during the movement of the person. The second one
(Motion History Image, MHI) is a scalar image, which indicates the temporal
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history of motion (e.g., morerecently moving pixelsarebrighter). MEIl and M HI
temporal templates are then matched to stored instances of views of known
actions.

A technique for human motion recognition in an unconstrained environment,
incorporating hypotheses which are probabilistically propagated across space
and time, is presented in Bregler (1997). EM clustering, recursive Kalman and
Hidden Markov Modelsare used aswell. Thefeasibility of thismethod istested
onclassifying human gait categories(running, walking and skipping). HMMsare
quite often usedfor classifying and recognizing human dynamics. In Pavlovic &
Rehg (2000), HMMs are compared with switching linear dynamic systems
(SLDS) towards human motion analysis. It isargued that the SLDS framework
demonstrates greater descriptive power and consistently outperforms standard
HMMs on classification and continuous state estimation tasks, although the
|earning-inference mechanism is complicated.

Finally, a novel approach for the identification of human actions in an office
(entering the room, using acomputer, picking up the phone, etc.) ispresentedin
Ayers & Shah (2001). The novelty of this approach consists in using prior
knowledge about the layout of the room. Action identification is modeled by a
state machine consisting of various states and the transitions between them. The
performance of this system is affected if the skin area of the face is occluded,
if two peoplegettoo closeandif prior knowledgeisnot sufficient. Thisapproach
may be applicablein surveillance systems like those ones described in the next
section.

Applications

3D HBMshavebeen usedin awide spectrum of applications. Thissectionisonly
focused on the following four major application areas: a) Virtual reality; b)
Surveillance systems; ¢) User interface; and d) Medical or anthropometric
applications. A brief summary is given below.

Virtual Reality

The efficient generation of 3D HBMs is one of the most important issuesin all
virtual reality applications. Models with a high level of detail are capable of
conveying emotionsthroughfacial animation (Aubel, Boulic & Thalmann, 2000).
However, it isstill nowadays very hard to strike the right compromise between
realism and animation speed. Balcisoy et al. (2000) present a combination of
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virtual reality with computer vision. This system—augmented reality system—
allowstheinteraction of real and virtual humansinan augmented real ity context.
It can be understood asthelink between computer graphicsand computer vision
communities.

Kanade, Rander & Narayanan (1997) present a technique to automatically
generate 3D models of real human bodies, together with avirtual model of their
surrounding environment, from images of the real world. These virtual models
allow a spatio-temporal view interpolation and the users can select their own
viewpoints, independent of theactual camerapositionsusedto capturetheevent.
The authors have coined the expression virtualized reality to call their novel
approach. In the same direction, Hoshnio (2002) presents a model-based
synthesisand analysisof human body images. Itisusedinvirtual reality systems
toimitate appearance and behavior of areal-world human from video sequences.
Such a human model can be used to generate multiple-views, merge virtual
objects and change motion characteristics of human figuresin video. Hilton et
al. (1999) introduce anew technique for automatically building realistic models
of peoplefor useinvirtual reality applications. Thefinal goal isthedevel opment
of anautomaticlow-cost modeling of peopl esuitablefor populating virtual worlds
with personalised avatars. For instance, the participantsin a multi-user virtual
environment could be represented by means of a realistic facsimile of their
shape, size and appearance. The proposed technique is based on a set of low-
cost color images of a person taken from four orthogonal views. Realistic
representation is achieved by mapping color texture onto the 3D model.

Surveillance Systems

Another important application domain is surveillance systems. Smart surveil-
lance systems, capabl e of morethan single-motion detection, can take advantage
of the study of 3D human motion analysis by incorporating specific knowledge
about human shape and appearance, in order to decrease false alarms. In
addition, high-level analysis might even be able to distinguish between simple
authorized and non-authorized activities. Wren et al. (1997) present areal-time
system for tracking people and interpreting their behavior to be used, for
example, in surveillance systems. The proposed system uses a probabilistic
approach that segmentsthe subject into anumber of blobs and tracksthose over
time. The disadvantages of the work proposed by Wren et al. (1997) arethat the
system can only handle a single person with fixed-camera situations.

He & Derunner (2000) propose a different approach based on the study of the
periodicity of human actions. Periodic motions, specifically walking and running,
can berecognized. Thisapproachisrobust over variationsin scene background,
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walking and running speedsand direction of motion. Oneof the constraintsisthat
the motion must be front-parallel. Gavrila & Philomin (1999) present a shape-
based object detection system, which can also be included into the surveillance
category. The system detects and distinguishes, in real-time, pedestriansfrom a
moving vehicle. It is based on a template-matching approach. Some of the
system’ slimitations arerelated to the segmentation algorithm or the position of
pedestrians (the system cannot work with pedestriansvery closeto the camera).
Recently Yoo, Nixon & Harris (2002) have presented a new method for
extracting human gait signatures by studying kinematics features. Kinematics
featuresincludelinear and angular position of body articulations, aswell astheir
displacements and time derivatives (linear and angular vel ocities and accelera-
tions). One of the most distinctive characteristics of the human gait is the fact
thatitisindividualistic. It canbeusedinvisionsurveillance systems, allowingthe
identification of a human by means of its gait motion.

User Interface

User interfaceis another application domain that takes advantage of 3D human
body modeling. Wingbermuehle, Weik & Kopernik (1997) present an approach
to generate highly realistic 3D models of participants for distributed 3D
videoconferencing systems. Using 3D data obtained by means of stereoscopy,
the size and shape of each real person is recovered and represented through a
triangular mesh. In addition, texture extracted from the real images is mapped
to the 3D models leading to a natural impression. Together with a flexible
triangular mesh, a skeleton structure of the human model is build. The latter is
used to preserve the anthropomorphic constraint. Cohen, Medioni & Gu (2001)
present another real-time 3D human body reconstruction for vision-based
perceptual user interface. The proposed system uses multiple silhouettes ex-
tracted automatically from a synchronized multi-camera system. Silhouettes of
the detected regions are extracted and registered, allowing a 3D reconstruction
of the human body using generalized cylinders. An articulated body model
(defined by 32 DOF) isfittedto the 3D dataand tracked over timeusing aparticle
filtering method. Later on, Cohen & Lee (2002) presented an extension of this
work that consists of an appearance-based learning formalism for classifying
and identifying human postures.

Davis & Bobick (1998a) present a novel approach for extracting the silhouette
of aparticipant within aninteractive environment. Thistechnique has been used
inDavis& Baobick (1998b) forimplementing avirtual Personal AerobicsTrainer
(PAT). A computer vision system isresponsible for extracting the human body
movements and reporting themto avirtual instructor. With thisinformation, the
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virtual instructor givescommentsfor pushing or complementingtheuserinaTV
screen interface.

Medical or Antropometric Applications

Medical or anthropometric applications can be roughly divided into three
different categories: human body surface reconstruction, internal structure
reconstruction or motion analysis. The first two categories mainly rely on
range data obtained from a person with a static posture. Therefore, only astatic
3D model of the human body is generated. Without motion information, it is
difficult to accurately position the corresponding articul ated structureinside the
surface. Models are represented as singl e entities by means of smooth surfaces
or polygonal meshes (Douros, Dekker & Buxton, 1999). On the contrary,
techniques focused on motion analysis for other applications, such as the study
of movement disabilities, arebased on articul ated 3D model s. Hence, kinematics
and dynamics parameters of the human body need to be determined (M arzani et
al. 1997).

Human body surface recovering has an increasing number of applications. For
example, Fouchet (1999) presents a 3D body scanner together with a set of
algorithmsin order to generate a 3D model of the whole human body or part of
it. Themodel includes 3D shapesand the corresponding grey-level information.
Themain purposeof thissystemisto provide dermatol ogistswith anew tool able
to build a cartography of dermatological lesions of human body skin. The
evolution of a dermatological lesion can be followed and the efficiency of
different medical treatments can be quantified. In thiskind of approach — 3D—
scanner-based — the body surfaceisrepresented asasingle cloud of 3D points.
Therefore, if human body parts need to be identified, a segmentation algorithm
should be applied in order to cluster those points properly. In this same sense,
Werghi & Xiao (2002) present an algorithm for segmenting 3D human body
scans. Their work pursues the description of a scanned human body by means
of aset of body parts (head, torso, legs, arms and hands). I n the same direction,
Nurre et al. (2000) propose an algorithm for clustering a cloud of points
describing a human body surface.

Internal structure recovering allows 3D reconstruction of anatomical parts for
biomedical applications. Inaddition, itisapowerful way to detect deformitiesof
the human body (e.g., curvature of the spine and axial rotation of individual
vertebrae). Medical imaging has become a useful tool for both diagnosing and
monitoring such deformities. Durdleet al. (1997) devel oped asystem consisting
of computer graphics and imaging tools for the assessment of these kinds of
deformities. The proposed system uses stereovision cameras to capture the 3D
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data. Other techniques for anatomical parts recovering or biomedical applica-
tions were presented in Weng, Yang and Pierson (1996) and Tognola et al.
(2002). The first one is based on laser spot and two CCD cameras system to
recover the 3D data, while the second oneis based on an optical flow approach
(the object remainsstationary whilethe cameraundergoestransl ational motion).
Barron & Kakadiaris (2000) present a four-step technique for estimating a
human’ s anthropometric measurements from a single image. Pose and anthro-
pometric measurements are obtained by minimizing a cost function that com-
putes the difference between a set of user-selected image points and the
corresponding projected points of a 3D stick model.

Finally, motion analysis systems, which are based on the study of kinematics
and dynamics parameters, allow detection of movement disabilities of a given
patient. Marzani et al. (1997) and Marzani, Calais & Legrand (2001) present a
system for the analysis of movement disabilities of ahuman leg during gait. The
proposed system is based on grey-level image processing without the need of
markers. Superquadric surfaces are used to model the legs. This system can be
used in human motion analysisfor clinical applications, such as physiotherapy.

Conclusions

Human body modeling is a relatively recent research area with a higher
complexity than the classical rigid object modeling. It takes advantage of most
of thetechniques proposed within therigid object modeling community, together
with a prior-knowledge of human body movements based on a kinematics and
dynamics study of the human body structure. The huge amount of articles
published during thelast yearsinvolving 3D human body modeling demonstrates
theincreasing interest in thistopic and itswide range of applications. In spite of
this, many issuesare still open (e.g., unconstrained image segmentation, limita-
tionsintracking, development of modelsincluding prior knowledge, modeling of
multiple person environments, real -time performance). Each one of these topics
represents a stand-alone problem and their solutions are of interest not only to
human body modeling research, but also to other research fields.

Unconstrained image segmentation remains a challenge to be overcome. An-
other limitation of today’s systems is that commonly the motion of a personis
constrained to simple movements with a few occlusions. Occlusions, which
compriseasignificant problemyet to bethoroughly solved, may |leadto erroneous
tracking. Since existence and accumulation of errors is possible, the systems
must becomerobust enough to be ableto recover any loss of tracking. Similarly,
techniques must be able to automatically self-tune the model’ s shape param-
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eters, eveninunconstrained environments. Moreover, in modeling, dynamicsand
kinematicsshould bethoroughly exploited, whileinmotionrecognition, generic
human actions should be tackled.

In addition to the af orementioned i ssues, the reduction of the processingtimeis
still nowadays one of the milestones in human body modeling. It is highly
dependent ontwo factors: onthe onehand, computational complexity and, onthe
other hand, current technology. Takinginto account thelast years' evolution, we
can say that computational complexity will not besignificantly reduced duringthe
years ahead. On the contrary, improvements in the current technology have
become commonplace (e.g., reduction in acquisition and processing times,
increase in the memory size). Therefore, algorithms that nowadays are
computationally prohibitive, are expected to have agood performance with the
next technologies. Thelatter givesrise to apromising future for HBM applica-
tions and, as an extension, to non-rigid object modeling in general.

The area of human body modeling is growing considerably fast. Therefore, itis
expected that most of the current drawbacks will be solved efficiently through
thenext years. Accordingtothecurrent trend, human body modelingwill remain
as an application-oriented research field, i.e., the need will dictate the kind of
systemsthat will bedevel oped. Thus, it will bedifficult to seegeneral techniques
that are valid for all of the cases.
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Abstract

Besides being one of the well-known audio/video coding techniques,
MPEG-4 provides additional coding tools dedicated to virtual character
animation. The motivation of considering virtual character definition and
animation issues within MPEG-4 is first presented. Then, it is shown how
MPEG-4, Amendment 1 offers an appropriate framework for virtual human
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animation and compression/transmission. It is shown how this framework
is extended within the new MPEG-4 standardization process by: 1) allowing
the animation of any kind of articulated model, and 2) addressing advanced
modeling and animation concepts, such as “ Skeleton, Muscle and Skin” -
based approaches. The new syntax for node definition and animation
stream is presented and discussed in terms of a generic representation and
additional functionalities. The biomechanical properties, modeled by means
of the character skeleton that defines the bone influence on the skin region,
as well as the local spatial deformations simulating muscles, are supported
by specific nodes. Animating the virtual character consists in instantiating
bone transformations and muscle control curves. Interpolation techniques,
inverse kinematics, discrete cosine transform and arithmetic encoding
techniques make it possible to provide a highly compressed animation
stream. Within a dedicated modeling approach — the so-called MesHGRriD —
we show how the bone and muscle-based animation mechanism is applied
to deform the 3D space around a humanoid.

Context and Objectives

The first 3D virtual human model was designed and animated by means of the
computer inthelate 70s. Sincethen, virtual character modelshave becomemore
and more popular, making agrowing popul ation abletoimpact theevery day, real
world. Starting from simple and easy-to-control models used in commercial
games as those produced by Activision or Electronic Arts, to more complex
virtual assistants for commercial or informational? web sites, to the new stars
of virtual cinema?, television*and advertising®, the 3D character model industry
iscurrently booming.

Moreover, the steady improvements within the distributed network area and
advanced communication protocols have promoted the emergence of 3D com-
munities® andimmersion experiences(Thalmann, 2000) indistributed 3D virtual
environments.

Creating, animating and, most of all, sharing virtual characters over Internet or
mobile networks requires unified data formats. If some animation industry
leaders try — and sometimes succeed’® — to impose their own formatsin the
computer world, the alternative of an open standard is the only valid solution
ensuringinteroperability requirements, specifically when hardwareproductsare
to be built.

A dream of any content producer can besimply formulated as“ creating once and
re-using forever and everywhere, in any circumstances.” Nowadays, content is
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carried by heterogeneous networks (broadcast, | P, mobile), available anywhere
and for alarge scale of devices (PCs, set-top boxes, PDAs, mobile phones) and
profiled with respect to the user preferences. All these requirements make the
chain where content is processed more and more complicated and a lot of
different actorsmust interfere: designers, service providers, network providers,
device manufacturers, IPR holders, end-users and so on. For each one, consis-
tent interfaces should be created on a stable and standardized basis.

Current work to provide 3D applications within a unified and interoperable
framework is materialized by 3D graphics interchange standards such as
VRML? and multimedia 2D/3D standards, such as MPEG-4 (ISOIEC, 2001).
Each one addresses, more or less in a coordinated way, the virtual character
animation issue. In the VRML community, the H-Anim?° group released three
versionsof their specifications (1.0, 1.1 and 2001), whilethe SNHC! sub-group
of MPEG also released three versions: MPEG-4 Version 1 supports face
animation, MPEG-4 Version 2 supports body animation and MPEG-4 Part 16
addressesthe animation of genericvirtual objects. InMPEG-4 the specifications
dealing with the definition and animation of avatars are grouped under the name
FBA — Face and Body Animation — and those referring to generic models
under the name BBA — Bone-based Animation. The next section analyses the
main similarities and differences of these two standardization frameworks.

The VRML standard deals with atextual description of 3D objects and scenes.
It focuses on the spatial representation of such objects, while the temporal
behaviour is less supported. The major mechanism for supporting animation
consists of defining it as an interpolation between key-frames.

The MPEG-4 standard, unlikethe previous M PEG standards, doesnot only cope
with highly efficient audio and video compression schemes, but al so introduces
the fundamental concept of media objects such asaudio, visual, 2D/3D, natural
and synthetic objectsto makeup amultimediascene. Asestablishedin July 1994,
the MPEG-4 objectives are focused on supporting new ways (notably content-
based) of communicating, accessing and manipulating digital audiovisual data
(Pereira, 2002). Thus, temporal and/or spatial behaviour can be associated with
an object. The main functionalities proposed by the standard address the
compression of each type of media objects, hybrid encoding of the natural and
synthetic objects, universal content accessibility over various networks and
interactivity for the end-user. In order to specify the spatial and temporal
localisation of an object in the scene, MPEG-4 defines a dedicated language
called BIFS — Binary Format for Scenes. BIFS inherits from VRML the
representation of the scene, described as a hierarchical graph, and some
dedicated tools, such as animation procedures based on interpolators, events
routed to the nodes or sensor-based interactivity. In addition, BIFS introduces
some new and advanced mechanisms, such as compression schemes to encode
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the scene, streamed animations, integration of 2D objects and advanced time
control.

In terms of functionalities related to virtual characters, both VRML and MPEG-4
standards define a set of nodes in the scene graph to allow for arepresentation
of an avatar. However, only the MPEG-4 SNHC specifications deal with
streamed avatar animations. A mgjor difference is that an MPEG-4 compliant
avatar can coexist in a hybrid environment and its animation can be natively
synchronized with other types of media objects, while the H-Anim avatar can
only exist inaVRML world and must be animated by VRML generic, usually
non-compressed, animationtools.

Now that the reasons of virtual character standardization within MPEG-4
become clearer, the question is how to find the good compromise between the
need for freedom in content creation and the need for interoperability? What
exactly should be standardized, fixed, invariant and in the meantime, ideally
impose no constraintson the designer creativity? Thelong-term experiencethat
the MPEG community has makes it possible to formulate a straight and solid
resolution: in the complex chain of content producing-transmitting-consuming,
the interoperability is ensured by only standardizing the data representation
format at the decoder side. Pushing this concept to its extreme, an MPEG ideal
tool isthat onefor whichtwo requirementsare satisfied: thedesigner can useany
production tool he/she possesses to create the content and it can be possible to
build a full conversion/mapping tool between this content and an MPEG
compliant one. The same principle has been followed when M PEG released the
specifications concerning the definition and the animation of thevirtual charac-
ters, and specifically human avatars: there are no “limits’ on the complexity of
the avatar with respect to its geometry or appearance and no constraints on the
motion capabilities.

The animation method of a synthetic object is strongly related to its definition
model. A simple approach, often used in cartoons, is to consider the virtual
character asahierarchical collection of rigid geometric objects called segments,
and to obtain the animation by transforming these objects with respect to their
direct parents. The second method consists in considering the geometry of the
virtual character as aunique mesh and to animate it by continuously deforming
itsshape. Whiletheformer offerslow animation complexity, withthepriceof the
seams at the joints between the segments, the latter ensures a higher realism of
the representation, but requires more computation. Both modeling/animation
methods are supported by the MPEG-4 standard, as will be extensively shown
in this chapter. Its structure is as follows. The first section presents the tools
adopted inthe M PEG-4 standard rel ated to the specification and encoding of the
synthetic object’s geometry in general. Specifically, techniques based on
INDEXEDFACESET, WAVELET SuBDIVISION SURFACES and MEesHGRID are briefly
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described. The next section describes in detail the first avatar animation
framework, adopted in MPEG-4 in 1998, i.e., the FBA framework. Here, the
avatar body is structured as a collection of segments individually specified by
using INbExeDFACESET. The avatar faceisaunique object animated by deforma-
tion controlled by standardized feature points. The section, Virtual Characters
in MPEG-4 Part 16, introduces a generic deformation model, recently adopted
by MPEG-4 (December, 2002), called BBA. It is shown how this model is
implemented through two deformation controllers: bones and muscles. The
generality of themodel allowsit to directly animate the seamless object mesh or
the space around it. Moreover, hierarchical animation is possible when consid-
ering the BBA technique and specific geometry representations, such as
Subdivision Surfacesor MesHGRip. Thisadvanced animationispresentedinthe
section, Hierarchic Animation: Subdivision Surface and MesHGRID.

MPEG-4's Geometry Tools in a Nutshell

Thesimplest and most strai ghtforward representation of 3D objects, dating from
the early days of computer graphics, isthe INpExeEDFACESET model. It consistsin
approximating the geometry as acollection of planar polygons defined with the
aid of alist of vertex coordinates. Unfortunately, INDExeEDFACESET has not been
designedtodeal efficiently with highly detailed and complex surfaces, consisting
of ten to hundreds of thousands of triangles, necessary to achieve realistic
rendering of objects found in daily life. Even more important than compact
storage is the possibility to scale the complexity of the surface representations
according to the capacity of the digital transmission channels or to the perfor-
mance of the graphics hardware on the target platform. Another vital issue for
the animation of objects is the support for free-form modeling or animation,
offered by the representation method.

As a response to these new demands, several compact surface encoding
techniques have been devised during the last years. A first category of
techniques tries to respect as much as possible the vertex positions and their
connectivity as defined in the initial InoeExepFAceSET description. The second
category optsfor an alternative surface representation method, enabling higher
compressionratiosand extrafeatures, such as support for animation. The second
approach is more complex, certainly at the encoding stage, since a surface
described withthealternative surfacerepresentation will haveto befitted within
certain error bounds to the initial mesh description.

A representative for the first category of techniquesisthe Topological Surgery
(TS) representation (Taubin, 1998a), which compresses the connectivity of
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manifold polygonal meshes of arbitrary topological type, as well as the vertex
locations. Inorder to support multi-resolution andfast interaction viaprogressive
transmission, the TS method has been combined with the Progressive Forest Split
scheme (PFS) described in Taubin (1998b). TSisused to encode the base mesh,
while the PFS being applied to encode a sequence of the forest split refinement
operations is allowed to generate higher resolutions of the base mesh. TS and
PFS approaches have been promoted to the MPEG-4 and are known as 3D Mesh
Coding (3BDMC).

The second category is represented by WaveLET SusbivisioN SurRraces (WSS),
amethod recently introduced in MPEG-4 (ISOIEC, 2003). A base meshisused
asthe seed for arecursive subdivision process, during whichthe 3D details(i.e.,
the wavel et coefficients) needed to obtain finer and finer approximationsto the
original shapeareaddedtothenew vertex positions predicted by the subdivision
scheme. WSS does not attempt to encode the base mesh—amethod like TS can
be used for that purpose. Instead, the focus is on parameterization of the
underlying surface’s shape over a triangular or quadrilateral base domain, in
order to obtain a multi-resolution mesh. Therefore, the main problem of these
approachesliesinfinding an optimal base mesh, whichisingeneral acomputing
intensive process.

Another way of representing shapesin MPEG-4 isthe MEsHGRiD compression
tool (ISOIEC, 2003), which is an arbitrary, cutting plane-based representation
scheme suited for encoding the surfaces obtained from discrete 3D data sets
(e.g., 3D medical images, processed range scanner data, quadrilateral meshes,
or generic models defined by means of implicit surfaces). The resulting hierar-
chical surface representation defines the wireframe of the object’s skin by: (1)
describing the connectivity between the vertices in an efficient implicit way,
called the connectivity-wireframe (CW); and (2) positioning these verticesin
relation to aregular 3D grid of points that characterizes the space inside and
outside the skin, called the reference-grid (RG). Therefore, the MesHGRID
surface representation lies somewhat in between the two categories: (1) it has
features common to the first category in the way the connectivity-wireframeis
encoded; and (2) it exploits wavelet-based, multi-resolution techniques for
refining the shape, through the RG.

Based on these classes of geometry representation, MPEG-4 has defined
dedicated tools for the definition and the animation of virtual characters. The
next sections describe these tools in more detail.
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Virtual Character in MPEG-4 Version 1
and 2: Face and Body Animation

First efforts to standardize the animation of a human-like character (an avatar)
within MPEG-4 were finalized at the beginning of 1999. Published under the
name FBA, they dealt with specificationsfor defining and animating the avatar.
Thissectionfirst describesthe node specification for Faceand Body objects, and
then describes how to create and animate an FBA compliant avatar model. The
compression schemes of animation parameters are presented in the third
subsection. Finally, local deformation issues are tackled.

Face and Body Animation Nodes Specification

A key concept inthe MPEG-4 standard isthe definition of the scene, wheretext,
2D and 3D graphics, audio and video data can (co)exist and (inter)act. A scene
is represented as atree, where each object in the scene is the instantiation of a
node or aset of nodes. Compression representation of the sceneisdone through
the Blnary Format for Scene (BIFS) specification (ISOIEC, 2001). Special
transformations and grouping capabilities of the scene makeit possibleto cope
with spatial and temporal relationships between objects.

Thefirst version of the standard addressesthe animationissueof avirtual human
face, while Amendment 1 contains specificationsrelated to virtual human body
animation. In order to define and animate a human-like virtual character, MPEG-4
introduces the so-called FBA Object. Conceptually, the FBA object consists of
two collections of nodesin ascene graph grouped under the so-called Face node
and Body node (Figure 1), and a dedicated compressed stream. The next
paragraph describes how these node hierarchies include the definition of the
geometry, thetexture, the animation parameters and the def ormation behaviour.

The structure of the Face node (Figure 1a) allows the geometric representation
of the head as a collection of meshes, where the face consists of a unique mesh
(Figure 2a). The shape and the appearance of the face is controlled by the FDP
(Facial Definition Parameter) node through the faceSceneGraph node for the
geometry, and the textureCoord and useOrthoTexture fields for the texture.
Moreover, astandardized number of control pointsare attached to theface mesh
through thefeaturePointsCoordfield asshownin Figure 3. These points control
the face deformation. The deformation model is enriched by attaching
parameterisation of the deformation function within the neighbourhood of the
control points through the faceDef Tables node.
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Figure 1. The MPEG-4 FBA related nodes.
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Figure 2. The face as a unique mesh (a) and the head as a collection of
meshes (b), (c) and (d).

(a) (d)

The face expressions and animation are controlled by the FAP (Face Animation
Parameter) node, which is temporal and updated by the FBA decoder. Anima-
tions can be performed at a high level, using a standardized number of
expressions and visemes, as well as at alow level by directly controlling the
feature points. In this case, a standardized humber of key points (84), corre-
sponding to the human features (e.g., middle point of upper lip) isdefined on the
face surface (Figure 3a and b). The complete animation is then performed by
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Figure 3. Examples of standardized key-points on the face object.

(a) (b)

deforming the mesh in the vicinity of the key points (Doenges, 1997; Escher,
1998; Lavagetto, 1999).

A virtual body object is represented in the scene graph as a collection of nodes
grouped under the so-called Body node (Figure 1b).

The BDP (Body Definition Parameters) node controlstheintrinsic properties of
each anatomical segment of the avatar body. It includes information related to
the avatar body representation as a static object composed by anatomical
segments (body SceneGraph node), and def ormation behaviour (bodyDef Tables
and body SegmentConnectionHint nodes) (ISOIEC, 2001). Body definition pa-
rameters are virtual character-specific. Hence the complete morphology of an
avatar canreadily bealtered by overriding thecurrent BDP node. Geometrically,
the static definition of the virtual body object isahierarchical graph consisting
of nodes associated with anatomical segments and edges. This representation
could be compressed using the MPEG-4 3D Mesh coding (3DMC) algorithm
(Taubin, 1998a) defining subpart rel ationships, grouped under thebody SceneGraph
node. The MPEG-4 virtual avatar is defined as a segmented virtual character,
usingtheH-Anim V2.0 nodesand hierarchy: Humanoid, Joint, Segment, and Site
nodes.

The BAP (Body Animation Parameters) node contains angular values and
defines the animation parameters as extrinsic properties of an anatomical
segment, i.e., its 3D pose with respect to a reference frame attached to the
parent segment. The orientation of any anatomical segment is expressed asthe
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composition of elementary rotations, namely twisting, abduction and flexion.
Here, 296 angular joint val ues are enough to describe any 3D posture of avirtual
human-like character. The angular values are specified with respect to the local
3D coordinate system of the anatomical segment. The origin of the local
coordinate system is defined as the gravity centre of the joint contour common
to the considered anatomical segment and its parent. The rotation planes are
specified and/or anatomical segment rotati on axes are standardized. Contrary to
BDPs, BAPs are meant to be generic, i.e., independent of, or poorly dependent
upon, the avatar geometry.

Figure 4 and Figure 5 illustrate the rotation axes for arm, forearm and fingers.
For acomplete definition of the axes associated with all body segments, oneis
referred to 1SOIEC (2001).

Figure 4. Standardized rotation axes attached to shoulder, elbow and
wrist.

]

* clavicule_abduct
r_shbulder_abduct

r_shoulder_twisting r shoulder flexio

r_shoulder_twisting

r_clbow_flexion
r_elbow_twisting

r_wrist_flexlon r_elbow_twisting

r_wrist_flexion

R wrist_twisting
¥

ir_wrist_twisting
¥

(b)
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Figure 5. Standardized rotation axes attached to fingers.

1. r_thumb_flexion_1
2. r_thumb_twisting

11. r_middle_flexion 1
12. r_middle_twisting
13. r_middle_pivot
14. r_middle_flexion_2
15. r_middle_flexion_3
16. r_ring_flexion_1
17.r_ring_twisting
18. r_ring_pivot
19. r_ring_flexion_2
20. r_ring_flexion_3
21. r_pinky_flexion_1
22.r_pinky_twisting

3. r_thumb_pivot
4. r_thumb_flexion_2

5. r_thumb_flexion_3

6. r_index_flexion_1
7. r_index_twisting
8. r_index_pivot

9. r_index_flexion_2
10. r_index_flexion_3

23. r_pinky_pivot
24. r_pinky_flexion_2
25. r_pinky_flexion_3

Creating FBA Compliant Data: Avatar M odel and
Animation Parameters

Since the manners for obtaining the content are various and quickly evolvein
time, the FBA specifications do not mandate any specific methodsfor obtaining
areal description of a3D human body and its associated animation parameters.
Defining only therepresentation format, the specificationsallow afreedevel op-
ment of content creation. To address the avatar modeling issue, we developed
the Virtual Human Modeling (VHM) authoring tool to help adesigner to obtain
— from a scanned geometric model of a human-like avatar — an articulated
version, compliant withthe FBA specifications. Theauthoringtool ismade up of
three parts:

*  aSegmentation Moduleto split the original object into a set of 3D objects
using the geodesical segmentation algorithm described in Preda (2002).

*  aBuilding Module to build the articulated character by using the FBA
predefined hierarchy by setting up parent-child property of the anatomical
segments previously segmented.

* afFace Parameterisation Module to specify the control points of the face
mesh and to define the face influence region associated with each control
point.
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Figure 6. The 3Al: (a) BAP editing by using a dedicated user interface
allowing to tune the value for each BAP, (b) interactive tracking of gestures
in image sequences.

(a) (b)

In order to address the avatar animation issue, we developed a dedicated
authoring tool named ARTEMIS Animation Avatar Interface (3Al), to easethe
editing and extraction of face and body animation parameters. The3Al authoring
tool also provides the following functionalities: (1) loading an FBA compliant
avatar; (2) 3D composition of objects such asimages, video sequences, avatars
or anatomical part models(face, hand, arm, and 3D scenes; (3) calibration of 3D
face and body models according to the anthropometric characteristics of the
actor inavideo sequence (dimensionsof the palm, length of thefingers); (4) face
tracking in natural video sequences and FAP instantiation (Malciu, 2000); (5)
interactive extraction of BAPs to describe any posture or corresponding to the
posture shown in the video sequence (see Figure 6b); (6) animation parameters
editing through sel ection of key-framesand end-effector positioning; and finally
(7) avatar animation according to a FAPS/BAPs file source and network
resource (e.g., UDP server). Some of these functionalities are visually repre-
sented in Figure 6.

Animation Parameters Compression

The FBA specifications provide, for both face and body animation parameters,
two encoding methods (predictive and DCT-based).

In thefirst method (Figure 7a), FAPS/BAPs are coded with a predictive coding
scheme. For each parameter to be coded in frame n, the decoded value of this
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parameter in frame n-1 is used as a prediction. Depending on precision
requirementson FAPS/BAPs, different quantization step sizescould be applied.
They consist of alocal (FAP/BAP specific) step size and aglobal one (used for
bit-rate control). The quantized prediction error is then encoded by arithmetic
coding. Taking into account thefact that natural human motionsare constrained
by physical properties, the range of each FAP/BAP is limited to a specific
interval. Using this property, the coding efficiency isincreased.

The DCT-based coding method (Figure 7b) splits FAP/BAPtime sequencesinto
segments made of 16 consecutive frames. Three steps are necessary to encode
each segment: (1) the determination of the 16 coefficient values using discrete
cosine transform (DCT); (2) quantizing and coding the alternative coefficients
(AC); and (3) predictively coding and quantizing the continuous component (DC)
coefficients. The global quantization step Q for the DC coefficients can be
controlled and the AC coefficients quantization step is set to 1/3 of Q. The DC
coefficients of an intra-coded segment are encoded as it is and, for an inter-
coded segment, the DC coefficient of the previous segment is used as a
prediction of the current DC coefficient. The prediction error and alternative
component coefficients (AC), (for both inter and intra-coded segments), are
coded using Huffman tables.

The current FBA encoder implementation from the MPEG reference soft-
ware,'? as well as commercial*® and academic implementations (Capin, 1999;
Preda 2002) shows a very low bit rate for compression of the animation
parameters, ranging from 2kbps for the face, up to 40 kbps for the entire body.

Figure 7. Decoding block diagram.

Animation Animation —— 1 Segment #n
Parameters — ——> Frame#n I ForemeTs 5ot (16 frames)

) DC Coeff. AC Coeff.

v
\? P 0
vit-1) Q o—s('t_n’ L

— DCQ ACQ
Arithmetic
Cading F' l
Huffman Coding Huffman Coding
Binary file L,!W"_I
(a) Frame predictive-based method. (b) DCT-based method.
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Table 1. Bit-rates [kbps] for the DCT-based coding scheme. Q denotes the
global quantization value.

Sign Q=1 Q=2 Q=4 Q=8 Q=12 Q=12 Q=24 Q=31
Bitrate[kbps]  12.08 10.41 8.5 7.29 6.25 541 3.95 3.33

We havetested the FBA compression techniques on adata set representing real
sign language content. I n thissequence, both arms and the body of the avatar are
animated. The frame-rate for this content is 20 fps. When dealing with awide
range of target bit rates, the DCT-based method hasto be used. Sincethe DCT-
based method uses a 16 framestemporal buffer, an animation delay occurs. For
signlanguageapplication, thisdelay introducesasmall non-synchronisation, but
does not affect the message comprehension. In the case of applications that
require near |oss-less compression and exact synchronization of the animation
with another media, the use of the frame predictive-based method is recom-
mended. In order to increase the efficiency of the arithmetic encoder, the
MPEG-4 FBA specifications standardize a set of ranges for each animation
parameter. The global quantization step is used here for scaling the value to be
encoded in the corresponding range. Each animation parameter isencoded with
the same number of bitsinside thisrange. If the obtained scaled valueisoutside
of the range, a higher quantization step has to be used.

In our tests related to sign language, when using the frame predictive-based
method, aquanti zation val ue bigger than four hasto be used and the obtai ned bit-
rateiscloseto 6.2 kbps. The compression resultsfor the DCT-based method are
presented in Table 1.

The low bit-rate, less than 15 kbps, obtained by compressing the animation
parameters, while keeping visual degradation at a satisfactory level, allows
animation transmission in alow bit-rate network.

Local Deformations

The segmented nature of an FBA compliant avatar has the main disadvantage
that during the animation seams will occur at the joints between the segments.
To overcome this limitation, a special tool based on the so-called Body Defor-
mation Tables (BDTs) has been introduced in MPEG-4. The principle consists
inadding small displacementsfor theverticesnear thejoint. Thereby, duringthe
animation the borders of two segments remain connected. BDTs specify a list
of vertices of the 3D model, aswell astheir local displacements as functions of
BAPs (ISOIEC, 2001). An example of BDTS' useisdescribed in Preda (2002).
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Thegeneration of the deformation tablesrequires additional animation methods
and the size of the deformation tables can comprise up to 50% of the size of the
entire model, depending on the requested deformation accuracy. To overcome
this limitation, new deformation tools have been adopted by the MPEG-4
standard, as part of the AFX specifications. Thesetools are generic and support
the animation of any kind of 2D/3D synthetic objects. The next section shows
how one can use them for defining and animating virtual characters.

Virtual Characters in MPEG-4 Part 16:
The Skeleton, Muscle and Skin (SMS)
Framewor k

The purpose of this section is to introduce the new animation framework for
generic virtual objects as specified in the Part 16 of the MPEG-4 standard. This
framework is founded on a generic deformation model (Preda, 2002c), which
relies on a deformation controller defined by means of a geometric support, an
influence volume around this support, and ameasure of affectednesswithin the
influence volume. With respect to these elements, a classification of the main
deformation techniques reported in the literature is presented.

Inthefollowing, weintroducetwoinstancesof the 1D deformation model, which
offer efficient control of the geometrical support and appropriate volume
specification: (1) bone controller and (2) muscle controller. The Skeleton,
Muscle and Skin (SMS) framework is built around these concepts: bone and
muscle. We show how they can be used to define and animate generic virtual
characters. In order to embed generic virtual characters into a 3D scene, the
SMS architecture is provided with the scene graph nodes. The efficient
representation of the animation parameters is addressed by: (1) enriching the
animation capabilities with temporal interpolation and inverse kinematics sup-
port; and (2) adapting two data compression techniques to the SM S animation
data, namely the predictive and DCT-based methods.

Synthetic Object Deformation: Toward a Unified
Mathematical Model

A key issue pointed out in the previous section refersto realistic animation that
FBA tools cannot efficiently achieve. One of the main reasons for this comes
from considering the avatar as a segmented mesh and performing the animation
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by applying a rigid geometric transformation to each segment. In order to
overcomethislimitation, the object shoul d be considered asaseaml essmesh and
animated by means of deformations. The generic principle is described and
illustrated below.

Let M (Q) be a seamless mesh, where Q ={v,,V,,...v, } is the set of the mesh
verticesandlet (€2,), beafamily of non-empty subsetsof € (Figure8a). A local
deformationfunction ¢, : Q — R*® makesit possibletomoveavertex ve Q; into
the new position expressed as v+ ¢, (V) (Figure8bandc). Here, ¢, isextended
from Q, to Q asthe null function, i.e., Vve Q\Q,, ¢,(v) =0. Note that the

family (€,); isnot necessarily apartitionof Q . Inparticular, UQ, canbeastrict

subset of Q (some vertices may remain unchanged) and for two distinct subsets
Q; and Q,, the intersection €; NQ; can be non-empty. The deformation
satisfiesthe superposition principle, i.e., thedeformationinduced by both ¢, and
@; at avertex v belongingto Q; N Q; isexpressed as the sum ¢, W) +o;(v)

(Figure8d). Inorder to achieveacompact description and an efficient implemen-
tation of a deformation model, the notion of a deformation controller is
introduced. It is defined as atriplet made of: (1) the support S associated with
andimensional (nD) geometricobject (ne {0, 1, 2, 3} ); (2) aninfluencevolume
V(S) associated with S; and (3) the affectedness measure 1 , defined on V(S) and
characterizing the intrinsic deformation properties of the influence volume.

Figure 8. Mesh deformation principle.

(&) Mesh partition. (b) Deformation functione,
applied to the subset €, .
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Figure 8. Mesh deformation principle. (continued)

(c) ®; applied to the (d) Deformation by superposition
Subset Q. of ¢;and @;.

A family (C, ={S,V(S), u;}), of controllersis said to be associated with a
mesh M (Q) (Figure9) if and only if the following relationships are fulfilled:
(1)Vie{0,1..,n} Q =QnNV(S) and(2) thereexistsamapping y; from Q,

to S, suchthat any vertex ve Q; islinkedtoaset of theelementsof S. Applying

Figure 9. Deformation controllers associated with the mesh.
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an affine (or not) transformation, T, to C,isequivalent in defining adeformation
function ¢, on Q, such that:

We Q,oM=10 YolhE)-&] 1)

Skevi(v) !

where ; is the affectedness measure associated with C, and o, is a weigh
coefficient.

In practice, the transformation T, is applied to the controller and is propagated
within the influence volume V(S) according to the affectedness measure L ,
which playstherole of aweighting function. When y, (v) isreducedtoasingle
element, Equation (1) issimplified:

We Q0 = 1 W[T (M) ~w, )]. (2)

This controller-based deformation framework enables the unification of the
different deformation techniques reported in the literature with respect to the
dimension of thecontroller support. Typically, themost representativetechnique
of avolume controller-based approach is the lattice-based deformation model.
In this case, the 3D grid is considered as the controller volume. The 1D
controller-based approach covers most of the deformation techniques currently
used, namely: spline-based and skeleton-based. The OD controller principleis
used in the case of deformation tables (a particular case being described in the
previous section in the case of FBA), cluster-based and morphing-based
approaches.

In practice, choosing an appropriate controller resultsfrom atrade-off between:
(1) thecomplexity of representingthe controller directly linkedtoitsdimension;
and (2) the distribution of mesh vertices affected by the controller, specifically
by choosing the most appropriate influence volume.

An optimal balance is obtained by using a 1D controller. The support of the
controller is thus easy to control (the number of parameters is small) and the
corresponding influencevolume coversalarge class of configurations. The new
specifications of the MPEG-4 standard support this approach for animating an
articulated virtual character in the case of two specific 1D controllers, namely
a segment and a curve defined as a NURBS, referred to as bone and muscle-
based deformation, respectively.

The following sections describe in details each of these 1D controllers.
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Skeleton, Muscle and Skin Framework

Bone and muscle controllers for animating an articulated object

An articulated virtual character and, generally, an articulated synthetic object,
also called kinematics linkage, is composed of a set of rigid links which are
connected at the joints. In the case of a seamless virtual character, arigid link
is associated with each anatomical bone of the skeleton.

In order to define the static 3D posture of an articulated virtual character,
including geometry, colour and texture attributes, the approach here proposed
consists of considering the entire virtual character asasingle 3D mesh referred
to as skin.

During the animation stage, the anatomical bones can only be affected by rigid
transformations and cannot be locally deformed. Neverthel ess, realistic anima-
tionscan be obtained by local skindeformationsfor simulating muscular activity
effects. In order to fulfil this requirement, curve-based entities are attached at
an arbitrary level of the skeleton.

Two issues are addressed by the SM'S framework. The first one deals with the
definition of the skinned model as a static model described by its geometry and
its appearance. In order to perform this task, a hierarchical skeleton and a
collection of musclesare introduced. The second issue deal swith the animation
of articul ated model stogether with acompressed representation of theanimation
parameters.

Defining aSM S virtual character requires usto specify aset of static attributes
(geometry, texture, etc.), aswell asadef ormation model. From ageometric point
of view, an SMS synthetic model is represented in such a way that the set of
verticeswhich belong to the skin of the virtual character is specified asaunique
list. In order to define various appearances at different level s of the SMSvirtual
character, distinct shapes can be concatenated, provided that all of the shapes
composing the skin share the same list of vertices. This type of representation
avoidsgetting seamson the skin during the animation stage, whilepreserving the
possibility to define various sets of colour, texture and material attributes at
different levels of the skin.

Theanimation behaviour of askinned model isdefined by means of skeletonand
muscle layers together with their properties. The skeleton is a hierarchical
structure built from bones. A bone is defined as a segment of length | by means
of: (1) ageometric transformation of the bone, defined with respect to its parent
in the skeleton hierarchy; (2) amodel of influence of the bone movement on the
surface of the articulated model; and (3) inverse kinematics constraints. A
muscle layer is acollection of individual muscles, each one being attached to a
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bone. Specifically, itisdefined by meansof: (1) acurverepresentedasaNURBS
which can be deformed; and (2) amodel of influence of the curve deformation
on the skin of the model.

Each bone and each muscle influences the skin deformation. Thus, by changing
abone position or orientation or by deforming themusclecurve, theskinvertices
belonging totheassociated influencevolumewill bedisplaced accordingly. Here,
the skinned virtual character definition consistsin specifying for each bone and
for each muscle an associated influence volume, i.e., the subset of the affected
skin verticestogether with the related measure of affectedness through weight-
ing coefficients. Theinfluence can bedirectly specified vertex-by-vertex by the
designer of the synthetic model, or computed before performing the animation.
Inthe first case, the list of affected vertices and the weighting coefficients are
included in the bone/muscle definition. In the second case, distinct approaches
are proposed for bones and muscles, respectively. The following sub-section
present different strategies for computing the bone and the muscle influence
volume, respectively.

Bone and muscle-based modeling and animation

Theboneinfluencevolumeisdefined asthe support of the affectedness measure
u. Here i is expressed as a family of functions (4g)acjo;] Y -y YL, - 1y iS

Figure 10. Bone and muscle modeling.
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defined on the perpendicular plane located at distance d from the bone origin.
Thesupport of 1, ispartitioned into three specific zones (2, , Z, .,andZ ) by
two concentric circles characterised by their respectiveradiusr ;and R, (Figure
10). u, isthen defined as follows:

:L Xe Zint
_ e[ 6% Ze)
:ud(x)_ f( Rj _rd J X€ Znid’ (3)
0, Xe Z,,

where §(x, Z,,) denotes the Euclidean distance from x to Z_ and f(-) is a user-
specified fall-off to be chosen among the following functions:

3 2 i T JX . . .
X7, X ’X’Sm(ZX)’ Xand 3/x . This set of functions allows a large choice for

designing the influence volume and ensures the generality of the model.

The affectedness measure 11, (respectively . ) is defined in the same manner,
but using two half-spheres of radius r, and R, (respectively r, and R) as
illustrated in Figure 10a.

The bone influence volume being defined, animating the virtual character
consists of deforming its mesh by translating its vertices according to the bone
transformation.

Here only affine transformations are applied to the bone controller. In virtual
character animation, the most widely used geometric transformation consistsin
changing the orientation of the bone with respect to its parent in the skeleton
hierarchy. Thus, the bone can be rotated with respect to an arbitrary axis.
However, when special effects are needed, the bone can also be translated. For
instance, in cartoon-likeanimations, thinning and thickening theskinenvelopeare
frequently used. For such effects, the bone transformation must contain ascale
component specified with respect to a pre-defined direction.

The general form of the geometric transformation of a bone b is expressed as
a 4x4element matrix T obtained asfollows:

T=TRb - -Rb-Sb (4)

where TR"b, R"b, S"b give the bone transl ation, rotation and scal e, respectively,
expressed in the world coordinate system.
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In practice, the computations are performed in the local coordinate system
attached to thebone. In order to performthe scaling with respect to apre-defined
direction, the matrix SR, performs a pre-orientation of the bone. Thus, in this
system, the T transformation is expressed as:

T=TR -C,-R-SR-S-(SR)*-(C)* ()

where matrix C, allowsit to pass from the bone local coordinate system to the
world coordinate system.

Once the bone geometric transformation is computed, it is possible to compute
the new position of the skin verticesin the bone influence volume according to
Equation (2).

The SMS framework does not limit the number of bones used for animating a
virtual character. Consequently, local deformation effects can be obtained by
creating and animating additional bones. If such an approach can be used with
a certain success for simulating limited local deformation, the efficiency may
strongly decrease when considering realistic animations. To addressthiskind of
animation, the second controller, ensuring muscle-like deformation was intro-
duced.

The muscle influence volume is constructed as a tubular surface generated by
a circle of radius r moving along the NURBS curve (Figure 10b). The
affectedness function is then defined as follows:

0 5(vi ,w(vi ))>r

u) = {‘5(_‘”())] sl wle )< ©

r

where ¢ denotesthe Euclidean distance, f(-) isto be chosen among thefollowing

3,2 1/2

functions: X, X ,X,SH(EX),X and y1/ 3, and yisthefunction assigning to

Vv its correspondent point on the muscle curve.

A muscleisdesigned asacurve, together with aninfluencevolumeonthevirtual
character’s skin. In order to build a flexible and compact representation of the
muscle shape, aNURB S-based modeling isused. Animating the muscleconsists
here of updating the NURBS parameters. The main advantages of NURBS-
based modeling are the accurate representation of complex shapes. The control
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of the curve shape is easily addressed. A set of control points coordinates,
weights and knots, ruling the shape of the curve, can be directly manipulated in
order to control the local curvature.

AsNURBStheory iswidely reportedintheliterature, we shall not getintodetails
here, however, the interested reader is referred to Piegl (1997). NURB-based
modeling is fully supported within the SMS framework. Animating a muscle
consists of updating the values of its NURBS parameters. Once the muscle
transformationiscomputed, itispossibleto computethe new position of theskin
vertices in the muscle influence volume according to Equation (2).

Skeleton, Muscle and Skin Nodes Specification

One of the main purposes of the SM S framework isto allow the definition and
the animation of avirtual character within ahybrid 3D scene. In this context, a
scene graph architecture to describe the SMS elements is proposed. This
architectureisbuilt according tothe VRML and MPEG-4 scenegraph definition
rules. The structure of the proposed architecture, therefore, relies on the
definition of scene graph nodes.

At the root of the SMS-related node hierarchy, a SBVCAnimation node is
defined. The main purpose of this node isto group together a subset of virtual
characters of the scene graph and to attach to this group an animation resource
(textual or binary). An SMSvirtual character is defined as a SB SkinnedM odel
nodeanditisrelatedto acollection of bones, each onedefined asaSBBonenode,
together with a collection of muscles, defined as SBMuscle nodes. An optimal
modeling issue is addressed by defining the SBSegment node. In addition, the
SBSite node allows defining semantic regionsin the space of virtual character.
The extensive description of the node interfaces is outside of the goal of this
chapter and one can find them inthe M PEG-4 standard Part 16 published by | SO
(ISOIEC, 2003). Nevertheless, we briefly present the SBBone, SBMuscle and
SBSkinnedModel in order to illustrate the concepts discussed above.

The fields of the SBBone node are illustrated in Figure 11a

The SBBone node specifies four types of information, namely: semantic data,
bone-skin influence volume, bone geometric transformation, and bone IK
constraints. Each of these components is further detailed in the following.

The SBBone nodeis used as abuilding block in order to describe the hierarchy
of the articulated virtual character by attaching one or more child objects. The
childrenfield hasthe same semantic asin MPEG-4 BIFS. During the animation,
each bone can be addressed by using its identifier, bonelD. This field is also
present intheanimation resource (textual or binary). If two bonessharethe same
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Figure 11. The fields of the SBBone (a) and SBMuscle (b) node.
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identifier, their geometric transformations have the same set of parameter
values.

The bone-skin influence volume described is implemented as follows: the
specification of the affected vertices and the measure of affectedness are
obtained by instantiating the skinCoordindex and skinCoordWeight fields.
The skinCoordindex field enumerates the indices of all skin vertices affected
by the current bone. The skinCoordWeight field is alist of values of affected-
ness measure (one for each vertex listed in skinCoordindex). The influence
volume specified with respect to acertain number of planes (discretisation step)
is computed as follows. The sectionlnner (respectively, sectionOuter) field is
alist of inner (respectively, outer) radii of the influence volume corresponding
to different planes. The sectionPosition field correspondsto the distanced. The
falloff field specifies the choice of the measure of affectedness function as

T
follows: -1 for x3, 0 for x2, 1 for x, 2 for Sm(E X), 3for /X and 4 for 3/x . The

location of the bone is specified by the center and endpoint fields.

The possible 3D geometric transformation consists of (in this order): (1)
(optionally) anon-uniform scal e; (2) arotation with respect to an arbitrary point
and axis; and (3) atranslation. Thetransformation isobtained through the fields
rotation, translation, scale and scaleOrientation. The global geometric
transformation of a given child of a bone is obtained by composing the bone
transformation of the child with the parent. The rotationOrder field contains
information related to the conversion from the quaternion representation, used
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in the node data, to the Euler angl es-based representation, used in the animation
resource (file or stream), and vice versa (Shoemake, 1994).

ThelnverseKinematicsinformationrelatedto abonereferstothe position of the
bonein akinematicschainandto thedefinition of possible movement constraints
of this one bone.

The fields of the SBMuscle node are illustrated in Figure 11b. The SBMuscle
node enables usto add information relative to local deformation for simulating
muscleactivity at theskinlevel. Mainly two kindsof information arerepresented
by this node: the influence volume and the curve form. The muscle influence
volume described is supported asfollows. The specification of the affected vertices
and of the measure of affectedness is performed by instantiating the vertices list
(skinCoordindex) and the affectedness list (skinCoordWeight). The influence
volume is computed by using the radius and falloff fields. The radius field
specifies the maximum distance for which the muscle will affect the skin. The
falloff field specifies the choice of the measure of affectedness function as

follows: -1 for x3, 0 for x3, 1 for x, 2 for sin(% X), 3 for \/; and 4 for i/}

The animation of the muscle curveisbased on NurbsCurve structure as defined
in Grahn (2001) and uses the following fields: controlPoint — containing the
coordinatesand theweights— and knot. Themainfiel dsof the SBSkinnedM odel
node areillustrated in Figure 12.

Figure 12. The fields of the SBSkinnedModel node.

SBSkinnedMadel
skeleton bones muscles segments sites skin skinCoord
List of List of List of List of I I
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The SBSkinnedM odel nodeistheroot used to define one SMSvirtual character
and it contains the definition parameters of the entire seamless model or of a
seamless part of the model. Mainly, this node contains the model geometry and
the skeleton hierarchy. The geometry is specified by skinCoord field — (alist
containing the 3D coordinates of all the vertices of the seamless model) and the
skin field — (a collection of shapes which share the same skinCoord). This
mechanism allows us to consider the model as a continuous mesh and, at the
same time, to attach different attributes (e.g., colour, texture, etc.) to different
partsof themodel. The skeleton field containstheroot of the bonehierarchy. All

the bonesand musclesbel onging to the skinned model are containedin dedicated
lists.

Oncethe skinned model isdefined in astatic position, the animation is obtained
by updating, at time samples, the geometric transformation of the bones and
muscles. In order to ensure a compact representation of these parameters, the
MPEG-4 standard specifies a dedicated stream, the so-called BBA stream.

Skeleton, Muscle, and Skin Animation Stream

Animation principle and resour ce representation

To address streamed animation, M PEG-4 consi dersthe animation dataindepen-
dent of the model parameters. Thus, the model is transmitted or loaded at the
begi nning of theanimation session and the ani mation parametersare sequentially
transmitted at each frame. Two representation techniquesfor the animation data
format are supported: the first one corresponds to a hon-compressed (human
readable) format. Thisis useful when editing the animation parameters. In this
case, thefileformatisXMT (Kim, 2000) compliantin order to allow easy editing
and data exchange. This representation is called “SMS textual.” The second
representation is a compressed data format. By using appropriate compression
schemes, low bit-rate animation transmission is performed. This representation
iscalled “SMS binary.”

Conceptually, both animation data formats use the same representation of the
geometrical transformation parameters. The next sections describe this repre-
sentation.

Animation parameter representation

The key point for ensuring a compact representation of the SMS animation
parameters consistsof decomposing the geometric transformationsinto elemen-
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tary motions. Thus, when only using, for exampl e, therotation component of the
bone geometric transformation, a binary mask indicates that the other compo-
nentsare not involved. In order to deform amuscle only by translating acontrol
point, a binary mask has to specify that weight factors and basis functions are
not used. Since the animation system does not systematically use all of the
elements of the transformations associated with bones and muscles, this
approach produces a very compact representation of the animation stream.
M oreover, the compactness of the animation stream can still beimproved when
dealing with rotations. During the animation, the rotation of abone with respect
toitsparent isatypically used technique. In the definition of the bone node, the
rotation isrepresented as a quaternion. However, many motion editing systems
use the rotation decomposition with respect to the Euler’s angles. In practice,
when less than three angles describe a joint transformation due to the nature of
thejoint, aEuler’ s angle-based representation is more appropriate. Thus, to get
a more compact animation stream, a rotation is represented, in the animation
resource, as Euler’s angles-based decomposition.

In Craig (1989), it is shown that there are 24 different waysto specify arotation
by using atriplet of angles. By introducing a parameter characterizing the 24
possible combinationsof the Euler’ sangles, Shoemake (1994) demonstratesthat
there is a one-to-one mapping between the quaternion (or rotation matrix)
representation and the pair given by the Euler’'s angles and the introduced
parameter. In order to take thisinto account, a parameter called rotationOrder
has been introduced into the bone node.

For therest of the bone transformation components (translation, scale, etc.), the
representation in the animation resource isidentical to the representation in the
nodes.

Temporal frame interpolation

The issue of temporal frame interpolation has been often addressed in the
computer animationliterature (Foley, 1992; O’ Rourke, 1998). From simplelinear
interpolation, appropriate for translations, to more complex schemes based on
high-degree polynomials, or quaternions, which take orientation into account, a
large number of techniques are avail able. The advantages and the disadvantages
of each one are well known. Many of these techniques are supported by most
of the current animation software packages. Temporal frame interpolation is
intensively used to perform animation from textual description or from interac-
tive authoring. One in order to reduce the size of the transmitted data ,and the
second to ease authoring, it is allowed to specify the animation parameters for
the key-frames and not only frame-by-frame. However, in order to ensure the
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consistency of thedataover different decoder implementation, theinterpolation
schemes were also standardized.

For real-timepurposes, alinear interpolationisused for thetranslation and scale
componentsand aspherical linear quaternioninterpolationisusedfor therotation
and scaleOrientation components.

Animation frame

Inan SM Stextual or binary format, for each key frame, two typesof information
are defined: a vector corresponding to the animation mask, called
animationMaskVector, which indicates the components of the geometrical
transformation to be updated in the current frame; and a vector corresponding
to the animation values called animationValueVector which specifies the new
values of the components to be updated.

L et us describe the content of each of these vectors. For the exact syntax, one
can refer to the ISOIEC (2003).

J animationM askV ector

In the animation mask of a key-frame, a positive integer KeyFramel ndex
indicates to the decoder the number of frames which have to be obtained
by temporal interpolation. If this number is zero, the decoder sends the
frame directly to the animation engine. Otherwise, the decoder computes
n intermediate frames (n=KeyFramel ndex) and sends them to the anima-
tion engine, together with the content of the received key-frame.

Some bones or muscles of the SMSvirtual character may not be animated
in al frames. The bonelDs and musclelDs of the updated bones and
muscles, respectively, are parts of the animationMaskVector. In addition,
animationMaskVector contains the animation mask of each bone,
boneAnimationMaskVector, and the animation mask of each muscle,
muscleAnimationMaskVector. These vectors are detailed below.

J animationValueV ector

The animationValueVector contains the new values of each bone and
muscle geometric transformation that have to be transmitted and it is
obtained by concatenation of all the boneAnimationValueVector and
muscleAnimationValueVector fields.

For compression efficiency, SM S stream specificationslimit the maximum
number of bones and muscle nodesto 1,024 each. These bone and muscle
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nodes can belong to one or more skinned models and are grouped in a
SBV CAnimation node. Thus, the fields bonelD and musclelD must be
unique in the scene graph and their values must lie in the interval [0,
...1,023].

J boneAnimationM askV ector

To address high compression efficiency, a hierarchical representation of
the bone motion isused. At thefirst level, the bone motion is decomposed
intotranslation, rotation, scal e, scal e orientation and center transf ormation.
At the second level, all of these components that are set to 1 in the bone
mask, areindividually decomposed in elementary motions(e.g., translation
along the X axis, rotation with respect to Y axis). This hierarchical
processing makes it possible to obtain short mask vectors. The size of the
boneAnimationMaskVector can vary from two bits (corresponding to a
single elementary motion) to 21 bits (all the components of the local
transformation of the bone change with respect to the previouskey-frame).

J boneAnimationVa ueV ector

The boneAnimationValueVector contains the values to be updated corre-
spondingto all elementary motionswith amask value of 1. Theorder of the
elements in the boneAnimationValueVector is obtained by analyzing
boneAnimationMaskVector.

J muscleA nimationMaskV ector

Themuscle animation parametersinthe SM S stream are coordinates of the
control points of the NURBS curve, weights of the control points and/or
knot values.

The number of control points and the number of elements of the knot
sequence are integers between 0 and 63 and they are encoded in the
muscleAnimationMaskVector, after the musclel D field. Asin the case of
the bone, a hierarchical processing is used to represent the mask.

J muscleAnimationV a ueV ector

The muscleAnimationValueVector contains the new values of the muscle
animation parameters. As in the case of a bone, this vector is ordered
according to the muscleAnimationMaskVector.
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Since the compression schemes developed in the MPEG-4 FBA framework
offer good performances, the two algorithms (predictive and DCT-based) have
been adopted for compressing the SM S animation data.

SMSversus FBA

A comparative analysis of the FBA and SM S frameworksis synthesized in Table 2
below.

While the FBA is founded on the representation of avatars as segmented
characters, that makesit an appropriateframework for cartoon-like applications,
SM S offersahigher degree of realistic representation, dealing with the concept
of skeleton-driven animation.

When dealing with the avatar body, the FBA standardizes a fixed number of
animation parameters (296) by attaching to each anatomical segment up tothree
rotation angles. The SMS framework does not limit the number of animation
parameters (bones and muscles). Moreover, the animation parameters refer to
an extended set of geometrical transformations (rotations, translations, scaling
factors).

Shape deformations are present in both frameworks. For example, the FBA
standardizes anumber of control pointsinorder to performfacial deformations,
whilethe SMS allows usto add curve-based deformers at any level of the skin.
In FBA, the deformation tool s are cluster-based. In SM S, they are curve-based.
The FBA standardizesthe number and | ocation of the control points, whileSMS

Table 2. Main FBA and SMS features (Preda, 2002b).

Criteria FBA SMS
Mode type Virtual human character Generic virtua character
Geometry definition Segmented character Seamless character
Hierarchy Standardized Hierarchy Hierarchy build on ageneric
skeleton
Local deformation Cluster based for face, Curve-based deformation
deformation tables for body
Scene graph nodes | Define a Face and Body Node and Define aown set of 6 nodes

use H-Anim PROTOs for
specifying the model geometry

Animation 296 for body, 68 for face Undefined number of parameters,
parameters arbitrary number of bones and
muscles are supported
Animation editing Forward kinematics Forward kinematics, inverse
support kinematics, tempora frame
interpolation
Compression Frame predictive-based, DCT Frame predictive-based, DCT based
based
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gives this freedom to the designer, being thus possible to achieve muscle-like
deformationson any part of thevirtual character’ sskininorder to get arealistic
animation.

Both frameworks address streaming animation and provide low-bit-rate com-
pression schemes. Both FBA and SM Sallow the above-mentioned compression
methods, frame-based and DCT-based. Moreover, to improve the compression
ratio, SMS supports advanced animation techniques, such as temporal frame
interpolation and inverse kinematics. For both FBA and SM S, the bit-rate of the
compressed stream depends on the movement compl exity (number of segments/
jointsinvolvedinmotion) and generally liesintherange of 5-40kbps, for aframe
rate of 25fps.

Inthe FBA framework, the animation stream containsinformationrelativetothe
animation of asingle human virtual character, while, inthe SMS framework, it
is possible to animate several characters by using a unique stream. Moreover,
the SM S supports the definition and animation of generic 2D/3D objects. This
property is very useful when dealing with a scene where a large number of
avatars or generic objects are present.

In SM S animation, more complex computations are required than in the case of
FBA animation. Thus, concerning the terminal capabilities, dedicated 3D hard-
ware or software optimization iswell-suited for implementing SM'S animation.
However, the SM S deformation mechanism isin line with the development of
graphics APIs and graphics hardware.

The deformation based on the bones and muscles controllers can be applied in
relation with advanced geometry definition techniques, allowing hierarchical
animation. The following section describes such representation techniques
(Subdivision Surfaces and MesHGRiD) and shows the use of BBA to control the
animation of a synthetic object by affecting its surrounding space.

Hierarchic Animation: Subdivision
Surfaces and M esHGRID

In this section, methods are presented for performing hierarchical animation,
where the displacement of a number of key points is extended to all vertices
through an automatic iterative construction/displacement scheme. Subdivision
Surfaces and MesHGRip both achieve this goal, but since MesHGRID is more
appropriatefor defining a“ surrounding influence volume” in the skin deforma-
tion control presented in previous section, more attention will be devoted to
MESHGRID.
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Subdivision Surfaces

Subdivisionsurfaces, originally introduced by Catmull and Clark (1978) and Doo
and Sabin (1978), haverecently emerged asauseful tool for modeling free-form
surfaces. A number of other subdivision schemes have been devised over the
years, including Loop’ s (1987), Dyn et al.’s (known as the “ butterfly” scheme)
(1990) or Kobbelt's (2000). Subdivision is arecursive refinement process that
splitsthefacetsor verticesof apolygonal mesh (theinitial “control hull”) toyield
asmooth limit surface. Therefined mesh obtained after each subdivision stepis
used asthecontrol hull for the next step, and so all successive (and hierarchically
nested) meshes can be regarded as control hulls. The refinement of a mesh is
performed both on its topology, as the vertex connectivity is made richer and
richer, and on itsgeometry, asthe new verticesare positioned in such away that
the angles formed by the new facets are smaller than those formed by the old
facets. Theinterest in considering subdivision surfaces for animation purposes
arerelated tothe hierarchical structure: the animation parametersdirectly affect
only the base mesh vertex positions and, for higher resolutions, the vertices are
obtained through asubdivision process. Three subdivision surfaces schemesare
supported by the MPEG-4 standard: Catmull-Clark, Modified Loop and Wave-
let-based. For a detailed description of these methods and how they are
implemented in MPEG-4, the reader is referred to ISOIEC (2003).

MEesHGRID

MEesHGRID is a novel surface representation typical for describing surfaces
obtained by scanning the shape of “real” or “virtual” objects according to a
certain strategy. The scanning strategy should provide adescription of the object
as a series of open or closed contours.

Virtual Character definition in MesHGrip format

Theparticularity of the MesHGRiD representation liesin combining awireframe,
i.e., the connectivity-wireframe (CW), describing the connectivity between the
vertices located on the surface of the object, with aregular 3-D grid of points,
i.e., the reference-grid (RG) that stores the spatial distribution of the vertices
from the connectivity-wireframe. The decomposition of aMesHGRiD object into
itscomponentsisillustratedin Figure 13 for amulti-resol ution humanoid model.
Figure 13a showsthe MesHGRiD representation of the model, which consists of
the hierarchical connectivity-wireframe (Figure 13b) and the hierarchical refer-
ence-grid (Figure 13c). Thedifferent resol utions of themesh (Figure 13d), which
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Figure 13. MesHGRID representation of a humanoid model.
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can beused to render the object at the appropriatelevel of detail, can be obtai ned
from the connectivity-wireframe. Thereference-gridistheresult of ahierarchi-
cal reference system as shown in Figure 13e.

Starting from the humanoid model of Figure 13a, the following sections will
discussthe design particul arities of the connectivity-wireframe, reference-grid,
and their relationship, such that the model can be animated using a hierarchical
skeleton-based approach.

The components of the MesHGriD model: RG and CW

The original surface of the humanoid model has been designed by means of
implicit functions. A typical way to obtain a MesHGRrip object from such an
implicit surfacedefinitionisto apply amethod called TriScan (Salomie, 2002a),
which performsthe contouring of the surface of the object at specified scanning
positions. The scanning positions are defined by the reference system specified
for the object.
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The reference system consists of three sets of reference surfaces S, S, S, as
labeled in Figure 13e. For abetter understanding, the reference system has been
chosen uniformly distributed. Notice that, usually in areal case, as shown in
Figure 13c, the reference grid is non-uniformly distributed. The reference grid
isdefined by the intersection points between the three sets of reference surfaces

S, S, S, asgiven by Equation (7).

o-N{Ts 38 38 @)
ow-U{Ze() Te(s). e, (®)

The discrete position (u, v, w) of areference grid point represents theindices of
the reference surfaces {S,, S, §,} intersecting at that point, while the
coordinate (x, y, z) of areference grid point is equal to the coordinate of the
computed intersection point.

There is a constraint imposed on the reference surfaces, however. They must
be chosen in such away that the reference surfacesfrom one set do not intersect
each other, but intersect the reference surfaces from the other sets. To obtain
the connectivity-wireframe, the TriScan method performsthe contouring of the
object in each of the reference surfaces S, S, §,. Any intersection between
two contours defines a vertex. The connectivity-wireframe consists of the set
of all vertices generated by the intersections between contours, and the
connectivity between these vertices. A mathematical definition of the connec-
tivity-wireframeisgiven by Equation (8).

In the general case, the connectivity-wireframe is heterogeneous and can be
seen as a net of polygonal shapes ranging from triangles to heptagons, where,
except for the triangles, the other polygons may not be planar. Therefore, to
triangul ate the connectivity-wireframein aconsistent way, aset of connectivity
rules has been designed especially for that purpose, as explained in Salomie
(2002&; Salomie, 2002b).

As one might have noticed, there exists arelationship between the vertices and
thereferencegrid, sinceavertex istheintersection point between two contours,
therefore, belonging totwo reference surfacesfrom different sets. Thisrelation-
ship can be followed in the 2D cross-section (see Figure 14), inside areference
surface, intersecting the object. Any vertex (label 4), lying on a contour of the
object (label 5), is located on a reference grid line (label 1) in between two
reference grid points, one inside the object (label 3) and one outside the object
(label 2). Notice that a reference grid line is the intersection curve of two
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Figure 14. A 2D cross-section through the object.
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reference surfaces from different sets. Asillustrated in Figure 14a, each vertex
isattachedtoagrid position G,, and therelative position of vertex V with respect
to G,and G, isgiven by the scalar offset (see Equation (9)). When either G, or
G, movesduring the animation (shownin Figure 14b), the coordinates (X, y, z) of
V can be updated as given by Equation (10).

A multi-resolution model can be designed by choosing amulti-resolution refer-
ence system, each resolution level having its corresponding referencegrid. The
multi-resolution reference system has a hierarchical structure (see Figure 13e),
which allowsobtaining fromthelast resolution|evel reference systemany lower-
resolution-level reference system by removing the appropriate reference sur-
faces.

The connectivity-wireframe obtained from amodel (Figure 13b), by scanning it
according to a hierarchical reference system (Figure 13e), has a hierarchical
structure, aswell. This can be proven considering that all the vertices from any
lower-resolution-level R are preservedintheimmediate higher-resol ution-level
R*1, sincethereference system of resolution level R isasub-set of thereference
system of resolution level R**. In addition, resolution level R** will insert new
verticesand, therefore, alter the connectivity between the vertices of resolution
level R. A hierarchical connectivity-wireframe can be decomposed into single-
resolution connectivity-wireframes, and each of them can be triangulated to
obtain the corresponding mesh, as show in Figure 13d.

Hierarchical reference grid animation

TheMEesHGrip model isvery flexiblefor animation purposes, since, inadditionto
the vertex-based animation typical for INDEXEDFACESET Or SUBDIVISIONSURFACE
representations, it allows for specific animation types, such as: (1) rippling
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effectsby modifying thevalue of the offset, see Equation (10); and (2) reshaping
of the regular reference grid. The latter form of animation can be done on a
hierarchical multi-resolution basis, and will be exploited for the bone-based
animation of the humanoid.

A particularity of the MesHGRID representation isthat the hierarchical structure
of the reference grid allows the coordinates of the reference grid points of any
resolution-level R**to be recomputed whenever the coordinates of thereference
grid pointsof thelower resolution-level R aremodified, for instanceby thebone-
based animation script. For that purpose, “Dyn'’ s four-point scheme for curves’
interpolation (Dyn, 1987) isapplied.

The compact and scalable MesHGRiD stream

The particularities of the MesHGRiD representation allow a very compact
encoding of themodel. Inaddition, theinformationinsidethe compressed stream
isorganized in regions of interest and levels of refinement such that the needed
portions of the mesh can be retrieved at the appropriate resolution and quality
level. Thehigh encoding performanceisachieved by combining different coding
techniques for the different components of the MesHGRID representation, as
follows:

1. The surface mesh can be obtained from the connectivity-wireframe by
performing atriangulation procedure using some of the same connectivity
rules as described in Salomie (2002a). It is, however, more efficient to
encode the connectivity-wireframe than the triangul ated mesh because of
the smaller number of edges that have to be described. For encoding the
connectivity-wireframe, anew type of 3D extension of the Freeman chain-
code is used, requiring only between one and two bits per edge.

2. Thereferencegridisasmooth vector field defined on aregular discrete 3D
space, each reference grid point being identified by a discrete position
(u,v,w). The(x,y,2) coordinatesareefficiently compressed using an embed-
ded 3D wavel et-based multi-resol ution intra-band coding algorithm.

By combining and applying these coding techniquesto multi-resol ution objects,
the compressed MesHGRID stream can be 2.5 times more compact than the
corresponding multi-resolution 3DM C (Taubin, 1998a) stream. When MesHGRID
is configured in homogeneous triangular or quadrilateral mesh mode, its com-
pression performances are close to that of WSS, dedicated to triangular or
guadrilateral meshes. The encoding performance of the WSS 3D-detail informa-
tionis, indeed, very high and difficult to surpass. Nevertheless, MesHGRip does
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not need a separate compression tool, in contrast to WSS for which the base
mesh is coded separately, typically with low compression tools like
INDExEDFACESET. Therefore, andtogether withitsdedicated animation capabili-
ties, MEsHGRID is preferred over WSS for virtual character animation.

Design and Animation of a Virtual Character defined in MEsHGRID
format

Design of the Virtual Character

Accordingto the bone-based animation requirements, the humanoid model must
consist of aglobal seamless mesh of the entire figure for each resolution level,
which shouldvirtually besplitinto anatomical parts, e.g., shoulder, elbow, wrist,
etc., such that the motion of the skeleton can drive the appropriate parts of the
mesh.

Applyingthe TriScan method on ahumanoid model defined by implicit functions
yields as a final result a seamless mesh of the entire object at each resolution
level, as shown in Figure 13d. In order to meet the virtual-split requirement for
the mesh, the reference system for the humanoid model has to be designed
accordingly. Asshown in Figure 13aand c, the reference surfaces defining the
reference grid have been chosen such that they pass through the anatomical
articulations(joints) of thebody. Consequently, thesinglemeshisvirtually split
into meaningful anatomical parts, which can be driven by the hierarchical
skeleton definition from the bones-based animation script. Noticein Figure 13a
that thedensity of thereferencegridishigher intheareasbelongingtothejoints,
which will generate a denser mesh for allowing smoother deformations and
modeling. Thereferencesystemishierarchical, providing ahumanoid model with
three resolution levels, as shown in Figure 13d.

Animation of a Virtual Character defined in MeshGrid for mat

For the hierarchical humanoid model shown in Figure 13, the reference grid is
organized in three resolution levels: the first level contains 1,638 points, the
second level 11,056 pointsand thethird level contains 83,349 points. Thelowest
resolution level ischosen asthe base level for the animation, while higher mesh
resolution levelsareimproving the smoothness of the deformations at thejoints
and of the overall shape. It is possible, as well, to simultaneously animate
different resolution levels, in case some details only appear at higher resolution
levels. Ananimation sequence of thehumanoid model isshowninFigure 15a. In
addition to the shaded surface mesh, the reference grid attached to theright leg
isdisplayed, inorder toillustratethe path followed and the def ormationto which
the model is constrained. Each deformation of the reference grid triggers the
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hierarchical update of the reference grid points belonging to higher resolution
levels, and the computation of the vertices coordinates according to Equation
(10) is such that the mesh follows the movements applied to the reference grid.
As illustrated in Figure 15b, not all of the reference grid points have to be
animated, only those where vertices are attached to.

The benefits of specifying an animationintermsof ahierarchical referencegrid
are even more pronounced when comparing this approach to animation methods
that are directly applied to the vertices, as is the case for the INDEXEDFACESET
representation. Thisdifferencein complexity isillustrated by Figure 16, which
depicts the knee of the humanoid model. As one can see in Figure 16a, the

Figure 15. Bone-based animation of the reference grid of the humanoid
model.

(a) (b)

Figure 16. Snapshot of the humanoid knee during the animation. The
reference grid lines are displayed in black. The surface at the second
resolution level is displayed as a wireframe in (a) and Gouraud-shaded in

(b).
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number of vertices contained in the surface mesh of the second resolution level
isalready quite high (216 vertices), while the reference grid at the lowest level
only consists of 27 points at the height of the knee (three planes defined by nine
pointseach). Although the number of grid pointswill be higher when applying the
long interpolation filter, the fact that the grid is defined on a regular space,
seriously simplifiestheinteractiveselection of thegrid points, sinceitispossible
to determine the majority of these points automatically once a few key points
have been chosen. Moreover, the same animation script can animate: (1) any
resolution of the MesHGRrip model, dueto its hierarchical construction; and (2)
any model with a reference grid that is defined in a compatible way with the
reference model used in the animation script. Compatible MesHGRrip modelsare
characterized by: (1) the same number of reference surfaces defining the
reference system; and (2) the same reference surfaces passing through the
same anatomical positionsin the different models. The drawback when animat-
ing an INbexebFAceSET model isthe need for adifferent script at each resolution
level of each model.

In practice, for achieving efficient hierarchical animation with the BBA ap-
proach, an appropriate techniqueisto animate thereferencegrid points, i.e., the
space around the model. Moreover, the BBA hierarchical animation technique
based on the MesHGRID representation method offers serious advantages in
terms of compactness, design simplicity and computational load, comparedto a
bone-based animation defined for a complex single resolution model whichis
described as an INDEXEDFACESET.

The major advantage compared to animation techniques defined for other
hierarchical models (e.g., Subdivision Surfaces), is that it is more intuitive to
addresstheregularly defined grid pointsthan the verticesand that it is possibl e,
with the same script, to animate compatible MesHGRrip models. The reference
grid points contained in the lowest resolution level represent only a small
percentage of thetotal number of pointspresentinthefinal level and, inaddition,
only alimited number of grid points are animated, i.e., only those related to
vertices. Hence, such a hierarchical approach is very advantageous, since the
animation can be designed in terms of alimited number of points and since the
number of computations needed to apply the BBA transformation to each of
these points will be reduced.

Conclusions

This chapter is devoted to the standardization of virtual character animation. In
particular, theMPEG-4 Faceand Body, aswell asthe Skeleton, Muscle, and Skin
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animation frameworks have been presented. A generic deformation model and
its implementation in the MPEG-4 standard through the bone and muscle
controllershasbeenintroduced. Thisgeneric concept, in relation with dedicated
surface representation tools, like Subdivision Surfaces and MesHGRib, recently
standardized by MPEG-4, allowshierarchical animation. It provides support for
explicitly animating only alimited set of key verticesby thedesigner, out of which
theanimation of all other verticesisautomatically cal culated through aniterative
calculation scheme.

In recent years, major improvements have been reported in the field of virtual
character animation, ranging fromthecreation of realistic model susedincinema
moviesand the devel opment of animation productiontools(e.g., motion capture
systems) to the production of on-lineanimationsintel evision showsand content
streaming in distributed environments. However, researchinthisfieldisstill in
aninitial stageand presentschallengingissues. Despite of largeon-going efforts,
computer vision technologiesfor tracking human motion have not yet reached a
level of maturity that issatisfactory for commercial use. In order to decreasethe
production cost of 3D content, re-targeting motion from motion capture data set
to different avatars is still a hot topic of research. Other important research
activities are oriented towards behavioural models for avatar and/or crowds,
building autonomous agentsableto ownintelligence and making virtual charac-
ters “live” with the appropriate emotional content. Even if MPEG-4 did not
explicitly analyse theseissues closely, its generic framework makes extensions
possible, providing the meansto an ever-evolving, living standard.
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Abstract

This chapter presents an extensive overview of passive camera calibration
techniques. Starting with a detailed introduction and mathematical
description of the imaging process of an off-the-shelf camera, it reviews all
existing passive calibration approaches with increasing complexity. All
algorithms are presented in detail so that they are directly applicable. For
completeness, a brief counting about the self-calibration is also provided.
In addition, two typical applications are given of passive camera calibration
methods for specific problems of face model reconstruction and telepresence
and experimentally evaluated. It is expected that this chapter can serve as
a standard reference. Researchers in various fields in which passive
camera calibration is actively or potentially of interest can use this chapter
to identify the appropriate techniques suitable for their applications.
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Cameracalibrationisthe processof determiningtheinternal physical character-
istics of a camera and its 3-D position and orientation with respect to a world
coordinate system using some predefined objects or automatically detected
features. Theresult of cameracalibrationistheestablishment of amathematical
relationship between the 3-D coordinates of a point in the 3-D scene and the 2-D
coordinates of its projection onto the image recorded by the camera.

Cameracalibrationisanimportant preliminary step towardsmany vision-related
applications. Passivecalibration, active calibration, and self-calibration arethe
most frequently referred to camera calibration algorithm categories. Active
calibration methods were developed mainly for robotic systems. Recently,
algorithmsfor active calibration purposes have been investigated that fall inthe
more general self-calibration category (Lamiroy, Puget & Ho-raud, 2000).
Whiledetail ed discussionsabout self-calibration aregivenin Faugeras& Luong
(2001), Hartley & Zisserman (2000) and Fusiello (2000), this paper intends to
give an overview of passive calibration. However, for completeness, a brief
counting about the self-calibration will also be presented.

Passive calibration hasbeen used extensively inthe synthesisand analysisof the
human body for telepresence (Xu, Lei, & Hendriks, 2002) and in 3-D face
modeling (Liu, Zhang, Jacobs, & Cohen, 2001). However, despiteitswiderange
of applicationsand extensiveinvestigations, no comprehensive overview of this
topicexists. Thischapter attemptstofill thisgap by providing such an overview
in a systematic and unified manner and by comparing and evaluating existing
approaches. In addition, two typical applications are given of passive camera
calibration methods for specific problems of face model reconstruction and
telepresence and then experimentally evaluated. It is expected that this chapter
can serve as a standard reference. Researchers in various fields in which
passive camera calibration is actively or potentially of interest can use this
chapter to identify the appropriate techniques suitable for their applications.

The chapter isorganized asfollows. Inthe next section, adetailed introduction
and mathematical description is provided of the imaging process of an off-the-
shelf camera. Inthe next section, all existing cameracalibration techniquesare
classified based on several different points of view. The nonlinear component
of the camera, responsible for distortion, isthen modeled using two alternative
methods and discussed in a following section. Key passive camera calibration
algorithmsarereviewedindetail, followed by abrief overview of self-calibration
algorithms. Finally, two applications for which calibrated cameras are required
are analyzed, and a summary and conclusions are presented.
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Camera Imaging Process

In the perfect case, a camera can be modeled linearly as a pinhole. However,
to compensate for nonlinear effects in the imaging process, certain distortion
coefficients have to be added to the simple pinhole model.

Coordinate Systems

In pinhole modeling, five relevant coordinate systems (CSs) are needed to
transform positions of theworld pointsinthe 3-D spaceinto their projectionsin
the image plane of the camera, as described next.

1. Object Coordinate System (OCS): This CSis fixed to an object. This
means that for each object thereis a unique OCS. In this CS, the position
of each pointinthecorresponding objectisdenotedby x° = [XO y° ZO]T :

2. World Coordinate System (WCS): Thisisacommon CS. All other CSs
are defined in reference to it. Any point in the 3-D scene has coordinates
denoted by x" = [XW y" ZW]T

3. CameraCoordinate System (CCS): ThisCSisconnected to the camera.
Thex-y planeisparallel totheimage planewith itsorigin at the projection
center, and its z-axis along the optical axis(ref. Figure 1a). A pointinthe
3-D scene has coordinates denoted by x°¢ = [x° y¢ z°

4. Projection Coordinate System (PCS): This CSisa?2-D CS. It records
the metric coordinates of the projection of a 3-D scene point through the
pinholeonto the cameraimage plane. The xand Y axesof thissystemare
always set to be parallel with those of the corresponding CCS (ref. Figure
1a). Each projection hascoordinatesinthisCSdenoted by x™ = [xm ym]T

5. IMage Coordinate System (IMCS): Each coordinate in this system is
the pixel coordinate that is actually measured in theimage. If the imaging
processhasno nonlinear component, thenthe coordinatesinthissystemare
denoted by x'm = [x"“ yim]T ; otherwise, they are denoted by
KM = [)zim g™ | .Inthenonlinear case, "™ isalwaysmodeled as x'™ plus
some honlinear elements (distortion). Sometimes, to simplify computa-
tions, itisassumed that '™ = x'™, which meansthat alinear model isused
and is fit to a nonlinear imaging system (as in the most recent self-

calibration methods).
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Linear Coordinate Transformation

The relation between x° and the corresponding x* can be expressed as:
X" =RyX° +ty, (1)

where the rotation matrix RY =R(¢,p,y) and the translation vector
ty = [xgv yo z;V]T determinethe pose (including position and orientation) of
the OCSinthe WCS. R} isdefined as the product of three separate rotations
around the respective axes, that is, Ry =R, () R, (¢)- R, (¢). Equation 1is
arigidbody transformation, inwhich only rotation and transl ation are permitted,
but scaling is not allowed (Euclidean geometry). Thiskind of transformationis
called Euclidean transformation.

A similar relation exists between x*and the corresponding x¢:

X" =R+t or x¢ =(R¥) (x* —t") 2)

C

where the rotation matrix RY =R(x, 8,7)and the translation vector
ty = [xgv yy zZV]T determine the pose of the CCS with respect to the WCS.
They actually represent the extrinsic parameters of the camera. And they have
in total six degrees of freedom (DOFs).

Figure 1. The pinhole camera model.

(a) Relation between a CCS (b) The principle of a
and the corresponding PCS. pinhole projection.
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Therelation between the cameracoordinates (in CCS) and the metric projection
coordinates (in PCS) isinferred from the principle of lens projection (modeled
as a pinhole, see Figure 1b). This perspective transformation is a kind of
projective mapping (ref. Figure 1a).

In Figure 1a, the optical center, denoted by O, is the center of the focus of
projection. The distance between the image plane and O is the focal length,
which is a camera constant and denoted by f. The line going through O that is
perpendicular to the image plane is called the optical axis. The intersection of
the optical axisand the image planeis denoted by o, and istermed the principal
point or image center. The plane going through O that is parallel to the image
plane is called the focal plane.

The perspective projection from the 3-D space (in CCS) onto the image plane
(in IMCS) through the PCS can be formulated as:

X" Us, 0 x|x"| [-f, 0 x|x°
Z°ly" =2 0 Us, y|ly"|=| 0 =1, Yo [VY° ®
1 0 0 111 0 0 1|z

wheref =f/sandf =f/s,. [x, Y| isthe pixel coordinate of the principal
point with respect to the IMCS, and s, and S, are the effective pixel distances
in the horizontal (x-axis) and vertical (y-axis) directions, determined by the
sampling rates for Vidicon cameras or the sensitive distance for CCD and CID
cameras. Most CCD cameras do not have square pixels, but rectangular pixels
withanaspectratios /s of about 0.9to 1.1.f, x,, y,, and arecalled theintrinsic
parameters of the camera

Substituting equation 2 into equation 3 we obtain:

0’

X -f, 0 X N
T T

y"l=l 0 -f, | (RY) —(RY) tZ”] ZW

1 0O 0 1 1'

where = means “equal up to a non-zero scale factor”, which is the symbol of
equality in the projective space (Faugeras, 1993).
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Thus, threetransform matricescan beidentified to project a3-D world point onto
its 2-D correspondence in an image. These three matrices are termed the

intrinsic transformmatrix K (ITM, encoding all intrinsic camera parameters),
the extrinsic transform matrix M (ETM, encoding all extrinsic camera

parameters), and the projection matrix P (PM, encoding all linear camera
parameters), and are given by:

-f, 0 X
K= 0 =t %) m=[(R) ~(RY) ] and P=kNI. (4
0 0 1

Thus, for the projective coordinatest Xim:[x‘m ym 1]T and
)”(W:[x“’ yv oz 1]T,wehave:

KM=p.g". (5)

Through thisprojection, a3-D straight linewill map asa2-D straight line. From
thisobservation, this pure pinhole modeling iscalled linear modeling.

Modeling Nonlinear Components

The perfect pinhole model isonly an approximation of thereal camera system.
It is, therefore, not valid when high accuracy is required. The nonlinear
components (skew and distortion) of the model need to be taken into account in
order to compensatefor the mi smatch between the perfect pinhole model and the
real situation.

Inapplicationsfor which highly accurate calibration isnot necessary, distortion
is not considered. Instead, in this case a parameter u characterizing the skew
(Faugeras, 1993) of theimageis defined and computed, resulting inan ITM as:

~ Xim f(im
K= 0 —fy Yo and |: im:|:|:"im:|- (6)
0 0 1 y y
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If highly accurate calibration results are required or in cases where low-cost or
wide-angle lenses are employed, distortion hasto be accounted for. There exist
two ways of modeling the camera distortion, which will be discussed in the
following section.

Camera Parameters

The coefficientsof thedistortion model, together withtheintrinsic and extrinsic
parameters, emulate the imaging process of a camerawith very high accuracy.
In addition, the skew parameter could also be included. However, since the
modeled distortion already accounts for the interaction between the x and y
components, the image skew does not need to be considered explicitly, but
instead it istreated implicitly as part of the distortion.

It can be noticed in the previous equationsthat f and s, respectively f and s, are
always coupled with each other. This meansthat only thevaluesof f =f/s and
fy =f/ S, instead of the actual values of f, S, and s, are important and can be
recovered.

All these camera parameters, which can be recovered directly from a camera
calibration procedure, can be grouped into alinear parameter vector p, and a
distortion coefficient vector p,, as follows:

w

pl :[0( B 7/ X(‘:N y(‘:N Zc fx fy XO yO]T, (7)
p, = [distortion coefficients]' . (8)

These two vectors are further combined into one camera parameter vector p_
asfollows:

p. =" b, 9
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Classifications of Camera Calibration
Techniques

Cameracalibrationisafundamental part of 3-D computer vision. Based onit, the
original 3-D structure of a scene can be recovered (3-D reconstruction) or a
geometric-valid representation of the scene in a new image space can be
produced directly (Image Based Rendering, |BR).

During camera calibration, all camera parameters should be estimated from
certain observed geometric constraints. These constraints can be expressed by:

1. Correspondences between a known 3-D structure and measured 2-D
image contents (Slama, 1980);

2. Optical flow or parallax embedded in a sequence of views (provided by
avideo camera or a multiple-baseline system) that are 2-D projections of
an unknown 3-D scene from different unknown (Pollefeys, Koch, &
Gool, 1999) or pre-defined (Faugeras, Quan, & Sturm, 2000) relative
viewpoints; and

3. Special characteristics in 2-D image space incurred by certain known
specific geometric structures embedded in the 3-D scene, such as
preservation of line straightness through linear projective transformation
(Brown, 1971), vanishing points of parallel lines(Caprile & Torre, 1990),
and special relationsbetween projectionsof orthogonal lines(Liebowitz &
Zisserman, 1998).

In general, the number of independent constraints should not be less than the
DOFs of the camera parameter space. Based on this observation, a counting
argument has been presented for self-calibration (Pollefeys et al., 1999).
Minimal constraint requirements for different calibration purposes can also be
identified (Torr & Zisserman, 1996). Often, however, to improve numerical
robustness, many more independent constraints than needed are utilized (over-
constrained problem) (Hartley & Zisserman, 2000), or several equivalent
representations of the same constraint are employed simultaneously (Mam &
Heyden, 2001).

Due to the availability of useful geometric constraints, a number of different
cameracalibration approaches exist. Meanwhile, varioustypes of compromises
or trade-offs always have to be made. Such a trade-off is, for instance, the
desired accuracy of calibration results and the depth of view that can be
supported by the camera calibration results. Requirements also differ from
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application to application. All existing camera calibration approaches can be
categorized from several different points of view.

Given the underlying assumptions about the parameters to be estimated, the
following three general types of calibration exist:

Passive (Fixed) Calibration: All camera parameters are assumed fixed and,
therefore, the calibration isperformed only once. Thisapproach often uses
images of objects for which the accurate geometric and photometric
properties can be devised, and reconstructs the relationship between such
properties and the recorded images. From these relations all camera
parameters can be estimated quantitatively through somelinear or nonlin-
ear optimization process (Tsai, 1987; Triggs, McLauchlan, Hartley &
Fitzgibbon, 1999).

Active Calibration: For active vision purposes, some of the intrinsic camera
parameters (typically focus and zoom) are assumed to vary actively, while
the extrinsic parameters are either changed on purpose in a controlled
fashion (e.g., purerotation) or not at all (Willson, 1994). Theinvestigation
of the relationship between zooming (and/or focus) and other intrinsic
parameters is at the center of this approach.

Self-Calibration: Depending ontheapplication requirements, all or someof the
cameraparametersareassumed tovary independently, whiletheremaining
ones are unknown constants or parameters that have already been recov-
ered via a pre-processing step (e.g., through a passive calibration tech-
nique). The purpose of self-calibration isto be able to recover the camera
parameters at different settings of the optical and geometrical configura-
tions (Pollefeyset al., 1999).

By considering the appearance of the camera parameters, we can identify:

Explicit Calibration: This represents the traditional approach (Slama, 1980),
according to which the values of all individual camera parameters are
calculated explicitly.

Implicit Calibration: In this case, only certain relations of the camera
parametersarerecovered, for example, the projection matrix in equation 4.
These relations must contain enough information to support subsequent
calculations. The exact value of each individual parameter is not made
explicit (Wei & Ma, 1994). However, all individual cameraparametersmay
be calculated from the recovered relations.
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Depending ontherequired complexity and compl eteness of the computation, the
following three types of models can be adopted:

Linear Models: This represents a simplistic approach to calibration. The
imaging process is described in terms of a simple linear equation (ref.
equation5). Clearly, typical nonlinear phenomena, likedistortion, arerarely
taken into account by this model, unless the distortion component can be
approximated by alinear function (Fitzgibbon, 2001).

Nonlinear Model: A more complex model of the system (including nonlinear
distortion, modeled, for example, asinequation 11) iscreated for describing
theimaging process. There are two possibilitiesto fit this nonlinear model
to the available data: 1) The nonlinear distortion part is first removed by
some special technique, such as preservation of line straightness (Brown,
1971), andthelinear relationisthen easily recovered; and 2) A linear model
that doesnot consider distortionisfirst fitted tothedata, and theoutputsare
then fed into anonlinear optimization process to get the best nonlinear fit
(Zhang, 2000).

“Black Box” Model: The whole system is treated as a black box. Inputs and
outputs are studied together with some specific properties of the camerato
predict the nonlinear imaging process (Chen & Jiang, 1991).

In this chapter we focus on passive camera calibration techniques.

Distortion correction is a key issue in the development of camera calibration
techniques, sinceit determinestheaccuracy of the subsequent applications, such
as3-D reconstruction. Therefore, inthe next section, thedistortion modeling and
estimation issues are first investigated in detail.

Nonlinear Camera Distortion

For an off-the-shelf lens, thedeviation of the pixel positionintheimageplanedue
to distortion is on average in the order of five pixels (Tsai, 1987) and, in rare
cases, it can be up to ten or even 100 pixels (Stein, 1997). If the distortion is
model ed, nonlinear methodsfor estimating the parametershaveto be employed,;
otherwise linear techniques, which are far more efficient and stable, can be

applied.
Ontheother hand, it wasfoundthat theradial distortion assumption canlinearize
the image geometry to an accuracy which is 2x10° of the image size (Beyer,
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1992). Any more elaborate distortion model than a radial one could help in
increasing the accuracy, but may incur numerical instability (Tsai, 1987). Thus,
maost calibration algorithms usually take into account only the radial distortion.
However, when wide-angle cameras are used, adding a non-radial distortion
component in the distortion model will improve accuracy significantly (Weng,
Cohen & Herniou, 1992).

Therefore, the complexity of the distortion model (i.e., the number of distortion
coefficients considered) should match the available computation resources and
the accuracy required by the application.

Distortion Models

Two different models have been constructed to describe the distortion phenom-
enon. They were developed for the purpose of projection and that of 3-D
reconstruction, respectively.

I maging-distortion model

For the camera projection purpose, the distortion can be modeled as “imaging
distortion” as:

)A(im Xim fx'AIxm
9im = yim + fy'AIym ) (10)

where

Al Cxrroxrtoxr® o 2x4r? o 2x'y'r? pm
A y're oyt oyt 2x'y' 2y?+r? 0 r? ¢, (11)

y

p:jm — [k1|m k;m kalm Pllm lem %Im SIzm :|T '
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K™, k", k;" (Radia), P'™, P)™ (De-centering), and s, s;" (Thin Prim)
represent the imaging-distortion coefficients, while AT and A';“ represent
distortionsinthehorizontal (x-axis) and vertical (y-axis) directions, respectively.
The radial distortion is caused by the fact that objects at different angular
distancesfromthelensaxisundergo different magnifications. The de-centering
distortion is due to the fact that the optical centers of multiple lenses are not
correctly aligned with the center of the camera. The thin-prim distortion arises
from the imperfection in the lens design and manufacturing, as well as the
camera assembly.

This distortion model can be simplified by neglecting certain parameters. k,™
usually accounts for about 90% of the total distortion (Slama, 1980). For
example, in some cases, only radial and tangential components were taken into
consideration. The effect of the thin prim coefficients (s™ and s)") was
overlooked without affecting the final accuracy, because this component only
causes additional radial and tangential distortions (Weng et al., 1992).

Reconstruction-distortion model

Besidesbeing model ed asimaging distortion, the distortion can al so be model ed
as “reconstruction distortion” as follows:

Xim B )?im fx'Ase
yim - yim fy'Ase ) (12)

2okt okt 2%+ 2% v

_ Xr _nRe
G2 gt g 28 2§P+r 0 rz] Pa’, (13

2

p;{e — [k1Re sze kaRe FiRe PzRe %Re S;%e]T ,
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A similar discussion asthat ontheimaging-distortion coefficientsintheprevious
section also applies to the reconstruction-distortion coefficients p5°.

Principal point vs. distortion center

It has been realized that the distortion center [x, y,] used in equations 10
and 12 could be different from the principal point employed in equation 3 (Wei
& Ma, 1994). On the other hand, under radial distortion with a dominant
coefficient k;™ (or k), asmall shift of the distortion center is equivalent to
adding two de-centering distortion terms (Ahmed & Farag, 2001). Therefore, if
the distortion is estimated independently of the calibration of other camera
parameters, the principal point for the linear perspective transformation should
be distinguished from the distortion center. However, if all camera parameters
(including distortion coefficients) are calibrated simultaneously, the distortion
center and the principal point should be treated as being the same. In this case,
it is better to take the de-centering distortion component into consideration.

Discussions

Both imaging and reconstruction-distortion model s have advantages and di sad-
vantages(ref. Table 1). Ingeneral, theimaging-distortion model ismoreefficient
for distortion correction using the* backward mapping” strategy (Lei & Hendriks,
2002). The reconstruction-distortion model is preferable if the subsequent
processing is mainly concerned with the 3-D model recovering.

Bothmodel shave been adoptedinthecalibrationliterature (Heikkil &, 2000; Tsali,
1987). It was demonstrated by Heikkila (2000) that they are equivalent with
proper compensation. A least-squares method was further proposed for the
conversion between the two sets of distortion coefficients. Which model should
be adopted for areal situation is application-dependent.
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Table 1. The advantages and disadvantages of both imaging and
reconstruction-distortion models.

Imaging-distortion model

Reconstruction-distortion model

Advantages 1. The distortion coefficients are 1. The distortion coefficients are
complete in the 3-D CCS and only complete in the 2-D IMCS and only
associated with the 3-D coordinates associated with the 2-D coordinates
of the space points; of the image pixels;
2. The imaging process can be 2. The 3-D reconstruction problem
reproduced; can be solved more easily;
3. Distortion correction can easily be | 3. Distortion component in the
carried out by employing the efficient | measured image coordinate can
“backward mapping” technique easily be removed.
(Wolberg, 1990).

Disadvantages | From measured image coordinates, it | Distortion correction has to be

is difficult to get the undistorted 3-D

COI‘I’GSpOHdCHCCS .

performed by the so-called “forward
mapping” technique, which is not so

efficient (Wolberg, 1990).

Distortion Estimation Techniques

A survey isgiven bel ow of distortion estimation techniquesmainly developedin
thecomputer-visionfield. Amongthem, thereistheelegant “ plumb-line” method
(Brown, 1971), which plays a quite important role.

Plumb-line method

With alinear cameramodel (ref. equation 5), astraight linein the 3-D sceneis
still astraight line in the corresponding image plane. Any deviation from this
straightness should, therefore, be attributed to distortion.
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Suppose there exists a straight 3-D line in the 3-D scene. Correspondingly, a
straightimageline should appear inthefocal planeof anideal linear camera. L et
Xm = [x"“ y‘”‘]T denote an arbitrary point on that image line. The following
equation should then be satisfied

X"sin®+y™cosé = p,

where 6 isthe angle between the image line and the x-axis of the focal plane,
and p is the perpendicular distance from the origin to thisline.

Supposethat the reconstruction-distortion model isemployed, and in the distor-
tion model assume that f = fy (Brown, 1971; Devernay & Faugeras, 2001).
Substituting equation 12 into equation 14 leads to an expression of the form

F(R™ 9™ %0 Yor S8, KT KIS K, B P, 8%, 60,0, p) +€ =0, (15)

where X, ¥,, S, S, k.7, ke kRe, PRe, PR, s Re s R, 6 and p are all unknown,

and ¢ is arandom error.
If enough colinear points are available,

2

6= 2 2 (F (R 50 %00 Yor Sy K KE KE, B, PR, 6%, 55,6,,p, ) (16)

inimi Re Re Re Re Re Re Re
can be minimized to recover X, ¥, S, S, K% k¢, k% P7¢, P ¢ s 7€, s 7€, 6

and p.. [)?i‘jm 9iijm]T (i=21..n,j=1..m) are distorted image points whose

distortion-free correspondences [xi‘j"‘ yi‘jm]T should lie on the same image line

with rotation 6. and polar distance p..

However, due to the high inter-correlation between the de-centering distortion
coefficients (PR, P,?9), and the principal point coordinates [x, y,[",x, andy,
are always assumed to be known a priori. Otherwise, a proper optimization

strategy (e.g., coarse-to-fine [Swaminathan & Nayer, 2000]) has to be adopted
to get a more stable solution.
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When the plumb-line method is applied, “straight” lines, which are distorted
straight image lines, need to be extracted first, typically by means of an edge
detection technique, before the optimization on equation 16 can be performed.
Clearly, the accuracy of the extracted lines determines the accuracy of the
estimated parameters. If thecalibration set-up iscarefully designed so that those
“straight” lines can be located accurately, an overall accuracy in the order of
2x10° can be achieved (Fryer, Clarke & Chen, 1994). However, for irregular
natural scenes, it may be difficult to locate “ straight” lines very accurately. To
tackle this problem, an iterative strategy has been adopted (Devernay &
Faugeras, 2001). According to this strategy, edge detection (step 1) and
optimization (step 2) are first performed on the original images. Based on the
estimated distortion coefficients, images are corrected (undistorted), and then
stepsland2arerepeated. Thisiterativeprocesscontinuesuntil asmall deviation
¢ isreached. Applying this strategy on natural scenes, a mean distortion error
of about pixel (for a512x512 image) can be obtained (Devernay & Faugeras,
2001). Improved resultscan be obtained by modifying equation 16 (dividing, for

example, the function f (...) by p, [Swaminathan & Nayer, 2000]) and by

carefully definingthe* straightness’ of aline (using, for example, snakes[Kang,
2000]).

Utilization of projective geometry properties

Theplumb-linemethod exploresonly oneinvariant of the projectivetransforma-
tion. Other projective invariants or properties, such as converging of parallel
lines, can also be employed for estimating distortion in afashion similar to the
plumb-line method. Some of these methods are summarized below. They make
use of:

Convergence of parallel lines: Based on the observation that a set of parallel
linesshould haveacommon uniquevanishing point through linear projective
projection, the distortion is estimated by minimizing the dispersion of all
possible candidate vanishing points (Becker & Bove, 1995).

Invariance of crossratio: Sincethe crossratioisstill aninvariant even when
radial distortion is present, it is employed to recover the distortion center
first, followed by the use of preservation of linearity of the projective
geometry to calibrate the distortion coefficients and the aspect ratio (Wei
& Ma, 1994).

Linear projection matrix P: Lineintersections are accurately detected in the
image. Four of them are selected to define a projective basisfor the plane.
The others are re-expressed in this frame and perturbed so that they are
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accurately aligned. The recovered distortion corrections from this projec-
tive base are then interpolated across the whole image (Brand, Courtney,
Paoli & Plancke, 1996).

Linear fundamental matrix embedded in a stereo set-up: A stereo (or
triple-camera) setup can also be used for distortion estimation. First, an
initial guessof thedistortion coefficientsisusedto cal culatetheundistorted
image point coordinates. These are then used to calculate the so-called
fundamental matrix (or tri-linear tensors). Based onthismatrix (or tensors),
the correspondence error is calculated. This error is then reduced by
adjusting the values of distortion coefficients and the process is repeated
until a certain optimal point is reached. The optimal values for distortion
coefficientsarefinally estimated independently (Stein, 1997).

In the last three approaches, stereo correspondences or correspondences
between 3-D points and their projections are needed. Traditionally, these
correspondences are obtained manually. Toautomatically searchfor them, view
and illumination changes have to be taken into consideration together with the
distortion coefficients (Tamaki, Y amamura & Ohnishi, 2002).

Which linear property or invariantismost resistant tonoiseisstill not clear. This
needs to be addressed in future work.

Other techniques

Inadditiontousinglinear projectivegeometry, three other interesting techniques
have also been proposed for distortion estimation, each of them with their own
limitations.

In Per§ & Kovagi¢ (2002), by labeling the camera distortion as an inherent
geometry property of any lens, the radial distortion defined in equation 11 is
remodeled by the following non-parametric equation:

2

\/(iim—x0)2+(9‘m—yo)2 = f -In[%+ 1+%],

where r was as defined in equation 10 and f is the focal length.

Thismodel ismuch simpler than the one defined in equation 10 and themodel in
equation 12. Reasonabl e results have been obtained in Pers & Kovagi¢ (2002),
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although more research needs be done to model other types of distortions with
high accuracy.

In Farid & Popescu (2001), large radial distortion is detected by analyzing the
correlation in the frequency-domain of a single image. The method, however,
may only work for certain types of scenes. Finding out what types of scenesare
suitable for this technique seems to be an interesting research topic.

Contrary to the nonlinear equations 11 and 13, the standard distortion model is
modifiedin Fitzgibbon (2001) toaprojectivelinear, but equival ent, representation
assumingonly radial distortion. Based onthis, an efficient closed-formalgorithm
isformulated that is guaranteed to estimate the fundamental matrix (Faugeras,
1993).

Passive Camera Calibration

The aim of passive cameracalibration isto recover all cameraparametersinp_
by fitting the camera model described in section 1 to a corresponding set of
reference points, called calibration control points, in the 3-D world and their
corresponding projections, called calibration feature points, on the image
plane.

Much work has been done on passive camera calibration ranging from the
classical nonlinear optimization approach (Slama, 1980) to closed-form solutions
(Tsai, 1987). Very recently attention has been paid to multi-step schemes that
attempt to combineboth nonlinear optimi zation and linear closed-form solutions.
In the following, all important and representative approaches developed for
passive cameracalibration arediscussed. M ajor equationsinvolved arerecal cu-
lated and reformulated in a uniform way using the camera model introduced.

All algorithms are presented in detail so that they are directly applicable. Only
considering thelinear imaging model, thesimplest directed linear transformation
(DLT) approach is first described. Its geometrically valid variations are then
discussed. Nonlinear elements are introduced into the DLT approach to also
handle the camera distortion. However, the nonlinear system formed from this
idea is, in most cases, too complex to be solved efficiently and accurately.
Therefore, a method to avoid the possibly large optimization problem is pre-
sented. Because the method can only handletheradial distortion, amoregeneral
approach, an iterative two-phase strategy, is discussed. Further, to ease the
tediouscalibration-data-acquisitionwork, the 2-D planar patternisintroduced as
analternative, but effective, calibration object. To recover the geometry of more
than one camera, thelinear phase of theiterativetwo-phase strategy ismodified.
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After that, some other approaches that utilize special calibration objects or
specific phenomenain the 3-D scene are summarized. Finally, thecalibrationis
evaluated and feature extraction issues are discussed.

Direct Linear Transformation (DLT)

Direct linear transformation (DLT) (Abdel-Aziz & Karara, 1971) is the
simplest version of cameracalibration and still playsarelatively important role
incomputer vision. It can beappliedif thedistortion can be neglected or hasbeen
removed in advance.

Without considering the distortion, from equation 4 the transfer function from a
3-D point x"to the corresponding 2-D image pixel x™can be described as:

X
(ol I = R A < g
t? (= pf 05 5 pi|l°,
3 3 3 3 32| (17)
t pLop P P

where p),is the element of the matrix P at the i row and j"column, and
X™=tH/t3, and y" =2/t (18)

Substituting equation 18into equation 17 and expanding thematrix product yields
thefollowing two equationswith 12 unknowns:

3yWyim 3\ Wyim 3,wim 3

piX" + Py + Pz + Py — poXX™ = Py X" — p3z"X ™ — pix™ =0,  (19)

pIX" + poy" + piz" + pl - pIxX"y"™ - piy"y™ — p3z¥y™ - piy™ =0, (20)

The 12 unknowns can be solved using N > 6 points at general positions

(Faugeras, 1993), with 3-D world coordinates x;* = [)gw v ziW]T and corre-
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sponding 2-D image coordinates x™ = [)g"“ yi"“]T (i=1...N) by thefollowing
equation:

A-p=0,4 (21)
where 0,,,, isacolumnvectorwithal 2N elementsbeing 0 and

W, im W, im W,im im

X'y ozt 1 0 0 0 0 -x%" WX -ZX% -X
0 0 0 0 x' vy 2" 1 —x'V" -y -2’y -w"
X' ¥y Z 1 0 0 0 0 -x%" -y -z X
A=[0 0 0 0 X ¥ Z' 1 -xy %Y -2V -y
X W &z 1 0 0 0 —XUXM  _yWxim  _gtyim _yim
[0 0 0 0 X\ YW 2z 1 =W ~YaW —Z2W W

2 3 3

)
p=[pl B B PR PR R

Since the overall scaling of the 12 unknownsisirrelevant, a certain constraint
should be imposed. This constraint is, in fact, used to get rid of the scale
randomicity of the cameraprojection (multiple 3-D objectswith different scales
may correspond to the same 2-D projections). A simple form is to let one
unknown be equal to one, for example, p;=1. In this case a simpler linear
equation can be derived. The remaining 11 unknowns can thus be cal culated
from this new equation by employing various methods, e.g., least squares.
However, because of the possibility of singularity of this assumption, that is

p; =0, other formsof constraints should beimposed instead. One possibility is

the constraint pf)2 +( pg)2 +( p\f)2 =1.Inthiscase, the problemtobesolvedis
reformulated as (ref. equation 21) the minimization of |Ap| subject to the
constraint that |Cp||=1. C isdefined suchthat ¢, =0 (i, j =1...12), where c,

represents the element at the i row and j* column, except ¢ =¢J =¢; =1. A

closed-form solution to this problem can be obtai ned by the method described in
Faugeras (1993) and Hartley & Zisserman (2000).
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Camera parameter recovery

The values of all camera parameters mentioned can be recovered directly from
the results of DLT.

Combining the threeitemsin equation 4 gives:

popop op] [ h) () SRt

p12 p22 p: pi = _fy(rz)T+yo(r3) _fyty+y0tz (22)

SR N S (rs)' t,
whererj (j=1...3)isthej"columnof matrix RY ,and [t, t, t, —(Rﬁ’)TtZV.
Let:

[ ay\T 1] [/ 1\T 1 |

@) e 1@ R e

(@) a%|==[(a®) Pi|==|p B P ©;

T p T p pf p3 p3 p3 1 (23)
(@°) af% (@°) n AR

where p=\/(pf)2+(p§)2+(p§)2 and ' =q'/p=[p P, P]/p (i=
1..3).

Then, all original intrinsic and extrinsic cameraparameters can berecovered as:

f,=la-vea®|. r, =€, @ -yoa® ) £, r, =, (@"-x,q° )/ ..
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fo=lat—%a?|, t, =~le,a2-yot, ) f,, t, = (e, a%—xt, )/ f,,  (29)

where ¢, (= +1) isrelated to the so-called oriented projective geometry (Stolfi,
1991). Inthe current case, &,can be determined by judgingif the CS'soriginlies
in front of the camera (t,> 0) or behind it (t,< 0).

However, dueto theinfluence of noise and cameradistortion, from equation 24
itisimpossibleto guaranteethat therecovered matrix R¢ isorthonormal, which
is arequirement that must be met for R}’ to be a rotation matrix. The closest
orthonormal matrix to R can be found by employing one of the methods
provided in Weng et al. (1992) or Horn (1987). However, by doing so, the

resulting parameters may not fulfill the linear projection model optimally
anymore. That iswhy a geometrically valid DLT is needed.

Geometrically Valid DLT

Employingthe DL T method described, onecanrecover 11independent elements
of thematrix P . However, accordingto aprevioussectioninthischapter, P has

only 10 DOFs. This meansthat the recovered 11 independent elements may not
be geometrically valid. In other words, certain geometric constraints may not be
fulfilled by the 10 intrinsic and extrinsic parameters of acamerarecovered from

the reconstructed P of the simple DLT. For this problem, there are three
solutions.

Camera geometry promotion

In order to match the 11 DOFs of the projection matrix P, one could add one
more DOFs to the camera parameter space by taking into account the skew
factor u. By this change, substituting equation 6 into equation 5 yields (ref.
equation17):

PP P _fx(rl)T+u(r2)T+x0(r3)T —f, b +ut, +xt,

P
LR R o= —f () +vo(rs) RS G e
S R S (rs)' t,
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. . . . w w\T o w
wherer (j = 1...3) isthej" column of matrix R ', and [tx t, tZ]T :—(RC) ty.
Then, from equation 25, it turns out immediately (ref. equation 23) that:

T 13

u=—(a"xq?) [@?xq®) t, =€,0%, r;=€,0°, x, = @V g% v, =@2) g°.
f,=la2-yoa?, r, =, @2-yea® )/ f,., 1, =1, xrs,

f =

X

£,q"-ur, — x0r3|| by = _(quli_yOtZ)/ .

t, =—(e,a%-ut, - xt, )/ f,, (24)
where g, (= £1) is the same as in equation 24.

Constrained DLT

In some cases, the skew factor need not be considered, while in others the
nonlinear effects have been eliminated in advance by means of the techniques.

Then an additional constraint (q“xq* )T (9?xq*)=0, which guarantees the

orthonormality of thematrix R, canbeaddedtothecalculationof DLT. Taking
this into consideration, the original DLT problem should be redefined as (ref.
equations 21 and 23):

Minimize ||Ap| subject to the constraints (pf)2+(p§)2+(p33)2:1 and
(a*xa*?) (a™xq*)=0. (27)

However, because the algebraic distance d,, =|Ap| is neither geometrically

nor statistically meaningful (Hartley & Zisserman, 2000), itisbetter to minimize
the following geometric distance:
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2 2

T T
o) e | (@) X e
dgeo:z 3\ w 3—)§ * 3\ yw 3_yi
= || (a°) xV+qf (a®) x"+a
Then the problem to be solved becomes:
Minimize dgeo subject to the constraints in equation 27. (28)

After solving theoptimization problem 28, all original cameraparameterscan be
recovered by applying equation 24.

Modified DLT

To decrease the number of constraint equations required in the nonlinear
optimization process (so as to increase its efficiency), one can incorporate the
constraints in equation 27 in an alternative way.

According to Hatze (1988), equation 17 can be rewritten as:

1w 2, W 3w w W W
EXTY 4t axt+ayt+a,2" +a,

1w 2. ,W 3w w w W ’
X +ILYy +1;Z +'[Z X" +a,y +a,Z +a,

_XO:_fx

1,,w 2, ,w 3w
LRV XAy +1Z +t,  ax'+ay'+a,z"+a
0o~ y 1w 2. W 3_w - w w w )
X +Iy +1;7Z +tz X' +a,y +a,Z2 +a,

(29)

where rji (i,j=1...3) isthe element of R} at the i" row and j" column and
T w T w
[t t, t] =—(R¥) tr.

Therefore, as (RZV)T RY =1, we know immediately that:

a,a; +a,3, +a,3;, =0, and a,a, + a,a,, +a;a,;, =0, and
a,a; +a,a, +a,a, =0. (30)
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By further requiring that a,, = 1 or (a,)* + (a,,)*+ (a,))*= 1, we can carry out a
constrained non-linear search to obtainthe 10independent parameters(x,, Y, a,,
a,a, .., a, incasea,=1)or (x, Y, a,a, a, ..., a,, a,, incase(a,)*+ (a,)?
+(a,)?=1).
Uptothispoint, only linear relationsintheimaging processwereconsidered. This
already suffices if one aims more at efficiency than accuracy. However, for
highly accurate measurements, the distortion should al so be taken into account.
A straightforward way to achievethisistoincorporatethedistortion coefficients

directly intothe DL T cal culation by adding some nonlinear elements. Thisisthe
topic of the next section.

DLT Considering Distortion

Both simple DLT and geometrically valid DLTs cannot take the distortion
component into account. I n this section, an innovative way of incorporating the
distortion into the DLT is discussed. Its advantages and disadvantages are
addressed, as well.

Because of the existence of two distortion models, the 3-D reconstruction and
the projection have to be handled differently.

Two-plane approach using reconstruction-distortion model

This approach is used for 3-D reconstruction.
Rearranging equation 5, we obtain:

X" = RVK ™ +tY, (31
where
U, 0 x/f,
K=l 0 -1/f, vy,l/f, (32)

0 0 1
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Now, by assuming that the camera distortion is subject to the reconstruction-
distortion model, and by taking equation 12 into equation 31, we obtain:

XW = Daim' (33)

where D is amatrix with 3 rows and 36 columns. 0™ is a column vector with
36 elementsin the form (f(im)i (yim)j (i,j=0...7and i+ j<7).

In fact, the dimensions of D and am depend on the distortion (coefficients)
considered. Several examples are shown in Table 2, where the last case is the
same linear situation that was just handled in the previous section.

If enough pairs of x*and corresponding X" (and thus a"“) areavailable, D can
be calculated from equation 33 in the same way as illustrated. Subsequently,
from D, the line of sight of any image pixel in the current camera can be
computed. Furthermore, assume that in another camera, which has transforma-
tionmatrix D', apoint X"™ (and thus ("™ ) can belocated whichisthe projection
of the same world point x* as the point X'™. Then:

X" =D (34)

By combining equations 33 and 34, one can easily reconstruct x* (Faugeras,
1993).

Table 2. The dimensions of the transformation matrix and vector used in
DLT considering distortion.

Considered distortion coefficients  [Dimensionof D [Dimension of '™
ki®, k3®, ks©, P, P, s, s7° [3x36 36x1
KR K, P, P, s, s 301 >1x1
KFe, BF, PFe, s, s 3%10 10x1
None 3x3 3x1
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Distorted projection approach with imaging-distortion model

This approach is used for the projection purpose.

Similarly, assumethat the cameradistortion is subject to theimaging-distortion
model. Substituting equation 5into equation 10 gives:

™ =Dag", (35)

N

where ™ = [)?"“ gm 1]T : D isamatrix with 3rowsand 120 columns. U" is
acolumn vector with 120 elementsin the form ()?W )i (g/W )j (2““)k (i,j,k=0...7
and i+ j+k<7).

If all world points x% = [XW yv ZW]T belong to the same plane, it can be
assumed that without loss of generality all z" equal 0. If at the sametimeonly
distortion coefficients k,™, P'™, P,", ", and s)" are considered, then the
dimension of D decreasesto 3x10 and that of U" to 10x1.

Again, if we have enough pairs of g™ and corresponding x*(and thus 0"), D

can be cal culated from equation 35. From D , the projection of any world point

into the current camera can be computed by means of equation 35 in a linear
fashion.

Perspectivity

For an arbitrary point with coordinates ", = [le le]T inaworld plane IT,,
its coordinatesin the WCS, whose x and y axesarethe same as those of 11, ,

are obviously X, =[x", y" 1] . Following the same procedure as the one
leading to equation 33, it can be derived that:

Y=E 0™, (36)

where X% = [le y" 1]T, E, is a matrix with 3 rows and 36 columns,

A~

[xim yim]T isthe projection of x"; onto theimage plane of the current camera,
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and (™ isacolumnvector with 36 elementsintheform (f("“ )i (9”“ )j (i,j=0...7
andi+j<7).
At the sametime, if apoint with coordinate X; = [XW2 v, ]T in another plane

I1, projectsonto theimage plane of the current cameraal so at [f("“ 9"“]T ,we
similarly obtainthat:

Y=E, UM, (37)

where X} = [XW2 vy, 1:|T , E,isalso amatrix with 3 rows and 36 columns.

Since they have the same projection [f("“ 9"“]T, a special relation called

perspectivity (Hartley & Zisserman, 2000) should exist between X;' and X} .

Thisperspectivity relation between all corresponding pairsin I1, and IT, canbe
described by a 3x3 matrix C as:

Xy =Cx. (38)

Of course C hastofulfill some constraintsfor it to be aperspectivetransforma-
tion (Wei & Ma, 1994). Otherwise, it isjust a plane-to-plane homography.

Combining equation 38 with equations 36 and 37 yields:
E,=CE,. (39)

Therefore, instead of recovering E, and E, separately, E, and C can be
calculated first. Then equation 39 isemployed to recover E,. Thus, itisensured
that the perspective constraint is satisfied.

Discussion

By considering the distortion implicitly, as was done in this section, linear
estimationtechniquescanbeutilized for calibration. However, several problems
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arise: First, for a high degree of distortion, the scale of the model increases
dramatically; Second, it is very difficult to take into account projective con-
straints, asaddressed inaprevioussectionfor DL T, inthecalibration; Third, only
when distortion is not considered, can the original camera parameters be
computedlinearly withthismodel (Wei & Ma, 1994). Therefore, amoreefficient
way of estimating the distortion coefficientsis needed. For thispurpose, Tsai’s
algorithm is a good and representative example.

Tsai’sAIgorithm

Assuming that only theradial distortion occursin the camera and the principal

point [x, yo]T is known (or can be approximated) in advance, Tsai (1987)

proposed atwo-stagealgorithmfor explicitly calibrating thecamera. Inthiscase,
theimaging equations used are exactly the same asthose in equation 12, except
that the possibledistortionislimited asfollows:

Al (&2 st xe® kg
Ay 9'.2 S\/r4 9r6 k3 )

With thisradial distortion, apixel intheimageisonly distorted along theradial
direction, thus a radial alignment constraint (RAC) can be formed (Tsai,
1987) (ref. Equation 12):

i.xc X gim 2
> M[ f [yymy]o (40)

r‘l r‘l r‘l tx

c _ w U w wy _ w T w _ 1 2 3 W

x°=(RY) (x"-ty)=(RY) x"+t=|r; r22 r23 Y1+t | (1)
r?} r3 r3 ZW z
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where r].i (i,j=1...3) isthe element of R at thei"row and j* column, and

t=lt, t, ] =—R")t".

Then, substituting equation 40 into equation 41 yields (assuming t# 0):

w

g% 9y

.
S S S S

_ Y ¢+-1.1 Yy ¢-1.2 Y 4-1.3 Y +-1 -1.1 -1,.2 -1.3 .

=2t 2t 2 2t vy g
S, S

With morethan seven 3-D world pointsat general positions, onecan estimatethe
seven unknowns from an over-determined linear system (by stacking multiple

equation 42). After that, R/, t , and t,can be calculated as:

S
TN ey i (20 0 ) A
T R

[ral r32 rss]T = [rll r12 "13]T X [rzl r22 rzs]T :

Thesign of t,can be determined by requiringthat X and x° (respectively y and
y°) have opposite signs.
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Ontheother hand, if all available pointsare co-planar, that isz" = 0, equation 42
becomes:

g gy § - —gy*|a-x=0, (43)

Inthiscase, R, t,, and t can be recovered from the calculated vector &' only
if the aspect ratio s, / s, is known.
In summary, there are two stagesin this algorithm:

1. Computethe3-D pose RY,t t, and S, /'s, (in case enough non-co-planar

c !y

points are available); and

2. Optimizetheeffectivefocal lengthf, radial distortion coefficientsk , k., ...,
and t,, by employing a simple search scheme.

Becausethe problem hasbeen splitinto thesetwo stages, thewhole computation
becomes much simpler and more efficient.

Further improvements

A requirement of Tsai’ salgorithm isthat the position of the principal point and
the aspect ratio (in case only co-planar pointsare available) are known a priori.
One practical possibility of finding the principal point accurately isto minimize
the left-hand side of equation 42 (in the non-co-planar case) or that of equation
43 (intheco-planar case) (Lenz & Tsai, 1988; Penna, 1991). Thehorizontal scale
factor (and thus the aspect ratio) can be measured by using the difference
between the scanning frequency of the camera sensor plane and the scanning
frequency of the image capture board frame buffer (Lenz & Tsai, 1988).
However, this scale factor estimation method is not so practical due to the
difficulty of measuring the required frequencies (Penna, 1991). A more direct
way would be to employ the image of a sphere for calculating the aspect ratio
(Penna, 1991). The power spectrum of the images of two sets of parallel lines
can also be utilized for the same purpose (Bani-Hashemi, 1991).
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In addition, the RAC model requires that the angle of incidence between the
optical axisof the cameraand the calibration plane should beat least 30° (Tsai,
1987). Thisill-conditioned situation can be avoided by settingcos oo =1 and sin
o = awhen o~0 (Zhuang & Wu, 1996).

The above modifications improved the capabilities of the original Tsai’s algo-
rithm. However, Tsai’'s algorithm can still only take the radial distortion into
consideration. And, the strategy of recovering several subsets of the whole
camera parameter space in separate steps may suffer from stability and
convergence problems due to the tight correlation between camera parameters
(Slama, 1980). It is desirable, therefore, to estimate all parameters simulta-
neously. Methods based on this idea are discussed below.

|terative Two-Phase Strategy

Duringthe 1980s, cameracalibration techniquesweremainly full-scale nonlinear
optimizationincorporating distortion (Slama, 1980) or techniquesthat only take
into account thelinear projectionrelation asdepicted by equation 5 (Abdel-Aziz
& Karara, 1971). The iterative two-phase strategy was proposed at the
beginning of the 1990sto achieve abetter performance by combining the above
two approaches (Weng et al., 1992). With this iterative strategy, a linear
estimation technique such as DLT is applied in phase 1 to approximate the
imaging process by p,, and then in phase 2, starting with the linearly recovered
p, and p,= 0, an optimization processisperformed iteratively until abest fitting
parameter point p_is reached.

Because for most cameras, the linear model (ref. equation 5) is quite adequate,
and the distortion coefficients are very close to 0, it can be argued that this
iterative two-phase strategy would produce better results than pure linear
techniques or pure full-scale nonlinear search methods. Camera calibration
methodsemployingtheiterativetwo-phasestrategy differ mainly inthefollowing
threeaspects: 1) The adopted distortion model and distortion coefficients; 2) The
linear estimation technique; and 3) Theobjectivefunctionto beoptimized. In Sid-
Ahmed & Boraie (1990), for example, the reconstruction-distortion model is

utilized and k¢, k%, k%, P.?¢, and P*are considered. The DLT method
introduced is directly employed in phase 1. Then, in phase 2, assuming that
[x, y,| isalready known, the Marquardt method is used to solve a |east-
squares problem with respect to p = [pT k' k¥ k¥ B° PZRe]T (ref.
equation 21). All camera parameters are made implicit.

To further guarantee the geometric validity of the estimated p , one extraphase
can be introduced between phase 1 and phase 2. In this extra phase, elements
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in p aremodifiedfor fulfilling the orthonormality of therotation matrix R . In
Zhang (2000), the imaging-distortion model is used and k'™ and k™ are
considered. In phase 1, a planar object strategy is employed. Then, in phase 2,
the Levenberg-Marquardt method is used to minimize the following objective
function over all camera parameters p

f(po)= X &7 =X = £, -0 f + (g -y =1, a0 f (44

where the summation is done over all available data and all variables were
defined in equation 10. Instead of the linear estimation method in phase 1, a
nonlinear optimization can also becarried out to get abetter initial guessof p, with
all distortion coefficients set to zero.

Optimizationissue

At phase2, eachiteration of the optimization can also besplit upintothefollowing
two steps (Weng et al., 1992):

Step a: The function f(p_) in equation 44 is minimized w.r.t. al distortion
coefficientsinp by asimplelinear | east-squares method, whilep, (contain-
ing all linear intrinsic and extrinsic parameters) isfixed.

Step b: Thefunctionf(p ) isminimized by aniterativeoptimizationmethodw.r.t.
p, while p,remains unchanged.

However, due to the tight interaction between the linear parameters and the
distortion coefficients, thistwo-step optimization convergesvery slowly.

In Chatterjee, Roychowdhury & Chong (1997), the nonlinear optimization part
(phase 2) is further divided into three stages by following the Gauss-Seidel
approach. The first stage is similar to the optimization phase in Sid-Ahmed &
Boraie (1990), except that the optical center [xo yo]T , the aspect ratio S, /s,
and all distortion coefficientsarefixed. The second stageisthe sameas Step“ &’
inWeng et al. (1992). Finally, in the third stage, the function f(p ) in equation
44 isminimized only w.r.t. the optical center [x0 yo]T and the aspect ratio sy/ S,
while all other camera parameters are fixed. Convergence analysisfor this new
parameter space partition method has been given in Chatterjee et al. (1997).
However, no convergence speed was provided.
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Preferably, all camera parameters (including extrinsic and intrinsic parameters,
and distortion coefficients) should be optimized simultaneously. Todo so, usually
acertain iterative technique called bundle adjustment is adopted (Triggs et al.,
1999). Among them, the Levenberg-Marquardt method is probably the most
extensively employed, dueto its robustness.

Conclusions

Asitcombinesthelinear initialization and the nonlinear full-scal e optimization,
the iterative two-phase strategy can provide very accurate calibration results
with reasonable speed. It is now employed extensively. There exist many
variations of it aiming at different compromises between accuracy and effi-
ciency asdescribed above. However, for acompl ete passive calibration system,
the design of the calibration object also plays a quite important role. The next
section will introduce asimple but effective calibration object.

Planar Pattern Based Calibration

Various 2-D planar patterns have been used as calibration targets. Compared
with 3-D calibration objects, 2-D planar patterns can be more accurately
manufactured and fit easier into the view volume of a camera. With known
absoluteor relative poses, planar patterns are a special type of 3-D calibration
object. In this case, traditional non-co-planar calibration techniques can be
applieddirectly or withvery littlemodification (Tsai, 1987). Moreoften, asingle
planar pattern is put at several unknown poses to calibrate a camera (Zhang,
2000). Each pose of the planar pattern is called a frame. It has been demon-
strated that thisis already adequate for calibrating acamera. Theiterative two-
phase strategy discussed can still be applied here. For planar patterns, only phase
lisdifferent and it is discussed below.

Recovering of linear geometry

Assumealinear cameramodel. For an arbitrary point x° = [XO y° o]T inthe
calibration planewith orientation R, and position t; , weobtainfromequation5
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where R :(R(V:V)T RY=[r, r, rJ(r; (j=1...3) is the j" column of the
matrix R ) and

Thus:
xim = ﬁ . [XO y° ]_] where ﬁ = R '["1 r, t] (46)

By applying the simple DLT method introduced, with at least four pairs of
corresponding [x"“ y‘m]T and [XO yO]T, H can be determined up to a non-
zero factor as H , which means Hz=H.

Astheinverse K * of K exists (ref. equation 32), equation 46 can be rewritten
as.

[, r, t]=K*H=K™.H. (47)
Thus:
r,=pK*-h andr,=pK™h,,

where p is a non-zero factor and hj (j = 1...3) isthe " column of matrix H.
Because (r,)r, = (r,)'r,= 1, it turns out that:

(hl)T'(K_le_l)'hlz(hz)T'(K_TK_l)'hzi (48)

(h,)"-(K"K*)h,=0, (49)
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where K TK * is called the Image of Absolute Conic (IAC), which has been
applied successfully in self-calibration (Hartley & Zisserman, 2000). Once the

IAC of acameraislocated, the geometry of this camera has been determined.

Equations48 and 49 thusprovidetwo constraintsfor theintrinsic matrix K L with
one frame. Since K ™ has four DOFs (ref. equation 32), if two frames (which
meanstwo different H) areavailable, K (and all four intrinsic parameters) can
then be recovered.

Once K ' is determined, [ and t can be calculated directly from equation
47 under theconstraint (r )'r, =(r,)"r ,= 1. 1t followsthat r ,can then be computed
asr =r xr,.Hereitisobviousthat,if r andr, aresolutionsof equation47,r '=-r and
r,=-r, also satisfy equation 47. Again, the correct solutions can be verified by
means of the oriented projective geometry.

In the single-camera case, without loss of generality, it can be assumed that
RY=1andt)=0.Then R} =R and t =t .However, inamultiple-camera
configuration, which is discussed in the next section, things are not so simple.

Conclusions

Using the planar pattern asthe calibration object may ease the calibration-data-
acquisitionwork quitealot. The corresponding calibration method issimpleand
efficient. However, theal gorithm described above only holdsfor asingle-camera
case. If multiple cameras need to be calibrated in one system, the calibration
algorithm should be modified for obtai ning higher accuracy (Slama, 1980). This
issue is discussed next.

Multiple Camera Configuration Recovering

Suppose that there are n cameras (n > 1) and m frames (m > 1) for which the
relative poses among all cameras are to be recovered.

In the general situation, let us assume that each frame can be viewed by every
camera. The whole camera and frame set in this configuration is called
complete. By applying thelinear geometry estimation techniques discussed, the
relative pose between camerai and frame j can be computed as:

Orientation: R, = RY) -RY

o’
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o T
Position: t, = (R ) - (t% —t%),

w

wherei=1...nandj=1...m, R istheorientation of camerai and t; , itsposition,

w

and R} isthe orientation of framej and t, , itsposition.

oj

Writing all orientation matricesinto onelarge matrix yields:

Rll le (szl)-r
= Ry - RZ]
Rnl an (Rg])T Mo
M M,

Let M = UWVTbe the singular value decomposition (SVD) (Press, Teukolsky,
Vetterling & Flannery, 1992) of M. Let U' be the matrix consisting of the three

columns of U that correspond to the three largest singular values in W. Then
(Rg)T are estimated as the orthonormal matrices that are closest to the

corresponding submatricesin U' (Horn, Hilden & Negahdaripour, 1988). Ry
can be computed in the same way from V.

After getting all (R i )T , Stacking all position vectorsontop of each other results
in:

1 OrTnfz 0 —tW ] R\évltll
: S ol :
. . . an . .
10, 0 £ Rt
: | tom | :
. : w :
00, 1 t(_;l R"t,
: : e N : : ’
T tw w
0 0,, 1 | Lon | Ratom
| . J = L : B
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where A isamatrix with dimension (m- n) x (m+ n), x and b are vectors with
dimensions (m+ n) and (m- n), respectively. 0! , isarow vector withall (m-2)
elements being 0, and | isaunit matrix with n rows and n columns.
The above equation is over-determined, and can be solved as follows:

x=(ATA)'(ATb).

where the sparsity of the matrix ATA can be explored to improve the efficiency
of the computation.

However, the camera and frame set is not always complete, which means that
some frames are not visible in certain cameras. For this situation there are two
solutions: 1) The whole set can be decomposed into several subsets that are
complete by themselves. Then, for each subset the above calculations can be
done independently and subsequently combined into one WCS; and 2) The
problem is treated as a missing data system, which can be solved by the
interpolation method proposed in Sturm (2000).

Special Camera Calibration Techniques

In addition to the aforementioned approaches for passive camera calibration,
some other special techniques, such as those utilizing projective geometry
invariants and special calibration objects, have also been developed. For
instance, in Liebowitz & Zisserman (1998), instead of using calibration control
pointswith known metric, other types of constraints, such asaknown angle, two
equal-but-unknown angles, and a known length ratio are utilized. The most
important ones are summarized in the following sections.

Vanishing points

By exploring the geometry property of vanishing points, the camera geometry
can beobtainedtoacertain degree. A vanishing pointisthecommonintersection
of all image lines whose 3-D-space correspondences are parallel to each other
in the same direction before perspective projection. It can be located reliably in
an image.

Vanishing pointshave several interesting properties (Caprile& Torre, 1990): 1)
All vanishing points associated with the sets of linesthat are parallel to agiven
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planelieonthesamelineintheimage; thislineiscalled thevanishingline (Wang
& Tsai, 1991); 2) Giventhevanishing pointsof three setsof mutually orthogonal
lines, the orthocenter of the triangle with the three vanishing points as vertices
istheprincipal point; 3) Giventhevanishingpoints [x, y,[ and [x, y,]| of
two setsof orthogonal lines, it can beshownthat: x,x, + v, Y, + f ? = 0 (Guillou,
Meneveaux, Maisel & Bouatouch, 2000); 4) If the cameramoves, the motion of
the vani shing pointsin theimage plane depends only on the camerarotation, not
on the camera translation. The vanishing points of three non-co-planar sets of
parallel lines fully determine the rotation matrix (Guillou et al., 2000); and 5)

Given the vanishing points [x, vy, [, [x, y,]'» [x V] of three sets of

mutually orthogonal lines, from equation 5 it can be verified immediately that
(Cipolla, Drummond, & Robertson, 1999):

1 0O
L% AX,  AgXg
~10 1 O ~ AT
)’lyl lzyz lsys =P ZK(Rc)
0 0 1 ,
Ao A
0 0O

where A,, A,, and 4, are unknown scaling factors.

Special shape calibration objects

Under linear perspective projection, the image of a circle is a sphere, whose
maj or axisison alinepassing through the principal point. Theeccentricity of the
ellipseisafunction of thefocal length f, the distance of the center of the ellipse
fromthe principal point, and thelength of themajor axis. The principal point can
thusbelocated by intersecting major axes of several spheresintheimage space.
The focal length is then calculated from the eccentricity. Subsequently, other
intrinsic and extrinsic parameters can be recovered. Most recently, concentric
circleswere employed to get the correct projected circle center (Kim & Kweon,
2001).

Taking the cameradistortioninto consideration, the sphereiscurved. Assuming
only k; not being zero, the curved sphereisafourth order polynomial, fromwhich
the aspect ratio sy/ s, can be computed directly. Besides circles, parallelepipeds
have also been used (Wilczkowiak, Boyer & Sturm, 2001).
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Other techniques

Inadditiontotraditional optimization methods, some other techniques, including
the Bayesian probability framework, genetic algorithms, and artificial neural
nets, have also been considered inthe cameracalibration system (Redert, 2000).
In the area of structure from motion, n (n > 1) cameras are calibrated one after
another based on an extension of the Kalman filter (Jebara, Azarbayejani &
Pentland, 1999).

Other Calibration-Related Investigations

Besides algorithms for calibrating cameras, other related aspects have been
investigated to refine the performance of the camera calibration system. For
example, several suggestions on the design of the calibration object and the data
acquisition for increasing the calibration performance were given in Tu &
Dubuisson (1992).

Feature extraction issue

For passive camera calibration, the calibration object should be carefully
designed to ease the extraction of feature points. Several types of calibration
object patterns have been used, e.g., acircular pattern in Heikkila (2000) and a
checkerboard pattern in Bouguet (2002). Here sub-pixel feature extraction
(Devernay, 1995) is always necessary.

In most cases, features are extracted before the camera parameters are
calculated. If feature coordinates are not accurately located, the camera
calibration results will not be accurate, either. Unfortunately, when there are
distortions in the imaging process, feature extraction will always suffer from
systematic errors (Heikkil&, 2000). To circumvent this problem, the calibration
can be carried out directly, based on the intermediate characterization of image
features, such as maxima of the intensity gradient or zero crossings of the
Laplacian. The sameideawas also applied to distortion estimation in Ahmed &
Farag (2001). Alternatively, the whole process, including the feature extraction
andthe cameracalibration, can becarried out iteratively toyield better accuracy.
Within each iteration, the feature extraction is performed after the distortion
correctionwiththedistortion coefficientsobtained fromthecalibration (Devernay
& Faugeras, 2000).
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Performance analysis and evaluation

In Kumar & Hanson (1989), a mathematical analysis and experiments were
carried out to develop a closed-form function to express the uncertainty of the
calibration process. It was shown theoretically and experimentally in Lai (1993)
that the of f set of theimage center does not significantly affect the determination
of the position and orientation of a coordinate frame. An experimental perfor-
mance analysis of atraditional calibration algorithm was conducted in Scott &
Mohan (1995), where the result is evaluated with a geometric interpretation.
Recently, theinfluence of noisy measurementson the cameracalibration matrix

P and on all linear camera calibration parameters in p, has been analyzed
theoretically and verified using Monte Carlo simulations (Kopparapu & Corke,
2001).

Accuracy evaluation is a crucial part in the development of new camera
calibration algorithms. The 3-D reconstruction error and the image-plane
projection error are probably the most popular evaluation criteria employed.
However, due to the differences in image digitization and vision set-up, some
normalization should be performed on the criteriato get comparable results for
different calibration systems (Hartley & Zisserman, 2000).

Self-Calibration

Self-calibration isthe process of determining camera parameters directly from
uncalibrated video sequences containing a sufficient number of frames. These
video sequences are generated from a single camera wandering in a still 3-D
scene, or from multiple cameras at different posesimaging a still 3-D scene, or
asinglecameraobserving amoving object. All of these situationsare equival ent
to the case of “multiple cameras at different poses imaging a still 3-D scene.”

If an arbitrary projective transformation is applied on all input data sets, the
relative relations among them will not be altered. Thus, with sufficient point
correspondence relations among available views, the camera parameters can
only be determined up to a projective ambiguity (Hartley & Zisserman, 2000).
However, in order to obtain the camerageometry, only aEuclidean ambiguity is
allowed. Thisiswhy inthe self-calibration process certain constraint or a priori
information has to be assumed to upgrade the projective reconstruction to a
Euclidean one (Faugeras, 1994). Generally speaking, the following three types
of constraints or information can be employed:
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Approximating the camera geometry by some simpler model, such as
orthographic model (Lee& Huang, 1990), affinemodel (Tomasi & Kanade,
1991), or paraperspectivemodel (Weinshall, 1993). A unification possibility
was discussed in Quan & Triggs (2000);

A priori information about the possible scene type (Xu, Terai & Shum,

2000) or certain properties of the relative poses of available 3-D scene
points (Boufama, Mohr & Veillon, 1993); or

Constraints on the variation of the camera parameters. The constraints
employed can be represented by:

Restrictedrelative posesof all cameras, such aspuretranslation, pure
rotation, or planar motion (Moons, Gool, Proesmans & Pauwels,
1996).

Intrinsic parametersthat have been reveal ed by passive calibrationin
advance (Spet-sakis & Aloimonos, 1990) or by the first three views
on-line(Horn, 1991).

Theassumptionthat all (or most) camerashavethe same but unknown
intrinsic parameters (Triggs, 1998). In this case, Euclidean recon-
struction isachievable.

Varyingintrinsic cameraparameterssubject to certainrestrictions. In
Heyden & AstroM (1999), some of the intrinsic parameters are
allowed to vary while othersarefixed. Pollefeyset al. (1999) suggest
that one can neglect the skew parameter if one wants to vary all
intrinsic parameters.

Various combinations of the above-mentioned a priori information or con-
straintshave al so been investigated for self-calibration. For self-calibration, the
maost frequently empl oyed equation and concept arethe Kruppaequation andthe
absolute conic, respectively (Hartley & Zisserman, 2000).

Face M odel Reconstruction and
Telepresence Applications

In this section, two applications that utilize the camera calibration results are
presented and analyzed. First, we will discuss 3-D face model reconstruction
and, second, avirtual telepresence application. For each application, the neces-
sary techniquesinvolved areintroduced and typical outcomes are presented. In
these two applications, general-purpose techniques are employed. However,
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they can be used directly for other applications, aswell, such as body, face, and
gesture modeling and animation.

3-D Face Model Reconstruction

This application attempts to compute the facial action parameters (FAPS)
automatically from a pair of stereo sequences of the human face. For this
purpose, the face is marked with blue dots (see Figure 2).

Manipul ation process

Thewhole processincludesfive stages and can be briefly described asfollows:

1)

2)

Calibration: The employed convergent stereo set-up can be calibrated
using any method discussed in the last section. However, since the
calibration results are only used for 3-D reconstruction, an implicit
calibration together with the use of the reconstruction-distortion model
wouldbesufficient. Thedistortion coefficientsare cal culated by the plumb-
line method (Van Den Eelaart & Hendriks, 1999). After the distortion is
removed, the linear DLT method is employed to recover all DLT param-

eters encoded in P.
Recording: Without changing the pose or any internal parameters of the

two cameras, a person with some special (shape, color, and position)
markersonthefacesitsinfront of the cameras, inthecommon view volume

Figure 2. One example face image. Left: The original image. Middle: The
image after a hard thresholding. Right: Markers to be tracked through the

sequence.
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of both cameras. The person produces various kinds of expressions, such
as opening of the mouth or squinting of the eyes. Two stereo sequencesare
then recorded.

3) Marker detection and tracking: Each sequence is processed by some
marker detection algorithm (ref. Figure 2) and the markers (currently 19
per frame) are tracked throughout the sequence. Thus, two sequences of
19 moving points are generated.

4) 3-Dreconstruction: At thisstage, apair of stereo sequencesof 19 moving
points are available. As all parameters of the two utilized cameras are
known, asequenceof 3-D coordinates of the 19 points can bereconstructed
that reflect the motion of the 19 pointsin 3-D space.

5) 3-D face model analysis. From the reconstructed 3-D sequence, FAPs
can be calculated to analyze their correspondence relation with the human
facial expression.

3-D reconstruction

With the reconstruction-distortion model, the 2-D coordinates of all tracked
points can be easily converted to the undistorted coordinates by equation 12
immediately after step 3. On the other hand, if the imaging-distortion model is
employed in the calibration software, a distortion correction (Lei & Hendriks,
2002) by simple backward mapping can be applied to all obtained images
immediately after step 2. So 2-D distortion-free coordinates of all facial control
points are available at step 4. Between them and their corresponding 3-D
coordinates exists alinear relation that can be expressed by equation 17.

In terms of matrix notation, equations 19 and 20 can be rewritten as:

[p px ”“} [ pr+ pIX™ - py+ pax™ - pi+pix™ |,

m m m m y
pZ - ply Pl +py™ —pi+pay™ - pi+pyy - (50)

Itiseasy to seefrom equation 50 that no unique sol ution for x*can be determined
with one known x'™ and the cal cul ated pij (i=1.3;j=1...4). That iswhy two
x™that correspond to the same x" are needed to recover it uniquely. Suppose
these two xmare denoted as x!™ and x|™ respectively, then:
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prl4 - pr34xim - prll + prslxim - prlz + prszxim - prla + prasxim w
2 3 ,,im 2 3 ,,im 2 3 ,,im 2 3 ,,im X
pr4 - pr4y_ — - prl + prly_ - pr2 + przy_ - pr3 + pr3y_ yw
Pla— p|34xil_m - pi+ p|31X|I_m ~Pip + p|32X|I_m ~Pis + p|33X|I_m 2" |. (51)
‘ A I PR+ Py — PR+ PRYT —Pat Py [~
b B

From equation 51, X" can be easily calculated using least squares as:

x"=([B"B)"(B"h)- (52)

Figure 3. The projection and 3-D reconstruction process of the 3-D face
model. From two cameras C, and C_, we get a pair of stereo images
through projection. 3-D reconstruction is then applied on each pair of
corresponding points xirm and x" to obtain their original 3-D
correspondence x“. The reconstructed 3-D model can then be projected
into an arbitrary virtual camera C, to form a virtual view. This is just the
traditional view transformation process. Alternatively, the 3-D model
reconstruction step could be neglected and the virtual view synthesized
directed from the two stereo views. This image-based-rendering idea will be
explored in the next section.
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This technique is known as the pseudo-inverse solution to the linear least-
squares problem. Of course, it should be noted that this technique reduces the
precision of the estimated coefficients with a factor of two because of the
squared condition data. Thisflaw can be avoided by employing so-called Least
Squares with Orthogonal Polynomials or Weighted Least Squares.

Infact, therequirement that two pixelsthat correspond to the same 3-D point are
needed to reconstruct the 3-D coordinate of that point is consistent with our
intuitive observation ontheimaging processdiscussedinthefirst section, astwo
lines are needed to uniquely determine a 3-D point.

Theaboveprocessisappliedto each pair of corresponding pointsin every frame.
Thus, a sequence of 3-D coordinates can finally be obtained.

The projection and 3-D reconstruction process on the 3-D face model we used
isdescribedintuitively in Figure 3.

3-D face model examples

Since all tracked points are important facial control points, the reconstructed
sequence of 3-D coordinates of those points reflects more or lessfacial actions.
Thus, this sequence can be used as a coarse 3-D face model. If more control
points are selected, afiner 3-D model can be obtained.

Based on the reconstructed model, FAPs can be calculated. To show the
accuracy of the face model qualitatively, a VRML file is generated automati-
cally. Figure 4 shows three example frames of such aVRML file.

Figure 4. Three example frames of the reconstructed 3-D face model. Blue
points are control points that were reconstructed.
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Telepresence

Camera information is also needed in a telepresence application. An IBR
toolbox, whichexplicitly employscameracalibrationresults, hasbeen devel oped
for producing arbitrary virtual views of the human body, face, and hands, of
which detailed 3-D models are difficult to acquire. In this section, a brief
introductionisgiventothis|BRtoolbox. Detail ed discussionscanbefoundinLei
& Hendriks (2002).

Set-up and processing framework

Figure5 showstheinfrastructure of athree-party telepresence system, inwhich
participantsaregiven a3-D perceptionviaa2-D display that providesthemotion
parallax cue. For example, when participant Amoveshishead, he should beable
to perceive different views of participant B and his (virtual) environment. The
virtual environment can be easily built by current available 3-D graphics
techniques. Since the 3-D modeling of a realistic human body and face is still
quitedifficult, if notimpossible, thearbitrary virtual viewsof theparticipantsare
synthesized efficiently in the 2-D image space, ignoring the intermediate 3-D
model (Lei & Hendriks, 2002). For instance, thevirtual view of participant C can

Figure 5. lllustration of a three-party telepresence video-conferencing
system.
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be reconstructed directly from the two views from cameras 1 and 2 of site 2
(remotesite) at thelocal site according to the current viewpoint of participant A.
This process will be specifically discussed below. Due to the symmetry in the
system, the reconstruction for the other participantsis similar.

Every 40ms, thefixed stereo set-up at theremote site acquirestwo images. After
segmentation, the pair of stereo views, containing only the remote participant
without background, isbroadcast to thelocal site. Locally, thetwo views, based
on the information about the stereo set-up, the local display, and the pose
(position and orientation) of thelocal participant, are used to reconstruct anovel
view (“telepresence”) of the remote participant that is adapted to the current
local viewpoint. The reconstructed novel view is then combined with a man-
madeuniformvirtual environment to givethelocal participant theimpressionthat
he/sheisinalocal conferencewiththeremote participant. Thewhole processing
chainisshownin Figure6.

Obviously, all parameters of each of the three four-camera set-ups should be
computed beforehand. Thecalibrationisdoneby combiningthelinear estimation
technique and the L evenberg-Marquardt nonlinear optimization method.

With explicitly recovered camera parameters, the view can be transformed in a
very flexible and intuitive way, discussed briefly in the next section.

Figure 6. The processing chain for adapting the synthesized view of one
participant in line with the viewpoint change of another participant. Based
on a pair of stereo sequences, the “virtually” perceived view should be
reconstructed and integrated seamlessly with the man-made uniform
environment in real time.
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View transformation

The objection of the view transformation isto reconstruct avirtual view V for
avirtual camera C_ from a pair of stereo viewsV, and V,,, which are generated
from two cameras, C_and C_, respectively.

As astarting point for the following discussion, without loss of generality, the
WCS can be selected such that:

tcL:[l 0 O]T' tcR:[_l 0 O]T’ th :[XCD Yo ZcD]T'

wheret ,t_,andt_ arethepositionvectorsof C ,C_,and C_, respectively. This
means that the x-axis of the WCSliesonthebaselineb of C_and C_, and points
from C_to C . Theorigin of the WCSisat the middle point on b, that is, the unit
of distanceisb/ 2.

In the general case, the view transformation process can be divided into five
steps (see Figure 7):

1) Rectification: Transforming the stereoviewsV, and Vintoapair of new
viewsV __. andV__., respectively. The two virtual cameras C__ and

C which generate these two new views, are parallel to each other and

rectiR’

Figure 7. The view transformation framework. Multiple separate steps
together eliminate three major differences between the final novel view V,
and the two original views V_and V.. 1) Photometric differences, such as
focal length, aspect ratio, etc.; 2) Position in 3-D space (X, y, 2); 3)
Orientation.
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share the same image plane. This processis known as stereo rectification
(Hartley, 1999) andisintended to eliminate the photometric and orientation
differences between the two source cameras to simplify the correspon-
dence estimation into a 1-D search problem along the scan line and at the

sametimeto provide parallel processing possibilitiesfor later steps.

2) X-interpolation: Given the disparity information, the two parallel views
V. . andV__. arecombined by interpolation or extrapolation (Seitz &
Dyer, 1995) to produce another parallel view V.. The corresponding
camera C, islocated at [x;, O O] with the same rotation and intrinsic

parametersas C ., and C ... They coordinate of each pixel remains the
same, while the x coordinate is transformed by

L 1-X
XX — XrectlL + cD d:;R

p p 2
and/or (in case of occlusion)

r  1+X
X ectiR RL
wherex isthex coordinate of pixel p° inview V, (* =X, rectiL, rectiR).
p<it and p'<'® are projections of the same 3-D point. d fand d} are
disparities of p'=i“and p'<® respectively, where d;* = x7*% — x™=*" and

dit = x5 —x® . Note that in the case of occlusion, either pi* or

pretiR js not available (Lei & Hendriks, 2002). Through this step, the
differencein x positionwiththefinal view Viseliminated.

3) Y-extrapolation: TheX-interpolatedview V, isextrapolated (Scharstein,
1999) by shifting pixelsin they direction to produce the view V,, which
comes from a virtual camera C, located at [x, Yy, 0] with the same

rotation and intrinsic parameters as C.. In this process, the x coordinate of

each pixel remains the same while the y coordinate is transformed by
X

Y,Y) = y;f ~ Yo 'S_z'dp , Where y; isthey coordinate of pixel p" inview V,

(*=X,Y).d} is the disparity of p*, where d} =d;"/2 or (in case of
occlusion) d ¥ =—d " /2. Throughthisstep, thedifferenceiny positionwith
thefinal view V iseliminated.

4) Z-transfer: TheY-extrapolatedview V, istransferred along thezdirection
to generate a closer or more distant ook V,. The corresponding cameraC,

islocated at [x, Y, 2z, | withthe same rotation and intrinsic param-
eters as C,. Both the x and y coordinates of each pixel would be transformed
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Figure 8. An illustration of the possible camera configurations involved in
the multi-step view synthesis process. The direction of each arrow indicates
the orientation of the represented camera.
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inasimilar manner asthe X-interpolation and Y -extrapolation. However, the
dimension of theview wouldbemaintained asthesame(L el & Hendriks, 2002).
The z-position differenceto thefinal view V iseliminated. It should be noted
that, for different application situations, thisZ-transfer step could besimplified
or modified in different ways for better computational performance (Lei &
Hendriks, 2002).

5) De-rectification: The Z-transferred view V, is rotated and scaled to get
the final view V.

InFigure8, anillustrationisgiven of the possiblecameraconfigurationsinvol ved
in the multi-step view synthesis process.

Results

A view transformation exampleis shown in Figure 9. Note that the Z-transfer
step is combined together with the de-rectification step. It can be seen that the
reconstructed novel view is comparable with the real view perceived at the
virtual viewpoint. Theoverall visual quality isgood.
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Figure 9. All intermediate and final results from the view reconstruction are
listed in this figure together with the disparity data.

(c) Rectified left view (d) Rectified right view (e) Left disparity map (f) Right disparity map
VrectiL VrecliR

(g) X-interpolated view  (h) Y-extrapolated view (i) Reconstructed view (j)rReaI destination view
Vy \' \&

Summary and Conclusions

Camera calibration is fundamental to many vision systems. In this chapter, we
attempt to give the “ big picture,” which may possibly accel erate the application
of cameracalibration. Based onthe pinholeprinciple, theimaging processof the
cameraismodeledinthefirst section. All cameraparametersareintroduced and
their physical meaningisexplained. For camera-based vision applications, all of
these parametersshould berevealed implicitly or explicitly off-linein advance of
the application or on-line dynamically. Camera calibration techniques for this
purposeareclassified from several different pointsof view inthesecond section.
Due to the importance of the non-linear distortion, this issue is specifically
investigated in the third section. After this, passive camera calibration tech-
niquesarediscussed and grouped into several categoriesof increasing complex-
ity in the fourth section. Each of them has specific target applications and can
providehighly accurate calibrationresults. Sometimes, however, accuracy isnot
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asimportant asthe flexibility of freely changing the camera configurations. In
such cases, self-calibration is needed. A brief survey is, therefore, devoted to
self-calibration techniques in the fifth section for completeness. To show how
calibration results can be used in specific applications, two such practical and
representative applications have also been presented in the sixth section.

As shown in the fourth section, passive camera calibration has been studied
extensively during the past 40 years. Recently, duetotheinterest inimage-based
modeling (IBM) and IBR, research on self-calibration hasintensified. Generally
speaking, passive calibration and self-calibration were developed for different
goals and circumstances. When the influence of the non-linear distortion
component of the cameracannot be neglected or when highly accurate measure-
ments are to be made based on the recovered camera geometry, passive
calibration with deliberate modeling of the distortion is necessary. With afixed
camera set-up, as all parameters are recovered beforehand by passive calibra-
tion, areal-timevision system can bebuilt (Lei & Hendriks, 2002). Onthe other
hand, if the camera configuration is not fixed and the change is unpredictable,
self-calibration is needed to get the values of all parameters whenever needed.
However, due to the difficulty of robust feature extraction and correspondence
estimation, self-calibrationiscarried out off-lineand, thus, real-time processing
cannot be guaranteed.

Within the passive camera calibration approach, different techniques can be
applied for different applications. It may or may not be necessary to model
distortion. If the accuracy offered by the linear model is acceptable to the
problem at hand, distortion does not need to be considered for higher efficiency;
otherwise, it has to be estimated and corrected. The complexity of modeling
distortionalso differsfromapplicationto application. Thismainly dependsonthe
required accuracy. In some cases, distortion can be estimated in advance of the
calibration of other cameraparameters, but, in others, it isnecessary to estimate
all camera parameters and distortion coefficients simultaneously to get highly
accurate results. The former is more efficient and versatile while less accurate
than thelatter. Thevalues of all cameraparameters could be revealed explicitly
or only certain intermediate expressions need be cal cul ated. It depends on what
the subsequent processing requires. From the above discussion, it is easy to see
that which calibration techniqueisadopted for aspecific application completely
dependson therequirementsof accuracy, the vision set-up, and the computation
resources. Therefore, of course, compromises can be made between available
calibration techniques and the application requirements. Two example vision
applications requiring different calibration forms were already introduced in
section 6. Because a high level of accuracy isrequired in both cases, distortion
ismodeledin both of them. However, becausewewant tolater on utilize dynamic
stereo set-up in the face model reconstruction application, which would be
calibrated by self-calibration, we estimate the distortion in advance of the
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calibration of other camera parameters. On the other hand, because in the
telepresence application the subsequent view reconstruction processing needs
the value of each individual camera parameter, all parameters have to be
calibratedexplicitly.

Despite its wide range of applicability and extensive research, camera calibra-
tion is a subject for which there still remains some interesting and important
issues to be investigated, some of which are:

Optimal calibration pattern: For passive camera calibration, a calibration
target containing some control pointswith known geometry isneeded. For
highly accurate calibration, the projections of these control pointsin the
image should be very efficiently and accurately located. Therefore, the
pattern of the control points should be carefully designed. In the past,
several kindsof patterns(e.g., circular dotsand intersectionsof lines) have
been adopted. However, itisstill not clear which existing patternisthe best.

Clear understanding of camera parameter mutual relation: Very little
attention has been paid to the analysis of the mutual dependencies among
all cameraparameters. Duetothe existing coupling, all cameraparameters
should not be treated independently when one describes a 3-D scene. If
their mutual dependency and relative importanceisclear, the moreimpor-
tant parameters can be treated “differently” during calibration. On the
other hand, the analysis of the uncertainty of each camera parameter could
also lead to better calibration algorithms.

Multiple camera configuration: The multiple camera configuration becomes
more and more popular in vision-based applications (Pedersini, Sarti, &
Tubaro, 1999), such astelepresence (Xu et al., 2002) and 3-D visual servo
systems (Stavnitzky & Capson, 2000). However, the passive calibration
problem of a multi-camera set-up hasrarely been addressed. Self-calibra-
tion, on the other hand, always concentrates on multi-camera (or equiva-
lent) configurations. Therefore, passive calibration may borrow certain
techniques from self-calibration, especially for recovering the multi-cam-
eraset-up. Similarly, self-calibration can benefit from passive calibration
on topics such as, the handling of nonlinear distortions.
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Abstract

This chapter focuses on real-time processing techniques for the
reconstruction of visual information from multiple views and its analysis for
human detection and gesture and activity recognition. It presents a review
of the main components of three-dimensional visual processing techniques
and visual analysis of multiple cameras, i.e., projection of three-dimensional
models onto two-dimensional images and three-dimensional visual
reconstruction from multiple images. It discusses real-time aspects of these
techniques and shows how these aspects affect the software and hardware
architectures. Furthermore, the authors present their multiple-camera
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system to investigate the relationship between the activity recognition
algorithms and the architectures required to perform these tasks in real
time. The chapter describes the proposed activity recognition method that
consists of a distributed algorithm and a data fusion scheme for two and
three-dimensional visual analysis, respectively. The authors analyze the
available data independencies for this algorithm and discuss the potential
architectures to exploit the parallelism resulting from these independencies.

| ntroduction

Three-dimensional motion estimation has a wide range of applications, from
video surveillance to virtual animation. Therefore, reconstruction of visual
information from multiple cameras and its analysis has been aresearch areafor
many years in computer vision and computer graphics communities. Recent
advances in camera and storage systems are main factors driving the increased
popularity of multi-camerasystems. Pricescontinueto drop on components, e.g.,
CMOS cameras, while manufacturers have added more features. Furthermore,
the evolution of digital video, especially in digital video storage and retrieval
systems, is another leading factor.

Inthischapter, we focus on real-time processing of multipleviewsfor practical
applications, such assmart roomsand video surveillance systems. Theincreased
importance of applicationsrequiringfast, cheap, small and highly accurate smart
cameras necessitates research efforts to provide efficient solutions to the
problem of real-time detection of personsand classification of their activities. A
great effort has been devoted to three-dimensional human modeling and motion
estimation by using multi-camerasystemsin order to overcomethe problemsdue
totheocclusion and motion ambiguitiesrelated to projectionintotheimageplane.
However, introduced computational complexity isthe main obstacle for many
practical applications.

This chapter investigates the relationship between the activity recognition
algorithmsand the architecturesrequired to perform thesetasksin real time. We
focus on the concepts of three-dimensional human detection and activity
recognition for real-time video processing. As an example, we present our real -
time human detection and activity recognition algorithm and our multi-camera,
test bed architecture. Weextend our previous 2D method for 3D applicationsand
propose a new algorithm for generating a global 3D human model and activity
classification.
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Some application areas of the real-time system are:

. Surveillance
. Provide security in acampus, shopping mall, office complex, casino, etc.

. Detect people’ s movements, gestures and postures from a security check-
point in an airport, parking garage, or other facility

o Traffic

. Monitor pedestrian activity inan uncontrolled and/or controlled crosswalk
e  Smart Environments

. Entertainment

Different applicationsrequire different level s of modeling-related performance
parameters, e.g., accuracy, speed and robustness, hence, different 3D tech-
niques. First, we revise the main components of 3D techniques and give a brief
overview of previouswork on basic 3D algorithm steps, such as disparity map
generation, reconstruction and rendering. Then, we review the state of the art
of human detection/activity recognition methods while placing emphasis on
multi-camera systems. Specifically, general stereo vision issues and 2D/3D
human activity recognition issues are reviewed with respect to their real-time
applicability. In Section“Real Time3D Analysis,” we present our multi-camera
system developed for practical applications, such as video surveillance and
human-computer interaction. A novel 3D method is proposed to increase
accuracy by keeping the complexity level low enough to run real-time applica-
tions. The section “ Architecturesfor 3D Video Processing” further investigates
the architectures required to perform these tasksin real-time. We conclude the
chapter with a brief presentation of the major contributions of practical 3D
methods as proposed in this chapter and discuss future directions.

3D Human Detection and Activity
Recognition Techniques

Three-dimensional representation of the human body enables us to recover the
general location and orientation of the human body parts, as well as three-
dimensional activity of thebody. The determination of three-dimensional infor-
mation from two-dimensional digital imagesisafundamental task. Traditional
monocular and stereo vision methods have been widely used in computing 3D
structurefor avariety of applications, from robot navigationto visual inspection.
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Basic Algorithm Steps

3D scenesynthesisand analysis, by using visiblelight and multiple cameras, has
been studied by many researchers. Before considering some of these methods,
it isbeneficial to review general stereo vision issues with respect to their real -
time applicability. There are three basic problems, namely correspondence
(disparity map), reconstruction, and rendering.

Disparity map generation

Onewell-known technique for obtaining depth information from digital images
is the stereo technique. In stereo techniques, the objective is to solve the
correspondenceproblem,i.e., tofindthe corresponding pointsintheleft and right
image. For each scene element in one image, a matching scene element in the
otherimageisidentified. Thedifferenceinthespatial position of the correspond-
ing points, namely disparity, is stored in a disparity map. Whenever the corre-
sponding points are determined, the depth can be computed by triangulation.
Attemptsto solve the correspondence problem have produced many variations,
which can be grouped into matching pixels and matching features, e.g., edges.
The former approach produces dense depth maps while the latter produces
sparse depth maps. The specific approach desired depends on the objective of
the application. In some applications, e.g., the reconstruction of complex
surfaces, it isdesirable to compute dense disparity maps defined for all pixelsin
theimage. Unfortunately, most of the existing dense stereo techniques are very
timeconsuming.

Even though stereo vision techniques are used in many image processing
applications, thecomputational complexity of matching stereoimagesisstill the
main obstacle for practical applications. Therefore, computational fast stereo
techniques are required for real-time applications. Given the algorithmic com-
plexity of stereo vision techniques, general purpose computers are not fast
enough to meet real-time requirements which necessitate the use of parallel
algorithms and/or special hardware to achieve real-time execution.

Two main performance evaluation metrics are throughput, that is, frame rate
times frame size, and range of disparity search that determines the dynamic
range of distance measurement. Thereis still agreat deal of research devoted
to develop stereo systems to achieve the desired performance. The PRISM3
system (Nishihara, 1990), developed by Teleos, the JPL stereo implemented on
DataCube (Matthies, 1992), CMU'’s warp-based multi-baseline stereo (Wehb,
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1993), and INRIA’s system (Faugeras, 1993) are some of the early real-time
stereo systems. Y et, they do not provide a complete video-rate output of range
asdense astheinput image with low latency. Another major problem isthat the
depth maps obtained by current stereo systemsare not very accurate or reliable.

At Carnegie Mellon, avideo rate stereo machine was developed (Kanadeet al.,
1996) where multiple images are obtained by multiple cameras to produce
different baselinesinlengthsand in directions. The multi-baseline stereo method
consistsof threesteps. Thefirst stepistheLaplacian of Gaussian (LOG) filtering
of input images. Thisenhancestheimagefeatures, aswell asremovesthe effect
of intensity variations among images due to the difference in camera gains,
ambient light, etc. The second step is the computation of sum-of-squares
differences (SSD) values for all stereo image pairs and the summation of the
SSD values to produce the sum-of-sum-of-squares differences (SSSD) func-
tion. Imageinterpolationfor sub-pixel re-samplingisrequiredinthisprocess. The
third and final step istheidentification and localization of the minimum of the
SSSD function to determine the inverse depth. Uncertainty is evaluated by
analyzing the curvature of the SSSD function at the minimum. All these
measurements are done in one-tenth sub-pixel precision. One of the advantages
of this multi-baseline stereo technique is that it is completely local in its
computationwithout requiring any global optimization or comparison.

Schreer et al. (2001) developed areal-time disparity algorithm for immersive
teleconferencing. It isahybrid and pixel recursive disparity analysis approach,
called hybrid recursive matching (HRM). The computational timeisminimized
by the efficient selection of asmall number of candidate vectors, guaranteeing
both spatial and temporal consistency of disparities. The authors use cameras,
mounted around a wide screen, yielding a wide-baseline stereo geometry. The
authors compare the real-time performance of their algorithm with a pyramid
approach, based on multi-resolution images, and with a two stage hierarchical
block-matching algorithm. The proposed method can achieveaprocessing speed
of 40 msecs per framefor HRM algorithm in the case of sparsefieldswith block
sizes of 8 by 8 pixels.

In Koschan & Rodehorst’s (1995) work, parallel algorithms are proposed to
obtain dense depth maps from color stereo images employing ablock matching
approach. The authors compare single processor and multiple processor perfor-
mance to evaluate the profit of parallel realizations. The authors present
computing times for block matching and edge-based stereo algorithms for
multiple processing units that run in parallel on different hardware configura-
tions.

A commercial system with small-baseline cameras has been developed by
Videre Design. From two calibrated cameras, the system generates a disparity
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imageinreal-time by using areabased stereo matching (Konolige, 1997). Their
algorithm has four major blocks, namely LOG transform, variable disparity
search, post-filtering, and interpolation. The special purpose hardware consists
of two CMOS 320x240 grayscale imagers and lenses, low power A/D convert-
ers, adigital signal processor, and asmall flash memory for program storage. The
board communicates with the host PC viathe parallel port. Second generation
hardware uses a DSP from Texas Instruments (TM S320C60x).

Reconstruction and calibration

Reconstructioninvolvescomputing apointin spacefor each corresponding point
pair intheimages. Thisrequirescalibration of the cameras. There aretwo major
parameter sets for cameras, namely intrinsic and extrinsic parameters. If both
of the parameter sets are known, then the camerasarefully calibrated. By using
the intrinsic parameters, the 3D depth map can be converted into (x,y,z)
coordinates. The depth values give the z-coordinates and (x,y) coordinates are
calculated from camera’'s intrinsic parameters. The extrinsic parameters are
used to convert the camera centered (x,y,z) position into a world coordinates
position (Narayanan et al., 1998; Kanade et al., 1997). These 3D points are
converted into a surface representation via atriangular mesh. Since thereisno
exact solution, the algorithm cal cul ates the correspondence that minimizes the
geometric error subject to the epipolar constraint. In this chapter, for our
experiments we assume that the cameras are fully calibrated. Detailed informa-
tion about camerasand cameracalibrationcanbefoundin Hartley & Zisserman’'s
work (Hartley, 2000).

An exemplar application for scene reconstruction is Narayanan et al.”s (1998)
work. The authors use 51 synchronized and calibrated video camerasto extract
the depth map, polygonizeit into trianglesin 3D space, and apply texture maps
onto the mesh. Another 3D scene reconstruction method is volumetric recon-
struction. Inthismethod, thereconstruction volumeisdividedinto voxelswhere
volumetric intersection algorithms reconstruct surface and voxels from the
silhouette of an object (Cheung et al., 2000).

Pollefeys et al. (1999) developed a structure from the motion method to
reconstruct ascene from uncalibrated cameras. Structure from motion was also
used by Zisserman et al. (1999) for scene reconstruction. In their method, the
authors locate corners in the images and estimate the fundamental matrix.

Although many algorithmsare proposed for moreaccurate and reliable 3D object
reconstruction, they are not suitable for practical applications due to their
computational complexity. Depending on the application type, algorithm and
hardware-related solutions are proposed. In Li et al. (2001), the authors reduce
the complexity of finding spatio-temporal correspondence by using constraints
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from prior information. In Yang et al. (2002), the authors use a graphics
hardware that effectively combines a plane-sweeping algorithm with view
synthesis for real-time, 3D scene acquisition.

Rendering

Rendering isthe process of producing realistic 3D images. Therendering issues
are related to the interaction between light and surface, the intersection of
viewing raysand objectssampling of the scene and displaying techniques. There
are four main rendering methods used in visualization, i.e., ray tracing, volume
rendering, radiosity and polygon rendering (Crockett, 1997). Due to the high
computational requirements of traditional computer graphics, general purpose
computers are not efficient in rendering applications. Consequently, special-
purpose graphics engines are developed, primarily for polygon rendering.
Similarly, special-purposevolumerendering architecturesare devel oped to meet
the special needs of volumerenderingin order to computerapidly and repeatedly
from a volume dataset. To provide real-time volume rendering on standard
computers, volume rendering is separated from general-purpose computing by
using a dedicated accelerator. Another approach isto use volume visualization
hardware that can be integrated with real-time acquisition devices.

3D reconstruction for image-based rendering is still an open research area. The
visual hull concept isintroduced to describethe maximal volumethat reproduces
the silhouettes of an object. In Matusik et al. (2000), an on-line, image-based
approach is described to compute and shade visual hulls from silhouette image
data. The maximal volumeisconstructed from all possible silhouettes. Compu-
tational complexity isreduced and a constant rendering cost per rendered pixel
is achieved. In Matusik et al. (2001), new algorithms are proposed to render
visual hullsinreal-time. Unlikevoxel or sampled approaches, an exact polyhedral
representation is computed for the visual hull directly from the silhouettes.

Several other methods are proposed for real-time rendering. Volume carving is
a common method used to convert silhouette contours into visual hulls by
removing unoccupied regions from an explicit volumetric representation. An-
other method isConstructive Solid Geometry rendering. To avoid thecomplexity
in computing the solid, ray tracing is used to render an object by defining atree
of CSG operations. Although an image-based rendering method yields higher
realism, dataacquisition and preprocessing requirementsincrease the compl ex-
ity.

In Goldllcke et al. (2002), a method based on warping and blending images
recorded from multiple synchronized video cameras is proposed to render
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dynamic scenes. Image quality is increased with the accuracy of the disparity
maps provided with the recorded video streams. In Li et al. (2003), a simulta-
neousvisual hull reconstructionand rendering algorithmisproposed by exploiting
of f-the-shelf graphics hardware.

Beside special hardware, the use of parallel algorithms can’t be avoided to
achieve high-speed rendering applications. Early systems, such as Pixar’'s
CHAP (Levinthal & Porter, 1984) and the commercially available Ikonas
platform (England, 1986), had SIMD processors that could process vertex and
pixel data in parallel. Programmable MIMD machines that could process
triangles in parallel, such as the Pixel Planes (Fuchs et al., 1989) and the SGI
InfiniteReality, had complex low-level custom microcodesand wererarely used.
CPU vendors began to introduce graphics-oriented SIMD processor extensions
into general purpose CPU designs. Examples of these extensionsincludeIntel’s
MM X/SSE instructions, AMD’s 3DNow architecture, and Motorola’ s AltiVec
technology. Although such extensions accelerate several graphics operations,
more sophisticated graphics coprocessors, e.g., processors that can support
rendering pipelines, are needed. Such asystem hasbeen devel oped by Sony. The
company designed a custom dual-processor SIMD architecture for graphics
called the Emotion Engine (Kunimatsu et al., 2000).

A detailed survey on graphics hardware can befoundin Thompson et al. (2002).
The basic steps for image rendering are shown in Figure 1. The input of the
graphics hardware is raw geometry data specified in some local coordinate
system. The hardware transforms this geometry into world space and performs
lighting and color cal culationsfollowed by atexture step. The hardware converts
the vector-based geometry to a pixel-based raster representation, and the
resulting pixels are sent into the screen buffer.

Human Detection and Activity Recognition

In this section, we present related work by classifying the research in terms of
visual analysisof multiplecameras, i.e., projection of 3D modelsonto 2D images
versus 3D visual reconstruction from stereo images. The former involves

Figure 1. Graphics pipeline.
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extraction of correspondences between images from different views and
projections of a 3D model while the later yields extraction of correspondences
between 3D articulated models and reconstructed visual input. Gavrila (1999),
Aggarwal & Cai (1999), and Moeslund & Granum (2001) presented overviews
of various methods used for articulated and elastic non-rigid motion detection,
human motion estimation, tracking, recognition, pose estimation and various
other issues based on human detection and activity recognition. More back-
ground information on gesture recognition can befoundin Wu & Huang (1999),
Kohler & Schroter (1998) and LaViola (1999).

Luck et al. (2002) and Cheung et al. (2000) obtain 3D models of the moving
human body by extracting the silhouettes from multiple cameras. Although our
approach issimilar from this point, the main algorithm used for the modeling is
different.

InLuck et al. (2002), the authors use a physics-based approach for tracking 3D
human models. The voxels obtained from the silhouettes exert attractive forces
on a kinematic model of the human body to align the model with the voxels.
Althoughthismethod enablesvery accurate modeling, it requiresthe human body
model to be acquired from a specificinitialization pose.

Our mainaimisto use 3D info for our HMM-based activity recognitioninreal-
time for different applications without requiring any specific pose or user
interaction. Another major differenceisarchitectural, asthe authors use one PC
where all the processing is done in a centralized way, while our architectureis
distributed with local processors.

In Cheung et al. (2000), the authors use asimilar approach to perform 3D voxel-
based reconstruction by using silhouette images from multiple cameras. The
local processingisused only for silhouette extraction. Thefivesilhouetteimages
are then sent to a host computer to perform 3D voxel-based reconstruction. The
proposed algorithmfirst reconstructs 3D voxel dataand thenfindsellipsoidsthat
model the human body. Our algorithm, on the other hand, first finds 2D ellipses
that model the human body viagraph matching at each local processor and then
reconstructs 3D ellipsoids at a host computer. Note that 2D processing such as
pose estimation isindependent of the 3D modeling and activity recognition.

In Cohen & Lee(2002), the authors propose an approach for capturing 3D body
motion and inferring human body posture from detected silhouettes. 3D body
reconstruction is based on the integration of two or more silhouettes and the
representation of body parts using generalized cylinders and a particle filter
technique. Each silhouetteisal so used to identify human body posturesby using
support vector machine. In Kakadiaris & Metaxas (1998), a human body part
identification strategy that recovers all the body parts of a moving human is
employed by using the spatio temporal analysis of its deforming silhouette. 2D
shape estimation is achieved by employing the supervisory control theory of
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discrete event systems. The 3D shape of the body parts is reconstructed by
selectively integrating the apparent contours from three mutually orthogonal
views.

Several methods are proposed for 3D motion recovery from monocular images.
DiFranco et al. (2001) describe a method for computing the 3D motion of
articulated models from 2D correspondences. The authors use kinematic
constraintsbased ona3D kinematic model, joint anglelimits, dynamic smoothing
and 3D key frameswhich can be specified by theuser. In Sminchisescu & Triggs
(2001), theauthors proposeamethod for recovering 3D human body motion from
monocular video sequences using robust image matching, joint and non-self-
intersection constraints. To reduce correspondence ambiguities, the authorsuse
a matching cost metric that combines robust optical flow, edge energy, and
motion boundaries. In Howe et al. (2000), the authors present a 3D motion
capture via a single camera. The method depends on prior knowledge about
human motion to resolve the ambiguities of the 2D projection.

A geometric model isan approximation of the shape and of the deformations of
the object. This model can be two-dimensional (modeling the contours of the
projections of the object in the images), or three-dimensional (modeling the
surfaces of the object). 2D shape models are generally made of curves, snakes,
segments, sticks, etc., whereas 3D shape models are either systems of rigid
bodies (spheres, superquadrics, etc.) or deformable surfaces (mesh). The
articulations may be modeled by joints or by the motion of control points of B-
splines. Thechoicebetween a2D or a3D model dependsontheapplication, e.g.,
needed precision, number of cameras, and type of motion to be recognized.

2D

Several researchers work with 2D features to recognize human movement.
Gavrila (1999), Goddard (1994) and Guo et al. (1994) use model-based recog-
nition techniques, namely stick-figures, for thispurpose. Other researcherswho
used 2D models are Papageorgiu & Poggio (1999), Comaniciu et al. (2000) and
Isard & MacCormick (2001). Wachter & Nagel (1999) proposed a method to
track the human body in monocul ar sequences. Their method depends on contour
information and moving regions between frames.

M ost of thework inthisareaisbased on the segmentation of different body parts.
Wren et al. (1999) proposed a system, Pfinder, to track people in 2D by using
blobs that represent different body parts. The system uses a Maximum A
Posteriori Probability (MAP) approach to detect and track people. The authors
extend their work to obtain 3D estimates of the hands and head by applying two
Pfinder algorithms (Wren et al., 2000). Pfinder uses blob features to detect a
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single moving person while our hierarchical and parallel graph matching and
HM M -based activity recognition algorithms enable multi-person detection and
activity recognition.

W4 is another real-time human tracking system (Haritaoglu et al., 1998) where
the background information should be collected before the system can track
foreground objects. Theindividual body partsarefound using acardboard model
of awalking human as reference. There are a few works that aim to obtain a
more compact representation of the human body without requiring segmentation.
Oren et al. (1997) used wavelet coefficients to find pedestrians in the images,
while Ozer & Wolf (2001) used DCT coefficients that are available in MPEG
movies to detect people and recognize their posture.

Self-occlusion makesthe 2D tracking problem hard for arbitrary movementsand
some of the systems assume a priori knowledge of the type of movement. The
authors (Wolf et al., 2002) developed a system by using ellipses and a graph-
matching al gorithm to detect human body parts and classified the activity of the
body partsviaaHidden Markov M odel-based method. The proposed system can
work in real-time and has a high correct classification rate. However, alot of
information has been lost during the 2D human body detection and activity
classification. Generating a 3D model of the scene and of the object of interest
by using multiple cameras can minimizethe effects of occlusion, aswell ashelp
to cover a larger area of interest.

3D

One of the early works on tracking articul ated objectsis by O’ Rourke & Badler
(1980). The authors used a 3D model of a person made of overlapping spheres.
They synthesized the model inimages, analyzed the images, estimated the pose
of the model and predicted the next pose. Hogg (1983) tracked human activity
and studied periodic walking activity in monocular images. Rehg & Kanade
(1995) built a3D articulated model of ahand with truncated cones. The authors
minimized the difference between each image and the appearance of the 3D
model. Kakadiaris & Metaxas (1995; 1996) proposed a method to generate the
3D model of an articulated object from different views. The authors used an
extended Kalman filter for motion prediction. Kuch & Huang (1995) model ed the
hand with cubic B-splines and used atracking technique based on minimization.
Gavrila& Davis(1996) used superquadricsto model thehuman body. They used
dynamic time warping to recognize human motion.

Munkelt et al. (1998) used markers and stereo to estimate the joints of a 3D
articulated model. Deutscher et al. (1999) tracked the human arm by using a
Kalman filter and the condensation algorithm and compared their performances.
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Bregler & Malik (1998) proposed a new method for articulated visual motion
tracking based on exponential maps and twist motions.

M ost of the previous work for human detection depends highly on the segmen-
tation resultsand mostly motion isused asthe cue for segmentation. Most of the
activity recognition techniques rely on successful feature extraction and pro-
posed approachesare generally only suitablefor aspecific applicationtype. The
authors have developed a system that can detect a wide range of activities for
different applications. For this reason, our scheme detects different body parts
and their movement in order to combine them at a later stage that connects to
high-level semantics.

Real-Time 3D Analysis

This section is devoted to our proposed method of real-time 3D human motion
estimation. Multi-camerasystemsare used to overcome self-occlusion problems
in the estimation of articulated human body motion. Since many movements
become ambiguous when projected into the image plane and 2D information
alone can not represent 3D constraints, we use multiple views to estimate 3D
human motion. First, we discuss real-time aspects of 3D human detection and
activity recognition. Inthefollowing two subsectionswe show how these aspects
affect the software and hardware architectures. A detailed analysis of our 3D
human detection/activity recognition algorithm and atestbed architecturefor this
particular algorithm are given in the last subsection.

Real-Time Aspects

Real-time aspects are critical for the success of the algorithm. The authors
analyze various aspects and challenges of 3D human detection and activity
recognitionalgorithms. Theseinclude: theinstruction statistics, branch behavior,
and memory access behavior of different program parts, e.g., stereo matching,
disparity map generation, reconstruction, projection, 2D/3D human-body part
detection, 2D/3D tracking, 2D/3D activity recognition, etc., in the Section
“Algorithmic Issues.” Note that it is essential to understand the application
behavior to develop efficient hardware for a 3D camera system. Hardware
related aspects and challenges for real-time applications are discussed in the
Section “Hardware Issues.” Decisions such as the number of processorsin the
system, the topol ogy of the processors, cache parameters of each processor, the
number of arithmeticlogic units, ISA (instruction set architecture), etc., al rely

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



142 Ozer, Lv & Wolf

on the characteristic of the application running in the system. For this purpose,
we focus on a specific algorithm, our proposed 3D human detection/activity
recognition system, and evaluate some extended aspects that are presented in
this section.

Algorithmicissues

Inthe Section“ 3D Human Detection and Activity Recognition Techniques,” we
presented previouswork on the basic steps of stereo vision algorithms and their
real-time applicability for different applications. In general, we can divide 3D
human detection and activity recognition methodsinto two categories (Cheung
et al., 2000): off-line methods, where the algorithms focus on detailed model
reconstruction (e.g., wire-frame generation), and real -time methods with global
3D human maodel reconstruction (Bregler & Malik, 1998; Delamarre & Faugeras,
2001).

The major challengein many 3D applicationsisto compute dense range data at
high framerates, since participants cannot easily communicateif the processing
cycle or network latencies are long. As an example of non-real-time methods,
wecangiveMulliganet al.’s(2001) work. Intheir work, to achievetherequired
speed and accuracy, Mulligan et al. use amatching algorithm based on the sum
of modified, normalized cross-correl ations, and sub-pixel disparity interpolation.
To increase speed, they use Intel IPL functions in the pre-processing steps of
background subtraction and image rectification, as well as a four-processor
parallelization. The authors can only achieve a speed of 2-3 frames per second.
Another non-real-time method (Kakadiaris & Metaxas, 1995) has been pre-
sented in the previous section.

Most of the real-time methods use a generic 3D human model and fit the
projected model to the projected silhouette features. Another silhouette-based
method isproposed by Cheung et al. (2000) and, recently, by Luck et al. (2002),
wherethe human model isfitinreal-timeandinthe3D domain. Thefirst method
can reach a speed of 15 frames per second, whereas the second one runs at 20
frames per second. The speed of the systems highly depend on the voxel
resolution. None of these methods tried to use 2D information obtained from
each camera and combine the high-level information, e.g., head, torso, hand
locations and activities, as well as the low-level information, e.g., ellipse
parameters, to generate a global 3D model of the human body parts and
recognizetheir activitiesin 3D. 2D informationintermsof humanimage position
and body labeling information is a very valuable component for higher level
modules. In our system, it forms the basis for constructing the 3D body and
activity model.
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Our algorithmic pipeline clearly performsawiderange of disparate operations:

e pixel-by-pixel operations, such as color segmentation;

*  pixel region operations, such asregion identification;

*  mixed operations, such asellipsefitting; and

*  non-pixel operations, such asgraph matching and Hidden Markov M odels.

Westart with operationsthat are clearly signal-oriented and move steadily away
from the signal representation until the data are very far removed from a
traditional signal representation. In general, the volume of data goes down as
image processing progresses.

Hardwareissues

Real -time implementation of image/video processing algorithms necessitates
data and instruction-level parallelism techniques to achieve the best perfor-
mance for several application types. In this part, we will give an overview of
some multimedia processing hardware and give a detailed description of our
testbed architecture. Besidesthealgorithm devel opment, hardwaredesignisone
of the most important issues for areal-time system. Watlington & Bove (1997)
proposed a data-flow model for parallel media processing. Davis et al. (1999)
developed amulti-perspectivevideo system at the University of Maryland. Fritts
et al. (1999) evaluated the characteristics of multimediaapplicationsfor media
processors. Researchers also pay attention to multiprocessor architecture.
Simultaneous multi-threading isproposed by Tullsen et al. (1995). Hammond et
al. (1997) proposed single-chip multiprocessor architecture. An IMAGINE
processor isbeing devel oped at Stanford University which hasexplicit program-
mable communication structure (Khailany et al., 2001).

Many different image/video-processor architecturesexist with their own advan-
tages and disadvantages. The selection of a processor must be based on a
number of issues, including power, cost, development tools, and performance-
related features. Texas Instruments has two DSPs (the TMS320C6201 and
C6701),usingaVLIW (Very Long Instruction Word) architecture, which means
that they are ableto select at compilation timeinstructionsthat can be executed
in parallel, with a maximum of eight per clock cycle. The TMS320C80 has a
MIMD (MultiplelnstructionsMultiple Data) architecture, and it can achievethe
performances of the C6201, although its clock frequency is much slower.
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Another VLIW processor, the Philips TriMedia processors, can execute up to
five instructions per cycle. Besides the main CPU, there are other peripherals
which cantaketheload fromthemain CPU for particular computations. Another
advantage of this processor is the price, as well as the interfacing capabilities
(PClI bus, serial link, videoinput/output, MPEG encoding/decoding, etc.) and the
programming environment. In our application, we use TriMedia video capture
boards, with TM 1300 processors. A detailed description of the testbed will be
given in the next subsection. Trimedia processors are media processors, which
havewider datapaths, wider registers, and moreflexiblememory interfacesthan
the regular DSPs. They can use data paths and register files to support SIMD
(singleinstruction multiple data) types of operations, whichisvery useful when
dealingwithdifferent real -timedatai nputswith varying dynamic rangedemands.

The Sharc ADSP 21160M isa SIMD processor that can be used for low-power,
image/video-processing applications, but its performance is below the others.
General purpose processors’ (GPP) high power consumption and large size are
the main disadvantages for portable image/video-processing applications. An-
other important factor is cost. For cost sensitive applications, DSP devices are
significantly less expensive than GPPs. Code generation and debugging tools
have a major impact on the efficiency of the development effort. Unlike GPP
tool s, some DSP devel opment tool simplicitly support the debugging of multipro-
cessor systems and provide unique data visualization tools.

Ingeneral, DSPs, unlike GPPs, aregenerally optimized for high throughput, data
streaming applications. Some of the key features that support this include
multiple bus architectures, multiple execution units that function in parallel,
multiple data and instruction memories (both internal and external), multiple
DMA channels for high speed data movement without processor involvement,
special addressing modes, such as circular or bit reversed addressing, and
specializedinstructionsto handlesaturation and normalization. Interrupt handling
on DSPsisefficient and uncomplicated. Finally, some D SPfamiliessupport high-
speed interprocessor communications which can directly link together multiple
DSP devices without any intervening logic. The complexity of integrating
external components with a processor isfar higher for high performance GPPs
than it is with low-end GPPs and DSPs.

Testbed

In this subsection, we give our testbed architecture where a single camera node
is composed of a standard camera and a TriMedia video processing board.
Designed for mediaprocessing, the TriM ediaprocessing board allowsWindows
and Macintosh platforms to take advantage of the TriMedia processor via PCI
interface. Multiple TriMedia processing boards can beinstalled to one host PC
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to provide multiprocessing ability. A TriMediaboard hasa TM 1300 TriMedia
processor withitsown dedicated memory. A 32-bit TM 1300 TriM ediaprocessor
hasafive-issue VLIW (Very Long Instruction Word) CPU together with several
coprocessors as shown in Figure 2. The CPU in the processor has multiple
functional units and 128 registers. Table 1 shows the major features of a
TriMedia CPU.

Besides its complicated hardware, the TriMedia board comes with a set of
powerful software tools, which includes atmsim simulator providing full func-

Figure 2. Structure of a TriMedia processor.
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Table 1. TriMedia features.

Constant 5

Integer ALU 5

Load/Store 2

DSPALU 2

. . DSP MUL 2

Number of Functional Units Shifter 5

Branch 3

Int/Float MUL 2

Float ALU 2

Float Compare 1

Float sgrt/div 1

Number of Registers 128

Instruction Cache 32KB, 8 Way
Data Cache 16K B, 8 Way

Number of Operation Slots-Instruction 5
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tional simulation. Duringtheexperiment, weusethe TriM ediaSoftware Devel op
Kit version tcs2.20 that includes a compiler tmcc, an assembler tmas, a linker
tmld, asimulator tmsim, an execution tool tmrun, and a simulator tmprof. The
TriMediasystemisrunningonaDell Precision-210 computer withtwo TriMedia
reference boards. The TriMedia boards can communicate via shared memory,
which enables fast data communication for stereo vision applications, e.g.,
disparity map generation.

Direct Algorithm for Human Gesture Recog_]nition

In this subsection, we discuss in more detail an exemplar approach for human
detectionand activity recognitioninthelight of previously mentioned algorithms
and real-time aspects. Most of the activity recognition systems are suitable for
a specific application type. The presented example can detect a wide range of
activitiesfor different applications. For thisreason, the scheme detectsdifferent
body parts and their movement in order to combine them at a later stage that
connectsto high-level semantics. Each human body part hasits own freedom of
motion and the activity recognition for each part is achieved by using several
Hidden Markov Models in parallel. Real-time performance of two and three-
dimensional activity recognition techniques are compared for this particular
example.

2D

A - Low-level Processing:

Thissection presentsthe proposed al gorithm for the detection of the human body
parts. The algorithm blocks are displayed in Figure 3. A more detailed explana-
tion of our algorithm can be found in Ozer et al. (2000).

Background elimination and color transformation: The first step is the
transformation of pixelsinto another color space regarding to the applica-
tion. Background eliminationisperformed by using thesetransformed pixel
values for the current and background images.

Skin area detection: Skin areas are detected by comparing color values to a
human skin model. Weusea Y UV color model where chrominance values
are down-sampled by two.

Segmentation of non-skin areas and connected component algorithm:
The foreground regions that are adjacent to detected skin areas are
extracted and corresponding connected components are found. We com-
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Figure 3. Algorithm blocks and corresponding results of selected steps.
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bine the meaningful adjacent segments and use them as the input of the
followingalgorithm steps.

Contour following: Weapply the contour following algorithm that usesthe 3x3
filter to follow the edge of the component where the filter can movein any
of eight directionsto follow the edge.

Ellipsefitting: Even when human body is not occluded by another object, due
to the possible positions of non-rigid parts, abody part can be occluded in
different ways. For example, the hand can occlude some part of the torso
orlegs. Inthiscase, 2D approximation of partsby fitting elli pseswith shape-
preserving deformations providesmore satisfactory results. It also helpsto
discard the def ormationsdueto theclothing. Global approximation methods
give more satisfactory results for human detection purposes. Hence,
instead of region pixels, parametric surface approximations are used to
compute shape descriptors. Details of the ellipse fitting can be found in
Ozer & Wolf (2002b).

Object modeling by invariant shape attributes: For object detection, it is
necessary to select part attributes which are invariant to two-dimensional
transformations and are maximally discriminating between objects. Geo-
metric descriptors for simple object segments such as area, compactness
(circularity), weak perspective invariants, and spatial relationships are
computed (Ozer et al., 2000). These descriptors are classified into two
groups:. unary and binary attributes. The unary features for human bodies
are: a) compactness, and b) eccentricity. The binary features are: a) ratio

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



148 Ozer, Lv & Wolf

of areas, b) relative position and orientation, and c) adjacency information
between nodes with overlapping boundaries or areas.

Graph matching: Each extracted region model ed with ellipses corresponds to
anode in the graphical representation of the human body. Face detection
allowstheformation of initial branchesto start efficiently and reducestheir
complexity. Each body part and meaningful combinationsrepresent aclass
w where the combination of binary and unary features are represented by
afeaturevector X and computed off-line. Note that feature vector elements
of a frame node computed online by using ellipse parameters change
according to body part and the nodes of the branch under consideration. For
example, for the first node of the branch, the feature vector consists of
unary attributes. The feature vector of the following nodes also includes
binary features dependent on the previously matched nodes in the branch.
For the purpose of determining the class of these feature vectors, a
piecewise quadratic Bayesian classifier with discriminate function g(X) is
used. The generality of thereference model attributes allowsthe detection
of different postures while the conditional rule generation r decreasesthe
rate of false alarms. The computations needed for each node matching are
then afunction of the feature size and the previously matched nodes of the
branch under consideration. The marked regions are tracked by using
ellipse parameters for the consecutive frames and a graph matching
algorithmisapplied for new objectsappearing inthe other regions. Details
of the graph matching algorithm can be found in Ozer & Wolf (2002b).

B - High-level Processing:

Thissection coversthe proposed real -time activity recognition algorithm based
on Hidden Markov Models (HMMs). HMM is a statistical modeling tool that
helps to analyze time-varying signals. Online handwriting recognition (Sim &
Kim, 1997), video classification and speech recognition (Rose, 1992) are some
of the application areas of HMMs. Only afew researchers have used the HMM
to recognize activities of the body parts. It is mainly used for hand gestures
(Starner & Pentland, 1995). Parameterized HMM (Wilson & Bobick, 1999) can
recognize complex events such as an interaction of two mobile objects, gestures
made with two hands (e.g., so big, so small), etc. One of the drawbacks of the
parameterized HMM s that for complex events (e.g., a combination of sub-
events) parameter training space may becomevery large. In our application, we
assume that each body part has its own freedom of motion and the activity
recognition for each part is achieved by using severat HMMs in parallel.
Combining the outputs of the HMMs to generate scenarios is an application
dependent issue. In our application environment, smart room, we use the
Mahalanobis distance classifier for combining the activities of different body
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parts by assigning different weights for each activity. An HMM can be
represented by using thenotation A=(A,B,n) (Huang et al., 1990), where A, B, and
7 represent the transition, output, and initial probabilities, respectively. The
movement of the body parts is described as a spatio-temporal sequence of
featurevectorsthat consist of thedirection of the body part movement. Sincewe
usediscreteHMMs, we generate eight directional codewords. We check the up,
down, right, left, and circular movements of the body parts. Our models are
trained using the Baum-Welch algorithm. Note that the detected movement of
the body part may be a part of a more complex activity. We check the current
pattern and combine it with the immediately following one and generate a new
pattern. Using dynamic programming, we cal cul ate the probabilitiesfor thefirst
and combined patterns and choose the pattern with the highest probability asthe
recognized activity. If the probability of the observed activity is below a
threshold, wereject the activity. Furthermore, we use the gap between different
gestures/activities, e.g., moving the hand out of camera, stopping the body for a
while. Another feature in the activity recognition isthe speed of the body parts.
We use the speed of each body part (slow/fast) for one activity period as an
additional input for the classification. The next stepisthegeneration of afeature
vector by using the observed activities of the body parts. The activity feature
vector is compared with the known activities viaadistance classifier, based on
the Mahalanobis metric. The output of the classifier detectsthe overall activity
of theperson. The proposed activity classificationalgorithmisgivenin Figure4.

Figure5displayssome of theactivity patterns, namely waving onehand, opening
and closing hands, and left-right movement of the body. It displays cumulative

Figure 4. Overview of the activity classification.
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Figure 5. Cumulative motion of body parts for different activity patterns:
Waving one hand, opening and closing arms, left-right movement.

motion of the body parts. We observe that different activity patterns can have
overlapping periods (same or similar patternsfor aperiod) for some body parts.
Hence, the detection of start and end times of activitiesiscrucial. To detect the
start and end time of a gesture, we use the gap between different gestures/
activities.

Eighty-six percent (86%) of the body partsin the processed frames and 90% of
the activitiesare correctly classified, with the rest considered the missand false
classification. Detail s of the gesture recognition algorithm can befound in Ozer
& Wolf (2002a).

From 2D to 3D

Inthis subsection, we present our algorithm that generates areal -time 3D model
of the human body by combining 2D information from multiple cameraslocated
at 90 degrees to each other. We propose a new 3D method for activity
recognition in real-time. The proposed method that combines valuable 2D
informationisfast, robust and accurate. It doesn’t require any disparity map and
wire-frameinformation for model generation. Wegenerateaglobal 3D ellipsoid
model of the human body parts from 2D ellipses and use the resulting 3D
information to verify thefit of thereal body partswith the actual model. We can
process approximately 25 frames per second on each TriMediaboard. Figure 7
shows the architecture for 3D model generation. Camera calibration and data
synchronization are main issues in data fusion from multiple cameras. Visual
reconstructionfor virtual reality requireshigh accuracy, whilereal-timeactivity
recognition andtrajectory estimation requirehigh-speed techniques (Dockstader
& Tekalp's, 2001; Focken & Stiefelhagens, 2002; Schardt & Y uan, 2002). Note
that our system uses static cameras that do not require dynamic calibration.
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Figure 6. Orthogonal ellipses and best-fit ellipsoid.

(&

After graph matching, head, torso and hand ellipses and their corresponding
attributes are sent from each processing board to the other one via the shared
memory. High-level information (ellipsescorresponding to head, torso, and hand
areas) and low-level information (ellipse attributes) are used to model the best-
fit ellipsoids for each body part as shown in Figure 8. The best-fit ellipsoid
algorithm is based on Owens's (1984) work. Figure 6 displays the orthogonal
ellipses, their attributes, and best-fit ellipsoid after iterative approximation.

The equation of an ellipseisgiven by:

where o and 3 are the principal axes of the ellipsoid.
After rotation ¢ the ellipse equation becomes:

(x cos(¢) + ysin(@))*  (=xsin(@)+ycos(9))® _,
062 ﬁZ

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



152 Ozer, Lv & Wolf

After projection of o on they- and 3 on the x-axiswe get d and e, respectively:

d:\/ o . (@)
cos(p)®  sin(¢)’

=J o (@Ip)
sing)®  cos(9)®

For three perpendicular surfaces, namely surfl, surf2, and surf3, the diagonal
components A and of f-diagonal components y are cal culated for the 2x2 matrices
representing the sectional ellipses:

/’Lsurf 1= 1/ 2 (asurf 2 (Cos(¢surf 2)) ? + ﬁsurf 2 (SI n(¢surf 2))2) + 1/ 2(asurf 3 (Cos(¢surf 3)) g + ﬁsurf 3 (S' n(¢mrf 3 ))2)
z’surf 2= 1/ 2 (asurf 1 (Cos((Psurf 1)) : + ﬂsurf 1 (S n(¢surf 1)) 2) + 1/ 2 (asurf 3 (COS((PSM 3))2 + ﬁsurf 3 (S n(¢surf 3)) 2)

Aguts =112 (Ogypy (Cos(d’sum))z + Bours (S n(¢s.1rf1))2) +1/2 (Ot 2 (Cos(¢wrf2))2 + Bt (S n(¢wrf2))2)

Yajrfl = asurfl S‘ n(q)surfl) Cos(q)surfl) - ﬁsurfl S n(q)surfl) Cos(q)surfl)
Yartz = Csyr2 S n(¢s.1rf 2) Cos(¢surf 2) - ﬂs;rf 2 s n(¢s.1rf 2) COS((Z)SM 2)

ygjrf 3= asurf 3 S n(¢surf 3) Cos(q)surf 3) - ﬁsurf 3 S n(q)surf 3) Cos(¢mrf 3)

Note that the diagonal component A isdoubly defined. To get aninitial estimate
we average the two doubly defined terms. To get a better best-fit estimate we
defineamatrix P and cal culate the normalized eigenval ues IT and eigenvectors
V of the sectional ellipses by using singular value decomposition.

P= [(Awrfl'YSurnyerfz) (erf?,'lsurfzﬁ/surfl) (Ysjer'YSurfl'//LsurfS)]
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Sectional ellipses are represented by:

[(;Lsurf 27 YSurfl) (’J/surfl ’ /lsurfB)]! [(lsurfl’ )/surf 2) ()/surf 21 /lsurfB)] and [(/lsurfll,J/surf 3) ()/surf 31 2'surf 2)]

Tofind the best-fit ellipsoid, amisfit function G is generated:

_ 2 2
G - (H surf1,surf 2,surf3 (lsurfl,surf 2,surf 3 / Bsurfl,surf 2,surf3)) + (Ksurfl,surf 2,5urf3 q)surfl,surf 2,surf3)

where k isthe arctangent obtained from major axis eigenvectors. G function is
minimized with respect to A’sand Y sto find the best-fit ellipsoid matrix. From
eigenvectors, eigenvalues and parametric unit sphere, the resulting ellipsoid is
generated. Notethat, in our application, we usebody proportioninformationand
spatial position of the body partsobtained fromtwo calibrated camerasto predict
theellipsesonthethird projection surface. Figure 9 showstheellipsoidsfitted to
torso and head-regions. The system recognizes the activity of the 3D human
model by combining the sequential direction information obtained from both of
the processorsfor each body part. Figure 10 and Figure 11 show the recognized
activities, namely hand left-right and pointing to cameral. Note that a single

Figure 7. Architecture for 3D model generation.
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Figure 8. Ellipsoid and its projection on the 2D planes. Outer boundaries
of the projections represent the 2D ellipses.
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Figure 9. Example ellipsoids from front view (top) and side view (bottom)
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Figure 10. Example ellipsoids from front view: Hand left-right.

Figure 11. Example ellipsoids for “ pointing cameral” activity from front
and side view.

cameraview cannot find the activities such as pointing towardsthe camera, e.g.,
areachangewithtimeisnotreliablefor small body parts. However, the proposed
system combinestheactivity directionsand body poseinformationfrommultiple
views and recognizes the correct activity in real-time.
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Figure 12. Recognized activity: Moving left.

Figure 13. Moving down and moving up activities.

Figure 12 shows recognized moving left activity. Figure 13, first row, shows
moving down activity wherethe person turnsfromthefirst camerato the second
one during the activity period. The second row is another correctly recognized
moving down/up activity for adifferent person.

Figure 14 is an example for unattended object detection. The person enters the
scene with an object in his hand and |eaves the object on the table. After a
predefined time, the system can detect the body parts and the object left on the
table correctly. An alarm can be generated and sent to the security personnel for
the unattended object.

For applicationssuch assmart roomswheredevicesare controlled by people, the
deployment of cameras can be adjusted for optimum capture of the motion.
However, for lessstructured motion estimation applicationssuch assurveillance,
self-occlusion may occur. Inthiscase, the corresponding partsare modeled less
accurately for the duration of the occlusion. One of our futureworksincludesa
feedback scheme that uses temporal dependency. Furthermore, more cameras
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Figure 14: Unattended object detection.

would improve the performance by alleviating the self-occlusion problem.
Another challengeisdetecting multiple personsand recognizing their activities.
Figure 15 displaysan example framefrom security camerasin atest room. Note
that the algorithm can generate the 3D model of each body part, unlessthereis
occlusion because of the other person or because of another body-part. Asitis
mentioned before, occlusion problems can be overcome by using multiple
cameras (more than two) and using a feedback scheme.

Figure 15: Multiple persons.
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Note that the most time-consuming parts of the algorithm are computed in
parallel by different video processors and the integration to reconstruct the 3D
model is based on the processing of parameters as opposed to pixel processing.
This feature of the algorithm makes the integration of multiple cameras more
attractive. A detailed description of multi-cameraarchitectureispresentedinthe
next section.

Architectures for 3D Video Processing

Inthis section, we present parallel architecturesfor amulti-camerasystem. We
analyze the available data independencies for the previously mentioned 2D
example, and discuss the potential architectures to exploit the parallelism that
resulted from these independencies. Three architectures — VLIW, symmetric
parallel architecture and macro-pipeline architectures are discussed. After this,
we extend our discussion to 3D systems.

The following discussion from a hardware perspective can be applied to both
standard hardware, such as PC platform, and to application specific hardware.
For real-timevideo applications, the demand on computation capability can bea
rather heavy burden on general processors, or even exceed their capability. As
a result, real-time video applications usually need support from application
hardware such as DSPs on video card, video capturing device, etc. For this
reason, we focus our discussion primarily on application specific hardware,
although part of our conclusion can be extended to standard computer systems.

Instruction Level Parallelism and VLIW Architecture

In pixel-level processing stages, such as background elimination and skin area
detection stages, the operations on different pixels are independent. This
independence can be converted into different forms of parallelism such as
instruction-level parallelism, thread-level parallelism, process-level parallelism,
as well as spatial parallelism, which can be utilized by array processors.
Instruction-level parallelism takes advantages of the fact that instructionsin the
execution path can beissued simultaneously under certain conditions. Sincethe
granularity of instructionsissmall, instruction-level parallelismisusually associ-
ated with fine-grained parallelism existing in a program. Thread and process-
level parallelismsareexplicitly exhibitedintheprogramasit will havemorethan
oneexecution path. Thread and process-level parallelism areassociated with the
large cost of initializing and terminating threads/processes. Sinceinour casethe
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input framesizeisnot large enough to makethose additional costsignorable, we
convert this intra-frame data independency into instruction-level parallelism,
which can be explored by VLIW or superscalar architecture processors. The
instruction-level parallelism can be explicitly expressed in an executable file,
since the parallelism is available during the compile-time. Both VLIW and
superscalar processorscan exploit staticinstruction-level parallelism. Superscalar
processors use hardware schemes to discover instruction parallelism in a
program, so asuperscal ar processor can provide backward compatibility for old
generation processors. For thisreason, most of general processorsare superscalar
processors. On the other hand, a VLIW processor can achieve a similar
performance on a program with explicit parallelism by using significantly less
hardware effort with dedicated compiler support. We use the VLIW processor
toexploittheinstruction-level parallelismthat resulted fromtheintra-framedata
independency, sincesuch parallelism can beexplicitly expressed at compiletime.
In the following, we will introduce our process of converting intra-frame data
independency to instruction-level parallelism. Although the target isa VLIW
processor, most parts of this process can benefit from superscalar processors,
aswell.

Thefirst stepistouseloopfusion, away of combining two similar, adjacent |oops
for reducing the overhead, and loop unrolling, which partitions the loops to
discover loop-carried dependencies that may let several iterations be executed
at the same time, which increases the basic block size and thus increases
availableinstruction parallelism. Figure 16 shows examples of loop fusion and
unrolling.

When a loop is executed, there might be dependencies between trips. The
instructions that need to be executed in different trips cannot be executed
simultaneously. The essential idea behind loop fusion and loop unrolling isto
decrease the total number of trips needed to be executed by putting more tasks
ineachtrip. Loop fusion mergesloopstogether without changing theresult of the
executed program. In Figure 16, twoloopsare merged into oneloop. Thischange
will increase the number of instructions in each trip. Loop unrolling merges
consecutivetripstogether to reducethetotal trip count. Inthisexample, thetrip
count isreduced from four to two asloop unrolling is performed. These source
code transformations do not change the execution results, but increase the
number of instructionslocated in each loop trip and thusincrease the number of
instructions that can be executed simultaneously.

Bothloopfusionandloop unrolling increasebasi ¢ block size by merging several
basi ¢ blockstogether. Whileloop fusion mergesbasic blocksin code-domain, in
that different code segments are merged, loop unrolling merges basic blocksin
time-domain, inthat different loopiterationsare merged. Thisstep increasesthe
codesizefor eachloop trip. However, we do not observe significant basic block
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Figure 16. Loop fusion and unrolling.
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size changes. The conditional operations, such asabsolute value cal culation and
threshold inside loop, block the increase of basic block size.

In the second step, we sought two methods to reduce the branches, which limit
the basic block sizein loops. A solution for thisisto use conditional execution
instructions, which requires hardware support. The TriMedia processors offer
such instructions, such as |ABS, that calculate the absolute value in a single
instruction. Thisoptimization providesasignificant performanceimprovement.
Another technique we used is to convert control flow dependency to data
dependency by using look-up tables. In our algorithm, contour following, the
instruction level parallelism is limited by the control flow dependency. The
critical control flow structure is shown on the left-hand side of Figure 17.
Althoughif-conversionisageneral methodto removebranchescaused by if-else
statements, the if-conversion does not help much for such a control flow
dependency. To increase the available parallelism, we convert the control

Figure 17. Branch reduction.
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Figure 18. Instruction cycles for 10 frames (left), and available parallelism
(right).
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dependency to datadependency by evaluating theconditionineachif-statement.
The results are put together into one single byte, where each bit represents the
result from each evaluation. Webuildinto thealgorithm atablethat providesthe
result for any given evaluated byte. By using this method, the branches are
eliminated and theinstruction-level parallelisminthe contour following algorithm
block isincreased.

Theresults of these optimizationsare shown in Figure 18. Here, operations-per-
instruction is used as a measurement for instruction-level parallelism. While
optimization towards higher instruction-level parallelism can significantly im-
prove system performance, there are still limitations. The instruction-level
parallelismisafine-grained parallelism, which limitsitsability to exploit coarse-
grained data independencies, such as inter-frame independency. From a hard-
ware point of view, the increasing global interconnection delay will prevent
processor designers from building a large amount of functional units into one
singleprocessor, which alsolimitstheexploration of instructional parallelism. In
addition, therecent trends show that both application specific computer systems
and general computersare starting to incorporate multiple processors. Thiswill
provide hardware support for exploiting coarse-grained parallelisms. Consider-
ing this, we are starting to explore alternative methods.

Inter-Frame-Level Parallelism and Symmetric
Architecture

A different level of dataindependency in our smart camera system isthe inter-
frame dataindependency. Since thisindependency lies between different input
frames, it is a coarse-grained data independency. The corresponding parallel-
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Figure 19. Symmetric parallel architecture.

Buffer

ismsarethread or process-level parallelisms. SMT (Simultaneous M ultithreading)
and CMP (single chip multi-processor) architectures can exploit process-level
parallelism. However, the SMT architecture does not seem to be a good choice
for this parallelism, since the almost identical threads will content the same
resource and do not increase thefunctional unit utilization over the singlethread
model. Thus, we propose using CMP architecture, or even separate chip
processors, to exploit such inter-frame parallelism. A proposed architectureis
shown in Figure 19.

Figure 20 shows the projected performance change on such parallel architec-
tures, where seriesl is the performance under the assumption that communica-
tion cost is negligible, while series2 is the performance change where the
communication cost is 20.

Figure 20. Performance of symmetric architecture.
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| nter-Stage-L evel Parallelism and Pipeline Architecture

The above discussions are about the available data independencies. There is
another parallelism resulting from the dataflow structure. The algorithm stages
of the low-level processing part form a pipelined process. A corresponding
architecture is a pipelined multi-processor architecture (Figure 21). Figure 22
shows the projected performance of such architecture. Series 1 shows the
throughput when communication costiszero, whilein series2 thecommunication
cost is20% of the computation cost. The additional benefit of such architecture
over other parallel architecture is that the processor can be tailored to the
requirement of the stage. For example, the CPU used to process background
elimination doesnot haveto carry afloating-point unit. Thelimiting factor of such
architectureisthegranularity of the stages. When a stage counts more than 50%
of the overall computation time, the speed-up islimited.

Figure 21. Macro-pipeline architecture.
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Comparison between Architectures and Data
Independency

Table 2 summarizes comparison results between different architectures dis-
cussed. Among all the architectures, the symmetric parallel architecture can
provide the better speed-up, while the pipelining architecture will be able to
reduce hardware effort on processors. As we can see through our discussion,
thosedifferent architecturesdo not mutually exclude each other. Thus, wewould
expect a better solution by combining them together.

Table 2. Performance Comparison

Independency Architecture Dedicated Architecture Performance

Intra-frame Independency | VLIW/Superscalar | VLIW-Trimedial300 Processor | 3.7 X

Inter-frame independency | CMP/SMT Symmetric Parallel Architecture | 5 x

Inter-stage independency | CMP/SMT Macro-Pipelined Architecture 1.3x

Discussion on Multiple Camera Systems

In this subsection, we examine the parallelism architecture aspects of the 3D
camera system. Figure 23 shows the algorithm stages in the system. Figure 24
shows the processing time for each algorithm stage.

Figure 23. Algorithm stages.
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Figure 24. Processing times.
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Suppose we need a two-processor architecture. Since, except for the 3d stage,
all the stages have two duplicated copies, we can evenly distribute them to the
two processors and then put the 3d stage into another (Figure 25). However, by
scheduling these tasks, we can find that if we put the 3d stage into a processor,
whileputting all theellipse and match stagesinto another processor, theworkload
would be more balanced (Figure 26). While such distribution gives the best
performanceresult, when areaismoreimportant, we can allocate all thefloating
point related algorithm stages (ellipse, match and 3d) into one processor and trim
off the floating point unit on the other processor (Figure 27).

Figure 25. Intuitive partition.
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Figure 26. Balanced partition.
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Figure 27. Hardware efficient partition.
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Another factor that needs to be considered is communication cost. The amount
of data that needs to be transferred between the video camera interface and
region, and between the region stage and contour, issignificantly larger thanthe
data size exchanged among another stages. Therefore, we would prefer to
allocate a set consisting of video interface, region stage, and contour stage into
one processor. In the above partitioning, we comply with this rule. The above
discussionislimitedtointer-stageparallelism. Inthefollowing, wewill show how
the inter-frame parallelism can be taken into consideration. At the first, we
duplicate every processing stage. For example, if wewant to processtwo frames
inparallel, wewill have two copies of each processing stage. After this, we can
perform scheduling and get the corresponding architecture. Figure 28 shows a
five-processor partition with two consecutive frames processed in parallel.
Figure 29 shows the corresponding architecture for the partition.
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Figure 28. Partitioning with inter-frame parallelism.
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Figure 29. A five-processor architecture.
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Conclusions

In this chapter, we review previous 3D methods on real-time processing of
multiple views for human detection and activity recognition algorithms. We
discuss the advantages and drawbacks of these algorithms with respect to
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algorithmic and architectural issues. Furthermore, we present our multiple-
camera system to investigate the relationship between the activity recognition
algorithms and the architectures required to perform these tasks in real-time.
The chapter describesthe proposed activity recognition method that consists of
adistributed algorithm and a data fusion scheme for two and three-dimensional
visual analysis, respectively. Furthermore, we analyze the available data inde-
pendencies for our new algorithm, and discuss the potential architectures to
exploittheparallelismresulting from theseindependencies. Threearchitectures,
i.e.,, VLIW, symmetric parallel, and macro-pipelined architecturesare presented
and compared in the chapter.
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Abstract

This chapter presents a holistic approach to emotion modeling and analysis
and their applications in Man-Machine Interaction applications. Beginning
from a symbolic representation of human emotions found in this context,
based on their expression via facial expressions and hand gestures, we
show that it is possible to transform quantitative feature information from
video sequences to an estimation of a user’s emotional state. While these
features can be used for simple representation purposes, in our approach
they are utilized to provide feedback on the users’ emotional state, hoping
to provide next-generation interfaces that are able to recognize the
emotional states of their users.
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I ntroduction

Currentinformation processing and visualization systemsare capabl e of offering
advanced and i ntuitive meansof receivinginput from and communicating output
totheir users. Asaresult, Man-Machine Interaction (MMI) systemsthat utilize
multimodal information about their users' current emotional state are presently
at the forefront of interest of the computer vision and artificial intelligence
communities. Such interfaces give the opportunity to less technology-aware
individuals, as well as handicapped people, to use computers more efficiently
and, thus, overcome related fears and preconceptions. Besides this, most
emotion-related facial and body gestures are considered universal, in the sense
that they arerecognized among different cultures. Therefore, theintroduction of
an “emotional dictionary” that includes descriptions and perceived meanings of
facial expressionsand body gestures, so asto helpinfer thelikely emotional state
of aspecific user, can enhancethe affective nature of MM applications (Picard,
2000).

Despite the progress in related research, our intuition of what a human
expression or emotion actually representsisstill based ontrying to mimictheway
the human mind workswhilemaking an effort to recognize such an emotion. This
means that even though image or video input are necessary to this task, this
process cannot come to robust results without taking into account features like
speech, hand gesturesor body pose. Thesefeatures provide the meansto convey
messages in amuch more expressive and definite manner than wording, which
can be misleading or ambiguous. While a lot of effort has been invested in
individually examining these aspects of human expression, recent research
(Cowieet al., 2001) has shown that even this approach can benefit from taking
into account multimodal information. Consider asituation wheretheuser sitsin
front of acamera-equipped computer and respondsverbally to written or spoken
messages from the computer: speech analysis can indicate periods of silence
fromthe part of the user, thusinforming thevisual analysismodulethat it can use
related datafromthemouthregion, whichisessentially ineffectivewhenthe user
speaks. Hand gestures and body pose provide another powerful means of
communication. Sometimes, a simple hand action, such as placing one's hands
over their ears, can pass on the message that they’ ve had enough of what they
are hearing more expressively than any spoken phrase.

In this chapter, we present a systematic approach to analyzing emotional cues
from user facial expressions and hand gestures. In the Section “Affective
analysis in MMI,” we provide an overview of affective analysis of facial
expressions and gestures, supported by psychological studies describing emo-
tions as discrete points or areas of an “emotional space.” The sections “Facial
expressionanalysis’ and“ Gestureanalysis’ providealgorithmsand experimen-
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tal results from the analysis of facial expressions and hand gestures in video
sequences. Inthe case of facial expressions, the motion of tracked feature points
istranslated to MPEG-4 FAPs, which describe their observed motion in ahigh-
level manner. Regarding hand gestures, hand segments are located in a video
sequenceviacol or segmentati on and motion estimation algorithms. Theposition
of these segmentsistracked to providethe hand’ sposition over timeand fedinto
aHMM architecture to provide affective gesture estimation.

In most cases, a single expression or gesture cannot help the system deduce a
positive decision about the users’ observed emotion. As a result, a fuzzy
architecture is employed that uses the symbolic representation of the tracked
featuresasinput. Thisconcept isdescribed inthe section“Multimodal affective
analysis.” The decision of the fuzzy system is based on rules obtained from the
extracted features of actual video sequences showing emotional human dis-
course, as well as feature-based description of common knowledge of what
everyday expressions and gestures mean. Results of the multimodal affective
analysis system are provided here, while conclusions and future work concepts
areincluded in the final section “Conclusions — Future work.”

Affective Analysisin MM

Representation of Emotion

The obvious goal for emotion analysis applicationsisto assign category labels
that identify emotional states. However, labels as such are very poor descrip-
tions, especially since humans use a daunting number of labels to describe
emotion. Therefore, we need to incorporate a more transparent, as well as
continuous, representation that more closely matches our conception of what
emotions are or, at least, how they are expressed and perceived.

Activation-emotion space (Whissel, 1989) isarepresentation that isboth simple
and capabl e of capturing awide range of significant issuesin emotion (Cowieet
al., 2001). Perceivedfull-blown emotionsarenot evenly distributedinthisspace;
instead, they tend to form a roughly circular pattern. From that and related
evidence, Plutchik (1980) shows that there is a circular structure inherent in
emotionality. In this framework, emotional strength can be measured as the
distance from the origin to a given point in activation-evaluation space. The
concept of afull-blown emotion can then be translated roughly as a state where
emotional strength has passed a certain limit. A related extension isto think of
primary or basic emotions as cardinal points on the periphery of an emotion
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Figure 1. The Activation-emotion space.
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circle. Plutchik hasoffered auseful formulation of that idea, the* emotionwheel”
(see Figure 1).

Activation-evaluation spaceisasurprisingly powerful device, whichisincreas-
ingly being used in computationally oriented research. However, it has to be
noted that such representations depend on collapsing the structured, high-
dimensional spaceof possibleemotional statesinto ahomogeneous space of two
dimensions. There is inevitably loss of information. Worse still, there are
different waysof making thecollapselead to substantially different results. That
is well illustrated in the fact that fear and anger are at opposite extremes in
Plutchik’s emotion wheel, but close together in Whissell’ s activation/emotion
space. Thus, extreme careisneeded to ensurethat collapsed representations are
used consistently.

MPEG-4 Based Representation

In the framework of MPEG-4 standard, parameters have been specified for
Face and Body Animation (FBA) by defining specific Face and Body nodesin
the scene graph. MPEG-4 specifies 84 feature points on the neutral face, which
provide spatial reference for FAPs definition. The FAP set contains two high-
level parameters, visemes and expressions. Most of the techniques for facial
animation are based on a well-known system for describing “all visually
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distinguishable facial movements’ called the Facial Action Coding System
(FACS) (Ekman & Friesen, 1978). FACS is an anatomically oriented coding
system, based onthe definition of “ Action Units” (AU) of afacethat causefacial
movements. An Action Unit could combine the movement of two muscles or
work in the reverse way, i.e., split into several muscle movements. The FACS
model hasinspired the derivation of facial animation and definition parameters
in the framework of MPEG-4 (Tekalp & Ostermann, 2000). In particular, the
Facial Definition Parameter (FDP) and the Facial Animation Parameter (FAP)
set were designed to allow the definition of afacial shapeand texture. These sets
eliminate the need for specifying the topology of the underlying geometry,
through FDPs, and the animation of facesreproducing expressions, emotionsand
speech pronunciation, through FAPs.

Affective Facial Expression Analysis

Thereisalong history of interest in the problem of recognizing emotion from
facial expressions (Ekman & Friesen, 1978), and extensive studies on face
perception during the last 20 years (Davis & College, 1975). The salient issues
in emotion recognition from faces are parallel in some respects to the issues
associated with voices, but divergent in others.

In the context of faces, the task has almost always been to classify examples of
archetypal emotions. That may well reflect the influence of Ekman and his
colleagues, who have argued robustly that the facial expression of emotion is
inherently categorical. More recently, morphing techniques have been used to
probe states that are intermediate between archetypal expressions. They do
reveal effects that are consistent with a degree of categorical structure in the
domain of facial expression, but they are not particularly large, and there may be
alternative ways of explaining them — notably by considering how category
terms and facial parameters map onto activation-eval uation space (Karpouzis,
Tsapatsoulis & Kollias, 2000).

Analysis of the emotional expression of ahuman face requires anumber of pre-
processing steps which attempt to detect or track the face, to locate character-
istic facial regions such as eyes, mouth and nose, to extract and follow the
movement of facial features, such as characteristic points in these regions or
model facial gestures using anatomic information about the face.

Facial features can be viewed (Ekman & Friesen, 1975) as static (such as skin
color), slowly varying (such as permanent wrinkles), or rapidly varying (such as
raising the eyebrows) with respect to time evolution. Detection of the position
and shape of the mouth, eyes and eyelids and extraction of related features are
thetargets of techniquesapplied to still imagesof humans. It has, however, been
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shown (Bassili, 1979) that facial expressionscan be moreaccurately recognized
fromimage sequences, than from singlestill images. Bassili’ sexperimentsused
point-light conditions, i.e., subjectsviewed image sequencesinwhich only white
dots on a darkened surface of the face were visible. Expressions were
recognized at above chance levels when based on image sequences, whereas
only happiness and sadness were recognized when based on still images.

Affective Gesture Analysis

The detection and interpretation of hand gestures has become an important part
of human computer interaction (MMI) in recent years (Wu & Huang, 2001).
Sometimes, asimplehand action, such as placing aperson’ shandsover hisears,
can pass on the message that he has had enough of what he is hearing. Thisis
conveyed more expressively than with any other spoken phrase.

Gesture tracking and recognition

Ingeneral, human hand motion consistsof the global hand motionandlocal finger
motion. Hand motion capturing deal swith finding the global and local motion of
hand movements. Two types of cues are often used in the localization process:
color cues (Kjeldsen & Kender, 1996) and motion cues (Freeman & Weissman,
1995). Alternatively, the fusion of color, motion and other cues, like speech or
gaze, is used (Sharma, Huang & Pavlovic, 1996).

Hand localization islocating hand regionsinimage sequences. Skin color offers
an effectiveand efficient way tofulfill thisgoal . According to therepresentation
of color distributionin certain color spaces, current techniques of skin detection
can be classified into two general approaches: nonparametric (Kjeldsen &
Kender, 1996) and parametric (Wren, Azarbayejani, Darrel & Pentland, 1997).

To capture articulate hand motion in full degree of freedom, both global hand
motion and local finger motion should be determined from video sequences.
Different methods have been taken to approach this problem. One possible
method isthe appearance-based approach, in which 2-D def ormabl e hand-shape
templates are used to track a moving hand in 2-D (Darrell, Essa & Pentland,
1996). Another possible way isthe 3-D model-based approach, which takesthe
advantages of a priori knowledge built in the 3-D models.

Meaningful gestures could be represented by both temporal hand movements
and static hand postures. Hand postures express certain concepts through hand
configurations, while temporal hand gestures represent certain actions by hand
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movements. Sometimes, hand postures act as special transition statesin tempo-
ral gestures and supply acue to segment and recognize temporal hand gestures.

In certainapplications, continuousgesturerecognitionisrequired and, asaresult,
the temporal aspect of gestures must be investigated. Some temporal gestures
are specific or simple and could be captured by low-detail dynamic models.
However, many high detail activities have to be represented by more complex
gesture semantics, so modeling thelow-level dynamicsisinsufficient. TheHMM
(Hidden Markov Model) technique (Bregler, 1997) anditsvariations (Darrell &
Pentland, 1996) are often employed in modeling, learning, and recognition of
temporal signals. Because many temporal gestures involve motion trajectories
and hand postures, they are more complex than speech signals. Finding asuitable
approach to model hand gesturesis still an open research problem.

Facial Expression Analysis

Facial Features Relevant to Expression Analysis

Facial analysisincludes a number of processing steps that attempt to detect or
track the face, to locate characteristic facial regions such as eyes, mouth and
nose, to extract and follow the movement of facial features, such as character-
istic pointsintheseregionsor model facial gestures using anatomic information
about the face.

Although FAPs provide all the necessary elements for MPEG-4 compatible
animation, they cannot bedirectly used for theanalysisof expressionsfromvideo
sequences, due to the absence of a clear quantitative definition framework. In
order to measure FAPs in real image sequences, we have to define a mapping
between them and the movement of specific FDP feature points (FPs), which
correspond to salient points on the human face.

Table 1 provides the quantitative modeling of FAPs that we have implemented
using the features labeled as f. (i=1..15) (Karpouzis, Tsapatsoulis & Kollias,
2000). Thisfeature set employsfeature pointsthat liein the facial areaand can
be automatically detected and tracked. It consists of distances, noted as s(x,y),
between protuberant points, x and y, corresponding to the Feature Points shown
inFigure2. Someof these pointsare constant during expressionsand can be used
as reference points. Distances between these points are used for normalization
purposes (Raouzaiou, Tsapatsoulis, Karpouzis & Kollias, 2002).
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Table 1. Quantitative FAP modeling: (1) s(x,y) is the Euclidean distance

between the FPs; (2) D, .= 'Efers to the distance D, when the face is in

its neutral pOSItI on.

FAP name Feature for the description Utilized feature
squeeze |_eyebrow (Fz7) D;=5(4.5,3.11) f1= DineutraL —D1
squeeze r_eyebrow (Fsg) D,=5(4.6,3.8) fo= Daoneutral —D2
lower_t_midlip (Fs) D3;=5(9.3,8.1) fa= D3 -Da.neuTrAL
raise_b_midlip (Fs) D,=5(9.3,8.2) f4= DaneutraL —Da
raise_|_|_eyebrow (Fs;) Ds=5(4.1,3.11) fs= Ds —Ds.nEuTRAL
raise_r_|_eyebrow (Fz,) Ds=5(4.2,3.8) fe= D6 —Ds-neUTRAL
raise_|_o_eyebrow (Fzs) D;,=5(4.5,3.7) f7= D7 —D7.neuTraL
raise r_o_eyebrow (Fs) Dg=5(4.6,3.12) fe= Dg —Dg.neuTRAL
raise_|_m_eyebrow (F3) Dy=5(4.3,3.7) fo= Dg —Dg.nEUTRAL
raise_r_m_eyebrow (Fs) Dio=5(4.4,3.12) f10= D10 —Dio-nEuTRAL
open_jaw (F3) D1;=5(8.1,8.2) f11= D11 —D11-NeuTRAL
C(l:l%sseégl__liyeslé?d( '(:Il:gz)l)_ D1= 3(3-1,3-3) f12= D12 —DianeuTraL
o B T i () Dis=5(3.23.4) fy5- Das Disneuren
stretch_|_cornerlip (Fe)
(Strsetf.ce?a!]:?iggfgéﬂTg)(( |'::75)3 ) - D1,=5(8.4,8.3) f14= D14 —DianeuTraL
(stretch_r_cornerlip 0)(Fs4)
Sqﬁzeee_zle__iy_e:;gbv:évssa):i;\lD D15=5(4.6,4.5) fi5= Dis.neutral - Dis

Figure 2. FDP feature points (adapted from (Tekalp & Ostermann, 2000)).
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Facial Feature Extraction

Thefacial feature extraction scheme used in the system proposed in this chapter
is based on a hierarchical, robust scheme, coping with large variations in the
appearance of diverse subjects, aswell asthe same subject in variousinstances
withinreal video sequences(Votsis, Drosopoulos& Kollias, 2003). Softapriori
assumptions are made on the pose of the face or the general location of the
featuresinit. Gradual revelation of information concerning thefaceissupported
under the scope of optimization in each step of the hierarchical scheme,
producing a posteriori knowledge about it and leading to a step-by-step
visualization of the featuresin search.

Face detection is performed first through detection of skin segments or blobs,
merging them based on the probability of their belonging to afacial area, and
identification of the most salient skin color blob or segment. Following this,
primary facial features, such as eyes, mouth and nose, are dealt with as major
discontinuities on the segmented, arbitrarily rotated face. In thefirst step of the
method, the system performs an optimized segmentation procedure. Theinitial
estimates of the segments, al so call ed seeds, are approximated through min-max
analysisand refined through the maximization of aconditional likelihood func-
tion. Enhancement is needed so that closed objects will occur and part of the
artifactswill beremoved. Seed growingisachieved through expansion, utilizing
chromatic and value information of the input image. The enhanced seeds form
an object set, which revealsthein-planefacial rotation through the use of active
contoursapplied on all objectsof the set, whichisrestricted to afiner set, where
the features and feature points are finally labeled according to an error
minimizationcriterion.

Experimental Results

Figure 3 showsacharacteristic frame from the “ hands over the head” sequence.
After skin detection and segmentation, the primary facial features are shownin
Figure4. Figure5 showstheinitial detected blobs, whichincludefaceand mouth.
Figure 6 showsthe estimates of the eyebrow and nose positions. Figure 7 shows
the initial neutral image used to calculate the FP distances. In Figure 8 the
horizontal axis indicates the FAP number, while the vertical axis shows the
corresponding FAP values estimated through the features stated in the second
column of Table 1.
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Figure3. Aframefrom  Figure 4. Detected Figure 5. The apex of
the original sequence. primary facial features. an expression.

Figure 6. Detected Figure 7. A neutral
facial features. expression.

Figure 8. Estimated FAP values for Figure 6.
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Gesture Analysis

Hand Detection and Tracking

In order to extract emotion-related features through hand movement, we
implemented a hand-tracking system. Emphasis was on implementing a near
real-time, yet robust enough system for our purposes. The general process
involves the creation of moving skin masks, namely skin color areas that are
tracked between subsequent frames. By tracking the centroid of those skin
masks, we produce an estimate of the user’s movements.

Inorder toimplement acomputationally light system, our architecture (Figure 9)
takesinto account a priori knowledge related to the expected characteristics of
theinput image. Sincethe context is MM applications, we expect to | ocate the
head in the middle areaof the upper half of theframe and the hand segments near
the respective lower corners. In addition to this, we concentrate on the motion
of hand segments, giventhat they arethe end effectors of thehand and arm chain
and, thus, the most expressive object in tactile operations.

For each frame, asin the face detection process, a skin color probability matrix
iscomputed by cal cul ating thejoint probability of the Cr/Cbimagevalues(Figure
10). The skin color mask isthen obtained from the skin probability matrix using
thresholding (Figure 11). Possible moving areas are found by thresholding the
difference pixels between the current frame and the next, resulting in the
possible-motion mask (Figure 18). Thismask doesnot contain information about
the direction or the magnitude of the movement, but is only indicative of the
motion and isused to accel erate the algorithm by concentrating tracking only in
moving image areas. Both color (Figure 11) and motion (Figure 18) masks

Figure 9. Abstract architecture of the hand tracking module.
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contain alarge number of small objects due to the presence of noise and objects
with color similar to the skin. To overcome this, morphological filtering is
employed on both masksto remove small objects. All described morphol ogical
operationsare carried out with adisk-structuring element with aradius of 1% of
the image width. The distance transform of the color mask is first calculated
(Figure 12) and only objects above the desired size are retained (Figure 13).
These objects are used as markers for the morphological reconstruction of the
initial color mask. The color mask is then closed to provide better centroid
calculation.

The moving skin mask (msm) is then created by fusing the processed skin and
motion masks (sm, mm), through the morphol ogical reconstruction of the color
mask using the motion mask asmarker. Theresult of thisprocess, after excluding
the head object, isshown in Figure 19. The moving skin mask consists of many
large connected areas. For the next frame, a new moving skin mask is created,
and a one-to-one object correspondence is performed. Object correspondence
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Figure 16. Skin Figure 17. Initial Figure 18: Initial

color probability color mask created motion mask (after

for the input image. with skin detection. pixel difference
thresholded to 10% of
max.).

Figure 19. Moving Figure 20. Tracking Figure 21. Tracking
hand segments after of one hand object of both hand objects
mor phol ogical in the “lift of the in the “clapping”
reconstruction. hand” sequence. sequence.

3
PAN o o

between two frames is performed on the color mask and is based on object
centroid distance for objects of similar (at |east 50%) area (Figure 20). In these
figures, crosses represent the position of the centroid of the detected right hand
of the user, while circles correspond to the left hand. In the case of hand object
merging and splitting, e.g., in the case of clapping, we establish anew matching
of thel eft-most candidate object to the user’ sright hand and theright-most obj ect
to the left hand (Figure 21).

Following object matching inthe subsequent moving skin masks, the mask flow
is computed, i.e., a vector for each frame depicting the motion direction and
magnitude of the frame's objects. The described algorithm is lightweight,
allowing arate of around 12 fps on ausual PC during our experiments, whichis
enough for continuous gesture tracking. The object correspondence heuristic
makesit possibletoindividually track the hand segmentscorrectly, at | east during
usual meaningful gesture sequences. In addition, the fusion of color and motion
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information eliminates any background noise or artifacts, thus reinforcing the
robustness of the proposed approach.

Gesture Classification Using HMMs

Figure 22 shows the architecture of the gesture classification subsystem. Head
and hand segmentation and tracking have been described in previous sections,
while the remaining blocks of this architecture are described in the following

paragraphs.

Figure 22. A general framework for gesture classification through HMMs.

Video Sequence

Head & Hand Head & Hand
—_— P

Segmentation Tracking

Gesture Classes
| HMM Classifier <

Feature Vector
Formation

TheHMM classifier

In Table 2 we present the utilized features that feed (as sequences of vectors)
the HMM classifier, as well as the output classes of the HMM classifier.

Table 2: a) Features (inputs to HMM) and b) Gesture classes (outputs of
HMM).

Xih = Xrhy Xt =Xy Xt =Xin, Yin= Yo, Y=Y, Y -Yin

where Ci=(Xt, Y¢) are the coordinates of the head centroid,

Features ] ]
Cih=(Xrh, Ym) and Cin=(Xin, Yin) are the coordinates of the right

and left hand centroids respectively

hand clapping — high frequency, hand clapping — low frequency
Gesture lift of the hand — low speed, lift of the hand — high speed
Classes hands over the head — gesture, hands over the head — posture
italianate gestures
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A general diagram of the HMM classifier isshown in Figure 23. The recognizer
consists of M different HMM s corresponding to the model ed gesture classes. In
our case, M=7 asit canbeseenin Table2. Weusefirst order left-to-right model s
consisting of avarying number (for each oneof theHMMs) of internal statesG, . that
havebeenidentified through the learning process. For example, thethird H MM,
which recognizes low speed on hand lift, consists of only three states G, , G,,
and G,,. More complex gesture classes, like the hand clapping, require as
much aseight statesto beefficiently model ed by the corresponding HM M. Some
characteristics of our HMM implementation are presented below.

*  The output probability for any state G, j (k corresponds to the id of the
HMM while j refers to the id of the state within a particular HMM) is
obtai ned by acontinuousprobability density function (pdf). Thischoicehas
been made in order to decrease the amount of training data. In the discrete
case, the size of the code book should be large enough to reduce quantiza-
tion error and, therefore, a large amount of training data is needed to
estimatethe output probability. One problem with the continuous pdf isthe
proper selection of theinitial values of density’ s parameters so asto avoid
convergencein alocal minimum.

*  The output pdf of state G, is approximated using a multivariate normal
distibutionmodel,i.e.:

exp{_%(oi ~ti)) " Ciy (O — i )}

bk,j(oi): 5 1 (1)
(2r) 2 '|Ck,j|2

where O, isi-th observation (input feature vector), 198 is the mean vector
of state G , C, |s the respective covariance matrix and K is the number
of componentsm O, (inour case K=6). Initial values for 19 and C, ,were
obtained off-lineby u3| ng statistical means. Re-estimation |sexecuted using
avariant of the Baum-Welch procedure to account for vectors (such as p, J.)
and matrices (such as C, ].)

*  Transition probabilitiesa, . between statesG,  and G,  are computed by
using the cumulative probablllty of b, (O) glves the estlmatlon of the
transition probability,i.e., & m =1- anm(o ) . Notethat, sincetheHMM is
assumed to operatein aleft-to-right mode, a =0, n<m,a,  =1-a _ atall
times.
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e Thematch score of feature vector sequence O = 0,0,..0; giventhe model
An(A B ,) (M=1,2,...,M) is calculated as follows:

0  We compute the best state sequence Q" given the observation se-
guence O, using Viterbi’ salgorithm, i.e.:

= P(Q/0, A,
Q arg(;nax{ Q )} 2)

0 Thematch score of observation sequence O given the state sequence
Q" isthefollowing quantity:

P =P(0/Q",Ay,) (3)

It should be mentioned here that the final block of the architecture corresponds
to a hard decision system, i.e., it selects the best-matched gesture class.
However, when gesture classification is used to support the facial expression
analysis process, the probabilities of the distinct HMMs should be used instead
(soft decision system). In this case, since the HMMswork independently, their
outputs do not sum up to one.

Figure 23. Block diagram of the HMM classifier.
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—
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Experimental Results

In the first part of our experiments, the efficiency of the features used to
discriminate the various gesture classesisillustrated (Figure 24 to Figure 27).
Thefirst column shows a characteristic frame of each sequence and the tracked
centroids of the head and left and right hand, while the remaining two columns
show the evolution of the features described in thefirst row of Table 2, i.e., the
difference of the horizontal and vertical coordinates of the head and hand
segments. In the case of the first sequence, the gesture is easily discriminated
sincethevertical position of the hand segments almost matchesthat of the head,
whileintheclosing frame of the sequencethethreeobjectsoverlap. Overlapping
is crucial to indicate that two objects are in contact during some point of the
gesture, in order to separate this sequence from, e.g., the “lift of the hand”
gesture. Likewise, during clapping, the distance between thetwo hand segments
iszeroed periodically, with thelength of thein-between time segmentsproviding
a measure of frequency, while during the “italianate” gesture the horizontal
distance of the two hands follows a repetitive, sinusoidal pattern.

Figure 24. Hands over the head.

(a) (b) (c)

Figure 25. Italianate gesture.

(b) (c)
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Figure 26. Hand clapping.

=

(a) (b) (c)

Figure 27. Lift of the hand.
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Experimentsfor testing the recognizing performance of the proposed algorithm
were also carried out. Gesture sequences of three mal e subjects, with maximum
duration of three seconds, were captured by atypical web-camera at a rate of
10 frames per second. For each one of the gesture classes, 15 sequences were
acquired: three were used for the initialization of the HMM parameters, seven
for training and parameter re-estimation and five for testing. Each one of the
training sequences consisted of approximately 15 frames. The sel ection of these
frames was performed off-line so as to create characteristic examples of the
gesture classes. Testing sequences were sub-sampled at a rate of five frames
per second so as to enable substantial motion to occur. An overall recognition
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Table 3. Gesture classification results.

cavecs |5 [0 [ [ [7 ["]
pmicmmretov | 5 | o | o0 |0 | 0| 0|
scmme s |0 |0 | o |0 | o | 0| 3
;gé;jf (tlr_‘eH'_*Lag)d"'OW 0 0 5 0 0 0 0
;gé;jf (tlr_‘eHHF"l"g;j High | 0 0 5 0 0 0
o ietes |5 | o | o | o | 5 | 0| o
meotmred | o | o | o | o | 0 | 5 | o
Italianate Gestures (1G) 0 1 0 0 0 0 4
C'assmgj;i)o” Rate | 100 | 8 | 100 | 100 | 100 | 100 | 80

rate of 94.3% was achieved. The experimental results are shown in the
confusion matrix (Table 3).

From the results summarized in Table 3, we observe a mutual misclassification
between “Italianate Gestures” (IG) and “Hand Clapping — High Frequency”
(HC - HF). Thisismainly due to the variations on “Italianate Gestures” across
differentindividuals. Thus, trainingthe HMM classifier on apersonalized basis
is anticipated to improve the discrimination between these two classes.

Multimodal Affective Analysis

Facial Expression Analysis Subsystem

The facial expression analysis subsystem is the main part of the presented
system. Gestures are utilized to support the outcome of this subsystem.
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L et usconsider asinput to the emotion analysis sub-system a 15-element length
feature vector f that corresponds to the 15 features f, shown in Table 1. The
particular valuesof T canberendered to FAPvaluesas showninthe sametable
resulting in an input vector G . The elementsof G express the observed values
of the correspondingly involved FAPs.

Expression profiles are also used to capture variations of FAPs (Raouzaiou,
Tsapatsoulis, Karpouzis & Kollias, 2002). For example, the range of variations
of FAPs for the expression “surprise” is shown in Table 4.

Let X{ betherange of variation of FAPF, involved in thek-th profile R* of
emotioni.If ¢ and s arethemiddlepointandlengthof interval X respec-
tively, thenwe describeafuzzy class A for F,, using the membership function
1 shownin Figure 28. Let also A% bethe set of classes A® that correspond
to profile p® ; the beliefs p® and b, that an observed, through the vector G,
facial state correspondsto profile p® and emotioni respectively, are computed
throughthefollowing equations:

O o)

p N _ ()
i and b =max(p™), (4)

k 3
A(‘j)EA(i,j)

Table 4. Profiles for the archetypal emotion surprise.

| Fae [569,1201], Fse [340,746], Foe [-121,-43], Fse [-121,-43], Froe [170,337],
Surprise | Fyoe [171,333], For€ [170,337], Fape [171,333], For€ [121,327], Fape [114,308],
(PL) | Fase [80,208], Fase [80,204], Fase [23,85], Fase [23,85], Fsa€ [-121,-43],

F54€ ['121, '43]

Fse [1150,1252], Fse [-792,-700], Fse [-141,-101], Fye [-141,-101], Fio€ [-
530,'470], F]_]_E [-530,'470], Flge [-350,'324], one [-346,'320], F21€ ['350,'
324], Fpoe [-346,-320], Far€ [314,340], Faoe [295,321], Fse [195,221],

Fas€ [191,217], Fase [72,98], Fase [73,99], Fose [-141,-101], Fsse [-141,-101]

Fa€ [834,936], Fse [-589,-497], Fe [-102,-62], Fr€ [-102,-62], Froe [-380,-
320], Flle ['380,‘320], Flge ['267,'241], F20€ [‘265,‘239], F21€ [‘267,'241],
Fope [-265,-239], Faye [211,237], Fape [198,224], Faae [131,157],

Faqe [129,155], Fase [41,67], Fase [42,68]

Fae [523,615], Fse [-386,-294], Foe [-63,-23], Fre [-63,-23], Fioe [-230,-170],
F11€ [-230,-170], Fioe [-158,-184], Fyoe [-158,-184], Fy € [-158,-184], Fxe [-
158,'184], F31€ [108,134], F32€ [101,127], F33€ [67,93], F34€ [67,93],

Fase [10,36], Fae€ [11,37]

P

P

P
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Figure 28. The form of membership functions.

A

i

f— s — oy e— s —f

where r% = max{g, n A%} expressestherelevance % of thei-th element of the
input feature vector with respect to class A" . Actually g=A(G)={9,,9,.-.} is
thefuzzifiedinput vector resulting from asingleton fuzzification procedure (Klir
& Yuan, 1995).

Thevariousemotion profiles correspond to thefuzzy intersection of several sets
and are implemented through a 7-norm of the form t(a,b)=a-b. Similarly the
belief that an observed feature vector correspondsto aparticular emotion results
from afuzzy union of several setsthrough an o-normwhich isimplemented as
u(a,b)=max(a,b).

Figure 29. Facial expression analysis interface.
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An efficient implementation of the emotion analysis system has been devel oped
in the framework of the IST ERMIS project (www.image.ntua.gr/ermis). In the
system interface shown in Figure 29, one can observe an example of the
calculated FP distances, the profiles selected by the facial expression analysis
subsystem and the recognized emotion (“surprise”).

Affective Gesture Analysis Subsystem

Gestures are utilized to support the outcome of the facial expression analysis
subsystem, since in most cases they are too ambiguous to indicate a particular
emotion. However, inagiven context of interaction, somegesturesare obviously
associated with a particular expression — e.g., hand clapping of high fre-
guency expresses joy, satisfaction — while others can provide indications for
thekind of theemotion expressed by theuser. In particular, quantitative features
derived from hand tracking, like speed and amplitude of motion, fortify the
position of an observed emotion; for example, satisfaction turnsto joy or even
to exhilaration, as the speed and amplitude of clapping increases.

Aswasmentioned inthesection“Gestureanalysis,” theposition of thecentroids
of the head and the hands over time formsthe feature vector sequence that feeds
an HMM classifier whose outputs corresponds to a particular gesture class.
Table5 below showsthe correl ation between some detectabl e gestures with the
six archetypal expressions.

Given a particular context of interaction, gesture classes corresponding to the
same emotional are combined in a “logical OR” form. Table 5 shows that a
particular gesture may correspond to more than one gesture class carrying

Table 5. Correlation between gestures and emotional states.

Emotion Gesture Class
Joy Hand clapping-high frequency
Sadness Hands over the head-posture
Anger Lift of the hand- high speed, italianate gestures
Fear Hands over the head-gesture, italianate gestures
Disgust | Lift of the hand- low speed, hand clapping-low frequency
Surprise Hands over the head-gesture
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different affective meaning. For example, if the examined gesture is clapping,
detection of high frequency indicatesjoy, but a clapping of low frequency may
express irony and can reinforce a possible detection of the facial expression
disgust.

In practice, the gesture class probabilities derived by the HMM classifier are
transformed to emotional stateindicatorsby usingtheinformation of Tableb. Let
El, betheemotional indicator of emotional statek (k € {1,2,3,4,5,6} corresponds
to one of the emotional states presented in Table 5 in the order of appearance,

i.e., 1->Joy, 6->Surprise), GCS= {gc,, gc,, ..., gc,} bethe set of gesture classes
recognized by the HMM Classifier (N=7), GCS‘< GCS be the set of gesture
classesrelated withtheemotional statek, and p(gc,) bethe probability of gesture

class gc, obtained from the HMM Classifier. The EI(k) is computed using the
following equation:

Ely = gq”;géK{ gci} (5)

The Overall Decision System

Inthefinal step of the proposed system, thefacial expression analysissubsystem
and the affective gesture analysis subsystem are integrated, as shown in Figure
30, into a system which provides as aresult the possible emotions of the user,
each accompanied by a degree of belief.

Figure 30. Block diagram of the proposed scheme.

e
Expression
Profiles
i i - 9 Facial
Facial Point !
Detection Expression
Decision System

Overall Decision
System

recognised
emotion

propabilities of gesture classes

Affective
Gesture Decision
System

< =
Gesture
Profiles

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

HMM




198 Karpouzis, Raouzaiou, Drosopoulos, loannou, Balomenos, Tsapatsoulis & Kollias

Althoughfaceisconsidered the main“demonstrator” of user’semotion (Ekman
& Friesen, 1975), the recognition of the accompanying gesture increases the
confidence of the result of the facial expression subsystem. In the current
implementation, the two subsystems are combined as aweighted sum: Let b, be
the degree of belief that the observed sequence presents the k-th emotional
state, obtained from the facial expression analysis subsystem, and El, be the
corresponding emotional state indicator, obtained from the affective gesture
analysis subsystem, then the overall degree of belief d, is given by:

where the weights w, and w, are used to account for the reliability of the two
subsystems as far as the emotional state estimation is concerned. In this
implementationweusew, =0.75andw, =0.25. Theseval uesenablethe affective
gesture analysis subsystem to beimportant in cases where the facial expression
analysi s subsystem producesambiguousresults, whileat the sametimeleavethe
latter subsystem to be the main contributing part in the overall decision system.

For the input sequence shown in Figure 3, the affective gesture analysis
subsystem consistently provided a“ surprise” selection. Thiswasused tofortify
the output of the facial analysis subsystem, which was around 85%.

Conclusions — Future Work

In this chapter, we described a holistic approach to emotion modeling and
analysisandtheir applicationsin MM applications. Beginning fromasymbolic
representation of human emotions found in this context, based on their expres-
sion via facial expressions and hand gestures, we show that it is possible to
transform quantitative feature information from video sequences to an estima-
tion of a user’'s emotional state. This transformation is based on a fuzzy rules
architecturethat takesinto account knowledge of emotion representation andthe
intrinsic characteristics of human expression. Input to these rules consists of
features extracted and tracked from theinput data, i.e., facial features and hand
movement. Whilethesefeatures can be used for simplerepresentati on purposes,
e.g., animation or task-based interfacing, our approach is closer to the target of
affective computing. Thus, they are utilized to provide feedback on the user’'s
emotional state whilein front of a computer.

Future work in the affective modeling area includes the enrichment of the
gesture vocabulary with more affective gestures and feature-based descrip-
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tions. With respect to the recognition part, more sophisticated methods of
combination of detected expressions and gestures, mainly through arule-based
system, are currently under investigation, along with algorithms that take into
account general body posture information.
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Chapter VI

Techniquesfor
Face M otion &
EXxpression Analysison
M onocular | mages
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Institut Eurécom, France

Jean-Luc Dugelay
Institut Eurécom, France

Abstract

This chapter presents a state-of-the-art compilation on facial motion and
expression analysis. The core of the chapter includes the description and
comparison of methods currently being developed and tested to generate
face animation from monocular static images and/or video sequences.
These methods are categorized into three major groups: “those that
retrieve emotion information,” “those that obtain parameters related to the
Face Animation synthesis used,” and “ those that use explicit face synthesis
during the image analysis.” A general overview about the processing
fundamentals involved in facial analysis is also provided. Readers will
have a clear understanding of the ongoing research performed in the field
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of facial expression and motion analysis on monocular images by easily
finding the right references to the detailed description of all mentioned
methods.

I ntroduction

Researchers from the Computer Vision, Computer Graphics and Image Pro-
cessing communities have been studying the problems associated with the
analysis and synthesis of faces in motion for more than 20 years. The analysis
and synthesi stechniquesbeing devel oped can beuseful for thedefinition of low-
rate bit image compression algorithms (model-based coding), new cinema
technologies, as well as for the deployment of virtual reality applications,
videoconferencing, etc. As computers evolve towards becoming more human-
oriented machines, human-computer interfaces, behavior-learning robots and
disable-adapted computer environmentswill use face expression analysisto be
able to react to human action. The analysis of motion and expression from
monocular (single) images is widely investigated because non-stereoscopic
static images and videos are the most affordable and extensively used visual
media (i.e., webcams).

This chapter reviews current techniques for the analysis of single images to
derive face animation. These methods can be classified based upon different
criteria

1. thenatureof theanalysis: global versusfeature-based, real-time oriented;

2. thecomplexity of theinformationretrieved: general expression generation
versus specific face motion;

3. thetoolsutilized during the analysis: for instance, the cooperation of a3D
head model;

4. the degree of realism obtained from the Face Animation (FA) synthesis;
and

5. the environmental conditions during the analysis: controlled or uniform
lighting, head-pose dependence or not.

Table 1 depicts a rough evaluation of the techniques that we review in this
chapter by comparing these criteria, considering the data provided by the
referenced articles, books and other bibliographical material, as well as the
judgment of the authors.
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Theanalysisalgorithms presented include those most rel ated to face motion and
expression understanding. Specific image processing can also be used to locate
faces on images, for face recognition intended for biometrics, for general head
tracking and pose deduction, aswell as for face animation synthesis. For those
readers acquainted mainly with 3D and graphics, we provide abrief overview of
the most common image processing methods and mathematical toolsinvolved,
pointing to some sourcesfor the algorithmic detail sthat will not be explained or
will be assumed to be known during the description of the state-of-the—art
approaches.

The core of the chapter includes the description of the methods currently being
developed and tested to generate face animation from real face images. The
techniques herein discussed analyze static images and/or video sequences to
obtain general face expressions or explicit face motion parameters. We have
categorized thesemethodsinthreegroups: “thosethat retrieveemotioninforma-
tion,” “those that obtain parameters related to the Face Animation synthesis
used,” and “those that use explicit face synthesis during image analysis.”

Backgr ound

Many video encoders do motion analysis over video sequences to search for
motion information that will help compression. The concept of motion vectors,
first conceived at the time of the development of the first video coding
techniques, is intimately related to motion analysis. These first analysis tech-
niques help to regenerate video sequencesasthe exact or approximate reproduc-
tion of the original frames by using motion compensation from neighboring
pictures. They are able to compensate for, but not to understand the actions of
the objects moving on the video and, therefore, they cannot restore the object’ s
movements from a different orientation. Faces play an essential role in human
communication. Consequently, they have been the first objects whose motion
has been studied in order to recreate animation on synthesized models or to
interpret motion for a posteriori use.

Synthetic faces are classified into two major groups. avatars and clones.
Generally, avatars are a rough and symbolic representation of the person, and
their animation is speaker independent because it follows generic rules disre-
garding the individual that they personify. Clones are more realistic and their
animation takes into account the nature of the person and his real movements.
Whether we want to animate avatars or clones, we face a great challenge: the
automatic generation of face animation data. Manually generated animation has
long been used to create completely virtual characters and has al so been applied
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to animate avatars. Neverthel ess, many computer applicationsrequirereal-time
and easy-to-use face animation parameter generation, which meansthat thefirst
sol utions devel oped using motion capture equi pment proveto betoo tediousfor
many practical purposes. Most applications utilizing Talking Heads aim at
telecommunication uses. In such a context, real-time capabilities and low
computing cost for both analysis and synthesis are required. Current trendsin
research tend to use speech analysis or synthesized speech from text asasource
of real-time animation data. Although these techniques are strong enough to
generate parametersto be used by avatars, they cannot providerealistic datafor
face animation.

To obtain realistic and natural 3D Face Animation (FA), we need to study and
understand the complete human face behavior and those image-based methods
that are cost-flexible techniques for face movement understanding. In this
chapter we present the latest and most effective systems to analyze face
expression over monocular images to generate facial animation to restitute
speaker-dependent face motion on 3D face models. Figure 1 represents the
basic flowchart for systems dedicated to facial expression and motion analysis
on monocular images. Video or still images are first analyzed to detect, control
and deduce the face location on the image and the environmental conditions
under which the analysis will be made (head pose, lighting conditions, face
occlusions, etc.). Then, someimage motion and expression analysis algorithms
extract specific data, which is finally interpreted to generate face motion
synthesis.

Figure 1. Image input is analyzed in the search for the face general
characteristics: global motion, lighting, etc. At this point, some image
processing is performed to obtain useful data that can be interpreted
afterwards to obtain face animation synthesis.

Video PRE-MOTION FACE MOTION MOTION Face
Image- ANALYSIS IMAGE INTERPRETATION Synthesis
ANALYSIS

. Camera calibration: Optical flow: : Face feature

¢ Illumination I iPCA; - modeling
analysis;Head © Snakes; Parameter
detection; : Segmentation; estimation.
i Pose - Deformable
determination. _. models.
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Each of the modules may be more or less complex depending on the purpose of
theanalysis(i.e., fromthe understanding of general behavior to exact 3D-motion
extraction). If the analysisisintended for later face expression animation, the
type of FA synthesis often determines the methodol ogy used during expression
analysis. Some systems may not go through either the first or the last stages or
some others may blend these stages in the main motion & expression image
analysis. Systems lacking the pre-motion analysis step are most likely to be
limited by environmental constraints, like special lighting conditions or pre-
determined head pose. Those systems that do not perform motion interpreta-
tion do not focus on delivering any information to perform face animation
synthesis afterwards. A system that isthought to analyze video to generate face
animation datain arobust and efficient way needsto devel op all three modules.
Theapproaches currently under research and that will be exposed in thischapter
clearly perform the facial motion & expression image analysis and to some
extent the motion inter pretation to be ableto animate 3D models. Neverthel ess,
many of them fail to have a strong pre-motion analysis step to ensure some
robustness during the subsequent analysis.

Processing Fundamentals

Pre-Processing Techniques

The conditions under which the user may be recorded are susceptible to change
from one determined moment to the next one. Some changes may comefrom the
hardware equipment used, for instance, the camera, the lighting environment,
etc. Furthermore, although only one camerais used, we cannot presuppose that
the speaker’ s head will remain motionless and looking straight into the camera
at any time. Therefore, pre-processi ng techniques must help to homogenize the
analysis conditions before studying non-rigid face motion.

Cameracalibration

Accurate motionretrieval ishighly dependent on the precision of theimage data
weanalyze. Imagesrecorded by acameraundergo different visual deformations
dueto the nature of the acquisition material. Camera calibration can be seen as
the starting point of a precise analysis.
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If we want to express motion in real space, we must relate the motion measured
in terms of pixel coordinates to the real/virtual world coordinates. That is, we
need to relate the world reference frame to the image reference frame. Simply
knowing the pixel separation in an image does not allow us to determine the
distance of those pointsin thereal world. We must derive some equationsto link
the world reference frame to the image reference frame in order to find the
relationship between the coordinates of pointsin 3D-space and the coordinates
of the points in the image. We introduce the camera reference frame because
there is no direct relation between the previously mentioned reference frames.
Then, wecanfind an equationlinking the camerareferenceframewith theimage
referenceframe (Linkl), and another equation linking theworld referenceframe
with the camera reference frame (LinkE). Identifying Linkl and LinkE is
equivalent to finding the camera’ s characteristics, also known as the camera’' s
extrinsic and intrinsic parameters.

Many calibration techniques exist that have been reported in the past two
decades. The developed methods can be roughly classified into two groups:
photogrammetic calibration and self-calibration. We refer the reader to Zhang
(2000) and Luong and Faugeras (1997) to obtain examples and more details
about these approaches.

[lumination analysis and compensation

Other unknown parameters during face analysis are the lighting characteristics
of the environment in which the user isbeing filmed. The number, origin, nature
and intensity of the light sources of the scene can significantly transform the
appearance of aface. Facereflectanceisnot uniform all over the face and, thus,
isvery difficult to model.

There are two major categories of reflected light:

1. Diffuse Reradiation (scattering): this occurs when the incident light pen-
etrates the surface and is reflected equally in all directions.

2. Specular Reflection: light does not penetrate the object, but it is instead
directly reflected from its outer surface.

Theintensity of the pixelsthat we get from the image of the faceisthe result of
the light from the recorded scene (i.e., the face) scattered towards the camera
lens. The nature of the reflection phenomenon requires the knowledge of some
vector magnitudes (Figure 2):
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Figure 2. The reflected light that reaches the camera lens depends on the
direction of the normal to the surface (7 ), the vector from the studied point
to the light source (5 ) and the vector from the point to the camera lens (3 ).
9=0 for perfectly specular reflections. ¢ is the angular difference
between the reflected beam and the camera per spective towards the object.

# 7

¢

<!
“»|

* thenormal 7 to the surface at the point p being studied;
e thevector 3 from p to the camera; and
* thevector ; from p to the light source.

Dueto the difficulty of deducing the great number of parameters and variables,
onecommon hypothesisusually takenisto consider facesaslambertian surfaces
(only reflecting diffuselight), so asto reduce the complexity of theillumination
model. Luong, Fuaand L eclerc (2002) studied thelight conditions of facesto be
able to obtain texture images for realistic head synthesis from video sequences
under this hypothesis. Other reflectance models are also used (Debevec et al.,
2000), although they focus more on reproducing natural lighting on synthetic
surfaces than on understanding the consequences of the lighting on the surface,
itself. In most cases, the analysis of motion and expressions on faces is more
concerned with the effect of illumination on the facial surface studied than with
the overall understanding of the lighting characteristics. A fairly extended
approach to appreciatetheresult of lighting onfacesisto analyzeillumination by
trying to synthetically reproduceit on therealistic 3D-model of the user’ s head.
Phong’ s reflection model is the 3D shading model most heavily used to assign
shades to each individual pixel of the synthetic face. It is characterized by
simplifying second-order refl ections, introducing an ambient reflection term that
simulates the sparse (diffuse) reflection coming from sources whose light has
been so dispersed that it is very difficult to determine its origin. Whether the
lighting synthesisis used to compensate the image input (Eisert & Girod, 2002)
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or tolightenthe synthesi zed model usedto helptheanalysis(Vaente& Dugelay,
2001), it provesto be reasonableto control how thelighting modifiesthe aspect
of the face on the image.

Head detection and pose determination

If weintendto performrobust expression and facemotionanalysis, itisimportant
to control the location of the face on theimage plane. It isalso crucial to know
which orientation the face has with regard to the camera. The find-a-face
problemisgenerally reduced to the detection of its skin on theimage. The most
generalized methods for skin detection use a probabilistic approach where the
colorimetric characteristics of human skin are taken into account. First, a
probabilistic density function — P(rgbjskin) — isusually generated for agiven
space color (RGB, YUV, HSV, or others). P(rgb|skin) indicates which is the
probability of belonging to the skin surface. It isdifficult to create thisfunction,
aswell asto decidewhichwill bethethreshold to useto determineif the studied
pixel belongs to the skin or not. In some approaches (Jones & Rehg, 1999),
researchers study in detail the color models used and also give a probability
function for the pixelsthat do not belong to the skin — P(rgb|skin). Others, like
the one presented by Sahbi, Geman and Boujemaa (2002), perform their
detectionin different stages, giving morerefinement at each step of the process.
More complex algorithms (Garcia & Tziritas, 1999) allow regions with non-
homogeneous skin color characteristics to be found.

Determining the exact orientation of the head becomesamore complicated task.
Ingeneral, wefind two different waysto derive the head pose: either using static
methods or using dynamic approaches. Static methods search for specific
features of the face (eyes, lip corners, nostrils, etc.) on aframe-by-frame basis,
and determine the user’'s head orientation by finding the correspondences
between the projected coordinates of these features and the real world coordi-
nates. They may use template-matching techniquesto find the specific features,
as Nikolaidis and Pitas (2000) do. This method worksfine, although it requires
very accurate spotting of therelevant features. Unfortunately, thisaction hasto
be redone at each frame and it is somewhat tedious and imprecise. Another
possibility is to use 3D-data, for instance, from a generic 3D-head model, to
accurately determinethepose of thehead on theimage. Thisisthesolutiongiven
by Shimizu, Zhang, Akamatsu and Deguchi (1998).

To introduce time considerations by taking advantage of previous results,
dynamic methods have been developed. These methods perform face tracking
by analyzing video sequences as a more or less smooth sequence of frames.
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They use the pose information retrieved from one frame to analyze and derive
the pose information on the next one. One of the most extended techniques
involvesthe use of Kalman filtersto predict analytical data, aswell asthe pose
parameters themselves. We refer the reader to other research (Strém, Jebara,
Basu & Pentland, 1999; Valente & Dugelay, 2001; Cordea, E. M. Petriu,
Georganas, D. C. Petriu & Whalen, 2001) to find related algorithmic details.

I mage Processi ng Algorithms

The complexity of expression analysisisusually simplified by trying to under-
stand either the shape of some parts of the face, the location of very specific
points or the change in magnitude of some characteristic of the area analyzed,
for example, itscolor. In order to do this, several image-processing techniques
are used and tuned to work on human faces. In this section, wetry to summarize
the basics of the most common techniques utilized.

Optical flow

Thefield of displacement vectors of the objects that compose a scene cannot be
computed directly: wecanjust find the apparent local motion, also called optical
flow, between two images.

There are two major methods to estimate the optical flow: either we match
objects with no ambiguity from image to image, or we calculate the image
gradientsbetween frames. Inthefirst case, themain goal consistsin determining
in one of the studied images the group of points that can be related to their
homol oguesin the second image, thus giving out the displacement vectors. The
most difficult part of thisapproachisthe selection of the points, or regions, to be
matched. In general, the biggest disadvantage of this kind of method is that it
determines motion in adiscrete manner and motion information is only precise
for some of the pixels on the image.

The second technique, the gradient-descent method, generates a more dense
optical flow map, providing information at the pixel level. It is based on the
supposition that the intensity of a pixel (X, y, t) is constant on two consequent
frames, and that its displacement isrelatively small. In these circumstances we
verify:

—U+—Vv+—=0 (1)
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Figure 3. For the creation of the eigenfeature database, several images of
the studied features are segmented, then normalized and finally analyzed
using Principal Component techniques. Diagram courtesy of the Instituto
de Matemética e Estatistica at the Universidade de Sdo Paulo.
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where U = % and v = % arethe pixel displacements between two images. Each
point on theimage has one equation with two unknowns, uand v, whichimplies
that motion cannot be directly computed. There exist different methods that try
tosolve (1) iteratively.

A compl etebibliographical compilation of different optical flow methodscan be
found in Wiskott (2001).

Principal component analysis — Eigen-decomposition

Optical flow methods are extensively used in shape recognition, but they do not
performwell inthe presence of noise. If wewant to identify amore general class
of objects, it is convenient to take into account the probabilistic nature of the
object appearance and, thus, to work with the class distribution in a parametric
and compact way.

The Karhunen-Loéve Transform meets the requirements needed to do so. Its
base functions are the eigenvectors of the covariance matrix of the class being
modeled:
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A= XD (2)

being ¥ thecovariancematrix, A thediagonal matrix of eigenvaluesand @ the
matrix of eigenvectors. The vector base obtained is optimal in terms of
compactness (we can easily isolate vectors of low energy) and parametric (each
eigenvector is orthogonal to the others, creating a parametric eigenspace).

Elementsof oneclass, that is, avector whosedimensionisM, can berepresented
by the linear combination of the M eigenvectors obtained for this class. The
Principal Component Analysis (PCA) technique states that the same object can
be reconstructed by only combining the N<M eigenvectors of greatest energy,
also called principal components. It also says that we will minimize the error
difference when performing the approximation if the linear coefficients for the
combination are obtai ned from projecting the class vector onto the sub-space of
principal components.

This theory is only applicable to objects that can be represented by vectors.
Images have this property, therefore, this theory is easily extended to image
processing and generally used to model the variability of 2D objects on images
like, for example, faces.

Very often PCA is utilized to analyze and identify features of the face. It
introduces some restrictions. One of them is the need for one training stage
previousto the analysis, during which the base of principal component vectors,
in this case images, must be generated. It also forces all images being analyzed
to be the same size. Using PCA in face analysis has lead to the appearance of
conceptslike Eigenfaces(Turk & Pentland, 1991), utilized for facerecognition,
or Eigenfeatures (Pentland, Mohaddam & Starner, 1994) used to study more
concrete areas of faces robustly.

The book Face Image Analysis by Unsupervised Learning (Bartlett, 2001) is
a complete study of the strengths and weaknesses of methods based on
Independent Component Analysis (ICA) in contrast with PCA. It also includes
afull explanation of conceptslike Eigenactionsand describesrecent approaches
infacial image analysis.

Active contour models — Snakes

Active contour models, generally called snakes, are geometric curves that
approximatethe contoursof animage by minimizing an energy function. Snakes
are used to track moving contourswithin video sequences because they havethe
property of deforming themselvesto stick onto acontour that evolvesalong the
time.
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Figure 4. By using snakes, face and feature contours are tracked on each
frame of the sequence. Images courtesy of the Image Processing Group at
the Universitat Politécnica de Catalunya.

In general, the energy function can be decomposed into two terms, an internal
energy and an external energy:

B = Eint + Eex - 3

int

The role of the external energy is to attract the point of the snake towards the
image contours. The internal energy tries to ensure certain regularity on the
snakewhile E_ acts, from aspatial aswell asfrom atemporal perspective. Once
the energy function is defined, we use an iterative processto find its minimum.
We can understand the minimum energy point as the equilibrium position of a
dynamic system submitted to the forces derived from the energy functions.

Mathematical morphology — Edge detection & segmentation

When analyzingimagesof facesunder unconstrained conditions, classical image
filtering techniques may not berobust enoughto extract all theinformation from
them.

Mathematical morphology appeared as an alternative mathematical tool to
processanimagefromavisual perspective, instead of fromanumerical one. The
techniques for mathematical morphology are based on set-theoretic concepts
and non-linear superposition of signals and images. Morphological operations
have been applied successfully to a wide range of problems including image
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processing, analysistasks, noise suppression, feature extraction, patternrecog-
nition, etc. In Serra (1982, 1988), the authors explain in depth how to take
advantage of these techniques for the processing of images. This set of tools
gives the means to develop algorithms to efficiently detect edges and specific
areas of the face.

Deformable models

A deformable model is a group of parametric curves with which we try to
approximate the contours of an image and the behavior of the objects present on
it. Theadvantages of adeformabletemplate areitscomputational simplicity and
the few number of parameters needed to describe different shapes. Unfortu-
nately, sinceatemplateisgenerally made specifically for agiven shape, we need
to redefine the rules of parameter variation so that the model follows the right
contours. Since they have a difficult adaptation to unexpected shapes, their
biggest disadvantage is dealing with noisy images. The diversification of
solutions is well seen in the literature, where we can find as many different
modelsasarticlestreating the subject (Y uille, 1991). Some of the most common
modelsare:

. Elliptical: circles and ellipsoids can model the eyes (Holbert & Dugelay,
1995).

e Quadratic: parabolic curves are often used to model the lips (Leroy &
Herlin, 1995).

*  Splines: todevelop morecomplex models, splinesarean option. They have
already been used to characterize mouth expressions (Moses, Reynard &
Blake, 1995).

Post-Processing Techniques and Their
Related M athematical Tools

To recreate motion on synthesized 3D-models, it is necessary to relate the
analyzed information to the Facial Action Units (AUs) or Facial Animation
Parameters (FAPs). If motion is not derived heuristically from the image
processing results themselves, the derivation of motion is sometimes hel ped by
theiterativefeedback synthesisof the motion actionsonthemodel. Asexplained
by Eisert and Girod (1998), we must find some mathematical solution to tie
analysisto synthesis.
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Motion modeling of facial features

To extract motion information from specific features of the face (eyes, eye-
brows, lips, etc.), we must know the animation semantics of the FA system that
will synthesizethe motion. Deformablemodels, such assnakes, deliver informa-
tion about thefeaturein theform of the magnitudes of the parametersthat control
the analysis. It is also necessary to relate these parameters to the actions that
we must apply to the 3D-model to recreate motion and expressions. If there are
many different image-processing techniquesto analyze face features, there are
at least as many corresponding feature motion models. These motion models
translate the results into face animation parameters.

Malciu and Préteux (2001) track face features using snakes. Their snakes are
at the sametime deformable model scontaining the Facial Definition Parameters
(FDPs) defined on the MPEG-4 standard (MPEG-4, 2000). Their techniqueis
capabl e of tracking FDPsvery efficiently, but it does not give out the FAPsthat
would animate the model to generate the observed feature motion. Chou, Chang
and Chen (2001) go one step further. They present an analysis technique that
searches for the points belonging to the projection of asimple 3D-model of the
lips, also containing the FDPs. From the projected | ocation they derivethe FAPs
that operate on them to generate the studied motion. Since one FAP may act on
morethan one point belongingtotheir lip model, they use al east-square solution
to solve for the magnitudes of the FAPs involved. Goto, Kshirsagar and
Magnenat-Thalmann (1999) use asimpler approach where image processing is
reduced to the search of edges and the mapping of the obtained datais donein
termsof motioninterpretation: open mouth, close mouth, half-opened mouth, etc.
The magnitude of the motionisrelated to thelocation of the edges. They extend
this technique to eyes, developing their own eye motion model. Similarly,
eyebrows are tracked on the image and associated to model actions.

Estimators

Once facial expressions are visually modeled by some image processing
technique, we obtain a set of parameters. The mapping of these parameters onto
the corresponding face animation parametersisdone by solving for the estimator
that relates face motion parameters to analysis parameters. To establish the
mapping rel ationship theremust be atraining process. Among otherswefind the
following estimators: linear, neural networks and RBF networks. We will
describe the first two in detail.
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Linear

Letuscall } thevector of parameters obtained from theimage analysisand i
the vector of FA parametersfor the synthesis observed by 7 . The usual way to
construct the linear estimator L, which best satisfies ji=L-1 on the training
database, isto find asolution in theleast square sense. We verify that thislinear
estimator isgiven by

L=MA" (AAT)™ (4)

where M=[/i|...|fi,] and A =[%,
enating all i and ) vectorsfrom the training set.

...‘)fd] are the matrices obtained by concat-

Valente, Andrés del Valle and Dugelay (2001) compare the use of a linear
estimator against an RBF (Radial Basis Functions) network estimator. In their

experiments, ;] aretheset of the coefficients obtained from projecting animage

of the feature being analyzed (imagette) onto a PCA imagette database of the
feature recorded making different expressions under different lighting condi-

tions. @i containsthe actionsto apply on the model, inform of AUs, to generate

these different expressions. RBF networks find the relationship between a pair
of examples (input and output) of different dimensions, through the combination
of functions of simple variables whose main characteristic is that they are

continuousin g+ andradial (Poggio & Girosi, 1990).

Neural networks

Neural networks are algorithms inspired on the processing structures of the
brain. They allow computersto learn atask from examples. Neural networksare
typically organizedinlayers. Layersare made up of anumber of interconnected
“nodes,” which contain an “activation function.” (See Figure 5a.)

Most artificial neural networks, or ANNS, contain some form of learning rule
that modifiesthe weights of the connections according to theinput patternsthat
itispresented with. Themost extensively used ruleisthedeltarule. Itisutilized
in the most common class of ANNs called backpropagational neural net-
works (BPNNSs). Backpropagation is an abbreviation for the backwards propa-
gation of error.

ANNs complement image-processing techniques that need to understand
images and in analysis scenarios where some previous training is permitted. In
Tian, Kanade and Cohn (2001), we find one fine example of the help neural
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Figure 5a. Patterns are presented to the network via the “input layer,”
which communicates to one or more “hidden layers’” where the actual
processing is done via a system of weighted “ connections.” The hidden
layers then link to an “ output layer” where the answer is output, as shown
in the graphic below.

Hidden Layer

Connections

Figure 5b. Top: A typical illustration of a two state HMM. Circles represent
states with associated observation probabilities, and arrows represent
non-zero transition arcs, with associated probability. Bottom: This is an
illustration of a five state HMM. The arcs under the state circles model the
possibility that some states may be skipped.

networkscan provide. Inthisarticle, Tian et al. explain how they have devel oped
the Automatic Face Analysisto analyze facial expressions. Their system takes
as input the detailed parametric description of the face features they analyze.
They use neural networksto convert these data into AUs following the motion
semantics of the Facial Action Coding System (FACS). A similar approach,
aimed at analyzing spontaneousfacial behavior, istaken by Bartlett etal. (2001).
Their system al so uses neural networksto describe face expressionsin terms of
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AUs. These two approaches differ in the image processing techniques and
parametersthey use to describe theimage characteristicsintroduced asinput to
the neural network.

A model for motion — Hidden Markov models

By collecting datafrom real human motion, we can model behavior patterns as
statistical densities over configuration space. Different configurations have
different observation probabilities. One very simple behavior model is the
Gaussian MixtureModel (GMM), inwhichtheprobability distributionismodeled
asacollection of Gaussians. In this case the composite density is described by:

N
Zf P - Pr(OM =Kk) (5)

where P, is the observed prior probability of sub-model k. The mixture model
represents a clustering of datainto regions within the observation space. Since
human motion evolves over time, in a complex way, it is advantageous to
explicitly model temporal dependence and internal states. A hidden Markov
model isoneway to dothis, and hasbeen shownto perform quitewell recognizing
human motion. Figure 5billustratestheir graphical representation.

Hidden Markov models (HMM) are a powerful modern statistical technique. A
Markov processnot only involves probability, but al so dependson the* memory”
of the system being modeled. An HMM consists of several states. In the
formulation of HMMs, each stateis referred to individually, and thus practical
and feasible examples of these models have a small nhumber of states. In an
HMM, asystem hasanumber of statesS, ... S. The probability that the system
passes from state i to state j is called P(i, j). The states of the system are not
known, but the system does have one observabl e parameter on output, which has
m possiblevaluesfrom 1tom. For thesystemin statei, the probability that output
valuevwill beproducediscalled O(i, v). Wemust point out that it isrequired that
the transition probabilities depend on the state, not the output.

We refer the reader to the tutorial on HMMs by Rabiner (1989), where
theoretical bases are further discussed and examples of the most common
applications can be found. In Metaxas (1999), the author presents aframework
to estimate human motion (including facial movements) wherethetraditional use
of HMMsismodifiedtoensurereliablerecognition of gesture. More specifically,
Pardas and Bonafonte (2002) use an HMM to deduce the expression of faces
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onvideo sequences. Intheir work, they introduce the concept of high-level/low-
level analysis. Intheir approach, the high-level analysis structure takes asinput
the FAP produced by the low-level analysis tool and, by means of an HMM
classifier, detects the facial expression on the frame.

Fuzzy systems

Fuzzy systems are an alternative to traditional notions of set membership and
logic. The notion central to fuzzy systemsisthat true values (in fuzzy logic) or
membership values(infuzzy sets) areindicated by avalueontherange[0.0, 1.0],
with 0.0 representing the absolute Falseness and 1.0 representing absolute
Truth. Thisis a new approach to the binary set 0 (False) — 1 (True) used by
classical logic. Fuzzy systems try to gather mathematical tools to represent
natural language, where the concepts of True and False are too extreme and
intermediate or more vague interpretations are needed.

Apart from the basi ¢ operations among sets, fuzzy systemspermit the definition
of “hedges,” or modifiers of fuzzy values. These operations are provided in an
effort to maintain closetiesto natural language, and to allow for the generation
of fuzzy statements through mathematical calculations. As such, the initial
definition of hedges and operations upon them is quite a subjective process and
may vary from one application to another. Hedges mathematically model
concepts such as “very,” “somewhat,” “sort of,” and so on.

In many applications fuzzy systems appear as a complement to the image
processinginvolved; they helpinthedecision-making processneeded to eval uate
results from analyzed images. Huntsberger, Rose and Ramaka (1998) have
developed a face processing system called Fuzzy-Face that combines wavel et
pre-processing of input with afuzzy self-organizing feature map algorithm. The
wavel et-derived face space is partitioned into fuzzy sets, which are character-
ized by face exemplars and memberships values to those exemplars. The most
interesting properties for face motion analysis which this system presents are
that it improvesthetraining stage because it usesrelatively few training epochs
and that it generalizes to face images that are acquired under different lighting
conditions. Fellenz et al. (2000) propose aframework for the processing of face
image sequences and speech, using different dynamic techniques to extract
appropriate features for emotion recognition. The features are used by ahybrid
classification procedure, employing neural network techniquesand fuzzy logic,
to accumulate the evidence for the presence of an emotional facial expression
and the speaker’s voice.
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Expression Analysis Frameworks for
Facial Motion Understanding

Systems analyzing faces from monocular images are designed to give motion
information with the most suitable level of detail, depending on their final
application. Some of the most significant differences among the techniques
foundintheliterature comefromtheanimation semanticsthey utilizeto describe
faceactions. Somesystemsmay aimat providing very highlevel facemotionand
expression datain theform of emotion semantics, for instance, detectingjoy, fear
or happinesson faces. Some othersmay provide generic motion datadetermining
what the action of thefacial featuresis, for exampl e, detecting open/closed eyes.
And others could even estimate more or less accurately the 3D-motion of the
overall face, giving out very low-level face animation parameters.

Inananalysis-synthesisschemefor generating face animation, both analysisand
synthesis parts must share the same level of semantics. The more specific the
motion information given by theanalysisis, the fewer free-styleinterpretations
the FA system will have to make. To replicate the exact motion of the person
being analyzed, it is necessary to generate very detailed action information.
Otherwise, if we only generate rough data about the face actions, we will only
be able to get customized face motion if the person’s expression behavior has
previously been studied and the FA already has the specific details of the
individual.

Itisquitedifficult to classify face motion and expression analysis methods due
to the common processing characteristics that many of them share. Despite this
fact, we havetriedto group them based onthe precision of themotioninformation
generated and the importance of the role that the synthesis plays during the
analysis.

M ethods that Retrieve Emotion | nfor mation

Humans detect and interpret faces and facial expressions in a scene with little
or no effort. The systems we discuss in this section accomplish this task
automatically. The main concern of these techniquesisto classify the observed
facial expressions in terms of generic facial actions or in terms of emotion
categories and not to attempt to understand the face animation that could be
involved to synthetically reproduce them.

Y acoob has explored the use of local parameterized model s of image motion for
recognizing the non-rigid and arti culated motion of human faces. These models
provideadescription of themotionintermsof asmall number of parametersthat
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arerelated intuitively to the motion of some facial features under the influence
of expressions. Theexpression descriptionisobtained after analyzing the spatial
distribution of the motion direction field obtained from the optical flow analysis
computed at points of high gradient values of the image of the face. This
technique givesfairly good results, although the use of optical flow needs very
stablelighting conditions and very smooth movement of head motion during the
analysis. Computationally, it is also quite heavy. From the starting research
(Yacoob & Davis, 1994) to the last published results about the performance of
the system (Black & Yacoob, 1997), improvements in the tuning of the
processing have been added to make it more robust to head rotations.

Huang and Huang (1997) introduce a system developed in two parts: facial
feature extraction (for thetraining-learning of expressions) and facial expression
recognition. Thesystem appliesapoint distribution model and agray-level model
to find the facial features. Then, the position variations are described by ten
Action Parameters (APs). During the training phase, given 90 different expres-
sions, thesystem classifiesthe principal componentsof the APsintosix different
clusters. Intherecognition phase, given afacial image sequence, itidentifiesthe
facial expressionsby extracting theten APs, analyzesthe principal components,
andfinally calculatesthe AP profilecorrelation for ahigher recognitionrate. To
perform the image analysis, deformable models of the face features are fitted
onto the images. The system is only trained for faces on a frontal view.
Apparently it seems more robust to illumination conditions than the previous
approach, but they do not discuss the image processing techniques, making this
point hard to evaluate.

Pantic and Rothkrantz (2000) describe another approach, whichisthecoreof the
Integrated Systemfor Facial Expression Recognition (ISFER). Thesystemfinds
the contour of the features with several methods suited to each feature: snakes,
binarization, deformable models, etc., making it more efficient under uncon-
trolled conditions: irregular lighting, glasses, facial hair, etc. An NN architecture
of fuzzy classifiersisdesignedto analyzethe complex mouthmovements. Intheir
article, they do not present arobust solution to the non-frontal view positions.

To some extent, all systems discussed have based their description of face
actions on the Facial Action Coding System (FACS) proposed by Ekman and
Friesen (1978). The importance granted to FACS is such that two research
teams, one at the University of California, San Diego (UCSD) and the Salk
Institute, and another at the University of Pittsburgh and Carnegie Mellon
University (CMU), were challenged to devel op prototype systemsfor automatic
recognition of spontaneous facial expressions.

The system developed by the UCSD team, described in Bartlett et al. (2001),
analyzesfacefeaturesafter having determined the pose of theindividual infront
of the camera, although tests of their expression analysis system are only
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performed on frontal view faces. Features are studied using Gabor filters and
afterwards classified using a previously trained HMM. The HMM isapplied in
two ways:

e taking Gabor representations as inputs, and
e taking support vector machine (SVM) outputs as inputs.

SVMs are used as classifiers. They are a way to achieve good generalization
rates when compared to other classifiers because they focus on maximally
informative exemplars, the support vectors. To match face features, they first
convolve them with a set of kernels (out of the Gabor analysis) to make a jet.
Then, that jet is compared with a collection of jetstaken from training images,
and the similarity valuefor the closest oneistaken. Intheir study, Bartlett et al.
claim an AU detection accuracy from 80% for eyebrow motion to around 98%
for eye blinks.

CMU hasopted for another approach, where face features are modeled in multi-
statefacial componentsof analysis. They use neural networksto derivethe AUs
associated with the motion observed. They have devel oped thefacial modelsfor
lips, eyes, brows, cheeksand furrows. Intheir article, Tian et al. (2001) describe
thistechnique, giving detail sabout the model sand the double use of NN, onefor
the upper part of the face and a different one for the lower part. (See Figure 6.)
They do not discusstheimage processing involvedinthederivation of thefeature
model from the images. Tests are performed over a database of faces recorded
under controlled light conditions. Their system allowsthe analysis of facesthat
arenot completely inafrontal position, although most testswere performed only
onfrontal view faces. The average recognition rates achieved are around 95.4%
for upper face AUs and 95.6% for lower face AUs.

Piat and Tsapatsoulis (2000) take the challenge of deducing face expression out
of images from another perspective, no longer based on FACS. Their technique
findsfirst theaction parameters (M PEG-4 FAPs) related to the expression being
analyzed and then they formulate this expression with high-level semantics. To
do so, they have related the intensity of the most used expressions to their
associated FAPs. Other approaches (Chen & Huang, 2000) complement the
image analysis with the study of the human voice to extract more emotional
information. These studiesare oriented to devel op the meansto create aHuman-
Computer Interface (HCI) in a completely bimodal way.

Thereader can findin Pantic and Rothkrantz (2000) overviews and comparative
studies of many techniques, including somethosejust discussed, analyzed from
the HCI perspective.
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Figure 6. Face features (eyes, mouth, brows, ...) are extracted from the
input image; then, after analyzing them, the parameters of their deformable
models are introduced into the NNs which finally generate the AUs
corresponding to the face expression. Image courtesy of The Robotics
Institute at Carnegie Mellon University.

Face detection & Feature Feature Action units
feature location extraction parameters recognition

M ethods that Obtain Parameters Related to the Face
Animation Synthesis Used

Some face animation systems need action parameters as input that specify how
to open the mouth, the position of the eyelids, the orientation of the eyes, etc., in
terms of parameter magnitudes associated to physical displacements. The
analysismethodsstudied in thissectiontry to measuredisplacementsand feature
magnitudes over the imagesto derive the actionsto be performed over the head
models. These methods do not eval uate the expression on the person’ sface, but
extract those measurements that will permit the synthesis of it on amodel from
the image, as shown in Figure 7.

Terzopoulos and Waters (1993) developed one of the first solutions of this
nature. Their method tracks linear facial features to estimate corresponding
parameters of a three-dimensional, wireframe face model, allowing them to
reproduce facial expressions. A significant limitation of this system is that it
requiresfacial featuresto be highlighted with make-up for successful tracking.
Although active contour modelsare used, the systemisstill passive. Thetracked
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contour features passively shape the facial structure without any active control
based on observations.

Based on a similar animation system as that of Waters', that is, developed on
anatomical-based muscle actions that animate a 3D face wireframe, Essa and
Petland define a suitable set of control parameters using vision-based observa-
tions. They call their solution FACS+ becauseit isan extension of thetraditional
FAC system. They use optical flow analysis along the time of sequences of
frontal view faces to get the velocity vectors on 2D and then they are mapped
tothe parameters. They point outin Essa, Basun, Darrel and Pentland (1996) that
drivingthe physical systemwiththeinputsfrom noisy motion estimatescan result
in divergence or achaotic physical response. Thisiswhy they use acontinuous
time Kalman filter (CTKF) to better estimate uncorrupted state vectors. Intheir
work they devel op the concept of motion templates, which are the “ corrected”
or “noise-free” 2D motion field that is associated with each facial expression.
These templates are used to improve the optical flow analysis.

M orishima has been devel oping a system that succeeds in animating a generic
parametric muscle model after having been customized to take the shape and
texture of the person the model represents. By means of optical flow image
analysis, complemented with speech processing, motion data is generated.
These data are translated into motion parameters after passing through a
previously trained neural network. In Morishima(2001), he explainsthe basis of
this system, as well as how to generate very realistic animation from electrical
captors on the face. Data obtained from this hardware-based study permits a
perfect training for coupling the audio processing.

Figure 7. Primary face expressions synthesized on a face avatar. Images
courtesy of Joern Ostermann, AT&T Labs - Research.
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To control the optical flow datagenerated from the analysis continuous frames,
Tang and Huang (1994) project the head model wireframe vertices onto the
images and search for the 2D motion vectors only around these vertices. The
model they animate is very simple and the 2D motion vectors are directly
translated into 2D vertex motion. No 3D action is generated.

Almaost the same procedure is used by Sarrisand Strintzis (2001, 2002) in their
system for video-phoning for the hearingimpaired. Therigid head motion (pose)
is obtained by fitting the projection of a 3D wireframe onto the image being
analyzed. Then, non-rigid face movements (expressions) are estimated thanks
to a feature-based approach adapted from the Kanade, Lucas and Tomasi
algorithm. The KLT algorithm is based on minimizing the sum of squared
intensity differences between a past and a current feature window, which is
performed using aNewton-Raphson minimization method. Thefeaturestotrack
are some of the projected points of thewireframe, the MPEG-4 FDPs. To derive
MPEG-4 FAPsfrom thissystem, they add tothe KL T algorithm theinformation
about the degrees of freedom of motion (one or several directions) that the
combination of the possible FAPs allows on the studied feature FDPs.

Ahlberg (2002) al so exposesin hiswork awireframe fitting techniqueto obtain
therigid head motion. He uses the new parameterized variant of the face model
CANDIDE, named CANDIDE-3, which is MPEG-4 compliant. The image
analysis techniques include PCA on eigentextures that permits the analysis of
more specific features that control the model deformation parameters.

More detailed feature point tracking is developed by Chou et al. (2001). They
track the projected points belonging to the mouth, eyes and nostrils provided.
These models are also based on the physical vertex distribution of MPEG-4's
FDPs and they are able to obtain the combination of FAPs that regenerate the
expression and motion of the analyzed face. Their complete system also deals
withaudioinput, analyzingit and complementing the animation datafor thelips.
Themain goal of their approach isto achievereal time analysisto employ these
techniquesintel econferencing applications. They do not directly obtainthepose
parameters to also synthetically reproduce the pose of the head, but they
experiment on how to extend their analysis to head poses other than a frontal
view face, by roughly estimating the head pose from the image analysis and
rectifyingtheoriginal input image.

The MIRALab research team at the University of Geneva (Switzerland) has
developed a complete system to animate avatarsin arealistic way, in order to
use them for telecommunications. In Goto et al. (2001), they review the entire
process to generate customized realistic animation. The goal of their systemis
to clonefacebehavior. Thefirst stepintheoverall processisto physically adapt
ageneric head mesh model (already susceptibleto being animated) to the shape
of the person to be represented. In essence, they follow the same procedure that
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M orishimapresentsin hiswork. Goto et al. dothisby usingjust afrontal and side
view picture of theindividual, whereas M orishima al so includes other viewsto
recover texture on self occlusions. Models are animated using MPEG-4 FAPs
toallow for compatibility with other telecom systems. Animation parametersare
extracted from video input of the frontal view face of the speaker and then
synthesized, either on the cloned head model or on a different one. Speech
processing isalso utilized to generate more accurate mouth shapes. Aninterest-
ing post-processing step is added. If the analysis results do not reflect coherent
anatomical motion, they are rejected and the system searches in a probability
database for the most probable motion solution to the incoherence. In Goto,
Escher and Magnenat-Thalmann (1999), the authors give a more detailed
explanation about the image processing involved. Feature motion models for
eyes, eyebrows, and mouth allow them to extract image parametersin the form
of 2D point displacements. These displacements represent the change of the
feature from the neutral position to the instant of the analysis and are easily
converted into FAPs. Although the system presents possibilitiesto achieveface
cloning, the current level of animation analysis only permits instant motion
replication with little precision. We consider that face cloning is not guaranteed
evenif realisticanimationis.

Alsoaiming at telecom applications, Andrésdel Valleand Dugelay (2002) have
developed a system that takes advantage of robust face feature analysis
techniques, aswell asthe synthesis of therealistic clone of theindividual being
analyzed. We can consider their approach a hybrid between the methods
discussed in this section and those that will be presented in the next one. They
useaKalman filter to recover the head global position and orientation. The data
predicted by thefilter allowsthemto synthesizeahighly realistic 3D model of the
speaker with the same scale, position and orientation of the individual being
recorded. These data are also useful to complement and adapt feature analysis

Figure 8. In the approach proposed by Andrés del Valle and Dugelay, the
avatar does not only reproduce the common techniques that non-rigid,
action feature-based analysis would permit, but also synthesizes the rigid
motion, thanks to the use of Kalman filtering during pose prediction.
Images courtesy of the Image Group at the Institut Eurécom.
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algorithmsinitially designed to work for afrontal point of view under any other
head pose. The analysis algorithm parameters and variables are no longer
defined over theimage planein 2D, but over the realistic 3D head-model. This
solution controls face feature analysis during the change of the speaker’ s pose.
Although the system utilizes the clone of the speaker to analyze, the obtained
parameters are general enough to be synthesized on other models or avatars.
(See Figure 8.)

Methods that Use Explicit Face Synthesis During the
| mage Analysis

Some face motion analysis techniques use the synthesized image of the head
model to control or to refine the analysis procedure. In general, the systemsthat
use synthesized feedback intheir analysisneed avery realistic head model of the
speaker, ahigh control of the synthesis and aknowledge of the conditions of the
face being recorded.

Li, Roivainen and Forchheimer (1993) presented one of the first works to use
resynthesized feedback. Using a 3D model — Candide — their approach is
characterized by a feedback loop connecting computer vision and computer
graphics. They prove that embedding synthesis techniques into the analysis
phase greatly improves the performance of motion estimation. A slightly
different solutionisgiven by Ezzat and Poggio (1996a, 1996b). Intheir articles,
they describe image-based modeling techniquesthat make possiblethe creation
of photo-realistic computer models of real human faces. The model they useis
built using example views of the face, bypassing the need of any 3D computer
graphics. To generate the motion for this model, they use an analysis-by-
synthesisalgorithm, whichiscapabl e of extracting aset of high-level parameters
from an image sequence involving facial movement using embedded image-
based models. The parameters of the models are perturbed in a local and
independent manner for each image until a correspondence-based error metric
is minimized. Their system is restricted to understand a limited number of
expressions.

M orerecent research works are ableto devel op much morerealistic resultswith
three-dimensional models. Eisert and Girod (1998), for instance, present a
system that estimates 3D motion from image sequences showing head and
shoulder scenesfor video tel ephone and tel econferencing applications. They use
avery realistic 3D head model of the person in the video. The model constrains
the motion and deformation in the face to a set of FAPs defined by the MPEG-
4 standard. Using themodel, they obtain adescription of both global (head pose)
andlocal 3D head motion asafunction of unknownfacial parameters. Combining

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Techniques for Face Motion & Expression Analysis on Monocular Images 227

the 3D informationwiththeoptical flow constraint leadsto alinear algorithm that
estimatesthefacial animation parameters. Each synthesized image reproducing
face motion from frame t is utilized to analyze the image of frame t+1. Since
natural and synthetic frames are compared at theimage level, itisnecessary for
the lighting conditions of the video scene to be under control. Thisimplies, for
example, standard, well distributedlight.

Pighin, Szeliski and Salesin (1999) maximize this approach by customizing
animation and analysis on a person-by-person basis. They use new techniques
to automatically recover the face position and the facial expression from each
frame in avideo sequence. For the construction of the model, several views of
the person areused. For theanimation, studying how tolinearly combine 3D face
models, each corresponding to a particular facial expression of the individual,
ensures realism. Their mesh morphing approach is detailed in Pighin, Hecker,
Lischinski, Szeliski and Salesin (1998). Their face motion and expression
analysissystemfitsthe 3D model on each frame using acontinuousoptimization
technique. During the fitting process, the parameters are tuned to achieve the
most accurate model shape. Video image and synthesis are compared to find the
degreeof similarity of theanimated model. They have devel oped an optimization
method whose goal isto compute the model parametersyielding arendering of
the model that best resemblesthetarget image. Although avery slow procedure,
the animated results are very impressive because they are highly realistic and
very close to what we would expect from face cloning. (See Figure 9.)

Figure 9. Tracking example of Pighin’s system. The bottom row shows the
result of fitting their model to the target images on the top row. Images
courtesy of the Computer Science Department at the University of
Washington.

E
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Conclusions and Future Trends

The importance granted to Talking Heads hasincreased in such adramatic way
during the last decade, that analysis and synthesis methods developed to
generate face animation are under continuous change to meet the new applica-
tion requirements. Following this trend, the analysis of monocular images to
extract facial motion to be rendered on synthetic 3D-head model s has appeared
asaway to simplify and adapt facial animationto current video media. Theeffort
of this research aims at making facial animation technologies and methods
available to the general public and permitting the study and representation of
already stored image data.

Although the chapter has only covered techniquesrel ated to the analysis of face
mation, itisimportant to remark that there existsatight rel ationship betweenthe
methodology used for the analysis and the way the head model is synthesized.
Both analysis and synthesis must share the same semantics and the same syntax
intheir motion description. In semanticsweincludethe concept of extractingthe
same set of possible actions or analyzed movementsthat the model can actually
render. By syntax we imply the way this motion is described. Given certain
parameters and magnitudesinvolved in aspecific movement, we should be able
to express and make them represent the same action in the analysis module,
which hasgenerated them, and the synthesismodul e, which will reproducethem.
Although accomplishing these requirements apparently seems atrivial task, in
current researchthereisstill littleimplication asto how themotion semanticsand
syntax determine the way analysis techniques should be designed. Therefore,
solutions proposed to achieve the same goal, face motion analysis, are rare and
lead to the development of algorithms used only in very specific environments.
There exists atrade-off between the degree of motion detail extracted from the
images and the level of semantic understanding desired. Very precise analysis
techniques that are able to generate information to accurately animate face
models often cannot provide meaningful information about the general facial
expression. Current research trends try to satisfy both needs. accurate motion
analysis and expression understanding, so as to generate better facial motion
synthesis. As a result, the different research perspectives of the scientific
communitiesinvolvedinthefield of facial animation (analysisand synthesis) are
starting to converge.

Tobeableto synthesizefacial motion extracted from mediathat represent reality
so asto replicate human face behavior in real-time in such away that we could
nolonger distinguish natural from synthetic mediacan be considered theultimate
objective of research in facial animation. Every step taken towards this target
allows emerging new technology domains to use Talking Heads in daily/
common-use applications. Telecommunications appears as one of these recent
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Table 1. Comparative Study of Some Analysis Techniques Reviewed in the
Chapter. The techniques are grouped by methodology. In the first column, we
give a summary of the main image processing algorithms used. In the second
and the third one, we provide the reference to the work and the researchers
involved. The rest of the columns depict the method characteristics.
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* Author’s comment. * For the face tracking, which is based on point tracking. ~
Sight rotations are permitted although there is no direct use of the pose data during
image processing
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fields. A proof of thisinterest is how the new standard for the coding of hybrid
natural -synthetic media, M PEG-4, hasgiven special importanceto facial anima-
tion (Ostermann, 2002). The standard specifies common syntax to describe face
behavior, thus permitting interoperability amongst different face animation
systems. At thispoint of the evol ution and depl oyment of applicationscompliant
with MPEG-4, several concerns have appeared: Hasthe standard given aglobal
solution that all specific face animation systems can adopt? Or, does the syntax
restrict the semantics of the possible achievable motion too much?

No matter the answer, the existence of all these doubts shows that thereis still
along way to go to master face animation and, more concretely, the automatic
generation of realistic human-like face motion. All the analysis techniques
covered in this chapter are of great help in the study of facial motion because
image analysis intrudes the least in the observed scenario, thus permitting the
study of real and completely natural behavior.
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Chapter VI I

Analysisand Synthesis
of Facial Expressions

Peter Eisert
Fraunhofer Institute for Telecommunications, Germany

Abstract

In this chapter, the state-of-the-art in facial animation and expression
analysis is reviewed and new techniques for the estimation of 3-D human
motion, deformation, and facial expressions from monocular video sequences
are presented. Since illumination has a considerable influence on the
appearance of objects in a scene, methods for the derivation of photometric
scene properties from images are also addressed. For a particular
implementation, the potential of these analysis techniques is illustrated for
applications like character animation and model-based video coding.
Experiments have shown that the usage of 3-D computer models allows
video transmissions at bit-rates of a few kbit/s, enabling a wide variety of
new applications.

| ntroduction

Facial expression analysis and synthesis techniques have received increasing
interest in recent years. Numerous new applicationsin the areas of low-bit-rate
communication, user-friendly computer interfaces, thefilmindustry, or medicine
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are becoming more available with today’ s computers. In this chapter, the state-
of-the-artinfacial animation and analysisisreviewed and new techniquesfor the
estimation of 3-D human motion, deformation, and facial expressions from
monocular video sequences are presented. The chapter starts with an overview
of existing methodsfor representing human heads and facial expressionsthree-
dimensionally inacomputer. Algorithmsfor the determination of facial expres-
sions from images and image sequences are reviewed, focusing on feature-
based and optical-flow based methods. For natural video capture conditions,
scenelighting often varies over time. Thisillumination variability hasaconsid-
erableinfluencenot only on thevisual appearance of the objectsinthe scene, but
also on the performance of the estimation algorithms. Therefore, methods for
determining lighting changesin the sceneare discussed for the purpose of robust
facial analysisunder uncontrolled illumination settings. After thisoverview, an
example of a hierarchical, gradient-based method for the robust estimation of
MPEG-4facial animation parametersisgiven, illustrating the potential of model-
based coding. This method is ableto simultaneously determine both global and
local motion in the face in a linear, low-complexity framework. In order to
improvetherobusthessagainst lighting changesin the scene, anew techniquefor
the estimation of photometric properties based on Eigen light mapsis added to
the system. The performance of the presented methods is evaluated in some
experiments given in the application section. First, the concept of model-based
coding isdescribed, where head-and-shoul der image sequences are represented
by computer graphics models that are animated according to the facial motion
and deformation extracted fromreal video sequences. Experimentsvalidatethat
such sequences can be encoded at |essthan 1 kbit/s enabling awide range of new
applications. Given an object-based representation of the current scene, changes
can easily be made by modifying the 3-D object models. In that context, we will
show how facial expression analysis can be used to synthesize new video
sequences of arbitrary people, who act exactly in the same way as the person
in areference sequence, which, e.g., enablesapplicationsinfacial animation for
film productions.

Review of Facial Analysis and Synthesis
Techniques

Facial Animation

M odeling thehuman faceisachallenging task because of itsfamiliarity. Already
early inlife, we are confronted with faces and learn how to interpret them. We
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are able to recognize individuals from a large number of similar faces and to
detect very subtle changesin facial expressions. Therefore, the general accept-
ability of syntheticfaceimagesstrongly dependsonthe 3-D head model used for
rendering. Asaresult, significant effort has been spent on the accurate modeling
of a person’s appearance and his or her facial expressions (Parke et al., 1996).
Both problems are addressed in the following two sections.

3-D head models

In principle, most head model s used for animation are based on triangle meshes
(Rydfalk, 1978; Parke, 1982). Texturemappingisappliedto obtainaphotorealistic
appearance of the person (Waters, 1987; Terzopoulos et al., 1993; Choi et al .,
1994; Aizawaet al., 95; and Lee et al., 1995). With extensive use of today’s
computer graphics techniques, highly realistic head models can be realized
(Pighinetal., 1998).

Modeling the shape of a human head with polygonal meshes results in a
representation consisting of alarge number of triangles and verticeswhich have
to be moved and deformed to show facial expressions. The face of a person,
however, has a smooth surface and facial expressions result in smooth move-
ments of surface points due to the anatomical properties of tissue and muscles.
These restrictions on curvature and motion can be exploited by splines which
satisfy certain continuity constraints. Asaresult, the surface can be represented
by a set of spline control points that is much smaller than the original set of
verticesin atriangle mesh. This hasbeen exploited by Hoch et al. (1994) where
B-splines with about 200 control points are used to model the shape of human
heads. Inlpetal. (1996), non-uniformrational B-splines(NURBS) represent the
facial surfaces. Both types of splines are defined on arectangular topology and,
therefore, do not allow alocal patch refinement in areasthat are highly curved.
To overcome this restriction, hierarchical splines have been proposed for the
head modeling (Forsey et al., 1988) to allow a recursive subdivision of the
rectangular patches in more complex areas.

Face, eyes, teeth, and the interior of the mouth can be modeled similarly with
textured polygonal meshes, but a realistic representation of hair is still not
available. A lot of work hasbeen donein thisfield to model the fuzzy shape and
reflection properties of the hair. For example, single hair strands have been
modeled with polygonal meshes (Watanabe et al., 1992) and the hair dynamics
have been incorporated to model moving hair (Anjyo et al., 1992). However,
thesealgorithmsare computationally expensiveand arenot feasiblefor real-time
applicationsinthenear future. Image-based rendering techniques(Gortler etal .,
1996; Levoy et al., 1996) might provide new opportunities for solving this
problem.
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Facial expression modeling

Oncea3-D head model isavailable, new views can be generated by rotating and
translating the 3-D object. However, for the synthesis of facial expressions, the
model can no longer be static. In general, two different classes of facial
expression modeling can bedistinguishedin model -based coding applications:. the
clip-and-paste method and algorithms based on the deformation the 3-D sur-
faces.

For the clip-and-paste method (Aizawa et al., 1989; Welsh et al., 1990; and
Chao et al., 1994), templates of facial features like eyes and the mouth are
extracted from previous frames and mapped onto the 3-D shape model. The
model is not deformed according to the facial expression, but remainsrigid and
is used only to compensate for the global motion given by head rotation and
tranglation. All local variations in the face must, therefore, be described by
texture changes of the model. During encoding of avideo sequence, acodebook
containing templatesfor different facial expressionsisbuilt. A new expression
can then be synthesized by combining several feature templates that are
specified by their position on the model and their template index from the
codebook. As aresult, a discrete set of facial expressions can be synthesized.
However, the transmission of the template codebook to the decoder consumes
alarge number of bits, which makesthe scheme unsuitable for coding purposes
(Welsh et al., 1990). Beyond that, the localization of the facial featuresin the
framesisadifficult problem. Pasting of templates extracted at slightly inaccu-
rate positionsleadsto an unpleasant “jitter” in the resulting synthetic sequence.

The deformation method avoids these problems by using the same 3-D model
for all facial expressions. The texture remains basically constant and facial
expressions are generated by deforming the 3-D surface (Noh et al., 2001). In
order to avoid the transmission of all vertex positionsin the triangle mesh, the
facial expressions are compactly represented using high-level expression pa-
rameters. Deformation rules associated with the 3-D head model describe how
certain areas in the face are deformed if a parameter value changes. The
superposition of many of theselocal deformationsisthen expectedtoleadtothe
desired facial expression. Dueto the advantages of the deformation method over
the clip-and-paste method (Welsh et al., 1990), it is used in most current
approachesfor representing facial expressions. The algorithms proposed in this
chapter are also based on this technique and, therefore, the following review of
related work focuses on the def ormation method for facial expression modeling.

One of thefirst systems of facial expression parameterization was proposed by
Hjortsj6 (1970) and later extended by the psychologists Ekman and Friesen
(1978). Their facial action coding system (FACS) iswidely used today for the
description of facial expressionsin combination with 3-D head models (Aizawa
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etal., 1989; Li, 1993; Choi etal., 1994; and Hoch et al ., 1994). According to that
scheme, any facial expression results from the combined action of the 268
muscles in the face. Ekman and Friesen discovered that the human face
performs only 46 possible basic actions. Each of these basic actionsis affected
by a set of muscles that cannot be controlled independently. To obtain the
deformation of the facial skin that is caused by a change of an action unit, the
motion of the muscles and their influence on the facial tissue can be simulated
using soft tissue models (Terzopouloset al., 1993; Leeet al., 1995). Dueto the
high computational complexity of muscle-based ti ssue simulation, many applica-
tions model the surface deformation directly (Aizawaet al., 1989; Choi et al.,
1994) using heuristic transforms between action units and surface motion.

Very similar to the FACS is the parameterization in the synthetic and natural
hybrid coding (SNHC) part of the MPEG-4 video coding standard (MPEG,
1999). Rather than specifying groups of musclesthat can be controlled indepen-
dently and that sometimes lead to deformationsin larger areas of the face, the
single parametersin this system directly correspond to locally limited deforma-
tions of the facial surface. There are 66 different facial animation parameters
(FAPs) that control both global and local motion.

Instead of using facial expression descriptionsthat are designed with arelation
to particular muscles or facial areas, data-driven approaches are also used for
the modeling. By linearly interpolating 3-D models in a database of people
showing different facial expressions, new expressions can be created (V etter et
al., 1998; Blanz et al., 1999). Ortho-normalizing this face-space using a KLT
leads to a compact description that allows the representation of facial expres-
sions with a small set of parameters (Holzer, 1999; Kalberer et al., 2001).

Facial Expression Analysis

Synthesi zing realistic head-and-shoul der sequencesisonly possibleif thefacial
animation parameters are appropriately controlled. An accurate estimation of
these parameters is, therefore, essential. In the following sections, different
methods are reviewed for the estimation of 3-D motion and deformation from
monoscopic image sequences. Two different groups of algorithms are distin-
guished: feature-based approaches, which track distinct featuresin the images
and optical flow based methods that exploit the entire image for estimation.

Feature-based estimation

One common way for determining the motion and deformation in the face
between two frames of a video sequence is the use of feature points (Kaneko
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etal.,1991; Terzopoulosetal., 1993; Geeet al., 1994; Huang et al ., 1994; L opez
et al., 1995; and Pei, 1998). Highly discriminant areas with large spatial
variations, such as areas containing the eyes, nostrils, or mouth corners, are
identified and tracked from frameto frame. If corresponding features are found
in two frames, the change in position determines the displacement.

How the features are searched depends on properties such as color, size, and
shape. For facial features, extensive research has been performed, especially in
the area of face recognition (Chellappaet al., 1995). Templates (Brunelli et al.,
1993), often used for finding facial features, are small reference images of
typical features. They are compared at all positionsin the frameto find a good
match between the template and the current image content (Thomas et al.,
1987). The best match is said to be the corresponding feature in the second
frame. Problems with templates arise from the wide variability of captured
imagesduetoillumination changesor different viewing positions. To compensate
for these effects, eigen-features (Moghaddam et al., 1997; Donato et al., 1999),
which span a space of possible feature variations or deformable templates
(Yuille, 1991) and reducethefeaturesto parameterized contours, can beutilized.

Instead of estimating singlefeature points, thewhol e contour of featurescan also
betracked (Huang et al., 1991; Pearson, 1995) using snakes. Snakes (Kaset al.,
1987) are parameterized active contour model sthat are composed of internal and
external energy terms. Internal energy terms account for the shape of the
feature and smoothness of the contour, while the external energy attracts the
shake towards feature contours in the image.

All feature-based algorithms havein common that singlefeatures, like the eyes,
can be found quite robustly. Dependent on the image content, however, only a
small number of feature correspondences can typically be determined. As a
result, the estimation of 3-D motion and deformation parameters from the
displacements lacks the desired accuracy if afeature is erroneously associated
with a different feature in the second frame.

Optical flow based estimation

Approaches based on optical flow information utilize the entireimage informa-
tion for the parameter estimation, leading to alarge number of point correspon-
dences. Theindividual correspondences are not asreliable as the ones obtained
with feature-based methods, but due to the large number of equations, some
mismatchesarenot critical. Inaddition, possibleoutliers(Black et al., 1996) can
generously be removed without obtaining an underdetermined system of equa-
tions for the determination of 3-D motion.
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Oneway of estimating 3-D motionisthe explicit computation of an optical flow
field (Horn et al., 1981; Barron et al., 1994; and Dufaux et al., 1995), whichis
followed by the derivation of motion parameters from the resulting dense
displacement field (Netravali et al., 1984, Essa et al., 1994; and Bartlett et al .,
1995). Since the computation of the flow field from the optical flow constraint
equation (Hornetal., 1981), whichrelatesimagegradient information (Simoncelli,
1994) to 2-D image displacements, is an underdetermined problem, additional
smoothness constraints have to be added (Horn, 1986; Barron et al., 1994). A
non-linear cost function (Barron et al., 1994) is obtained that is numerically
minimized. Theuseof hierarchical frameworks(Enkelmann, 1988; Singh, 1990;
and Sezan et al., 1993) can reduce the computational complexity of the
optimization in this high-dimensional parameter space. However, even if the
global minimum is found, the heuristical smoothness constraints may lead to
deviationsfromthe correct flow field, especially at object boundariesand depth
discontinuities.

In model-based motion estimation, the heuristical smoothness constraints are,
therefore, often replaced by explicit motion constraints derived from the 3-D
object models. For rigid body motion estimation (Kappei, 1988; Koch, 1993), the
3-D motion model, specified by three rotational and three translational degrees
of freedom, restricts the possible flow fields in the image plane. Under the
assumption of perspective projection, known object shape, and small motion
between two successive video frames, an explicit displacement field can be
derived that is linear in the six unknown degrees of freedom (Longuet, 1984;
Netravali et al., 1984; and Waxman et al., 1987). This displacement field can
easily be combined with the optical flow constraint to obtain arobust estimator
for the six motion parameters. lterative estimation in an analysis-synthesis
framework (Li et al., 1993) removesremaining errorscaused by thelinearization
of imageintensity and the motion model.

For facial expression analysis, the rigid body assumption can no longer be
maintained. Surface deformations due to facial expressions have to be consid-
ered additionally. Most approaches found in the literature (Ostermann, 1994;
Choi et al., 1994; Black et al., 1995; Pei, 1998; and Li et al., 1998) separate this
problem into two steps. First, global head motion is estimated under the
assumption of rigid body motion. Local motion caused by facial expressionsis
regarded asnoise (Li et al., 1994b) and, therefore, the textured areas around the
mouth and the eyes are often excluded from the estimation (Black et al., 1995;
andLietal., 1994b). Given head position and orientation, theremaining residual s
of the motion-compensated frame are used to estimate local deformations and
facial expressions. In(Black et al., 1995; Black et al., 1997), several 2-D motion
models with six (affine) or eight parameters are used to model local facial
deformations. By combining these models with the optical flow constraint, the
unknown parameters are estimated in a similar way as in the rigid body case.
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High-level facial animation parameterscanfinally bederived fromtheestimated
set of 2-D motion parameters. Even higher robustness can be expected by
directly estimating the facial animation parameters using more sophisticated
motion models. InChoi et al. (1994), asystemisdescribed that utilizesan explicit
3-D head model. This head model directly relates changes of facial animation
parameters to surface deformations. Orthographic projection of the motion
constraints and combination with optical flow information result in a linear
estimator for the unknown parameters. The accuracy problem of separate global
and local motion estimation is here relaxed by an iterative framework that
alternately estimates the parameters for global and local motion.

The joint estimation of global head motion together with facial expressionsis
rarely addressed in the literature. In Li et al. (1993; 1994), a system for the
combined estimation of global and local motion is presented that stimulated the
approaches presented in the next section. A 3-D head model based on the
Candide (Rydfalk, 1978) model isused for image synthesisand providesexplicit
3-D motion and deformation constraints. The affine motion model describesthe
imagedisplacementsasalinear function of thesix global motion parametersand
the facial action units from the FACS system, which are simultaneously
estimated in an analysis-synthesis framework. Another approach that allows a
joint motion and deformation estimation has been proposed by DeCarlo et al.
(1996, 1998). A deformable head model isemployed that consistsof ten separate
face componentsthat are connected by spring-like forcesincorporating anthro-
pometric constraints(DeCarloet al., 1998b; Farkas, 1995). Thus, the head shape
can be adjusted similar to the estimation of local deformations. For the determi-
nation of motion and deformation, again a3-D motion model iscombinedwiththe
optical flow constraint. The 3-D model also includes a dynamic, Lagrangian
description for the parameter changes similar to the work of Essa (Essaet al.,
1994; Essa et al., 1997). Since the head model lacks any color information, no
synthetic frames can be rendered which makesit impossible to use an analysis-
synthesis loop. Therefore, additional edge forces are added to avoid an error
accumulation in the estimation.

[llumination Analysis

In order to estimate the motion of objects between two images, most algorithms
make use of the brightness constancy assumption (Horn, 1986). This assump-
tion, whichisaninherent part of all optical flow-based and many template-based
methods, impliesthat corresponding object pointsin two frames show the same
brightness. However, if the lighting in the scene changes, the brightness of
corresponding pointsmight differ significantly. But, also, if theorientation of the
object surfacerelativeto alight source changes dueto object motion, brightness
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isingeneral not constant (Verri et al., 1989). On the contrary, intensity changes
duetovaryingillumination conditions can dominatethe effects caused by object
motion (Pentland, 1991; Horn, 1986; and Tarr, 1998). For accurate and robust
extraction of motion information, lighting effects must be taken into account.

In spite of the relevance of illumination effects, they arerarely addressed in the
area of 3-D motion estimation. In order to allow the use of the optical flow
constraint for varying brightness, higher order differentials(Treveset al., 1994)
or pre-filtering of the images (Moloney, 1991) have been applied. Similarly,
lightness algorithms (Land et al., 1971; Ono et al., 1993; and Blohm, 1997)
make use of the different spectral distributions of texture and intensity changes
dueto shading, in order to separate irradiance from reflectance. If the influence
of illumination cannot be suppressed sufficiently by filtering as, e.g., inimage
regions depicting highlights caused by specular reflections, the corresponding
partsare often detected (Klinker et al ., 1990; Stauder, 1994; and Schluenset al .,
1995) and classified as outliers for the estimation.

Rather than removing the disturbing effects, explicit information about the
illumination changes can be estimated. This not only improves the motion
estimation but also allows the manipulation and visual enhancement of the
illumination situation in an image afterwards (Blohm, 1997). Under controlled
conditionswith, e.g., known object shape, light sourceposition (Satoet al ., 1997,
Sato et al., 1996; and Baribeau et al., 1992), and homogeneous non-colored
surface properties (Ikeuchi et al., 1991; Tominaga et al., 2000), parameters of
sophisticated reflection models like the Torrance-Sparrow model (Torrance et
al., 1967; Nayar et al., 1991; and Schlick, 1994) which also includes specular
reflection, can be estimated from cameraviews. Since the difficulty of param-
eter estimation increases significantly with model complexity, the analysis of
global illumination scenarios(Heckbert, 1992) with, e.g., inter-reflections (Forsyth
etal.,1991) isonly addressedfor very restricted applications (Wadaet al ., 1995).

In the context of motion estimation, where the exact position and shape of an
object are often not available, mostly simpler models are used that account for
the dominant lighting effectsin the scene. The simplest scenario is the assump-
tion of pureambientillumination (Foley et al., 1990). Other approaches(Gennert
et al., 1987; Moloney et al., 1991; and Negahdaripour et al., 1993) extend the
optical flow constraint is extended by a two-parameter function to allow for
global intensity scaling and global intensity shiftsbetween thetwoframes. Local
shading effects can be model ed using additional directional light sources (Foley
et al., 1990). For the estimation of the illuminant direction, surface-normal
informationisrequired. If thisinformationisnot availableas, e.g., for thelarge
class of shape-from-shading algorithms (Horn et al., 1989; Lee et al., 1989),
assumptions about the surface-normal distribution are exploited to derive the
directionof theincident light (Pentland, 1982; Leeet al., 1989; Zhengetal ., 1991,
and Bozdagi et al., 1994).
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If explicit 3-D models and with that surface-normal information are available,
more accurate estimates of theillumination parameters are obtai nable (Stauder,
1995; Deshpande et al., 1996; Brunelli, 1997; and Eisert et al., 1997). In these
approaches, Lambertian reflection is assumed in combination with directional
and ambient light. Given the surface normals, the illumination parameters are
estimated using neural networks(Brunelli, 1997), linear (Deshpandeet al ., 1996;
Eisert et al., 1997), or non-linear (Stauder, 1995) optimization.

Rather than using explicit light source and reflection models to describe
illumination effects, multipleimages captured from the same viewing position,
but under varying illumination can also be exploited. Hallinan et al. showed
(Hallinanetal., 1994; Epsteinet al., 1995) that five eigenimagescomputed from
a set of differently illuminated facial images are sufficient to approximate
arbitrary lighting conditions by linearly blending between the eigenimages. An
analytic method for the derivation of the eigen components can be found in
Ramamoorthi (2002). Thislow-dimensional space of face appearances can be
represented as an illumination cone as shown by Belhumeur et al. (1998). In
Ramamoorthi et al. (2001), thereflection of light wastheoretically described by
convolutionin asignal-processing framework. [llumination analysisor inverse
rendering can then be considered as deconvolution. Beside the creation of
arbitrarily illuminated faceimages, the use of multipleinput imagesalso allows
the estimation of facial shape and thus a change of head pose in 2-D images
(Georgiadeset al., 1999). Using eigen light maps of explicit 3-D models (Eisert
et al., 2002) instead of blending between eigen images, also extends the
applicability of the approach to locally deforming objects like human facesin
image sequences.

For the special application of 3-D model-based motion estimation, relatively few
approacheshave been proposed that incorporate photometric effects. |n Bozdagi
etal.(1994), theilluminant directionisestimated accordingto Zhengetal. (1991)
first without exploiting the 3-D model. Given the illumination parameters, the
optical flow constraint isextended to explicitly consider intensity changescaused
by object motion. For that purpose, surface normals are required which are
derived from the 3-D head model. The approach proposed in Stauder (1995 and
1998) makesexplicit use of normal information for both illumination estimation
and compensation. Rather than determining theilluminant directionfromasingle
frame, the changes of surface shading between two successive frames are
exploited to estimate the parameters. The intensity of both ambient and direc-
tional light, as well as the direction of the incident light, is determined by
minimizing a non-linear cost function. Experiments performed for both ap-
proaches show that the consideration of photometric effects can significantly
improve the accuracy of estimated motion parameters and the reconstruction
guality of themotion-compensated frames (Bozdagi et al.; 1994, Stauder, 1995).
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Hierarchical M odel-Based Facial
Expression Analysis

The most challenging part of facial expression analysisisthe estimation of 3-D
facial motion and deformation from two-dimensional images. Dueto theloss of
one dimension caused by the projection of thereal world onto the image plane,
thistask can only be solved by exploiting additional knowledge of the objectsin
the scene. In particular, the way the objects move can often be restricted to a
low number of degrees of freedom that can be described by a limited set of
parameters. In this section, an example of a new 3-D model-based method for
the estimation of facial expressions is presented that makes use of an explicit
parameterized 3-D human head model describing shape, color, and motion
constraints of an individual person (Eisert, 2000). This model information is
jointly exploited with spatial andtemporal intensity gradientsof theimages. Thus,
the entire area of the image showing the object of interest is used, instead of
dealing with discrete feature points, resulting in a robust and highly accurate
system. A linear and computationally efficient algorithmisderived for different
scenarios. The scheme is embedded in ahierarchical analysis-synthesisframe-
work to avoid error accumulation in the long-term estimation.

Optical-Flow Based Analysis

In contrast to feature-based methods, gradient-based algorithms utilize the
optical flow constraint equation:

ol (X,Y)d Lol (X,Y)
oX X9y

d, =1(X,Y)-1"(X,Y), 1)

where 2- and < are the spatial derivatives of the image intensity at pixel

position [X, Y]. I’-I denotes the temporal change of the intensity between two
time instants At=t’-t corresponding to two successive frames in an image
sequence. Thisequation, obtained by Taylor seriesexpansionuptofirst order of
theimageintensity, can be set up anywherein theimage. It relates the unknown
2-D motion displacement d=[d, dy] with the spatial and temporal derivatives of
the images.

The solution of this problem is under-determined since each equation has two
new unknowns for the displacement coordinates. For the determination of the
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optical flow or motionfield, additional constraintsarerequired. Instead of using
heuristical smoothness constraints, explicit knowledge about the shape and
maotion characteristics of the object is exploited. Any 2-D motion model can be
used as an additional motion constraint in order to reduce the number of
unknowns to the number of motion parameters of the corresponding model. In
that case, itisassumed that the motion model isvalid for thecomplete object. An
over-determined system of equationsis obtained that can be solved robustly for
the unknown motion and deformation parameters in a least-sgquares sense.

Inthe case of facial expression analysis, the motion and deformation model can
be taken from the shape and the motion characteristics of the head model
description. In this context, atriangular B-spline model (Eisert et al., 1998a) is
used to represent the face of a person. For rendering purposes, the continuous
spline surface is discretized and approximated by atriangle mesh as shown in
Figure6. Thesurface can be deformed by moving the spline’ scontrol pointsand
thus affecting the shape of the underlying mesh. A set of facial animation
parameters (FAPs) according to the MPEG-4 standard (MPEG, 1999) charac-
terizes the current facial expression and has to be estimated from the image
sequence. By concatenating all transformations in the head model deformation
and using knowledge from the perspective camera model, a relation between
image displacements and FAPs can be analytically derived

d = f(FAP,,FAP,...,FAP ). (2)

Combining this motion constraint with the optical flow constraint (1) leadsto a
linear system of equationsfor the unknown FAPs. Solving thislinear systemin
a least squares sense, results in a set of facial animation parameters that
determines the current facial expression of the person in the image sequence.

Hierarchical Framework

Since the optical flow constraint equation (1) is derived assuming the image
intensity tobelinear, itisonly valid for small motion displacementsbetweentwo
successiveframes. Toovercomethislimitation, ahierarchical framework can be
used (Eisert et al., 1998a). First, a rough estimate of the facial motion and
deformation parametersis determined from sub-sampled and low-pass filtered
images, where the linear intensity assumption isvalid over awider range. The
3-D model ismotion compensated and the remaining motion parameter errorsare
reduced on frames having higher resolutions.
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Figure 1. Analysis-synthesis loop of the model-based estimator.
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The hierarchical estimation can be embedded into an analysis-synthesisloop as
shown in Figure 1. In the analysis part, the algorithm estimates the parameter
changes between the previous synthetic frame T and the current frame I’ from
thevideo sequence. Thesynthetic framel isobtained by rendering the 3-D model
(synthesis part) with the previously determined parameters. Thisapproximative
solution is used to compensate the differences between the two frames by
rendering thedeformed 3-D model at the new position. The synthetic frame now
approximatesthe cameraframe much better. Theremaining linearization errors
arereduced by iterating through different level s of resolution. By estimating the
parameter changes with asynthetic frame that correspondsto the 3-D model, an
error accumulation over timeis avoided.

Linear |llumination Analysis

For natural video capture conditions, scenelighting often variesover time. This
illumination variability has a considerable influence not only on the visual
appearance of the objectsin the scene, but al so on the performance of computer
vision algorithms or video-coding methods. The efficiency and robustness of
theseal gorithmscan besignificantly improved by removing theundesired effects
of changing illumination. In this section, we introduce a 3-D model-based
technique for estimating and manipulating the lighting in an image sequence
(Eisert et al., 2002). The current scene lighting is estimated for each frame
exploiting 3-D model informationand by syntheticre-lighting of theoriginal video
frames. To providethe estimator with surface-normal information, theobjectsin
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thescenearerepresented by 3-D shapemodel sand their motion and deformation
aretracked over time using amodel-based esti mation method. Given the normal
information, the current lighting is estimated with a linear algorithm of low
computational complexity using an orthogonal set of light maps.

Light Maps

Instead of explicitly modeling light sources and surface reflection propertiesin
the computer graphicssceneand cal cul ating shading effectsduring therendering
processasitisdonein by someresearchers(Bozdagi et al., 1994; Stauder, 1995;
and Eisert et al., 1998b), the shading and shadowing effects are here described
by alinear superposition of several light maps which are attached to the object
surface. Light maps are, similar to texture maps, two-dimensional images that
arewrapped around the object containing shading, instead of color information.
During rendering, the unshaded texture map 1S (u) with Ce {R,G, B} repre-

senting the three color components and the light map L(u) are multiplied
according to

1€(u)=1g(u)-L() (3)

in order to obtain ashaded texturemap | ©(u). Thetwo-dimensional coordinate
u specifies the position in both texture map and light map that are assumed to
have the same mapping to the surface. For a static scene and viewpoint-
independent surface reflections, the light map can be computed off-line which
allows the use of more sophisticated shading methods as, e.g., radiosity algo-
rithms (Goral et al., 1984), without slowing down the final rendering. This
approach, however, canonly beusedif both object and light sourcesdo not move.
To overcome this limitation, we use alinear combination of scaled light maps
instead of asingle one

1°0)=1£0) YL, w), @

By varying the scaling parameter o° and thus blending between different light

maps L., different lighting scenarios can be created. Moreover, the light map
approach can also model wrinklesand creaseswhich are difficult to describe by
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3-D geometry (Pighinetal., 1998; Liuet al., 2001). The N light maps L (u) can
be computed off-line with the same surface normal information n(u), but with
different light source configurations. In our experiments, we use one constant
light map L, representing ambient illumination while the other light maps are
cal culated assuming L ambert reflection and point-light sourceslocated at i nfinity
havingilluminantdirection|,

Lu = 1
max{-n(u)-1,,0} 1<i<N-1. )

I~
[
~
Il

This configuration can be interpreted as an array of point-light sources whose
intensitiesand col orscan beindividually controlled by the parameters o.© . Figure

2 shows an example of such an array with the illuminant direction varying
between -60° and 60° in longitudinal and latitudinal direction, respectively.

Figure 2: Array of light maps for a configuration with 7 by 7 light sources.
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Figure 3: First four eigen light maps representing the dominant shading
effects.

Eigen Light Maps

In order to reduce the number of unknowns ¢ that have to be estimated, a

smaller orthogonal set of light maps is used rather than the original one. A
Karhunen-Loeve transformation (KLT) (Turk et al., 1991) is applied to the set
of light maps L, with 1 <i < N-1 creating eigen light maps which concentrate
most energy in the first representations. Hence, the number of degrees of
freedom can be reduced without significantly increasing the mean squared error
when reconstructing the original set. Figure 3 shows the first four eigen light
maps computed from a set of 50 different light maps. The mapping between the
light mapsand the 3-D head model isheredefined by cylindrical projection onto
the object surface.

Estimation of Lighting Properties

For the lighting analysis of an image sequence, the parameters o~ have to be

estimated for each frame. Thisis achieved by tracking motion and deformation
of the objectsin the scene as described above and rendering a synthetic motion-

compensated model frame using the unshaded texture map 1< . From the pixel

intensity differences between the cameraframe | §_., (x) with x being the pixel

position and the model frame 1S, (x), the unknown parameters «.° are

derived. For each pixel x, the corresponding texture coordinate u is determined
and the linear equation
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Figure 4: Upper row: Original video frames; Lower row: Corresponding
frames of illumination-compensated sequence with constant lighting.

N-1
I C

eced ) = | Gragea (X)- Zaic L (u(x)), (6)

i=0

is set up. Since each pixel x being part of the object contributes one equation, a
highly over-determined linear system of equationsis obtained that is solved for

the unknown o°’s in a least-squares sense. Rendering the 3-D object model
with the shaded texture map using the estimated parameters ,o.° leads to a
model frame which approximates the lighting of the original frame. In the same
way, theinversethisformulacan beusedtoremovethelighting variationsinreal
video sequences asit is shown in Figure 4.

Applications

In this section, two applications, model-based coding and facial animation, are
addressed which make use of the af orementioned methodsfor facial expression
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analysisand synthesis. Experimental resultsfrom the approach in Eisert (2000)
areprovidedinorder to illustratethe applicability of model-based techniquesto
these applications.

M odel-Based Coding

Inrecent years, several video coding standards, such as H.261/3 and MPEG-1/
2/4 have been introduced to addressthe compression of digital video for storage
and communication services. These standards describe a hybrid video coding
scheme, which consists of block-based motion-compensated prediction (M CP)
and DCT-based quantification of the prediction error. The recently determined
H.264 standard al so follows the same video coding approach. These waveform-
based schemes utilize the statistics of the video signal without knowledge of the
semantic content of the frames and achieve compression ratios of several
hundreds-to-one at a reasonable quality.

If semantic information about a scene is suitably incorporated, higher coding
efficiency can be achieved by employing more sophisticated source models.
M odel-based video codecs, e.g., use 3-D models for representing the scene
content. Figure 5 showsthe structure of amodel-based codec for the application
of video telephony.

Figure 5: Structure of a model-based codec.
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A video camera capturesimages of the head-and-shoul der part of aperson. The
encoder analyzes the frames and estimates 3-D motion and facial expressions
of the person using a 3-D head model. A set of facial animation parameters
(FAPs) isobtained that describes — together with the 3-D model — the current
appearance of the person. Only a few parameters have to be encoded and
transmitted, resultinginvery low bit-rates. Thehead model hasto betransmitted
only onceif it has not already been stored at the decoder in a previous session.
At the decoder, the parameters are used to deform the head model according to
theperson’ sfacial expressions. Theoriginal video frameisfinally approximated
by rendering the 3-D model at the new position.

The use of model-based coding techniquesin communication scenariosleadsto
extremely low bit-rates of only a few kbit/s for the transmission of head-and-
shoulder image sequences. This also enables video streaming over low-band-
width channels for mobile devices like PDASs or smart phones. The rendering
complexity is comparable to that of a hybrid video codec and, in experiments,
frame rates of 30 Hz have been achieved on an iPAQ PDA. On the other hand,
the intensive exploitation of a-priori knowledge restricts the applicability to
special scenesthat can be described by 3-D models available at the decoder. In
avideo-phone scenario, e.g., other objectslikeahand infront of the face simply
do not show up unless explicitly modeled in the virtual scene. In order to come
up with acodec that isableto encodearbitrary scenes, hybrid coding technigques
can be incorporated, increasing bit-rate but assuring generality to unknown
objects. The model-aided codec isan exampl e of such an approach (Eisert et al .,
2000). M odel-based coding techniques, however, also offer additional features
besides low bit-rates, enabling many new applications that cannot be achieved
withtraditional hybrid coding methods. Inimmersivevideo-conferencing (K auff
et al., 2002), multiple participants who are located at different places can be
seated at ajoint virtual table. Dueto the 3-D representation of the objects, pose
modification for correct seating positions can easily be accomplished, aswell as
view-point corrections according to the user’s motion. By replacing the 3-D
model of one person by a different one, other people can be animated with the
expressions of an actor as shown in the next section. Similarly, avatars can be
driven to create user-friendly man-machine interfaces, where a human-like
character interacts with the user. Analyzing the user with aweb cam also gives
the computer feedback about the user’ s emotions and intentions (Picard, 1997).
Other cuesin the face can assist the computer-aided diagnosis and treatment of
patientsin medical applications. For example, asymmetry in facial expressions
caused by facial palsy can be measured three-dimensionally (Frey et al., 1999)
or craniofacial syndromes can be detected by the 3-D analysis of facial feature
positions (Hammond et al., 2001). These examplesindicate the wide variety of
applications for model-based facial analysis and synthesis techniques.
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Model-Based View Synthesis

Inthissection, experimental results of amodel-based video coding schemeusing
facial expression analysis are presented.

Figure 6 shows a head-and-shoulder video sequence recorded with acamerain
ClFresolutionat 25 Hz. A generic head model isroughly adjusted in shapetothe
person inthe sequence and thefirst frameis projected onto the 3-D model. Non-
visible areas of the texture map are extrapolated. The model is encoded and
transmitted to the decoder and neither changed nor updated during the video
sequence. Only facial animation parameters and lighting changes are streamed
over the channel. In this experiment, 18 facial animation parameters are
estimated, quantified, encoded, and transmitted. Theframesinthemiddlerow of
Figure6 are synthesized from thedeformed 3-D model, whichisillustratedinthe
lower row of Figure 6 by means of awireframe. The bit-rate needed to encode
these parameters is below 1 kbit/s at a quality of 34.6 dB PSNR. The PSNR
between synthesized and original framesishere measured only inthefacial area

Figure 6: Upper row: Original video sequence; Middle row: Synthesized
sequence; Lower row: Hidden line representation.
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Figure 7: Reconstruction quality in PSNR over bit-rate needed for encoding
the animation parameters.
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to exclude effects from the background, which is not explicitly modeled. The
trade-off between bit-rate, which can be controlled by changing the quantifying
values for the FAPs, and reconstruction quality is shown in Figure 7.

Facial Animation

Theuseof different head model sfor analysisand synthesisof head-and-shoulder
sequencesisalsointeresting in the field of character animation in film produc-
tionsor web applications. Thefacial play of an actor sitting in front of acamera
isanalyzed and theresulting FAPsareusedto control arbitrary 3-D models. This
way, different people, animals, or fictitious creatures can be animated realisti-
cally. Theexchangeof the head model to animate other peopleisshowninFigure
8. The upper row depicts some frames of the original sequence used for facial
expression analysis. Instead of rendering the sequence with the same 3-D head
model used for the FAP estimation, and thus reconstructing the original se-
guence, the head model is exchanged for image synthesis leading to new
sequences with different people that move according to the original sequence.
Examples of thischaracter animation are shown in thelower two rows of Figure
8. In these experiments, the 3-D head models for Akiyo and Bush are derived
from a single image. A generic head model whose shape is controlled by a set
of parametersisroughly adjusted to the outline of the face and the position of
eyes and mouth. Then, the image is projected onto the 3-D model and used as
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Figure 8: Animation of different people using facial expressions from a
reference sequence. Upper row: Reference sequence; Middle and lower
row: Synthesized new sequences.

a texture map. Since the topology of the mesh is identical for all models, the
surface deformation description need not be changed and facial expressionscan
easily be applied to different people.

Since the same generic model is used for all people, point correspondences
between surface points and texture coordinates are inherently established. This
enablesthe morphing between different charactersby linearly blending between
the texture map and the position of the vertices. In contrast to 2-D approaches
(Liu et a., 2001), this might be done during a video sequence due to use of a 3-D
model. Local deformations caused by facial expressions are not affected by this
morphing. Figure 9 showsan exampleof aview of the morphing process between
two different people.
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Figure 9: Motion-compensated 3-D morph between two people.

Conclusions

Methods for facial expression analysis and synthesis have received increasing
interest in recent years. The computational power of current computers and
handheld devices like PDAs already allow a real-time rendering of 3-D facial
models, which is the basis for many new applications in the near future.
Especially for handheld devicesthat are connected to the Internet viaawireless
channel, bit-ratesfor streaming videoislimited. Transmittingonly facial expres-
sion parameters drastically reduces the bandwidth requirementsto afew kbit/s.
In the same way, face animations or new human-computer interfaces can be
realized with low demands on storage capacities. On the high quality end, film
productions may get new impactsfor animation, realistic facial expression, and
maotion capture without the use of numerous sensorsthat interferewith the actor.
Last, but not least, informati on about motion and symmetry of facial featurescan
be exploited in medical diagnosis and therapy.

All these applications have in common that accurate information about 3-D
motion deformation and facial expressionsisrequired. Inthischapter, the state-
of-the-art in facial expression analysis and synthesis has been reviewed and a
new method for determining FAPs from monocular images sequences has been
presented. In ahierarchical framework, the parametersarerobustly found using
optical flow informationtogether with explicit knowl edge about shapeand motion
constraints of the objects. The robustness can further be increased by incorpo-
rating photometric propertiesintheestimation. For thispurpose, acomputationally
efficient algorithm for the determination of lighting effectswas given. Finally,
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experiments have shown that video transmission of head-and-shoulder scenes
can be realized at data rates of a few kbit/s, even with today’s technologies,
enabling awide variety of new applications.
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Abstract

The problem of realistic face animation is a difficult one. This is hampering
a further breakthrough of some high-tech domains, such as special effects
in the movies, the use of 3D face models in communications, the use of
avatars and likenesses in virtual reality, and the production of games with
more subtle scenarios. This work attempts to improve on the current state-
of-the-art in face animation, especially for the creation of highly realistic
lip and speech-related motions. To that end, 3D models of faces are used
and — based on the latest technology — speech-related 3D face motion will
be learned from examples. Thus, the chapter subscribes to the surging field
of image-based modeling and widens its scope to include animation. The
exploitation of detailed 3D motion sequences is quite unique, thereby
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Figure 1. The workflow of our system: (a) An original face is (b) captured,
(c) re-meshed, (d) analyzed and integrated for (€) an animation.

narrowing the gap between modeling and animation. From measured 3D
face deformations around the mouth area, typical motions are extracted for
different “ visemes’. Visemes are the basic motion patterns observed for
speech and are comparable to the phonemes of auditory speech. The
visemes are studied with sufficient detail to also cover natural variations
and differences between individuals. Furthermore, the transition between
visemes is analyzed in terms of co-articulation effects, i.e., the visual
blending of visemes as required for fluent, natural speech. The work
presented in this chapter also encompasses the animation of faces for
which no visemes have been observed and extracted. The “ transplantation”
of visemes to novel faces for which no viseme data have been recorded and
for which only a static 3D model is available allows for the animation of
faces without an extensive learning procedure for each individual.

| ntroduction

Realisticfaceanimationfor speechstill posesanumber of challenges, especially
when we want to automate it to a large degree. Faces are the focus of attention
for anaudience, and the slightest deviation from normal facesand face dynamics
isnoticed.

Thereare several factorsthat makefacial animation so elusive. First, the human
face is an extremely complex geometric form. Secondly, the face exhibits
countless tiny creases and wrinkles, as well as subtle variations in color and
texture, all of which arecrucial for our comprehension and appreciation of facial
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expressions. Asdifficult asthe face isto model, it is even more problematic to
animate. Facial deformations are a product of the underlying skeletal and
muscular forms, aswell asthe mechanical properties of the skin and subcutane-
ouslayers, whichvary inthicknessand compositionin different partsof theface.
The mouth area is particularly demanding, because there are additional move-
ments of the mandible and intra-oral air pressures, which influence the visible
morphology of thisarea. All of these problemsare enormously magnified by the
fact that we as humans have an uncanny ability to read expressions and lips —
an ability that isnot merely alearned skill, but part of our deep-rooted instincts.
For facial expressions, the slightest deviation from reality is something any
personwill immediately detect. Thissaid, peoplewouldfindit difficultto put their
finger on what exactly it isthat was wrong. We have to deal with subtle effects
that leave strong impressions.

Face animation research dates back to the early 70s (Parke, 1972). Since then,
the level of sophistication hasincreased dramatically. For example, the human
head models used in Pixar’ s Toy Story had several thousand control points each
(Eben, 1997). More recent examples, such as Final Fantasy and Lord of the
Rings, demonstrate that now a level of realism can be achieved that allows
“virtual humans’ toplay alead partinafeaturemovie. Nevertheless, thereisstill
much manual work involved.

For face animation, both 2D image-based and 3D model-based strategies have
been proposed. Basically, the choice was one between photorealism and
flexibility.

2D: For reaching photorealism, one of the most effective approaches has been
to reorder short video sequences (Bregler et al., 1997) or to 2D morph
between photographic images (Beier et al., 1992; Bregler et al., 1995; and
Ezzatetal.,2000). A problemwith suchtechniquesisthat they do not allow
much freedominface orientation, relighting or compositing with other 3D
objects.

3D: A 3D approach typically yields such flexibility. Here, adistinction can be
made between appearance-based and physics-based approaches. The
former istypically based on scans or multi-view reconstructionsof theface
exterior. Animation takes the form of 3D morphs between several, static
expressions (Chen et al., 1995; Blanz et al., 1999; and Pighin et al., 1998)
or amore detailed replay of observed face dynamics (Guenter et al., 1998;
Linetal., 2001). Physics-based approaches model the underlying anatomy
in detail, as a skull with layers of muscles and skin (Waters et al., 1995;
Pelachaud et al., 1996; Eben, 1997; and Kahler et al ., 2002). The activation
of the virtual muscles drives the animation. Again, excellent results have
been demonstrated. Emphasishasoften been on the animation of emotions.
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Sofar, what seemsto belacking ishighly realistic animation of speech for
novel characters.

2.5D: Cosatto (Cosatto et al., 2000; Cosatto, 2002) developed a 2.5D talking
head as a clever combination of 2D and 3D techniques. Image sequences
are mapped onto a crude head model composed of different 3D parts.
Photorealism is combined with maximal head rotations of + 15 degrees.

We present asystem for realistic face animation focused on speech — asystem
that can help to automate the process further, while not sacrificing too much
realism. Theapproachispurely 3D. Sincepeoplecan clearly tell good animations
from bad ones without any knowledge about facial anatomy, we go for the
relative simplicity of the appearance-based school. Realism comes through the
extensive use of detailed motion-capture data. The system also supports the
animation of novel characters based on their static head model, but with
dynamics, which, nevertheless, are adapted to their physiognomy.

Viseme Selection

Animation of speech has much in common with speech synthesis. Rather than
composing a sequence of phonemes according to the laws of co-articulation to
get the transitions between the phonemes right, the animation generates se-
guences of visemes. Visemes correspond to the basic, visual mouth expressions
that are observed in speech. Whereas there is a reasonably strong consensus
about the set of phonemes, thereislessunanimity about the sel ection of visemes.
Approaches aimed at realistic animation of speech have used any number, from
asfew as 16 (Ezzat et al., 2000) up to about 50 visemes (Scott et al., 1994). This
number isby no meanstheonly parameter in assessing thelevel of sophistication
of different schemes. Much also depends on the addition of co-articulation
effects. There certainly is no simple one-to-one relation between the 52
phonemes and the visemes, as different sounds may look the same and,
therefore, this mapping is rather many-to-one. For instance /b/ and /p/ are two
bilabial stopswhich differ only in the fact that the former is voiced, while the
latter isvoiceless. Visually, thereis hardly any difference in fluent speech.

We based our selection of visemes on the work of Owens (Owens et al., 1985)
for consonants. We use his consonant groups, except for two of them, whichwe
combine into a single /k,g,n,I,ng,h,y/ viseme. The groups are considered as
single visemes because they yield the same visual impression when uttered. We
do not consider all the possible instances of different, neighboring vocals that
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Owens distinguishes, however. In fact, we only consider two cases for each
cluster: rounded and widened, that represent the instances farthest from the
neutral expression. For instance, the viseme associated with /m/ differs depend-
ing on whether the speaker is uttering the sequence omo or umu vs. the
sequence eme or imi. In the former case, the /m/ viseme assumes a rounded
shape, while the latter assumes a more widened shape. Therefore, each
consonant was assigned to these two types of visemes. For the visemes that
correspond to vocals, we used those proposed by Montgomery et al. (1985).

AsshowninFigure2, thesel ection containsatotal of 20 visemes: 12 representing
the consonants (boxeswith* consonant” title), sevenrepresenting themonophtongs
(boxeswithtitle* monophtong”) and onerepresenting the neutral pose (box with
title “silence”). Diphtongs (box with title “diphtong”) are divided into two,
separate monophtongs and their mutual influence is taken care of as a co-
articulation effect. The boxes with the smaller title “allophones’” can be
discarded by the reader for the moment. The table also contains examples of
words producing the visemes when they are pronounced. This viseme selection
differs from others proposed earlier. It contains more consonant visemes than
most, mainly because the distinction between the rounded and widened shapes
ismade systematically. For the sake of comparison, Ezzat and Poggio (Ezzat et
al., 2000) used six (only one for each of Owens' consonant groups, while also
combining two of them), Bregler et al. (1997) used ten (same clusters, but they
subdivided the cluster /t,d,s,z,th,dh/ into /th,dh/ and the rest, and /k,g,n,l,
ng,h,y/ into/ng/, /h/, lyl/, and therest, what boils down to making an even more
precise subdivision for this cluster), and Massaro (1998) used nine (but this

Figure 2. Overview of the visemes used.

consonant | Hlsphones | consonant | monophtong Aliophiones monophtong alloghones
m, b, p, p_h R il ? |e,Tr
""r’u]\“:“"-"l | mock bin, spark. pin | J'l[-'f,bnmf .1'11,II.I'l casy, pit, yes r’C,a-"’ | hat. pet. stairs
rounded | moma  [mamo] | image [ *Tmid_7 1 widened normal fitting normal pet, stay
consonant "“"I;_""""’ consonant || monophtong J“';I-‘-'"j:o monophtong *'-'”;J;‘-‘"‘“
A1 L 2 i B
LAY | fit, heavy | vl faa.of st cul fuh, @ anntber
rounded Rovus | rusvs | | glving [ ghvIN ] widened normal stars normal one another
consonant Hlgptines consonant || monophtong allopones monophtong Wieghonics
; LihdszT.D, j .2y 3 : 0,0
ftd,szthdhy | s in, din, mouse, fees, thin, this | /t.ds,z,th,dh Heim/ hird oo/ cause, pat
rounded wiport. ] | wmy [l widened normal bird normal e
SO allophones | SO T allophomes . Lig
;,urll.x.unam ik consonant n10110pht9n5 R diphthong aliophencs
fwr! wasp, wrong fwr! Ju,uu/ pur, bose
1 1 o
rounded | mursery |:|1:mr||| iricate [ “Ieliiedt | widened normal hoak i i U nose
T vide in
consonant allophoncs consonant s e 100 a_l rise
ST S,15,7d7 [ ! A alloparmes: two
fchjh.sh.zh/ shin, chin, measure, Gin | fch,jh,shzh/ silence all s
y " monophtongs
rounded serange | sknnd_7 | | alicchingl 2i1d_7iv | widened =
| i i/ closed I Lt
consonant nllaphanes consonant bl clased lips
bk b g LN 3 i 01 iz
Negun,lng Y toch skat in give, vew, long,thine. bit | 7,1, Lng by, e . fea’b carfa | .
rounded | rot-un [|u|e||]| sy [sen) | widened i S —
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animation was restricted to cartoon-like figures, which do not show the same
complexity as real faces). Our selection came out to be a good compromise
between the number of visemes needed in the animation and the realism that is
obtained.

Itisimportant to notethat our speech model combinesthevisemeswith additional
co-articulation effects. Further increasesinrealism are al so obtai ned by adapting
the viseme deformations to the shape of the face. These aspects are described
in the section, Face Animation.

L ear ning Viseme Expressions

The deformations that come with the different visemes had to be analyzed
carefully. The point of departure in developing the animation system has,
therefore, been to extract detailed, 3D deformations during speech for ten
example faces. These faces differed in age, race, and gender. A first issue was
the actual part of the face that had to be acquired. The results of Munhall and
Vatikiotis-Bateson (Munhall et al., 1998) provide evidence that lip and jaw
motions affect the entire facial structure below the eyes. Therefore, we
extracted 3D data for a complete face, but with emphasis on the area between
the eyes and the chin. The extraction of the 3D visemes follows a number of
steps, which were repeated for the different example faces:

1. a3D reconstruction is produced for all instances of all visemes
2. ageneric head model isfitted to these 3D visemes

3. prototypes of the visemes are defined

These steps are now described in more detail.

Raw Viseme Extraction

Thefirst stepinlearningrealistic, 3D facedeformationsfor the different visemes
was to extract real deformations from talking faces. Before the data were
extracted, it had to be decided what the test person would say during the
acquisition. It wasimportant that all relevant visemeswould be observed at | east
once. The subjects were asked to read a short text that contained multiple
instances of the visemesin Figure 2.
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For the 3D shape extraction of the talking face, we have used a 3D acquisition
system that uses structured light (Eyetronics, 1999). It projects agrid onto the
face, and extractsthe 3D shape and texturefrom asingleimage. By using avideo
camera, aquick succession of 3D snapshots can be gathered. We are especially
interested in frames that represent the different visemes. These are the frames
where the lips reach their extremal positions for that sound (Ezzat and Poggio
(Ezzat et al., 2000) followed the same approach in 2D). The acquisition system
yieldsthe 3D coordinatesof several thousand pointsfor every frame. The output
isatriangulated, textured surface. The problemisthat the 3D points correspond
to projected grid intersections, not corresponding, physical points of the face.
Hence, the points for which 3D coordinates are given change from frame to
frame. The next steps have to solve for the physical correspondences.

Fitting of the Generic Head M odel

Our animation approach assumes a specific topology for the face mesh. Thisis
a triangulated surface with 2'268 vertices for the skin, supplemented with
separate meshes for the eyes, teeth, and tongue (another 8'848, mainly for the
teeth). Figure 3 shows the generic head and its topology.

The first step in this fitting procedure deforms the generic head by a simple
rotation, translation, and anisotropic scaling operation, tocrudely alignit with the
neutral shape of the example face. This transformation minimizes the average
distance between anumber of special points on the example face and the model

Figure 3. The generic head model that is fitted to the scanned 3D data of
the example face. Left: Shaded version; Right: Underlying mesh.
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Figure 4. A first step in the deformation of the generic head to make it fit
a captured 3D face isto globally align the two. This is done using 10 feature
points indicated in the left part of the figure. The right part shows the effect:
Patch and head model are brought into coarse correspondence.
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43)
3:7)
93)
83)
2.10)

5) apex 6) MPEG-4 (
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9) chin2 10Y MPEG-4 (

(these 10 pointsareindicated in Figure 4). These have been indicated manually
on the example faces, but could be extracted automatically (Noh et al., 2001).
After thisinitial transformation, the salient featuresmay not bealigned well, yet.
The eyes could, e.g., be at a different height from the nose tip.

In order to correct for such flaws, a piecewise constant vertical stretch is
applied. The faceisvertically divided into five intervals, ranging from top-of-
head to eyebrows, from eyebrowsto eye corners, from eye cornersto nosetip,
from nose tip to mouth corners, and from mouth corners to bottom of the chin.
Each part of the transformed model is vertically scaled in order to bring the
border pointsof theseinterval sinto good correspondencewith theexampledata,
beginning from the top of the head. A final adaptation of the model consists of
the separation of theupper and lower lip, in order to allow themouthto open. The
dividinglineisdefined by themidpointsof theupper andlower edgesof themouth
outline.
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Thisfirst step fixesthe overall shape of the head and iscarried out only once (for
theneutral exampleface). Theresult of such processisshownintheright column
of Figure 4: starting from the 3D patch for the neutral face and the generic model
that are shown at thetop, the alignment at the bottom isobtained. Ascan be seen,
the generic model has not yet been adapted to the precise shape of the head at
that point. The second step startswith thetransformed model of thefirst step and
performs a local morphing. This morphing maps the topology of the generic
model head precisely onto the given shape. This process starts from the
correspondences for afew salient points. This set includes the ten points of the
previousstep, but isalso extended to 106 additional points, all indicated in black
inFigure5.

After the crude matching of the previous step, most of these points on the
examplefacewill already be closeto the corresponding points on the deformed
genericmodel. Typically, theinitial frame of the video sequence correspondsto
the neutral expression. Thismakesamanual drag and drop operation for the 116

Figure 5. To make the generic head model fit the captured face data
precisely, a morphing step is applied using the 116 anchor points (black
dots) and the corresponding Radial Basis Functions for guiding the
remainder of the vertices. The right part of the figure shows a result.

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of ldea Group Inc. is prohibited.



Modeling and Synthesis of Realistic Visual Speech in 3D 275

points rather easy. At that point all 116 points are in good correspondence.
Further snapshotsof theexampleface arenolonger handled manually. Fromthe
initial frame, the points are tracked automatically throughout the video. The
tracker looks for point candidates in a neighborhood around their previous
position. A dark blobislooked for and its midpoint istaken. Asdataare sampled
at videorate, the motionsbetween framesare small and thisvery simpletracking
procedure only required manual help at a dozen or so frames for the set of
example data. The main reason wastwo candidate points falling into the search
region. Usingthistracker, correspondencesfor all pointsandfor all framescould
be established with limited manual input.

Inorder tofind the deformationsfor the visemes, the corresponding frameswere
selected from the video and their 3D reconstructions were made. The 3D
positions of the 116 points served as anchor points, to map all vertices of the
generic model to the data. The result is amodel with the shape and expression
of the example face and with 2'268 vertices at their correct positions. This
mapping was achieved with the help of Radial Basis Functions.

Radial BasisFunctions(RBFs) have become quite popular for facemodel fitting
(Pighin et al., 1998; Noh et al., 2001). They offer an effective method to
interpolate between a network of known correspondences. RBFs describe the
influence that each of the 116 known (anchor) correspondences have on the
nearby pointsin between in thisinterpolation process.

Consider thefollowing equations,

n

Y, =Y +Y0d )

i1

which specify how the positions y, of the intermediate points are changed into
Y;,,, under theinfluence of thenvertices m, of theknown network (the 116 vertices
inour case). The shift isdetermined by thewei ghts o and thevirtual displacements
d. that are attributed to the vertices of theknown network of correspondences. More
about these displacementsisto follow. The weights depend on the distance of the
intermediate point to the known vertices:

o; =h(s, /1) 5 :”yi —m; ” @

For S <r, wherer isacut-off value for the distance beyond which his put to zero,
and wherein theinterval [0, r] the function h(x) is of one of two types:
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Figure 6. In the morphing step, two types of Radial Basis Functions are
applied. (1) The hermite type is shown in the top-right part of the figure and
is applied to all dark grey points on the face. (2) The exponential type is
shown in the bottom-right part and is applied to the light grey points.

Radial &
Hermite -—‘——\I
w28 ~
Radial 4
Exponential —— |
T
hl — 1_ XIog(b)/Iog(O.S) b - 5 (3)
h, =2x*-3x*+1 @)

Figure 6 shows these two functions.

Thefirst typeisan exponential function yielding weights that decrease rapidly
when moving away from the vertex, whereas the second type — ahermite basis
function— showsmorelikeaplateauinitsneighborhood. The exponential type
is used at vertices with high curvature, limiting the spatial extent of their
influence, whereasthehermitetypeisusedfor verticesinaregion of low surface
curvature, where the influence of the vertex should reach out quite far. The
verticesindicated in bright grey ontheface are given exponential functions, the
dark grey ones hermite functions. Figure 7 illustrates the result of changing a
point ontheforehead from exponential to hermite. The smaller influenceregion
resultsin adip.
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Figure 7. The selection of RBF type is adapted to the local geometry. The
figure shows the improvement that results from switching from exponential
to hermite for the central point on the forehead.

Similarly, there are places where an exponential is much more effective than a
hermite RBF. If the generic head, which is of arather Caucasian type, hasto be
mapped onto the head of an Asian person, hermitefunctionswill tendto copy the
shape of the mesh around the eyes, whereas one wants |ocal control in order to
narrow the eyes and keep the corners sharp. The size of the region of influence
is also determined by the scale r. Three such scales were used (for both RBF
types). These scales and their spatial distribution over the face are shown in
Figure 8(1). As can be seen, they vary with the scale of the local facial
structures.

Figure 8. (1) The RBF sizes are also adapted to local geometry. There are
three sizes, where the largest is applied to those parts that are the least
curved. (2,3) For a small subset of points lying in a cavity the cylindrical
mapping is not carried out, to preserve geometrical detail at places where
captured data quality deteriorates.
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The virtual displacements dj of equation (1) are determined by demanding that
the 116 vertices undergo the (known) motions that map them from the generic
model onto the 3D face patch. This condition leadsto a system of equations for
the X, Y, and Z components of the 116 vertex motions, which are combined into

three column vectorsc, , ,respectively:

AdX,Y,Z =Cxvz- (5

Inthese equations, thevectorsd, , , represent the column vectors containing all
the X, Y, or Z components of the virtual displacement vectorsd.. The influence
matrix A contains the weights that the vertices of the known network apply to
each other. After solving these systemsfor c, , ,, theinterpolationisready to be
applied. Itisimportant to notethat verticeson different sidesof thedividing line
of the mouth are decoupled in these calculations.

A third step in the processing projects the interpolated points onto the extracted
3D surface. Thisis achieved via a cylindrical mapping. This mapping is not
carried out for asmall subset of pointswhichlieinacavity, however. Thereason
isthat theacquisition system does not alwaysproducegood datain these cavities.
The position of these points should be determined fully by the deformed head
model, and not subject to being degraded under the influence of the acquired
data. They are shown on the right side of Figure 8. On Figure 8(3), this is
illustrated for the nostril. The extracted 3D gridistoo smooth there and does not
follow the sharp dip that the nosetakes. The generic model dominatesthefitting
procedure and caters for the desired, high curvatures, as can be seen.

Figure 9. The jaw and lower teeth rotate around the midpoint of the places
where the jaw is attached to the skull, and translated (see text).
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An extreme example where the model takes absolute preference is the mouth
cavity. Theinterior of the mouth is part of the model, which, e.g., contains the
skinconnecting theteeth andtheinterior partsof thelips. Typically, scarcely any
3D datawill be captured for this region, and those that are captured tend to be
of low quality. Theupper row of teethisfixedrigidly tothe model and hasal ready
received their position through the first step (the global transformation of the
model, possibly with a further adjustment by the user). The lower teeth follow
thejaw motion, whichisdetermined asarotation about the midpoint between the
pointswherethe jaw is attached to the skull and atranslation. The motion itself
is quantified by observing the motion of a point on the chin, standardized as
MPEG-4 point 2.10. These points have al so been defined on the generic model,
as can be seen in Figure 9, and can be located automatically after the morph.

It hasto bementioned at thispoint that all the settings, liketypeand size of RBFs,
aswell aswhether vertices have to be cylindrically mapped or not, are defined
only once in the generic model as attributes of its vertices.

Viseme Prototype Extraction

The previous subsection described how a generic head model was deformed to
fit 3D snapshots. Not all frames were reconstructed, but only those that
represent the visemes (i.e., the most extreme mouth positions for the different
cases of Figure 2). About 80 frames were selected from the sequence for each
of the example faces. For the representation of the corresponding visemes, the
3D reconstructions, themselves, were not taken (the adapted generic heads), but
thedifference of these heads with respect to the neutral onefor the same person.
These deformation fields of all the different subjects still contain a lot of
redundancy. Thiswasinvestigated by applying aPrincipal Component Analysis.
Over 98.5% of the variance in the deformation fields was found in the space
spanned by the 16 most dominant components. We have used this statistical
method not only to obtain avery compact description of the different shapes, but
also to get rid of small acquisition inaccuracies. The different instances of the
same viseme for the different subjects cluster in this space. The centroids of the
clusters were taken as the prototype visemes used to animate these faces later
on.

Face Animation

The section, Learning Viseme Expressions, describes an approach to extract a
set of visemes from a face that could be observed in 3D, while talking. This
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process is quite time consuming and one would not want to repeat it for every
single face that hasto be animated. This section describes how novel faces can
be animated, using visemes which could not be observed beforehand.

Such animation requires a number of steps:

1. Personalizing the visemes

The shape or “physiognomy” of the novel face is taken into account by
determining theface srelative position with respect to the neutral example
facesin aFace Space. Thisinformationisused to generate a set of visemes
specific for the novel face.

2. Automatic, audio-based animation

From fluent speech a file is generated that contains visemes and their
timing. Thisfileisautomatically transformed into an animation of theface
by producing a sequence of viseme expressions combined with intermedi-
ate co-articulation effects.

3. Possible modifications by the animator

Astheanimator should remainin control, toolsare provided that allow the
animator to modify theresult asdesired. A “Viseme Space” can beroamed
using itsindependent components.

Personalizing the Visemes

A good animation requires visemes that are adapted to the shape or “physiog-
nomy” of the face at hand. Hence, one cannot simply copy or “clone” the
deformationsthat have been extracted from one of the example facesto anovel
face. Although it is not precisely known at this point how the viseme deforma-
tions depend on the physiognomy, visual improvements were observed by
adapting the visemesin a simple way described in this section.

Faces can be efficiently represented as points in a so-called “Face Space”
(Blanz et al., 1999). These points actually represent their deviation from the
average face. This can be done for the neutral faces from which the example
visemes have been extracted using the procedure described in the section,
Learning Viseme Expressions, aswell asfor aneutral, novel face. The example
faces span a hyper-plane in Face Space. By orthogonally projecting the novel
face onto this plane, a linear combination of the example faces is found that
comes closest to the projected novel face. Thisprocedureisillustrated in Figure
10. Suppose we put the Face Space coordinates of the face that corresponds to

thisprojectioninto asinglecolumn vector |~:nov and, similarly, the coordinates of
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Figure 10. Orthogonal projection of a novel face onto the hyper-plane
formed by the neutral example faces.

the example face i into the vector F.. If the coordinates of the projected, novel
face F, are given by

IEnov = 2 wi |:I (6)

the same weights @, are applied to the visemes of the example faces, to yield
apersonalized set of visemesfor thenovel face. Theeffect isthat arounded face
will get visemes that are closer to those of the more rounded exampl e faces, for
instance.

Thisstepinthecreation of personalized visemesisschematically representedin
Figurell.

Figure 11. A novel face can be approximated as a linear combination of
example faces. The same combination of the example faces' visemes yields
a first version of the novel face’'s viseme set.

+ w2
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Figure 12. The personalization of visemes follows two steps symbolized by
the two horizontal transitions: 1) The linear combination of the example
visemes as described in the text, and 2) A residual adaptation, following the
cloning technique described in Noh et al. (2001).

v

|
8 =8 =8
Q

Astheface F,, isstill abitdifferent fromtheoriginal novel face F,,, expression
cloningisapplied asalast step to the visemesfound from projection (Noh et al .,
2001). We have found that the direct application of viseme cloning from an
example face to other faces yields results that are less convincing. This is
certainly the case for facesthat differ substantially. According to the proposed
strategy the complete set of examplesisexploited, and cloning only hasto deal
with a small residue. The process of personalizing visemes is summarized in

Figurel2.

Automatic, Audio-Based Animation

Once the visemes for aface have been determined, animation can be achieved
as aconcatenation of visemes. The visemes, which haveto be visited, the order
in which this should happen, and the time intervals in between are generated
automatically from an audio track containing speech. First afileisgenerated that
containstheordered list of allophonesandtheir timing. “ Allophones” correspond
to afiner subdivision of phonemes. Thistranscription hasnot been our work and
we have used an existing tool, described in Traber (1995). The allophones are
then translated into visemes (the list of visemesis provided in Figure 2). The
vocals and silence are directly mapped to the corresponding visemes. For the
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consonants, the context playsastronger role. If they immediately follow avocal
among /o/, /u/, and /@@/ (thisisthevocal asin “bird"), then the allophoneis
mapped onto arounded consonant. If thevocal isamong/i/, /a/, and /el then the
allophone is mapped onto a widened consonant. When the consonant is not
preceded immediately by avocal, but the subsequent allophone is one, then a
similar decisionismade. |f theconsonant isflanked by two other consonants, the
preceding vocal decides.

From these data — the ordered list of visemes and their timing — the system
automatically generatesan animation. The concatenation of the sel ected visemes
can be achieved elegantly as anavigation through a“ Viseme Space,” similar to
a Face Space. The Viseme Space is obtained by applying an Independent
Component Analysis to all extracted, example visemes. It came out that the
variation can be captured well with asfew as 16 | ndependent Components. (This
underlying dimensionality is determined asthe PCA step that is part of our ICA
implementation (Hyvérinen, 1997).) Every personalized viseme can be repre-
sented as one point in this 16D Viseme Space. Animation boils down to
subsequently applying the deformations represented by the points along a
trgjectory that leads from viseme to viseme, and that is influenced by co-
articulation effects. An important advantage of animating in Viseme Space is
that all visited deformationsremain realistic.

Performing animation as navigation through aViseme Space of some sort isnot
new per se. Such approach wasalready demonstrated by Kalberer and V an Gool

Figure 13. Fitting splines in the “ Viseme Space” yields good co-articulation
effects, after attraction forces exerted by the individual nodes (visemes)
were learned from ground-truth data.
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(Kalberer et al., 2001; Kalberer et al., 2002a) and by Kshirsagar (2001), but for
fewer points on the face. Moreover, their Viseme Spaces where based on PCA
(Principal Component Analysis), not ICA. A justification for using | CA rather
than PCA isto follow later.

Straightforward point-to-point navigation as a way of concatenating visemes
would yield jerky motions. Moreover, when generating the temporal samples,
these may not precisely coincide with the pace at which visemes change. Both
problems are solved by fitting splines to the Viseme Space coordinates of the
visemes. Thisyields smoother changes and allows us to interpolate in order to
get the facial expressions needed at the fixed times of subsequent frames. We
used NURBS curves of order three.

A word on the implementation of co-articulation effects is in order here. A
distinction is made between vocals and labial consonants on the one hand, and
theremainder of thevisemesontheother. Theformer imposetheir deformations
much more strictly onto the animation than the latter, which can be pronounced
with alot of visual variation. In terms of the spline fitting, this means that the
animationtrajectory will move precisely through theformer visemesandwill only
be attracted towards the latter. Figure 13 illustrates this for one Viseme Space
coordinate.

Initially asplineisfitted through the values of the corresponding component for
the visemes of the former category. Then, its course is modified by bending it
towardsthe coordinate val ues of the visemesin the latter category. Thissecond
category issubdividedinto three subcategories: (1) somewhat |abial consonants
like those corresponding to the /ch,jh,sh,zh/ viseme pull stronger than (2) the
viseme/f, v/, whichinturn pulls stronger than (3) the remaining visemes of the
second category. In all three cases the same influence is given to the rounded
and widened versions of these visemes. The distance between the current spline
(determined by vocals and labial consonants) and its position if it had to go
through thesevisemesisreducedto (1) 20%, (2) 40%, and (3) 70%, respectively.
These are also shown in Figure 13. These percentages have been set by
comparing animations against 3D ground-truth. If an example faceis animated
with the same audio track used for training, such comparison can be easily made
and deviations could be minimized by optimizing these parameters. Only dis-
tances between lip positions were taken account of so far.

M odifications by the Animator

A tool that automatically generatesaface animation whichtheanimator then has
totakeor leaveisasourceof frustration, rather than ahelp. The computer cannot
replace the creative component that the human expert brings to the animation
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process. The animation tool described in this paper only proposes the speech-
based face animation as a point of departure. The animator can thereafter still
changethedifferent visemesandtheir influences, aswell asthe compl ete splines
that define the trajectory in “Viseme Space.”

Interms of the space of possible deformations, PCA and | CA basically yield the
same result. As already mentioned, PCA is part of the ICA algorithm, and
determinesthedegrees of freedomto bekept. Theimportanceof ICA mainly lies
inthe moreintuitive, manual changesthat the animator can make afterwards. A
face contains many muscles, and several will be active together to produce the
different visemes. In as far as their joint effect can be modeled as a linear
combination of their individual effects, | CA istheway to decouplethe net effect
again (Kalberer et al., 2002b). Of course, this model is a bit naive but,
nevertheless, one would hope that ICA is able to yield a reasonable decompo-
sition of face deformations into components that themselves are more strongly
correlated with thefacial anatomy than the principal components. Thishope has
proved not to bein vain.

From amathematical point of view, therealsoisagood indication that | CA may
be more appropriate than PCA to deliver the basis of a Viseme Space. The
distribution of the extracted visemes comes out to have ashapethat isquite non-
Gaussian, which can clearly be observed from ¥ 2 plots.

Independent Component Analysistriesto explain dataasalinear combination of
maximally independent basissignals, the* Independent Components.” Basically,
theseindependent components arefound asthe linear combinations of principal
componentsthat have, intermsof information theory, minimal mutual informa-
tion between each pair of input. This is mathematically related to finding
combinationswith distributionsthat are maximally non-Gaussian. Asthe central
limittheorem makesclear, distributionsof composed signalswill tend to bemore
Gaussian than those of the underlying, original signals. For these reasons, ICA
oftenissuccessful inretrieving aset of original signalsthat can only be observed
together, e.g., tosplit mixed audio signalsintotheir different components. These
separate, original components typically correspond to the maximally non-
Gaussiandirectionsof thedistributionthat representsthejoint probabilitiesof the
observed signal values. If the original signalshave Gaussian distributions, ICA
will fail. The fact that the composed distributions in our case are already non-
Gaussian is an indication the ICA can make sense.

The advantage that independent components have over principal components
doesn’t lie in their respective numbers, as, in fact, these are the same. Indeed,
the ICs are found in the reduced space spanned by the dominant PCs and this
space’'s dimension determines the number of ICs that ICA extracts (our
implementation of ICA follows that propounded by Hyvérinen (1997)). As
already mentioned, 16 components were used, which together cover 98.5% of
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Figure 15. Independent components yield more intuitive face deformations
than principal components in viseme space. Top: Principal components;
Middle, Bottom: Independent components.

the variation. The advantage, rather, is the more intuitive deformations that
correspond to the independent components, where each stays closer to asingle,
anatomical action of the face.

Finally, onamoreinformal score, wefoundthat only about one or two PCscould
be easily described, e.g., “opening the mouth.” In the case of ICs, six or so
components could be described in simple terms. Figure 15 shows a comparison
between principal and independent components. In both cases, there is a
component that one could describe as opening the mouth. When it comes to a
simpleaction, likerounding themouth, thereisasinglel Cthat correspondstothis
effect. But, in the case of PCs, this rounding is never found in isolation, but is
combined with the opening of the mouth or other effects. Similar observations
can be made for the other I1Cs and PCs.

One could argue that animation can proceed directly and uniquely as a combi-
nation of basic modes(e.qg., independent components) and that going viavisemes
is an unnecessary detour. Discussions with animators made it clear, however,
that they insist on having intuitive keyframes, like visemes and basic emotions,
as the primary interface. Hence, we give animators control both at the level of
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compl etevisemes and singleindependent components. Having the system work
on the basis of the same keyframes (i.e., in aViseme Space) helps to make the
interaction with the animator more intuitive, as the animator and the animation
tool “speak” the same language.

Results

Asafirst example, we show some frames out of an animation sequence, where
the person is animated using his own visemes. This person was one of our
examples. Four frames are shown in Figure 16. Although it is difficult to
demonstrate the realism of animation on paper, the different face expressions
look natural, and so does the corresponding video sequence.

A second example shows the transition between two faces (see Figure 17). In
this case, the visemes of the man are simply cloned to get thosefor the boy (Noh

Figure 16. One of the example faces uses its own visemes.

Figure 17. To see the effect of purely cloned visemes, a specific experiment
was performed. The man’'s visemes are kept throughout the sequence and
are cloned onto the mixed face.
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Figure 18. Two representative snapshots of purely cloned visemes exemplify
that cloning (Noh et al., 2001) does not always result in convincing shapes.

et al., 2001). The animation shows a few flaws, which become stronger as the
morph getscloser totheboy’ sface. Someof theseflawsarehighlightedin Figure
18 (but they are more outspoken if seen as a video). This example shows that
cloning alone does not suffice to yield realistic animation of speech.

A third example shows the result of our full viseme personalization. The three
faces on the left-hand side of Figure 19 are three of the 10 example faces used
to create the hyper-plane. The face on the right-hand side has been animated by
first projecting it onto the hyper-plane, weighing the visemes of the examples
accordingly, and finally cloning these weighted visemesto the original face.

Figure 19. Combination of the same viseme (represented by the faces in the
upper row) are combined and cloned onto a novel face according to its
physiognomy (face in the center).

ves T Wi
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Figure 20. The final animation can be enhanced with expressions that are
not related to speech, such as eye blinks and emotions.

Asafinal note, itisinteresting to mentionthat the system proposed here hasbeen
implemented as an Alias/Wavefront’s Maya plug-in. Figure 1 gives a quick
overview of the processing steps.

Furthermore, we have already experimented with the superposition of speech
and emotions. Detailed displacementswere measured for the six basi c emotions.
We found that linear addition of displacements due to visemes and emotions
worked out well in these preliminary trials. An exampleis shown in Figure 20.

Trends

Technologically the trend in face animation is one towards a stronger 3D
component inthe modeling and animation pi peline. Entertainment certainly isone
of the primary marketplaces for the work described in this chapter. The 3D
industry has had asignificant impact on thisindustry. With human charactersas
one of the central elements, 3D animation of charactersand special effectshave
become an integral part of many blockbuster movie productions. The game
industry has in the meantime eclipsed the movie industry in terms of gross
revenues. Also, inthisbranch of industry, thereisatrend towardsmorerealistic
human characters. Themost notabletrend in 3D digital mediaistheconvergence
of these playgrounds. Productions often target multiple marketssimultaneously,
with, e.g., movies coupled to games and Web sites, aswell as an extensiveline
of gadgets.
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Figure 21. The forecasts expect the European online game market to reach
43% by 2004 when there should be around 73 million online gamers, as
shown on the chart.

There will be 73 million online gamers in 2004
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Thecreation of 3D model sisoften financed through the acquisition of acopyright
over the scanned material, as such copyright enables the holder to spin off such
alternative applications. A segment expected to see a steep growth is online
gaming. Online 3D gaming subscriptionrevenueisexpected to grow at an annual
growth rate of 19.7% through 2007, as these sites offer unique experiences and
even episodic updates to gamers (see Figure 21).

Conclusions

Realistic faceanimationisstill achallenge. We havetried to attack thisproblem
via the acquisition and analysis of 3D face shapes for a selection of visemes.
Such data have been captured for a number of faces, which allows the system
to at least apply a crude adaptation of the visemesto the physiognomy of anovel
face for which no such data could be obtained. The animation is organized as a
navigationthrough“Viseme Space,” wheretheinfluenceof different visemeson
the space trgjectory varies. Given the necessary input in the form of an ordered
sequence of visemes and their timing, a face animation can be created fully
automatically. Such animation will in practice rather be a point of departure for
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an animator, who still has to be able to modify the results. This remains fully
possible within the proposed framework.

The proposed method yieldsrealistic results, with more detail intheunderlying,
3D models than usual. The RBF morphing, described in the section, Learning
Viseme Expressions, has been implemented with special care to make this
possible. The way of combining the visemes to a novel face seems to be both
novel and effective. By giving theanimator control over independent, rather than
the more usual, principal components this space can be navigated in a more
intuitiveway.

Although we believe that our results can already be of help to an animator,
several improvements can be imagined. The following issues are a few ex-
amples. Currently, afixed texture map is used for all the visemes, but the 3D
acquisition method allows usto extract a separate texture map for every viseme.
Thiswill helpto createtheimpression of wrinkleson rounded lips, for instance.

Another issueisthesel ection of thevisemes. For themoment, only arounded and
widened version of the consonants has been included. In reality, an/m/ in ama
lies between that in omo and imi. Thereisakind of gradual change from umu,
over omo, ama, and eme, up toimi. Accordingly, more versions of the visemes
can beconsidered. Another possible extensionistheinclusion of tongue position
inthevisemeclassification. Someof the consonant classeshaveto be subdivided
in that case. A distinction has to be made between, e.g., /I/ and /n/ on the one
hand, and /g/ and /k/ on the other.

It isalso possibleto take more exampleimages, until they span Face Space very
well. Inthat case, thefinal viseme cloning stepin our viseme personalization can
probably be left out.

Last, but not |east, speech-oriented animation needs to be combined with other
forms of facial deformations. Emotions are probably the most important ex-
ample. It will beinteresting to seewhat elseisneeded to combine, e.g., visemes
and emotionsand keep the overall impression natural. All these expressionscall
on the same facial muscles. It remains to be seen whether linear superpositions
of the different deformationsreally suffice, asit wasthe casein our preliminary
experiments.
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Abstract

This chapter introduces a complete framework for automatic adaptation of
a 3D face model to a human face for visual communication applications like
video conferencing or video telephony. First, facial features in a facial
image are estimated. Then, the 3D face model is adapted using the estimated
facial features. This framework is scalable with respect to complexity. Two
complexity modes, a low complexity and a high complexity mode, are
introduced. For the low complexity mode, only eye and mouth features are
estimated and the low complexity face model Candide is adapted. For the
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high complexity mode, a more detailed face model is adapted, using eye and
mouth features, eyebrow and nose features, and chin and cheek contours.
Experimental results with natural videophone sequences show that with this
framework automatic 3D face model adaptation with high accuracy is
possible.

| ntroduction

Inthelast few years, virtual humans and especially animated virtual faces (also
called talking heads) have achieved more and more attention and are used in
various applications. In modern computer games, virtual humans act asfootball
playersor Kung Fufighters. Inmovies, highly realistic animated virtual humans
arereplacing real actors (e.g., inthe sciencefiction movie“Final Fantasy”). On
the Internet, animated virtual faces are acting as news announcers or sales
agents. In visual communication applications, like video telephony or video
conferencing, the real faces of the participants are represented by virtual face
clones of themselves. If we take a closer ook at the technology behind these
animated faces, the underlying shape of avirtual face is often built from a 3D
wireframe consisting of verticesand triangles. Thiswireframeistextured using
textures from a real person’s facial image. Synthetic facial expressions are
generated by animating the 3D wireframe. Usually, the face is animated by
movement of thewireframe’ svertices. In order to produce natural looking facial
movements, an underlying animation structure (providing rulesfor animation) is
needed, simulating the behavior of areal human face.

The creation of such an animated face requires generating a well-shaped and
textured 3D wire-frame of ahuman face, aswell asproviding rulesfor animation
of this specific 3D wireframe. There are different ways to create an animated
face. One possibility is that an animated face is created manually by an
experienced 3D modeler or animator. However, an automatic approach is less
time consuming andisrequired for someapplications. Dependent onthe specific
application and itsrequirements, different waysfor the automatic creation of an
animated face exist.

For 3D modeling of the shape of the head or face, i.e., for generation of the 3D
wire-frame, techniques that are common for the 3D modeling of objects in
general could be used. With a3D scanner, alaser beam is sent out and reflected
by the object’ s surface. Range datafrom the object can be obtained and used for
3D modeling. Other approaches use range datafrom multi-view images (Niem,
1994) obtai ned by multiplecamerasfor 3D modeling. All thesetechniquesallow
avery accurate 3D modeling of an object, i.e., ahuman head or face. However,
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thegenerated 3D model could not beimmediately animated, sincetheunderlying
animation structureismissing.

An alternative approach is the use of a generic 3D face model with a built-in
animation structure. Action Units from the Facial Action Coding System
(Ekman & Friesen, 1977), MPEG-4 facial animation parameters (FAP)
(Sarris, Grammalidis & Strintzis, 2002) or muscle contraction parameters
(Fischl, Miller & Robinson, 1993) from amodel of facial musclescan beused as
an animation structurefor facial expression. A limited number of characteristic
feature points on ageneric face model are defined, e.g., thetip of the chin or the
left corner of the mouth. At thefirst step of 3D modeling using ageneric 3D face
model, those defined feature points are detected in facial images. Then, the
characteristic feature points of the generic 3D face model are adapted using the
detected feature points. This process is also called face model adaptation.
According to available input resources, 3D face model adaptation approaches
can be categorized asfollows: (a) rangeimage: An approach using rangeimage
to adapt agenericfacemodel with aphysics-based muscular model for animation
in 3D is proposed in Lee, Terzopoulos & Waters (1995). From the generic 3D
facemodel, aplanar generic meshiscreated using acylindrical projection. Based
on the range image, the planar generic face mesh adaptation is iteratively
performedtolocate feature pointsin the rangeimage by feature-based matching
techniques; (b) stereoscopic images/videos: An approach to using stereoscopic
images/videos for face model adaptation is proposed in Fua, Plaenkers &
Thalman (1999). Information about the surface of the human face is recovered
by using stereo matching to compute a disparity map and then by turning each
valid disparity valueinto a3D point. Finally, the generic facemodel isdeformed
so that it conforms to the cloud of those 3D points based on least-squares
adjustment; (c) orthogonal facial images: Orthogonal facial images are used
to adapt ageneric face model in Lee & Magnenat-Thal mann (2000) and Sarris,
Grammalidis & Strintzis (2001). They all require two or three cameras which
must be carefully set up so that their directions are orthogonal; (d) monocular
images/videos: For face model adaptation using monocular images/videos,
facial featuresinthefacial imagesare determined and the face model is adapted
(Kampmann, 2002). Since no depth information is available from monocular
images/videos, depth information for feature pointsis provided only in advance
by aface model and is adapted in relation to the determined 2D feature points.

In the following, we concentrate on animated faces for applicationsin the field
of visual communicationwhere only monocular imagesareavailable. For visual
communication applications, likevideo conferencing or video telephony, avirtual
face clone represents the human participant in the video conference or in the
videophone call. Movements and facial expressions of the human participants
haveto be extracted and transmitted. At thereceiver side, the virtual face model
isanimated using the extracted i nformation about motion and facial expressions.
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Since such information can be coded with a limited amount of bits, a video
conferenceor avideophonesystemwithvery low bit ratesis possible (Musmann,
1995). To implement such a coding system, a generic 3D face model has to be
adapted to the particul ar face of the participant involved inthe monocular video
telephony or video conferencing call. This adaptation must be carried out at the
beginning of the video sequence. Instead of achieving the highest 3D modeling
accuracy, it isthe quality of the animated facial expressionsin 2D images that
is more important for visual communication at the receiver side.

Face model adaptation for visual communication differsfrom other applications
in that it has to be done without human interaction and without a priori
information about the participant’s face and its facial features. It is unrealistic
to assume that a participant always has a particular facial expression, such asa
neutral expression with a closed mouth or a particular pose position, in a 3D
world. Analgorithmfor 3D face model adaptation should not only adapt theface
model to the shape of the real person’sface. An adaptation to the initial facial
expression at the beginning of the video sequence is also necessary.

Furthermore, analgorithm for 3D face model adaptation should bescalable, since
anumber of different deviceswill likely be used for visual communicationinthe
future. On the one hand, there will be small mobile deviceslike amabile phone
with limited computational power for imageanalysisand animation. Thedisplay
sizeisrestricted, which resultsin less need for high quality animation. On the
other hand, therewill bedeviceswithout theselimitationslikestationary PCs. In
thecaseof adevicewithlimitationsregarding power and display, theface model
adaptation algorithmwoul d need to switch toamodewith reduced computational
complexity and less modeling accuracy. For more powerful devices, the algo-
rithm should switchto amodewith higher computational complexity and greater
modeling accuracy.

Some algorithmsin the literature deal with automatic face model adaptation in
visual communication. In Kampmann & Ostermann (1997), a face model is
adapted only by means of eyeand mouth center points. Inaddition, noseposition,
and eye and mouth corner pointsare also used in Essa& Pentland (1997). A 3D
generic face model onto which afacial texture has previously been mapped by
hand is adapted to a person’s face in the scene by a steepest-gradient search
method (Strub & Robinson, 1995). No rotation of the face model isallowed. In
Kuo, Huang & Lin (2002), amethod is proposed using anthropometric informa-
tionto adapt the3D facial model. InReinderset al. (1995), special facial features
like a closed mouth are at first estimated and the face model is then adapted to
these estimated facial features. Rotation of the face model is restricted.
Furthermore, no initial values for the facial animation parameters like Action
Units (Reinders et al., 1995) or muscle contraction parameters (Essa &
Pentland, 1997) have been determined by the adaptation algorithms. An ap-
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proach for automatically adapting a generic face model to individual faces
without these kinds of limitations has not been developed, yet.

In this chapter, a complete framework for 3D face model adaptation based on
monocul ar facial imageswithout humaninteractionisaddressed. Limitationslike
a closed mouth or neutral facial expressions do not exist for the proposed
framework. In this framework, a two-step approach for face model adaptation
isintroduced. Inthefirst step, facial features are estimated from thefirst frames
of the video sequence. In the second step, the 3D face model is adapted using
these estimated facial features. Furthermore, face model adaptationisdonewith
two complexity modes. For the low complexity mode, the face model Candide
(Rydfalk, 1987), with asmall number of trianglesisused, and only eyeand mouth
features are estimated, since these features are most important for visual
impression. For facial animation in the low complexity mode, Action Unitsare
used. For the high complexity mode, an advanced face model with a higher
number of triangles is used, and other additional facial features like chin and
cheek contours, eyebrow and nose features are further estimated. In the high
complexity mode, a muscle-based model isimposed for facial animation.

This chapter is organized as follows. The next section presents the two face
models of different complexities and their animation parameters. The section
following describesalgorithmsfor facial feature estimation. Special emphasisis
given to the estimation of eye and mouth features. The fourth section presents
the algorithmsfor 3D face model adaptation using the facial features estimated
in the third section. Experimental results are presented in the final section.

3D Face Models

For visual communication like video telephony or video conferencing, a real
human face can be represented by ageneric 3D face model that must be adapted
to the face of the individual. The shape of this 3D face model is described by a
3D wireframe. Additional scaling and facial animation parameters are aligned
with the face model. Scaling parameters describe the adaptation of the face
model towards the real shape of the human face, e.g., the size of the face, the
width of theeyesor thethicknessof thelips. Oncedetermined, they remainfixed
for the whole video telephony or video conferencing session. Facial animation
parameters describe the facial expressions of the face model, e.g., local
movements of the eyesor mouth. These parametersaretemporally changed with
the variations of the real face's expressions. In this framework, face model
adaptation is carried out in two complexity modes, with alow complexity face
model and a high complex face model. These two face models are described in
detail below.
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Figure 1. 3D face models: (a)(b) Low complex 3D face mode Candide (79
vertices and 132 triangles): (a) Front view, (b) Side view; (c)(d) High
complex 3D face model (423 vertices and 816 triangles): (¢) Front view, (d)
Sde view.

The face model Candide (Rydfalk, 1987) used for the low complexity modeis
showninFigureslaand 1b. Thisfacemodel consistsof only 79 verticesand 132
triangles. For adaptation of Candide to the shape of the real face, scaling
parameters are introduced. With these parameters, the global size of the face,
the size of the eyes and the lip thickness could be changed.

Asfacial animation parameters for the face model Candide, six Action Units
from the Facial Action Coding System (Ekman & Friesen, 1977) are utilized.
Each Action Unit (AU) describes the local movement of a set of vertices. Two
Action Units (AU,;, AU,) are defined for the movements of the eyelids and the
remaining four Action Unitsaredefined for themovements of themouth corners
(AU, AU,,)) and the lips (AU, AU, ).

For the high complexity mode, a derivative from the face model presented in
Fischl, Miller & Robinson (1993) isused (ref. Figures 1c and 1d). Thisgeneric
face model consists of 423 vertices and 816 triangles. Compared with the low
complexity face model Candide, more scaling parametersareintroduced. Here,
the global size of theface, the size of eyes, nose and eyebrows, thelip thickness,
as well as the shape of chin and cheek contours could be scaled. As facial
animation parameters, facial muscle parameters as described in Fischl, Miller
and Robinson (1993) are utilized. These muscle parametersdescribe the amount
of contraction of the facial muscles within the human face. Ten different facial
muscles are considered (ref. Figure 2). Since they occur on the left and on the
right side of the face, respectively, 20 facial muscle parameters are used. In
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Figure 2. High complexity face model: Position of facial muscles.
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addition to Fischl, Miller and Robinson (1993), additional facial animation
parameters are introduced. They describe the rotation of the jaw and the
movements of eyelids and irises.

Facial Feature Estimation

The estimation of facial featuresin the 2D facial imagesis the first part of the
face model adaptation algorithm. For the low complexity mode, eye and mouth
features are estimated (described in the next subsection). For the high complex-
ity mode, chin and cheek contours, eyebrow and nose features are additionally
estimated (described in the following subsection).

Eye and Mouth Features

The eye and mouth features are estimated by means of 2D eye and mouth
models. In the following, subscriptsr, I, u, o stand for right, left, upper and
lower, respectively.

2D eye model

The eyein afacial imageisrepresented by a2D eye model, shownin Figure 3,
and consistsof apair of parabolic curvesW,, W,and acircle W, (Y uille, Hallinan
& Cohen, 1992; Zhang, 1998). h isthe pupil point and r the radius of theiris. r
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Figure 3. 2D model of the eye.

Figure 4. 2D models of the mouth.

(a) mouth-open model (b) mouth-closed model

is set to afixed fraction of the eye width that is the distance between two eye
corner positions h and h . The parameters of the parabolic curves (a,a)
represent the opening heights of the eyelids. It is assumed that both eyes have
the same opening heights. In order to represent eye features with a 2D eye
model, eight parametershaveto be estimated, namely: (i) four eye corner points,
(i) two pupil points, and (iii) two opening heights of the eyelids.

2D mouth models

The mouth isrepresented by amouth-open model or amouth-closed model. The
mouth-open model (ref. Figure 4a) consists of four parabolic curves, W, and the
mouth-closed model (ref. Figure 4b) of three parabolic curves, W (Zhang,
1998). The parameters (0, 0,) describe the opening heights of the lips and the
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parameters (d,, d ) stand for the thickness of the lips. The mouth width L is
calculated as the distance between the left mouth corner point h, and the right
mouth corner point h . To represent the mouth-open features, six parameters
areneeded: (i) twomouth corner points, (ii) two thicknessof thelips, and (iii) two
opening heights of thelips. For the representation of the mouth-closed features,
five parametersare needed: (i) two mouth corner points, (ii) two thickness of the
lips, and (iii) one parameter t which refersto the height between the level of the
corners of the mouth and the contact point of the two lips.

Based on the representation of eye and mouth features using the 2D parametric
models described above, the parameters of the models are separately estimated
one after another (ref. Figure 5). The search areas for eye and mouth features
are first determined using the algorithm proposed in Kampmann & Ostermann
(1997). Within these search areas, the pupil points and the corner points of the
eyes and the mouth are estimated with template matching techniques (Zhang,
1997). After that, these estimated points are utilized to fix the search areas for
the lip thickness and the opening heights of the lips and the eyelids. Since two
mouth models are exploited for representing the 2D mouth features, an appro-
priate mouth model hasto be automatically selected first. Thelip thickness and
the opening heights of the lips will then be estimated by minimization of cost
functionsusing an appropriate 2D mouth model. The eyelid opening heightsare
also estimated using the 2D eye model analogous to the estimation of the lip

Figure 5. Flowchart of eye and mouth feature estimation.
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thickness and opening heights (Kampmann & Zhang, 1998). In the following,
only selection of an appropriate mouth model and estimation of mouth opening
heights and lip thickness are addressed in detail.

Automatic Selection of 2D Mouth Models

To estimate the 2D mouth features, an appropriate 2D mouth model has to be
automatically selected. To do this, it must be known whether the mouth is open
or not. Compared with a closed mouth, which consists of three lip contours, an
open mouth has an additional fourth lip contour.

The mouth area M is determined by means of the mouth width L, the distance
between the mouth corner positions (ref. Figure 6). Here, the area of the lower
lip with the size of Lx0.5L issupposed to be larger than the area of the upper
lipwiththesizeof L x0.3L, becausethelower lip haslarger movement than the
upper lip. Since alip contour is labeled with high luminance variation, edge
strength (image gradient) gy(x,y) in the mouth area is computed using a
morphologic edge operator. It isfurther binarized with athreshold and thinned.
The lines produced using these methods are the candidates for the possible lip
contours. Finally, an appropriate 2D mouth model is automatically selected by
comparing anumber of possible positionsfor the lip contours above and bel ow
thelinel, connecting both mouth corner positions.

Estimation of the Thickness and the Opening Heights of Lips

After the appropriate 2D mouth model has been selected, the parameters of the
mouth model are estimated by minimization of cost functions. Since the mouth

Figure 6. Position detection of candidates for lip contours for 2D mouth
model.
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corner positions have already been estimated, only thethickness(d , d ) and the
opening heights(o,, 0 ) of thelipsin the mouth-open case (ref. Figure 4), aswell
asthelip thickness(d , d ) and the value of the parameter t in the mouth-closed
case (ref. Figure 4) need to be estimated. A perpendicular bisector of the linel
connecting both mouth corner positions in the mouth area M is defined as the
search area for these parameters (ref. Figure 6). Different values of these
parameters create different formsof the 2D mouth models. In order to determine
these parameters, the similarity between the selected 2D mouth model with the
geometrical form of the real mouth in the image is measured using a cost
function. This cost function utilizes texture characteristics of the real mouth by
means of the selected 2D mouth model.

It is observed that there are texture characteristics existing in the mouth area:

1. The areas of the lips have almost the same chrominance value. In the
mouth-open case, an additional area, mouth-inside, exists and is strongly
distinguished from the lip areas. Mouth-insides normally have different
luminance valuesdueto, e.g., teeth (white) and shadow areas (black). But,
it has an almost uniform chrominance val ue.

2. Onthelip, the luminance values of the contours strongly vary.

In the following, only the mouth-open case is discussed as an example. The
solution to the mouth-closed case can be derived from the mouth-open case.
Let fopen(dy,ds,04,0,) stand for the cost function used in the mouth-open case.
Based on the texture characteristics mentioned above, the cost function
fopen (dy»d5,0,,0,) for the mouth-open case is defined as follows:

fopen(du’dmou’oo) = C’l>< fopenl (du’do’0u1oo)+cz X fopenz(dwdo’Ou’Oo) (1)

where foen(d,,dy,0,,0,) describes the first texture characteristic and

fopen2(dy»dy,0,,0,) describes the second texture characteristic. The coeffi-
cients ¢, and c, are constant weighting factors. The choice of these two
coefficientsisdependent on the trade-off between those two assumptions. Inthe
experiments in the final section, the values of ¢ and c, are assigned to be 1.

The term fopea (dy»d,,0,,0,) consists of the means and variances of chromi-
nance values U in the area of the upper lip A, in the area of the lower lip A and
in the area of the mouth-inside A,. The areas of A , A, and A, are defined using
the 2D mouth model (ref. Figure 4) and are dependent on the parameters (d ,
d, 0, 0,) to be estimated. The means of chrominance in the lip areas should be
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the same, but they should be different to the mean of chrominance in the mouth-
inside. The variances are utilized to describe the uniformity of the chrominance

values U within these areas. The term f,,(d,,d,,0,,0,) consists of the
addends of edge strength (image gradient) g, (X, y) along lip contours W. The
run and length of the parabolic curves are defined with a2D mouth-open model
and are dependent on the parameters to be estimated.

The parameters (d, d., 0, 0) in the mouth-open model are determined by

minimization of the cost fopen(dy.ds.0,.0,). To reduce the computational
complexity, thecost functionisonly evaluated at the already detected candidates
for the lip contours (ref. Figure 6). From all possible combinations of the lip
contour’ s candidates, the combination with the least cost is determined as the
estimates for the lip thickness and the lip opening heights in the mouth-open
model.

Other Facial Features

In case of the high complexity mode, other facial features besides the eyes and
the mouth are estimated.

Chin and cheek contours

For the estimation of chin and cheek contours, the approach described in
Kampmann (2002) is used. The chin and the cheeks are represented by a
parametric 2D model. This parametric model consistsof four parabolabranches
linked together. The two lower parabola branches represent the chin, the two
upper parabolabranches definetheleft and theright cheek. Taking into account
the estimated eye and mouth middle positions, search areas for the chin and
cheek contours are established. Inside each search area, the probability of the

Figure 7. Estimation of chin and cheek contours: (a) Estimated chin
contour, (b) Estimated chin and cheek contours.
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occurrence of the chin and cheek contours is calculated for each pixel. This
calculation takes advantage of thefact that the chin and cheek contoursare more
likely to be located in the middle of the search area than at the borders of the
search area. An estimation ruleisestablished using thisprobability and assumes
high image gradient values at the position of the chin and cheek contours. By
maximization, the position of the chin contour (ref. Figure 7a), as well as the
positions of the cheek contours (ref. Figure 7b) are estimated.

Eyebrows

For estimation of eyebrow features, some knowledge about these features is
exploited (Kampmann & Zhang, 1998):

Eyebrows are located above the eyes.

Eyebrows are darker than the surrounding skin.
Eyebrows have atypical curvature, length and thickness.
Eyebrows could be covered by hair.

A w DD PE

Usingthisknowledge, eyebrow featuresare estimated. First, using the estimated
eye positions, search areas for the eyebrows are introduced above the eyes.
Then, abinarization of the luminance image using athreshold is carried out. In
order to determinethisthreshold, the upper edge of the eyebrow isidentified as
the maximum value of the luminance gradient. The threshold is now the mean
value between the luminance value of the skin and the luminance value of the
eyebrow at thisupper edge. After binarization, the areawith aluminance value
below the threshold is checked whether it has the typical curvature, length and
thickness of an eyebrow. If the answer is yes, the eyebrow is detected. If the
answer is no, the eyebrow is covered by hair. For this case, using the
morphological image processing operations erosion and dilation, as well as
knowledge about the typical shape of an eyebrow, it is decided whether the
eyebrow is completely or only partly covered by hair. In the case that the

Figure 8. Estimation of eyebrow features: (a)(b)(c) Original image, (d)(e)(f)
Eyebrows after binarization, (g)(h)(i) Eyebrows after removal of hair.

ILE

(9) (h) (i)
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eyebrow isonly partly covered by hair, the eyebrow isdetected by removing the
covered hair. Otherwise, the eyebrow is completely covered by hair and cannot
be detected. Figure 8 shows the different stages of the eyebrow estimation.

Nose

As nose features, the sides of the nose are estimated (Kampmann & Zhang,
1998). Since the mouth middle position is already determined, search areas for
thesides of the nose areintroduced above the mouth. Sincethe edgesof thesides
of the nose have a specific shape, parametric 2D models of the sides of the nose
are introduced. Using this model, each position inside the search area is
evaluated as a possible position of the side of the nose. The positions with the
maximum accumulated value of the luminance gradient at the nose model’s
border are chosen as the sides of the nose.

3D Face Model Adaptation

After facial feature estimation is carried out, the two different face models are
adapted in the second step. Using perspective projection, vertices of the 3D face
modelswhich correspond to the estimated 2D facial features are projected onto
the image plane. By comparing these projections with the estimated 2D facial
features in the image, the scaling and facial animation parameters of the face
models are calculated and the face models are adapted.

Low Complexity 3D Face Model Adaptation

For 3D face model adaptation with low complexity, the face model Candideis
exploited. For complexity reasons, the scaling and facial animation parameters
of Candide will be determined with eye and mouth features only (Zhang, 1998).
The scaling parameters for the face model Candide include the scaling
parameters for the face size, for the eye size and for the lip thickness. Before
determining the scaling parameters, the face model Candide is rotated in such
away that the head tilts of theface model and of thereal facein theimage match.

The face size is defined by the distance between both eye middle positions, as
well as the distances between the eye and mouth middle positions of the face
model. The 3D eye and mouth middle positions of the face model are projected
onto the image plane. Comparison of the distances of the eyes and the mouth in
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theimage with those of the projections of Candide yieldsthe scaling factorsfor
the face size. The eye size is defined as the distance between both eye corner
positions. The scaling parameter for the eye sizeisdetermined by comparing the
projectionsof the3D eye corner positionsof thefacemodel ontotheimage plane
with the estimated 2D eye corner positions. Asthe scaling parameter for thelip
thickness, displaced vectors of the lip’s vertices of the face model are intro-
duced. Theverticesthat represent theinside contoursof thelipsarefixed during
the scaling of the lip thickness. The vertices that describe the outside contours
of the lips are shifted outwards for the scaling of the lip thickness. The eye
opening isdefined by the positions of the upper and lower eyelids. The position
of the upper eyelid can be changed by AU, and that of thelower eyelid by AU..
Since the 3D face model has fully opened eyes at the beginning, the eyelids of
the face model are closed down, so that the opening heights of the face model
match the estimated eyelid opening heights in the image plane. The values of
AU, and AU, are calculated by determining the range of the movement of the
eyelids of the face model. The movement of the mouth corners are represented
by AU, and AU ,. AU, moves the mouth cornersinward and AU_, moves them
outward. For the determination of thesetwo Action Units' values, the estimated
mouth corner positionsare utilized. The mouth openingisdefined by the position
and movement of the upper and lower lips. The position of the upper lip is
determined by AU, and that of the lower lip by AU, . For the determination of
thesetwo Action Units' values, the estimated 2D opening heights of thelipsare
used.

High Complexity 3D Face Model Adaptation

For adaptation of the high complexity face model, all estimated facial features
(eyes, mouth, eyebrows, nose, chin and cheek contours) are taken into account.
Usingall estimatedfacial features, scaling andinitial facial animation parameters
of the high complexity face model are calculated and used for the face model
adaptation to theindividual face. First, orientation, size and position of theface
model are adapted (only eye and mouth middle positions and cheek contoursare
used here). Then, the jaw of the face model isrotated. In the next step, the chin
and cheek contour of facemodel isadapted. Finally, scaling and facial animation
parameters for the rest of the facial features (eyes, mouth, eyebrows, nose) are
determined.

For orientation, the lateral head rotation is adapted first. The quotient of the
distances between eye middl e positions and cheek contours on both sides of the
faceisintroduced as ameasure for the lateral head rotation. For adaptation, the
face model isrotated around its vertical axis as long as this quotient measured
in theimage plane using the estimated facial featuresisthe same asthe quotient
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determined by projecting the face model in the image plane. Then, the head tilt
is adapted. The angle between a line through the eye middle positions and the
horizontal image lineisameasure for the head tilt. Using the measured anglein
theimage, thetilt of theface model isadapted. After that, theface sizeisscaled.
Thedistance betweentheeye middle positionsisused for scaling thefacewidth,
thedistance betweenthe center of the eye middle positionsand themouth middie
position for scaling theface height. The next step of face model adaptationisthe
adjustment of the jaw rotation. Here, the jaw of the face model is rotated until
the projection of the face model’ s mouth opening onto the image plane matches
the estimated mouth opening in the image. For scaling of the chin and cheek
contours, the chin and cheek vertices of the face model areindividually shifted
so that their projections match the estimated face contour in theimage. In order
to maintain the proportions of ahuman face, all other vertices of the face model
are shifted, too. The amount of shift isreciprocal to the distance from the vertex
to the face model’s chin and cheek. Finally, scaling and facial animation
parameters for the rest of the facial features (eyes, mouth, eyebrows, and nose)
are calculated by comparing the estimated facial features in the image with
projections of the corresponding features of the face model. For scaling, the
width, thickness and position of the eyebrows, the width of the eyes, the size of
theiris, the width, height and depth of the nose, aswell asthelip thickness are
determined. For facial animation, therotation of theeyelids, thetransl ation of the
irises, aswell as facial muscle parameters for the mouth are calculated. These
scaling and facial animation parameters are then used for the adaptation of the
high complexity face model.

Experimental Results

For evaluation of the proposed framework, the head and shoulder video
sequences Akiyo and Miss America with aresolution corresponding to CIF and
a frame rate of 10Hz are used to test its performance.

Estimation of Facial Features

Figure 9 shows some exampl es of the estimated eye and mouth features over the
original image with the sequence Akiyo and Miss America. For accuracy
evaluation, the true values are manually determined from the natural video
sequences, and the standard deviation between the estimated and thetrue values
ismeasured. The estimate error for the pupil positionsis 1.2 pel on average and
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Figure 9. Estimated 2D eye and mouth models (Left: Akiyo; Right: Miss
America).

Figure 10. Estimated eyebrows, nose, chin and cheek contours (Left:
Akiyo; Right: Miss America). Displayed eye and mouth middle positions are
used for determining search areas for the other facial features.

for the eye and mouth corner positions is 1.8 pel. The estimate error for lip
thicknessand for lip opening heightsis 1.5 pel onaverage, whiletheerror for the
eyelid opening heights amountsto 2.0 pels.

Figure 10 shows some results for the estimation of the other facial features
(eyebrows, nose, chin and cheek contours) of the high complexity mode. The
estimate error for the eyebrows is 2.7 pels on average and for the sides of the
nose is 1.8 pel. The estimate error for chin and cheek contoursis 2.7 pels on
average.
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Figure 11. Adapted 3D face model with low complexity over an original
image based on estimated eye and mouth features (Left: Akiyo; Right: Miss
America).
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Figure 12. Adapted 3D face model with high complexity over an original
image based on all estimated facial features (Left: Akiyo; Right: Miss
America).

3D Face Model Adaptation

In order to evaluate the achieved accuracy of the face model adaptation
framework, the proposed algorithms are tested with the video sequences Akiyo
and Miss America. Figure 11 shows the adapted face models based on the
estimated eye and mouth features shown in Figure 9 (low complexity mode). It
can be seen that the adapted face model matches the real face in terms of the
eye and mouth featuresvery well. Figure 12 showsthe adaptation resultsfor the
high complexity mode where all estimated facial features are used for adapting
the face model. Here, the high complexity face model matchesthe original face
very well, particularly for the eyebrows, the nose and the face contour.
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Figure 13. Facial animation using the face model of low complexity: (O- )
Original images; (S ) Synthesized images.
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Facial Animation

To further demonstrate the effectiveness of the proposed framework, facial
animationisalso carried out using thetwo different facemodels. Figure 13 shows
the facial animation results with the face model of low complexity. The texture
from the original image (O-1) is mapped onto the face model Candide that has
been adapted onto thisreal face. According to estimated eye and mouth features,
this face model is then animated. Projecting this animated textured face model

Figure 14. Facial animation using the face model of high complexity:
(O-) Original images; (S ) Synthesized images.
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ontotheimage planecreatesthe syntheticimages(S-) whichareshownin Figure
13. It can be seen that the quality of the synthetic facesis sufficient, especially
for smaller changes of the facial expressions compared with the original image
(O-1). For creating a higher quality synthetic face, amore detailed face model
with more triangles is necessary. This high complexity face model is textured
from the original images (O-1) in Figure 14. The synthetic images (S-) from
Figure 14 show the results of animating the high complexity face model. It can
be seen that using the high complexity face model results in a visually more
impressive facial animation, although at the expense of higher processing
complexity.

Conclusions

A framework for automatic 3D face model adaptation has been introduced
whichisqualifiedfor applicationsinthefield of visual communication likevideo
telephony or video conferencing. Two complexity modes have been realized, a
low complexity mode for less powerful deviceslike a mobile phone and a high
complexity mode for more powerful devices such as PCs. This framework
consists of two parts. In the first part, facial features in images are estimated.
For thelow complexity mode, only eye and mouth features are estimated. Here,
parametric 2D models for the eyes, the open mouth and the closed mouth are
introduced and the parameters of these models are estimated. For the high
complexity mode, additional facial features, such as eyebrows, nose, chin and
cheek contours, are estimated. In the second part of the framework, the
estimated facial features from the first part are used for adapting a generic 3D
face model. For the low complexity mode, the 3D face model Candideis used,
whichisadapted using the eye and mouth featuresonly. For the high complexity
mode a more detailed 3D face model is used, which is adapted by using all
estimated facial features. Experiments have been carried out evaluating the
different parts of the face model adaptation framework. The standard deviation
of the 2D estimation error islower than 2.0 pel for the eye and mouth features
and 2.7 pel for all facial features. Testswith natural videophone sequences show
that an automatic 3D face model adaptation is possible with both complexity
modes. Using the high complexity mode, a better synthesis quality of the facial
animation is achieved, with the disadvantage of higher computational load.
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Endnote

*  This work has been carried out at the Institut fir Theoretische
Nachrichtentechnik und Informationsverarbeitung, University of Hannover,
Germany.
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Abstract

This chapter presents a unified framework for machine-learning-based facial
deformation modeling, analysis and synthesis. It enables flexible, robust face
motion analysis and natural synthesis, based on a compact face motion
model learned from motion capture data. This model, called Motion Units
(MUs), captures the characteristics of real facial motion. The MU space
can be used to constrain noisy low-level motion estimation for robust facial
motion analysis. For synthesis, a face model can be deformed by adjusting
the weights of MUs. The weights can also be used as visual features to learn
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audio-to-visual mapping using neural networks for real-time, speech-
driven, 3D face animation. Moreover, the framework includes parts-based
MUs because of the local facial motion and an interpolation scheme to
adapt MUs to arbitrary face geometry and mesh topology. Experiments
show we can achieve natural face animation and robust non-rigid face
tracking in our framework.

| ntroduction

A synthetic human face provides an effective solution for delivering and
visualizing information related to the human face. A realistic, talking face is
useful for many applications: visual telecommunication (Aizawa & Huang,
1995), virtual environments (Leung et al ., 2000), and synthetic agents (Pandzic,
Ostermann & Millen, 1999).

One of the key issues of 3D face analysis (tracking and recognition) and
synthesis (animation) isto model both temporal and spatial facial deformation.
Traditionally, spatial facedeformationiscontrolled by certainfacial deformation
control models and the dynamics of the control models define the temporal
deformation. However, facial deformation iscomplex and often includes subtle
expressional variations. Furthermore, peoplearevery sensitivetofacial appear-
ance. Therefore, traditional model susually require extensivemanual adjustment
for plausible animation. Recently, the advance of motion capturetechniqueshas
sparked data-driven methods (e.g., Guenter et al., 1998). These techniques
achieve realistic animation by using real face motion data to drive 3D face
animation. However, the basic data-driven methods areinherently cumbersome
because they require a large amount of data for producing each animation.
Besides, it isdifficult to use them for facial motion analysis.

More recently, machine learning techniques have been used to learn compact
and flexible face deformation models from motion capture data. The learned
models have been shown to be useful for realistic face motion synthesis and
efficient face motion analysis. In order to allow machine-learning-based ap-
proaches to address the problems of facial deformation, analysis and synthesis
in asystematic way, aunified framework is demanded. The unified framework
needsto addressthefollowing problems: (1) how to learn acompact model from
motion capture datafor 3D face deformation; and (2) how to use the model for
robust facial motion analysisand flexible animation.

In this chapter, we present a unified machine-learning-based framework on
facial deformation modeling, facial motion analysis and synthesis. The frame-
work isillustrated in Figure 1. In this framework, wefirst learn from extensive
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Figure 1. The machine learning based framework for facial deformation
modeling, facial motion analysis and synthesis.
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3D facial motion capture data a compact set of Motion Units (MUSs), which are
chosen as the quantitative visual representation of facial deformation. Then,
arbitrary facial deformation can be approximated by a linear combination of
MUs, weighted by coefficients called Motion Unit Parameters (MUPs). Based
on facial feature points and a Radial Basis Function (RBF) based interpolation,
the M Us can be adapted to new face geometry and different face mesh topol ogy.
MU representation isused in both facial motion analysis and synthesis. Within
theframework, face animation isdone by adjusting the MUPs. For facial motion
tracking, the linear space spanned by MUs is used to constrain low-level 2D
motion estimation. As aresult, more robust tracking can be achieved. We also
utilize MUs to learn the correlation between speech and facial motion. A real-
time audio-to-visual mapping is learned using an Artificial Neural Network
(ANN) from an audio-visual database. Experimental results show that our
framework achieved natural face animation and robust non-rigid tracking.
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Backgr ound

Facial Deformation M odeli ng

A good survey of facial deformation modeling for animation can be found in
Parke & Waters (1996). Representative 3D spatial facial deformation models
include free-form interpolation models, parameterized models, physics-based
modelsand, morerecently, machine-learning-based models. Free-forminterpo-
lation models define a set of points as control points and then use the displace-
ment of control pointsto interpol ate the movements of any facial surface points.
Popular interpolation functionsinclude: affine functions (Hong, Wen & Huang,
2001), Splines, radial basisfunctions, and others. Parameterized model s(such as
Parke’s model (Parke, 1974) and its descendants) use facial-feature-based
parameters for customized interpolation functions. Physics-based muscle mod-
els (Waters, 1987) use dynamics equations to model facial muscles. The face
deformation can then be determined by solving those equations. Because of the
high complexity of natural facial motion, these models usually need extensive
manual adjustmentsto achieverealistic facial deformation. To approximatethe
space of facial deformation using simpler units, some have proposed linear
subspaces based on Facial Action Coding System (FACS) (Essa & Pentland,
1997; Tao, 1998). FACS (Ekman & Friesen, 1977) describes arbitrary facial
deformation as a combination of Action Units (AUs) of aface. Because AUs
are only defined qualitatively without temporal information, they are usually
manually customized for computation. Recently, it is possible to collect large
amountsof real human motion data. Thus, peopleturnto apply machinelearning
techniques to learn the model from the data (Kshirsagar, Molet & Thalmann,
2001; Hong, Wen & Huang, 2002; Reveret & Essa, 2001).

To model temporal facial deformation, some have used simple interpolation
schemes (Waters & Levergood, 1993) or customized co-articulation functions
(Pelachaud, Badler & Steedman 1991; Massaro, 1998) to model the temporal
trajectory between given key shapes. Physics-based methods solve dynamics
equations for these trajectories. Recently, Hidden Markov Models (HMM)
trained from motion capture dataare shown to be useful to capture the dynamics
of natural facial deformation (Brand, 1999).

Facial Motion Analysis

Analysis of human facial motion is the key component for many applications,
such asmodel-based, very low-bit-rate video coding for visual telecommunica-
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tion (Aizawa& Huang, 1995), audio-visual speechrecognition (Stork & Hennecke,
1996), and expression recognition (Cohen et al., 2002). Simple approachesonly
utilize low-level image features (Goto, Kshirsagar & Thalmann, 2001). How-
ever, it is not robust enough to use low-level image features alone because the
error will be accumulated. High-level knowledge of facial deformation must be
used to handle the error accumulation problem by imposing constraints on the
possible deformed facial shapes. For 3D facial motiontracking, peoplehave used
various 3D deformable model spaces, such asa 3D parametric model (DeCarlo,
1998), MPEG-4 FAP-based B-Spline surface (Eisert, Wiegand & Girod, 2000)
and FACS-based models (Tao, 1998). These models, however, are usually
manually defined, which cannot capturethe real motion characteristicsof facial
features well. Therefore, some researchers have recently proposed to train
facial motion subspace models from real facial motion data (Basu, Oliver &
Pentland, 1999; Reveret & Essa, 2001).

Facial Motion Synthesis

Based on spatial and temporal modeling of facial deformation, facial motionis
usually synthesized according to semantic input, such as text script (Waters &
Levergood, 1993), actor performance (Guenter et al., 1998), or speech (Brand,
1999; Morishima & Harashima, 1991). In this chapter, we focus on real-time
speech face animation.

A synthetic talking face is useful for multi-modal human computer interaction,
such as e-commerce (Pandzic, Ostermann & Millen, 1999) and computer-aided
education (Coleet al., 1999). To generate facial shapesdirectly from audio, the
coreissueistheaudio-to-visual mapping that convertstheaudioinformationinto
thevisual information about facial shapes. HM M -based methods (Brand, 1999)
utilizelong-term contextual information to generateasmoothfacial deformation
trajectory. However, they can only be used in off-line scenarios. For real-time
mapping, people have proposed various methods such as: Vector Quantization
(VQ) (Morishima & Harashima, 1991), Gaussian mixture model (GMM) (Rao
& Chen, 1996) and Artificial Neural Network (ANN) (Morishima& Harashima,
1991; Goto, Kshirsagar & Thalmann, 2001). To use short-time contextual
information for a smoother result, others have proposed to use a concatenated
audio feature over a short time window (Massaro et al., 1999) or to use time-
delay neural network (TDNN) (Lavagetto, 1995).
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Machine Learning Techniques for Facial Deformation
Modeling, Analysis and Synthesis

Artificial Neural Network (ANN) is a powerful tool to approximate functions.
It has been used to approximate the functional relationship between motion
capture data and the parameters of pre-defined facial deformation models
(Morishima, Ishikawa & Terzopoulos, 1998). This helps to automate the con-
struction of aphysics-based face muscle model. Moreover, ANN has been used
to learn the correlation between facial deformation and other related signals,
such asspeech (Maorishima& Harashima, 1991; L avagetto, 1995; Massaroetal.,
1999).

Because facial deformation is complex, yet structured, Principal Component
Analysis (PCA) (Jolliffe, 1986) has been applied to learn a low-dimensional
linear subspace representation of 3D face deformation (Kshirsagar, Molet &
Thalmann, 2001; Reveret & Essa, 2001). Then, arbitrary complex facedeforma-
tion can be approximated by alinear combination of just a few basis vectors.
Moreover, the low-dimensional linear subspace can be used to constrain noisy
low-level motion estimation to achieve more robust 3D facial motion analysis
(Reveret & Essa, 2001).

Thedynamicsof facial motioniscomplex, soitisdifficult tomodel withanalytic
equations. A data-driven model, such as the Hidden Markov Model (HMM)
(Rabiner, 1989), provides an effective alternative. One example is “voice
puppetry” (Brand, 1999), wherean HM M trai ned by entropy minimizationisused
to learn a dynamic model of facial motion during speech.

Learning 3D Face Deformation M odel

In this section, we introduce the methods for a learning 3D face deformation
model in our framework. 3D face deformation model describes the spatial and
temporal deformation of 3D facial surface. Efficient and effectivefacial motion
analysis and synthesis requires a compact, yet powerful, model to capture real
facial motion characteristics. For thispurpose, analysisof real facial motion data
is needed because of the high complexity of human facial motion.

In this section, we first introduce the motion capture database we used. Then,
we present our methods for learning holistic and parts-based spatial facial
deformation models, respectively. Next, we describe how we adapt the learned
modelsto arbitrary face mesh. Finally, we describe thetemporal facial deforma-
tion modeling. The face model s used for M U-based animation are generated by
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Figure 2. (a) The generic model in iFACE; (b) A personalized face model
based on the cyberware scanner data; (c¢) The feature points defined on
generic model for MU adaptation.

“iIFACE,” aface modeling and animation system developed in Hong, Wen &
Huang (2001). iFACE isillustrated in Figure 2.

The Motion Capture Database

We use motion capture data from Guenter et al. (1998). The database records
the 3D facial movements of talking subjects, as well as synchronous audio
tracks. The facial motion is captured at the 3D positions of the markers on the
faces of subjects. The motion capture data used 153 markers. Figure 3 shows
an example of the markers. For the purpose of better visualization, we build a
mesh based on those markers, illustrated by Figure 3 (b) and (c).

Figure 3. The markers. (a) The markers shown as small white dots; (b) and
(c) The mesh is shown in two different viewpoints.
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L earning Holistic Linear Subspace

To make complex facial deformation tractable in computational models, re-
searchers have usually assumed that any facial deformation can be approxi-
mated by alinear combination of basic deformation. In our framework, we make
the same assumption and try to find optimal bases. We call these bases Motion

Units (MUs). Using MUs, a facial shape S can be represented by

§=§o+(ZC.é +8) 1

where S, denotes the facial shape without deformation, €, is the mean facial

deformation, { &, €, ..., &, } isthe MU set,and { C;, C, ..., G, } istheMU
parameter (MUP) set.

PCA (Jolliffe, 1986) is applied to learning MUs from the facial deformation of
the database. The mean facial deformation and the first seven eigenvectors are
selected asthe MUs. The MUs correspond to the largest seven eigenval ues that
capture 93.2% of the facial deformation variance. The first four MUs are
visualized by an animated face model in Figure 4. The top row images are the
frontal views of the faces and the bottom row images are side views. The first
faceisthe neutral face, corresponding to S, . The remaining faces are deformed
by the first four MUs scaled by a constant (from left to right). The method for

Figure 4. The neutral and deformed faces corresponding to the first four
MUs. The top row is the frontal view and the bottom row is the side view.
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visualizing MUsisdescribed in the subsection “M U adaptation.” Any arbitrary
facial deformation can be approximated by a linear combination of the MUs,
weighted by the MUPs.

Learning Parts-Based Linear Subspace

It iswell known that the facial motion is localized, which makes it possible to
decompose the complex facial motion into parts. The decomposition helps
reduce the complexity in deformation modeling and improves the analysis’
robustness and the synthesis' flexibility. The decomposition can be done
manually based onthe prior knowledge of facial muscledistribution (Tao, 1998).
However, it may not be optimal for the linear model used because of the high
nonlinearity of facial motion. Parts-based |earning techniques provide away to
help design parts-based facial deformation models, which can better approxi-
mate real, local facial motion. Recently, Non-negative Matrix Factorization
(NMF) (Lee & Seung, 1999), atechnique for learning localized representation
of data samples, has been shown to be able to learn basis images that resemble
parts of faces. In learning the basis of subspace, NMF imposes hon-negativity
constraints, whichiscompatibleto theintuitive notion of combining partstoform
awhole in a non-subtractive way.

In our framework, we present a parts-based face deformation model. In the
model, each part corresponds to a facial region where facial motion is mostly
generated by local muscles. The motion of each part is modeled by PCA. Then,
the overall facial deformation is approximated by summing up the deformation
in each part:

AS= Z:'\l:lAgi = ZL(ZZ;Q; & +&)),

where AS =S -5, isthe deformation of the facial shape. N is the number of
parts. We call this representation parts-based MU, where the j-th part has its
MU set { &;, &;, ..., &}, and MUP set { G, G, ..., Gy }.

To decompose facial motion into parts, we propose an NM F-based method. In
this method, we randomly initialize the decomposition. Then, we use NMF to
reduce the linear decomposition error to alocal minimum. We impose the non-
negativity constraintinthelinear combination of thefacial motionenergy. Figure
5(a) shows some parts derived by NMF. Adjacent different parts are shown in
different colors that are overlayed on the face model. We then use prior
knowledge about facial muscledistributiontorefinethelearned parts. The parts
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Figure 5. (a) NMF learned parts overlayed on the generic face model; (b)
The facial muscle distribution; (c) The aligned facial muscle distribution;
(d) The parts overlayed on muscle distribution; (€) The final parts.

canthusbe: (1) morerelated to meaningful facial muscledistribution; and (2) less
biased by individuality in the motion capture data and, thus, more easily
generalized to different faces. We start with an image of human facial muscle,
illustrated in Figure 5(b) (Facial muscleimage, 2002). Next, wealignit with our
generic face model viaimage warping, based on facial feature pointsillustrated
in Figure 2(c). The aligned facial muscle image is shown in Figure 5(c). Then,
we overlay the learned parts on facial muscle distribution (Figure 5(d)) and
interactively adjust the learned parts such that different parts correspond to
different muscles. The final parts are shown in Figure 5(e).

The learned parts-based MUs give more flexibility in local facial deformation
analysisand synthesis. Figure 6 shows somelocal deformationinthelower lips,
each of which isinduced by one of the learned parts-based MUs. These locally
deformed shapes are difficult to approximate using holistic MUs. For each local
deformation shown in Figure 6, more than 100 holistic MUs are needed to
achieve 90% reconstruction accuracy. That means, although some local defor-
mationisinduced by only one parts-based MU, morethan 100 holistic MUsmay
be needed in order to achieve good analysisand synthesisquality. Therefore, we
can have moreflexibility in using parts-based MUs. For example, if weareonly
interested in lip motion, we only need to learn parts-based MUsfrom lip motion
data. In face animation, people often want to animate local regions separately.
This task can be easily achieved by adjusting the MUPs of parts-based MUs
separately. In face tracking, people may use parts-based MUsto track only the
region of their interests (e.g., the lips). Furthermore, tracking using parts-based
MUs is more robust because local error will not affect distant regions.
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Figure 6. Three lower lip shapes deformed by three of the lower lip parts-
based MUs respectively. The top row is the frontal view and the bottom row
is the side view.

MU Adaptation

The learned MUs are based on the motion capture data of particular subjects.
TousetheMUsfor other people, they need to befitted to the new face geometry.
Moreover, the MUs only sample the facial surface motion at the position of the
markers. The movements at other places need to be interpolated. In our
framework, we call this process “MU adaptation.”

I nterpol ation-based techniquesfor re-targeting animationto new models, such as
Noh & Neumann (2001), could be used for MU adaptation. Under more
principled guidelines, we design our MU adaptation as a two-step process: (1)
face geometry based MU-fitting; and (2) MU re-sampling. These two steps can
beimproved in asystematic way if enough MU setsare collected. For example,
if MU statistics over alarge set of different face geometries are available, one
can systematically derivethe geometry-to-M U mapping using machine-learning
techniques. On the other hand, if multiple MU sets are available which sample
different positionsof the sameface, itispossibleto combinethemtoincreasethe
spatial resolution of MU because markersin MU are usually sparser than face
geometry mesh.

The first step, called “MU fitting,” fits MUs to a face model with different
geometry. We assumethat the corresponding positions of thetwo faceshavethe
same motion characteristics. Then, the “MU fitting” is done by moving the
markers of the learned MUs to their corresponding positions on the new face.
We interactively build the correspondence of facial feature points shown in
Figure 2(c) via a GUI. Then, warping is used to interpolate the remaining
correspondence.
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The second step is to derive movements of facial surface points that are not
sampled by markersin MUs. We usetheradial basisinterpolation function. The
family of radial basisfunctions(RBF) iswidely usedinfaceanimation (Guenter
etal., 1998; Marschner, Guenter & Raghupathy, 2000; Noh & Neumann, 2001).
Using RBF, the displacement of a certain vertex V. is of the form

AY, =Y wh(v - p,)ap, 2

where f),- ,(1=1,...,N)isthecoordinate of amarker, and Af)j isitsdisplacement.

h isaradial basis kernel function, and w; are the weights. h and w, need to be
carefully designedto ensuretheinterpolation quality. For facial deformation, the
muscle influence region is local. Thus, we choose a cut-off region for each
vertex. We set the weightsto be zero for markersthat are outside of the cut-off
region, i.e., they aretoo far away to influence the vertex. In our current system,
thelocal influenceregion for thei-th vertex isheuristically assigned asacircle,
with the radius r, as the average of the distances to its two nearest neighbors.

Similar to Marschner, Guenter & Raghupathy (2000), we choosetheradial basis
kernel tobe h(x) = (1+ cos(z - X/r,)/2, where X = ||\7I Y || . Wechoose W; tobe

anormalizationfactor suchthat ZJ.N:lW”- h(H\a/i - EJJ-H) =1.Thelipsandeyelidsare
two special cases for this RBF interpolation, because the motions of the upper
parts of them are not correlated with the motions of the lower parts. To address
this problem, we add “upper” or “lower” tagsto vertices and markers near the
mouth and eyes. Markers do not influence vertices with different tags. These
RBF weightsneed to be computed only oncefor one set of marker positions. The
weightsarestored inamatrix, whichissparse because marker influenceislocal .
During synthesis, the movement of mesh vertices can be computed by one
multiplication of the sparse RBF matrix based on equation (2). Thus, the
interpolationisfast.

Temporal Facial Deformation

Temporal facial deformation model describes temporal variation of facial
deformation given constraints (e.g., key shapes) at certain time instances. For
compactness and usability, we propose to use an HMM-based model trained by
astandard HMM training algorithm, which employsonly afew HMM statesfor
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modeling key facial shapes. In order to get a smooth trajectory once a state
sequenceisfound, we use NURBS (Nonuniform Rational B-splines) interpola-
tion. The NURBS trajectory is defined as:

ct)=3" N,®OwP)/ (X N, Hw),

wherepistheorder of theNURBS, N, isthebasisfunction, P,isthecontrol point
of the NURBS, and w, |sthewe|ght of P.Weusep=2. TheHMM states (key
facial shapes) are used as control poi nts which we assume to have Gaussian
distributions. We set theweight of each control point such that thetrajectory has
ahigher likelihood. Intuitively, it can be achieved in away that stateswith small
variancepull thetrajectory towardsthem, whilestateswith larger varianceallow

the trgjectory to stay away from them. Therefore, we set the weights to be

=1/(c(1)), where 1 is the trajectory normal vector that also passes P,
o (i) isthevarianceof the Gaussian distributionin fi. direction. Inpractice, we
approximate N by normal vector ;' of linesegment P_,P., (see PP, inFigure

7(a)). Compared to Brand (1999), the smooth traj ectory obtaj nedislessoptimal
in terms of maximum likelihood. But, it isfast and robust, especially when the
number of statesis small. It is also a natural extension of the traditional key-
frame-based splineinterpolation scheme, which is easy to implement. Figure 7
showsasynthetic examplecomparing conventional NURBSand our statistically
weighted NURBS. The green dots are samples of facial shapes. The red dashed
line connects centers of the states. The blue solid line is the generated facial
deformationtrajectory. In Figure 7(b), thetrajectory ispulled towardsthe states
with smaller variance, thusthey haveahigher likelihood thantrajectory in Figure
7(Q).

Figure 7. (a) Conventional NURBS; (b) Statistically weighted NURBS
interpolation.
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We use the motion capture sequence to train the model. Thirty states are used
in the experiment. Each state is observed via MUPs, which are modeled using
a Gaussian model. We assume the covariance matrices of the states to be
diagonal intraining. The centersof thetrained statesare used askey shapes(i.e.,
control points) for the NURBS interpolation scheme. The interpolation-based
temporal model is used in the key-frame-based face animation, such as text-
driven animationiniFACE.

M odel-Based Facial Motion Analysis

In this section, we describe model-based facial motion analysis. In the existing
3D non-rigid face tracking algorithm using 3D facial deformation model, the
subspace spanned by the Action Units (AUS) is used as the constraints of |ow-
level imagemotion. Similarto MUs, AUsaredefinedinsuchaway that arbitrary
facial deformation is approximated by alinear combination of AUs. However,
the AUsareusually manually designed. For these approaches, our automatically
learned M Us can be used in place of the manually designed AUs. In thisway,
extensivemanual intervention can be avoided and natural facial deformation can
be approximated better.

We choose to use the learned MUs in the 3D non-rigid face tracking system
proposed in Tao (1998) because it has been shown to be robust and real-time.
The facial motion observed in an image plane can be represented by

M(R(V, +LP)+T) (3)

whereM isthe projection matrix, \7O istheneutral face, |_p definesthenon-rigid
deformation, R is the 3D rotation decided by three rotation angles

[wx,wy,wz} =W ,and T stands for 3D translation. L isan N x M matrix that
contains M AUs, each of which is an M dimensional vector. P=[p,,..., p,, | is
the coefficients of the AUs. To estimate facial motion parameters {T W, P}

from 2D inter-frame motion dV,

respect to {T,W, P} . Then, alinear equation between dV,, and {dT,dW,d P}

the derivative of equation (3) istaken with
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can be derived (see details in Tao (1998)). The system estimates d\72D using

templ ate-matching-based optical flow. Thelinear systemissolved using theleast
squares method. A multi-resolution framework is used for efficiency and
robustness.

Intheoriginal system, ismanually designed using Bezier volumeand represented
by the displacements of vertices of face surface mesh. To derive L from the
learned MUs, the “MU adaptation” process described earlier is used. In the
current system, we use the holistic MUs. Parts-based MUs could be used if a
certain local region is the focus of interest, such asthe lipsin lip-reading. The
system is implemented to run on a 2.2 GHz Pentium 4 processor with 2GB
memory. The image size of the input video is 640 x 480. The system works at
14 Hz for non-rigid face tracking. The tracking results, i.e., the coefficients of

MUs, R and T can be directly used to animated face models. Figure 8 shows
some typical frames that were tracked, along with the animated face model to

Figure 8. Typical tracked frames and corresponding animated face models.
(a) The input frames; (b) The tracking results visualized by yellow mesh; (c)
The front views of the face model animated using tracking results; (d) The
side views of the face model animated using tracking results. In each row,
the first image corresponds to neutral face.

(d)

Copyright © 2004, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.



332 Wen, Hong, Tu & Huang

visualizetheresults. It can be observed that compared with the neutral face (the
first column images), the mouth opening (the second column), subtle mouth
rounding and mouth protruding (thethird and fourth columns) arecapturedinthe
tracking resultsvisualized by theanimated face model . Because the motion units
arelearned from real facial motion data, the facial animation synthesized using
tracking resultslooksmorenatural than that using handcrafted action unitsin Tao
(1998).

Thetracking algorithm can be used in model-based face video coding (Tu et al.,
2003). Wetrack and encode the face area using model-based coding. To encode
the residual in the face area and the background for which a priori knowledge
is not generally available, we use traditional waveform-based coding method
H.26L. This hybrid approach improves the robustness of the model-based
method at the expense of increasing bit-rate. Eisert, Wiegand & Girod (2000)
proposed a similar hybrid coding technique using a different model-based 3D
facial motion tracking approach. We capture and code videos of 352 x 240 at
30Hz. At the samelow bit-rate (18 kbits/s), we compare thishybrid coding with
H.26L JM 4.2 reference software. Figure 9 shows three snapshots of a video
with 147 frames. The PSNR around the facial area for hybrid coding is 2dB
higher than H.26L . M oreover, the hybrid coding resultshave much higher visual
quality. Because our tracking system works in real-time, it could be used in a
real-timelow-bit-ratevideo-phoneapplication. Furthermore, thetracking results

Figure 9. (a) The synthesized face motion; (b) The reconstructed video
frame with synthesized face motion; (c) The reconstructed video frame
using H.26L codec.
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can used to extract visual features for audio-visual speech recognition and
emotionrecognition (Cohenetal., 2002). Inmedical applicationsrelatedtofacial
motion disorder, such as facial paralysis, visual cues are important for both
diagnosis and treatment. Therefore, the facial motion analysis method can be
used as a diagnostic tool such asin Wachtman et al. (2001). Compared to other
3D non-rigid facial motion tracking approaches using a single camera, the
features of our tracking system include: (1) the deformation space is learned
automatically from datasuch that it avoidsmanual adjustments; (2) itisreal-time
so that it can be used in real-time applications; and (3) it isable to recover from
temporary loss of tracking by incorporating a template-matching-based face
detection module.

Real-Time Speech-Driven 3D Face
Animation

In this section, we present the real-time speech-driven 3D face animation
algorithm in our 3D face analysis and synthesis framework. We use the facial
motion capture database used for learning MUs along with its audio track for
learning audio-to-visual mapping. For each 33 ms window, we calculate the
holistic MUPs as the visual features and 12 Mel-frequency cepstrum coeffi-
cients (MFCCs) (Rabiner & Juang, 1993) as the audio features. To include
contextual information, the audio feature vectors of framest-3, t-2, t-1, t, t+1,
t+2, and t+3, are concatenated as the final audio feature vector of frame t.

Thetraining audio-visual dataisdividedinto 21 groupsbased ontheaudiofeature
of each data sample. The number 21 is decided heuristically based on audio
feature distribution of the training database. One of the groups corresponds to
silence. The other 20 groups are automatic generated using the k-means
algorithm. Then, the audio features of each group are modeled by a Gaussian
model. After that, athree-layer perceptron is trained to map the audio features
tothevisual featuresusing each audio-visual datagroup. At theestimation phase,
we first classify an audio vector into one of the audio feature groups whose
Gaussian model gives the highest score for the audio feature vector. We then
select the corresponding neural network to map the audio feature vector to
MUPs, which can be used in equation (1) to synthesize the facial shape. A
method using triangular average window is used to smooth the jerky mapping
results. For each group, 80% of the data is randomly selected for training and
20% for testing. Themaximum and minimum number of the hidden neuronsis10
and 4, respectively. A typical estimation result is shown in Figure 10. The
horizontal axes in the figure represent time. The vertical axes represent the
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Figure 10. Compare the estimated MUPs with the original MUPs. The
content of the corresponding speech track is “ A bird flew on lighthearted
wing.”
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magnitude of the MUPs. The solid red trajectory isthe original MUPs, and the
dashed blue trajectory is the estimation results.

We reconstruct the facial deformation using the estimated MUPs. For both the
groundtruth and the estimated results, we dividethe def ormation of each marker
by its maximum absol ute displacement in the ground truth data. To evaluatethe
performance, we cal cul ate the Pearson product-moment correl ation coefficients
(R) and the mean square error (MSE) using the normalized deformations. The
Pearson product-moment correlation (0.0< R<1.0) measures how good the

global match isbetween the shapes of two signal sequences. A large coefficient
means a good match. The Pearson product-moment correlation coefficient R

between the ground truth { (]n} and the estimated data { an'} is calculated by

R tr (E[(d, ~ &)(d, ~f2,)"])
Jtr (EL(d, - d,)(d, — i) 1)t (E[(d, 2, )(d, ~i3,)"])

(4)

where (i, = E[an] and [, = E[&n'] . In our experiment, R = 0.952 and MSE =
0.0069 for training data and R = 0.946 and M SE = 0.0075 for testing data.
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Figure 11. Typical animation frames. Temporal order: from left to right;
from top to bottom.

The whole animation procedure contains three steps. First, we extract audio
featuresfrom theinput speech. Then, we usethetrained neural networksto map
the audio features to the visual features (i.e., MUPs). Finally, we use the
estimated MUPs to animate a personalized 3D face model iniFACE. Figure 11
shows a typical animation sequence for the sentence in Figure 10.

Our real-time speech-driven animation can be used in real-time two-way
communi cation scenariossuch asvideo-phoneand virtual environments(Leung
et al., 2000). On the other hand, existing off-line speech-driven animation, e.g.,
Brand (1999), can be used in one-way communication scenarios, such as
broadcasting and advertising. Our approach deals with the mapping of both
vowels and consonants, thusit is more accurate than real -time approaches with
only vowel-mapping (Morishima & Harashima, 1991; Goto, Kshirsagar &
Thalmann, 2001). Compared to real-time approaches using only one neural
network for all audio features (Massaro et al ., 1999; L avagetto, 1995), our local
ANN mapping (i.e., one neural network for each audio feature cluster) is more
efficient because each ANN is much simpler. Therefore, it can be trained with
much lesseffort for acertain set of training data. More generally, speech-driven
animation can be used in speech and language education (Cole et al., 1999), as
a speech understanding aid for noisy environments and hard-of-hearing people
and as arehabilitation tool for facial motion disorders.

Human Emotion Perception Study

The synthetic talking face can be evaluated by human perception study. Here,
we describe our experiments which compare the influence of the synthetic
talking face on human emotion perception with that of the real face. We did
similar experiments for 2D MU-based speech-driven animation (Hong, Wen &
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Huang, 2002). We videotape a subject who is asked to calmly read three
sentences with three different facial expressions: (1) neutral, (2) smile, and (3)
sad, respectively. The 3 sentences are: (1) “Itisnormal,” (2) “It is good,” and
(3) “lItisbad.” The associated information is: (1) neutral, (2) positive, and (3)
negative. The audio tracks are used to generate three sets of face animation
sequences. All three audio tracks are used in each set of animation sequences.
The three sets are generated with a neutral expression, smiling, and sad,
respectively. The facial deformation due to speech and expression is linearly
combinedin our experiments. Sixteen untrai ned human subjects, who never used
our system before, participate in the experiments.

Thefirst experiment investigates human emotion perception based on either the
visual-only or audio-only stimuli. The subjects are first asked to infer their
emotional states based on the animation sequences without audio. The emotion
inference results in terms of the number of the subjects are shown in Table 1.
Asshown, the effectiveness of the synthetic talking faceiscomparablewith that
of thereal face. The subjects are then asked to listen to the audio and decide the
emotional state of the speaker. Note that the audio tracks are produced without
emotions. The resultsin terms of the number of the subjects are shown in Table 1.

Table 1. Emotion inference based on visual only or audio only stimuli. “ S’
column: Synthetic face; “R’ column: Real face.

Facial Expression Audio

Neutral | Smile Sad
S|R|S|R|S|R 1123
Neutral | 16 | 16 | 4 | 3 | 2 | 0 |16| 6 | 7
Emotion | Happy | 0 | 0 |12 (13| 0 | 0 | 0 |10| O
Sad 0O/ 0|0|0|214|26]/ 0| 0] 09

Table 2. Emotion inference results agreed with facial expressions. The
inference is based on both audio and visual stimuli. “S’ column: Synthetic
face; “R” column: Real face.

Facial Expression

Smile Sad
S R S R
Audio-visua | Same 15 16 16 16
relation Opposite 2 3 10 12
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The second and third experiments are designed to compare the influence of a
synthetic face on bimodal human emotion perception and that of the real face.
In the second experiment, the subjects are asked to infer the emotional state
while observing the synthetic talking face and listening to the audio tracks. The
third experiment is the same as the second one except that the subjects observe
the real face, instead. In each of the experiments, the audio-visual stimuli are
presented intwo groups. Inthefirst group, audio content and visual information
represent the same kind of information (e.g., positive text with smiling expres-
sion). In the second group, the relationship is the opposite. The results are
combined in Table 2.

We can see the face movements and the content of the audio tracks jointly
influence the decisions of the subjects. If the audio content and the facial
expressionsrepresent the samekind of information, the human perception of the
information isenhanced. For example, when the associated facial expression of
the positive-text-content audio track is smiling, nearly all subjects say that the
emotional stateishappy (seeTable2). The numbersof the subjectswho perceive
ahappy emotional state are higher than those using only one stimulus alone (see
Table 1). However, it confuses human subjectsif the facial expressions and the
audiotracksrepresent oppositeinformation. Anexampleisshowninthefifthand
sixth columnsof Table 2. Theaudio content conveyspositiveinformation, while
the facial expression is sad. Ten subjects report sad emotion if the synthetic
talking face with a sad expression is shown. The number increasesto 12 if the
real face is used. This difference shows that the subjects tend to trust the real
face more than the synthetic face when the visual information conflictswith the
audio information. Overall, the experiments show that our real-time, speech-
driven synthetic talking face successfully affects human emotion perception.
The effectiveness of the synthetic face is comparable with that of the real face,
even thoughiitisslightly weaker.

Conclusions

Thischapter presentsaunified framework for |earning compact facial deforma-
tion models from data and applying the models to facial motion analysis and
synthesis. This framework uses a 3D facial motion capture database to learn
compact holistic and parts-based facial deformation models called MUs. The
MUs are used to approximate arbitrary facial deformation. The learned models
are used in robust 3D facial motion analysis and real-time, speech-driven face
animation. The experiments demonstratethat robust non-rigid facetracking and
flexible, natural face animation can be achieved based on the learned models. In
thefuture, we plantoinvestigate systematic ways of adapting learned model sfor
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new people, capturing appearance variations along with geometric deformation
in motion capturedatafor subtle, yet perceptual ly important, facial deformation.
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Abstract

This chapter presents a number of promising applications and provides an
overview of recent developments and techniques in the area of analysis and
synthesis techniques for the human body. The ability to model and to
recognize humans and their activities by vision is key for a machine to
interact intelligently and effortlessly with a human inhabited environment.
The chapter analyzes the current techniques and technologies available for
hand and body modeling and animation and presents recent results of
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synthesis and analysis techniques for the human body reported by R&D
projects worldwide. Technical details are provided for each R&D project
and the results are discussed and evaluated.

I ntroduction

Humans are the most commonly seen moving objects in one's daily life. The
ability to model and to recognize humansand their activitiesby visioniskey for
a machine to interact intelligently and effortlessly with a human inhabited
environment. Because of many potentially important applications, examining
human body behavior is currently one of the most active application domainsin
computer vision. Thissurvey identifiesanumber of promising applicationsand
provides an overview of recent developmentsin thisdomain (Hillis, 2002).

Hand and body modeling and animation is still an open issue in the computer
vision area. Various approaches to estimate hand gestures and body posture or
motion from video images have been previously proposed (Rehg & Kanade,
1994; Lien & Huang, 1998; Zaharia, Preda & Preteux, 1999). Most of these
techniquesrely on 2-D or 3-D models (Saito, Watanabe & Ozawa, 1999; Tian,
Kanade & Cohn, 2000; Gavrila& Davies, 1996; Wren, Azarbayejani, Darell &
Pentland, 1997) to compactly describe the degrees of freedom of hand and body
motion that hasto be estimated. M ost techniques use asinput an intensity/col or
image provided by a camera and rely on the detection of skin color to detect
useful featuresand to identify each body part intheimage (Wren, Azarbayejani,
Darell & Pentland, 1997). In addition, theissue of hand and body modeling and
animation has been addressed by the Synthetic/Natural Hybrid Coding (SNHC)
subgroup of the M PEG-4 standardi zation group to be described in more detail in
thefollowing.

InSullivan & Carlsson (2002), view-based activity recognition servesasaninput
to ahuman body location tracker with the ultimate goal of 3D reanimation. The
authors demonstrate that specific human actions can be detected from single
frame postures in a video sequence. By recognizing the image of a person’s
posture as corresponding to a particular key frame from a set of stored key
frames, it ispossibleto map body locationsfrom thekey framesto actual frames
using ashape-matching algorithm. Thealgorithmisbased on qualitativesimilarity
that computes point-to-point correspondence between shapes, together with
information about appearance.

In Sidenbladh, Black & Sigal (2002), a probabilistic approach is proposed to
address the problem of 3D human motion modeling for synthesis and tracking.
High dimensionality and non-linearity of human body movement modeling is
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avoided by representing the posterior distribution non-parametrically. Authors
Bobick & Davis (2001) introduced a real-time human activity recognition
method, which was tested on aerobic exercises. This method is based on atwo-
component image representation of motion, the Motion Energy Image, MEI, a
binary image, which displays where motion has occurred during the movement
of the person, and the Motion History Image, MHI, a scalar image, which
indicates the temporal history of motion. MEI and MHI temporal templates are
then matched to store instances of views of known actions.

Recently, in Sminchisescu & Triggs (2001), 3D human motion tracking from
monocular image sequences is achieved by fitting a 3D human body model,
consisting of tampered superellipsoids, on image features (edges and motion
attributes) by means of an iterative cost function optimization scheme. Also,
Plankers & Fua(2001) present aframework that retains an articul ated structure
represented by sticks, but replace the simplegeometric primitivesby soft objects.
Thisresultsin arealistic model where body parts such asthe chest, abdomen or
biceps muscles are well model ed.

The main objective of the chapter is to present and analyze the results of
synthesisand analysistechniquesfor the human body reported by R& D projects
worldwide. Human body synthesisand analysisisavery important research area
with alargenumber of industrial applications. The examined technological area
has produced impressive research results, which, in many cases, have emerged
as successful consumer applications, especially in the media and film-making
markets. The annual SIGGRAPH Conference is an excellent focal point to
monitor scientificresultsand their usein several pilot applications. Theelimina-
tion of hidden lines in wire-frame renderings, texture mapping, ray-traced
images, animation and expression methodologies are only a few milestones
during recent years in the quest to capture reality. The chapter aims to
demonstrate the incorporation of recent and innovative techniques in human
body modeling, animation and transmissionin specific applicationsdevel opedin
R& D projects worldwide.

Thechapter isorganized asfollows: the next section providesan overview of the
fundamental standards, either established or emerging, which enablethe design
and development of interoperable, expandable, reusable and cost-effective
modeling and animation applications. In the section following, abrief presenta-
tion of on-going and state-of-the-art R&D projects in the area of human (or
human parts) analysis and synthesis is presented. This section focuses on
developed or “under development” projects, mainly dealing with transferring
research resultstoreal life applications. Thefourth section dealswith adetailed
presentation of four recently started European R&D projects that constitute
major applications of the analysis/synthesis technology, developed with the
author’s contribution. These sets of applications utilize technologies for 3D
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reconstruction of the human body and animation using image sequence process-
ing and graphical modeling. In most cases, reported reconstruction accuracy is
being pursued to map the analysis of the real person with the virtual human
(humanoid) intermsof anthropometrical characteristics. Thelatter applications
include:

a) Thereconstruction of themusicteacher training when he/shedemonstrates
typical playing methodol ogiesfor variousmusical instruments.

b) The use of human body motion estimation and tracking techniquesin the
post-productionindustry incorporatingimmersivetechniques.

c) Theuseof humanbody augmentationfor thedevelopment of virtual mirrors
for novel e-commerce applications.

d) Theuseof 3D humanoidsin training ergonomics.

Finally, conclusions are drawn in the final section.

Standards

Themaintool introduced for thedescription of 3D “worlds” istheVirtual Reality
Modeling Language (VRML). Technically speaking, VRML is neither virtual
reality, nor amodelinglanguage. Virtual reality typically impliesanimmersive 3D
experience (such asthe one provided by ahead-mounted display) and various 3D
input devices (such as digital gloves). VRML neither requires, nor preludes
immersion. Furthermore, atrue modeling language would contain much richer
geometric modeling primitives and mechanisms. VRML provides a bare mini-
mum of geometric modeling featuresand containsnumerousfeaturesfar beyond
the scope of amodeling language (Carrey & Bell, 1997). VRML was designed
tocreateamore“friendly” environment for theWorld Wide Web. It providesthe
technol ogy that i ntegratesthree dimensions, two dimensions, text and multimedia
into a coherent model. When these media types are combined with scripting
languagesand I nternet capabilities, an entirely new genre of interactive applica-
tions becomes possible (Carrey & Bell, 1997).

X3D (X3D Task Group) isthe next-generation open standard for 3D ontheweb.
Itistheresult of several yearsof development by theWeb 3D Consortium’sX3D
Task Group and the recently-formed Browser Working group. The needs that
the standard meets are:
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e Compatibility with existing VRML content, browsers, and tools.

. Ext