
Java Programming

Java™ Programming,
Second Edition

Joyce Farrell

Australia • Canada • Mexico • Singapore • Spain • United Kingdom • United States

Authorised English Reprint from the English Language edition.

Java Programming (Second Edition)

ALL RIGHTS RESERVED. No part of
this book may be reproduced or
transmitted in any form or by any
means, electronic or mechanical,
including photocopying, recording or
by any information storage retrieval
system, without permission from
Thomson Learning, High Holborn
House, Bedford Row, High Holborn,
London WC1R 4LR.

ENGLISH language edition published
by Galatea Training Services Limited.
Copyright © 2004. Thomson Learning
and the Author do not accept liability
for any inaccuracy or omission in this
book.

ISBN 0-954307-1-9

Printed by B & Jo Enterprise Pte Ltd
in Singapore.

BRIEF

Contents
PREFACE xii

CHAPTER ONE
Creating Your First Java Program 1

CHAPTER TWO
Using Data Within a Program 29

CHAPTER THREE
Using Methods, Classes, and Objects 55

CHAPTER FOUR
Advanced Object Concepts 97

CHAPTER FIVE
Input and Selection 139

CHAPTER SIX
Looping 183

CHAPTER SEVEN
Characters, Strings, and the StringBuffer 207

CHAPTER EIGHT
Arrays 231

CHAPTER NINE
Applets 279

CHAPTER TEN
Graphics 325

CHAPTER ELEVEN
Introduction to Inheritance 385

CHAPTER TWELVE
Advanced Inheritance Concepts 423

CHAPTER THIRTEEN
Understanding Swing Components 463

iv Java Programming, Second Edition

CHAPTER FOURTEEN
Using Layout Managers and the Event Model 505

CHAPTER FIFTEEN
Exception Handling 541

CHAPTER SIXTEEN
File Input and Output 577

CHAPTER SEVENTEEN
Multithreading and Animation 613

APPENDIX 655

INDEX 665

TABLE OF

Contents
PREFACE xii

CHAPTER ONE
Creating Your First Java Program 1

Learning About Programming 2
Understanding Object-Oriented Programming Concepts 3
Learning About The Java Programming Language 5

Java Program Types 6
Starting a Java Program 7
Adding Comments to a Java Program 13
Running a Java Program 15
Modifying a Java Program 17

Errors and Debugging 19
FAQs, JDKs, Documentation, and Tutorials 19

Chapter Summary 20
Review Questions 21
Exercises 25
Case Project 27

CHAPTER TWO
Using Data Within a Program 29

Using Constants and Variables 30
Declaring Variables 30

Learning about the int Data Type 32
Writing Arithmetic Statements 36
Using The Boolean Data Type 38
Learning about Floating-Point Data Types 40
Understanding Numeric Type Conversion 42
Working with the char Data Type 43
Learning about ASCII and Unicode 44
Chapter Summary 46
Review Questions 47
Exercises 50
Case Study 53

CHAPTER THREE
Using Methods, Classes, and Objects 55

Previewing the SetUpSite Program Using the EventSite Class 56
Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 57

Creating Methods that Require a Single Argument 65
Creating Methods that Require Multiple Arguments 67

Creating Methods that Return Values 69
Learning about Class Concepts 71

vi Java Programming, Second Edition

Creating a Class 73
Using Instance Methods 75
Declaring Objects 77
Organizing Classes 80
Using Constructors 85
Chapter Summary 87
Review Questions 88
Exercises 91
Case Project 95

CHAPTER FOUR
Advanced Object Concepts 97

Understanding Blocks and Scope 98
Overloading a Method 103
Learning About Ambiguity 106
Sending Arguments to Constructors 108
Overloading Constructors 111
Learning About the this Reference 113
Working with Constants 115
Using Automatically Imported, Prewritten Constants and Methods 118
Using Prewritten Imported Methods 122
Learning About Gregorian Calendars 126
Chapter Summary 128
Review Questions 129
Exercises 132
Case Project 137

CHAPTER FIVE
Input and Selection 139

Previewing the ChooseManager Program Using the Event Class 140
Accepting Keyboard Input 140
Using the JOptionPane Class for GUI Input and Output 146

Input Dialog Boxes 146
Message Dialog Boxes 147
Confirm Dialog Boxes 148

Drawing Flowcharts 151
Making Decisions with the if and if...else Structures 154

The if...else Structure 156
Using Compound Statements in an if or if...else Structure 158
Nesting if and if...else Statements 162
Using AND and OR Operators 163
Using the switch Statement 168
Using the Conditional and NOT Operators 171
Understanding Precedence 172
Chapter Summary 174
Review Questions 175
Exercises 178
Case Project 182

Table of Contents vii

CHAPTER SIX
Looping 183

Previewing the EvenInt Program 184
Learning About the Loop Structure 184
Using a while Loop 185
Using Shortcut Arithmetic Operators 190
Using a for Loop 193
Learning How and When to Use a do...while Loop 194
Learning About Nested Loops 196
Chapter Summary 198
Review Questions 199
Exercises 203
Case Project 205

CHAPTER SEVEN
Characters, Strings, and the StringBuffer 207

Previewing a Guessing Game Program 208
Manipulating Characters 208
Declaring a String Object 210
Comparing String Values 211
Using Other String Methods 213
Converting Strings to Numbers 217
Learning About the StringBuffer Class 219
Chapter Summary 224
Review Questions 225
Exercises 228
Case Project 230

CHAPTER EIGHT
Arrays 231

Previewing a Program that Uses Arrays and Strings 232
Declaring and Initializing an Array 232

Initializing an Array 235
Using Subscripts with an Array 236
Declaring an Array of Objects 237
Searching an Array for an Exact Match or a Range Match 241

Searching an Array for a Range Match 246
Passing Arrays to Methods 247
Using the length Field 252
Creating Arrays of Strings 253
Sorting Primitive, Object, and String Array Elements 256

Sorting Arrays of Objects 262
Sorting String Array Elements 264

Using Two-Dimensional and Multidimensional Arrays 265
Understanding Multidimensional Arrays 268

Chapter Summary 269
Review Questions 270
Exercises 273
Case Project 277

viii Java Programming, Second Edition

CHAPTER NINE
Applets 279

Previewing the AWT and Swing Greet Applets 280
Writing an HTML Document to Host an Applet 281
Understanding Simple Applets 283
Using Labels with Simple AWT Applets 285
Writing a Simple Swing Applet and Using a JLabel 288

Changing a JLabel’s Font 291
Adding JTextField and JButton Components to Swing Applets 292

Adding Multiple Components to a JApplet 295
Learning About Event-Driven Programming 296

Preparing Your Swing Applet to Accept Event Messages 297
Telling Your Swing Applet to Expect Events to Happen 298
Telling Your Swing Applet How to Respond to Any Events That Happen 298

Adding Output to a Swing Applet 301
Understanding the Swing Applet Life Cycle 303
Creating a More-Sophisticated Interactive Swing Applet 309
Using the setLocation() and setEnabled() Methods 313

The setEnabled() Method 315
Chapter Summary 316
Review Questions 317
Exercises 321
Case Project 323

CHAPTER TEN
Graphics 325

Previewing the JGregorianTime Swing Applet 326
Learning about the paint() and repaint() Methods 326
Using the drawString() Method to Draw Strings 328
Using the setFont() and setColor() Graphics Object Methods 331

The Swing Applet’s Background Color 334
Creating Graphics and Graphics 2D Objects 334
Drawing Lines, Rectangles, Ovals,Arcs, and Polygons 337

Drawing Ovals 340
Drawing Arcs 342
Creating Three-Dimensional Rectangles 344
Creating Polygons 344

Copying an Area 346
Learning More About Fonts and Their Methods 348
Drawing with Java 2D Graphics 358

Specifying the Rendering Attributes 360
Setting a Drawing Stroke 361
Creating Objects to Draw 362

Adding Sound, Images, and Simple Animation to Swing Applets 367
Adding Images 370
Adding Simple Animation 373

Chapter Summary 377
Review Questions 379
Exercises 382
Case Project 384

Table of Contents ix

CHAPTER ELEVEN
Introduction to Inheritance 385

Previewing an Example of Inheritance 386
Learning About the Concept of Inheritance 387
Extending Classes 390
Overriding Superclass Methods 396
Working with Superclasses that Have Constructors 399
Using Superclass Constructors that Require Arguments 403
Accessing Superclass Methods 406
Learning About Information Hiding 407
Using Methods You Cannot Override 411
Chapter Summary 414
Review Questions 415
Exercises 418
Case Project 422

CHAPTER TWELVE
Advanced Inheritance Concepts 423

Previewing an Example of Using an Abstract Class 424
Creating and Using Abstract Classes 425
Using Dynamic Method Binding 434
Creating Arrays of Subclass Objects 436
Using the Object Class and Its Methods 439

The toString() Method 439
The equals() Method 440

Using Inheritance to Achieve Good Software Design 446
Creating and Using Interfaces 446
Creating and Using Packages 449
Chapter Summary 453
Review Questions 455
Exercises 458
Case Project 462

CHAPTER THIRTEEN
Understanding Swing Components 463

Previewing the Swing Application for Chapter 13 464
Using the JFrame Class 465
Using Additional JFrame Class Methods 469
Using Swing Event Listeners 470
Using JPanel Class Methods 472
Using the JCheckBox Class 475
Using the ButtonGroup Classes 481
Creating a Drop-Down List and Combo Box Using the JComboBox Class 484
Creating JScrollPanes 489
Creating JToolBars 491
Chapter Summary 496
Review Questions 498
Exercises 501
Case Project 503

x Java Programming, Second Edition

CHAPTER FOURTEEN
Using Layout Managers and the Event Model 505

Previewing the Chap14 Swing Applet 506
Learning About Layout Managers 507

BorderLayout 508
FlowLayout 511
GridLayout 512
CardLayout 514

Using JPanels 516
Learning About Advanced Layout Managers 520
Understanding Events and Event Handling 520
Using AWTEvent Class Methods 527
Using Event Methods from Higher in the Inheritance Hierarchy 528
Handling Mouse Events 530
Chapter Summary 533
Review Questions 534
Exercises 538
Case Project 540

CHAPTER FIFTEEN
Exception Handling 541

Learning About Exceptions 542
Trying Code and Catching Exceptions 545
Using the Exception getMessage() Method 548
Throwing and Catching Multiple Exceptions 549
Using the finally Block 552
Understanding the Limitations of Traditional Error Handling 554
Specifying the Exceptions a Method Can Throw 555
Handling Exceptions Uniquely with Each catch 562
Tracing Exceptions Through the Call Stack 563
Creating Your Own Exceptions 566
Chapter Summary 569
Review Questions 570
Exercises 573
Case Project 575

CHAPTER SIXTEEN
File Input and Output 577

Previewing a Program That Uses File Data 578
Using the File Class 578
Understanding Data File Organization and Streams 583
Using Streams 585
Writing to and Reading from a File 589

Reading from a File 591
Writing Formatted File Data 591
Reading Formatted File Data 597
Using a Variable Filename 601
Creating Random Access Files 602
Chapter Summary 605
Review Questions 606
Exercises 609
Case Project 611

Table of Contents xi

CHAPTER SEVENTEEN
Multithreading and Animation 613

Previewing a Program That Displays Animation 614
Understanding Multithreading 615
Learning About a Thread’s Life Cycle 616
Using the Thread Class 617
Using the sleep() Method 622
Setting Thread Priority 624
Using the Runnable Interface 626
Creating an Animated Figure 629
Reducing Flickering 635
Using Pre-Drawn Animated Image Objects 639
Understanding Garbage Collection 641
Putting Animation in a Web Browser Page 642
Chapter Summary 646
Review Questions 647
Exercises 651
Case Project 653

APPENDIX A
Working with Java SDK 1.4 655

Configuring Windows to Work with the SDK 655
Using Notepad to Save and Edit Source Code 657
Using the DOS Prompt to Compile Source Code 658
Using TextPad to Work with Java 659

Using TextPad to Save and Edit Source Code 660
How to Use TextPad to Run an Application 662

INDEX 665

Preface
Java Programming, Second Edition, provides the beginning programmer with a guide to

developing applications and applets using the Java programming language. Java is popu-
lar among professional programmers because it can be used to build visually interesting
GUI and Web-based applications. Java also provides an excellent environment for the
beginning programmer—a student can quickly build useful programs while learning the
basics of structured and object-oriented programming techniques.

This textbook assumes little or no programming experience.The writing is non-technical
and emphasizes good programming practices.The examples are business examples; they do
not assume mathematical background beyond high school business math. Additionally, the
examples illustrate one or two major points; they do not contain so many features that one
becomes lost following extraneous details.This book provides a solid background in good
object-oriented programming techniques and introduces you to object-oriented terminol-
ogy using clear, familiar language.

O R G A N I Z AT I O N A N D C O V E R A G E

Java Programming, Second Edition, presents Java programming concepts, enforcing good style,
logical thinking, and the object-oriented paradigm. Objects are covered right from the
beginning, earlier than in many other textbooks. You create your first Java program in
Chapter 1. Chapters 2, 3 and 4 increase your understanding of how data, classes, objects
and methods interact in an object-oriented environment.

Chapters 5 and 6 explore decision and repetition structures, which are the backbone of
programming logic and essential to creating useful programs in any language.You learn the
special considerations of String and array manipulation in Chapters 7 and 8.

Beginning with Chapter 9 you will write applets which are mini-programs meant to run
in a browser. In Chapter 10 you learn to add graphics, images and sound to your applets.
Chapters 11 and 12 provide thorough coverage of inheritance, the object-oriented con-
cept that allows you to develop new objects quickly by adapting the features of existing
ones. In Chapters 13 and 14 you begin to use Swing components–Java’s visually pleasing
user-friendly widgets.

Preface xiii

Exception handling, the object-oriented methods of error control, is covered in Chapter 15.
Chapter 16 teaches you to save and retrieve data from files. In Chapter 17 you learn about
threads and how to create programs in which multiple activities take place concurrently
allowing you to create programs that contain animation.

Java Programming, Second Edition, combines text explanation with step-by-step exercises that
illustrate the concepts just learned, reinforcing your understanding and improving retention.
Creating the step-by-step examples also provides you with a successful experience in the
language; finishing the examples provides you with models for your own creations.

Using Java Programming, Second Edition, allows you to build applications and applets from the
bottom up, rather than starting with pre-existing objects. This facilitates a deeper under-
standing of the concepts used in object-oriented programming, and engenders appreciation
for the existing objects you use as your knowledge of the language advances. When you
complete this book you will know how to modify and create simple Java programs and will
have the tools to create more complex examples.You also will have a fundamental knowl-
edge of object-oriented programming which will serve you well in advanced Java courses
or in studying other object-oriented languages like C++, C# and Visual Basic.

F E AT U R E S

Java Programming, Second Edition, is a superior textbook because it includes the following
features:

� Objectives: Each chapter begins with a list of objectives so you know the topics that
will be presented in the chapter. In addition to providing a quick reference to topics
covered, this feature provides a useful study aid.

� Tips:These notes provide additional information—for example, an alternative method
of performing a procedure, another term for a concept, background information on a
technique, or a common error to avoid.

� Summaries: Following each chapter is a summary that recaps the programming
concepts and techniques covered in the chapter.This feature provides a concise means
for you to recap and check your understanding of the main points in each chapter.

� Review Questions: End-of-chapter assessment begins with a set of approximately
20 review questions that reinforce the main ideas introduced in each chapter.These
questions ensure that you have mastered the concepts and understand the information
you have learned.

� Exercises: Each chapter concludes with meaningful programming exercises that
provide additional practice of the skills and concepts you learned in the chapter.These
exercises increase in difficulty and are designed to allow you to explore logical pro-
gramming concepts.

xiv Java Programming, Second Edition

A C K N O W L E D G M E N T S

I would like to thank all of the people who helped to make this book a reality, especially
Virgil Brewer of Eastern Kentucky University.Virgil created much of the new material for
the second edition of this book, including all the material on Swing components and
adding graphics, images and sound to programs. Additionally he contributed new exam-
ples and programming exercises.

I also thank Laurie Brown,Developmental Editor. She had to manage a variety of challenges
to produce this book, yet she remained cheerful and professional throughout the process.
Thanks also to Tricia Boyle, Product Manager, who kept everyone on track. Thanks to
Kristen Duerr, Senior Vice President and Publisher; Jennifer Muroff, Senior Editor; Anne
Valsangiacomo, Production Editor; and Shawn Day and Chris Scriver, Quality Assurance
Testers, who provided thorough examination of the manuscript and consistently valuable
suggestions. I am grateful to be able to work with so many fine people who are dedicated
to producing quality instructional materials.

I am also grateful to the many reviewers who provided helpful comments and encourage-
ment during this book’s development, including Eric Berkowitz, Roosevelt University;
Nelly Cardinale, Brevard Community College; R. Scott Cost, University of Maryland -
Baltimore County; Jeff Howard, Finger Lakes Community College; Steve Hunt, Mid-State
Technical College; Daniela Marghitu, Auburn University; Carmen Montanez-Juenke,
College of the Sequoias; Charlie Morgan, Coleman College; Alok Pandey, Community
College of Southern Nevada; Ed Sullivan, Indiana University—Purdue University at
Indianapolis; and Dwight Watt,Athens Technical College.

Thanks, too, to my husband, Geoff, who sustained me with a mean bolognaise so I could
work on the next chapter. Finally, this book is dedicated to Andrea and Audrey.

Joyce Farrell

Read This Before You Begin

The following information will help you as you prepare to use this textbook.

To the User of the Data Files

To complete the steps and projects, you will need data files that have been created specif-
ically for this book.You can obtain the files electronically from the Course Technology
Web site at www.course.com by searching for this book title. Note that you can use a com-
puter in your school lab or your own computer to complete the Exercises in this book.

Using Your Own Computer

To use your own computer to complete the steps and Exercises, you will need the
following:

� Software. Java 2 SDK v1.4.0; Internet Explorer 6.0; and Notepad.

� Hardware. A Pentium II-class processor, 450 MHz or higher, personal computer, and
Windows NT,Windows 2000, or Windows XP.

� Data Files.You will be able to complete some of the projects using no special files.
However, for many, you will want to use data files that you can obtain electronically
from the Course Technology Web site at www.course.com by searching for this book
title.

A Note on Operating Systems

The activities, figures and projects for Java Programming, Second Edition were created using
Windows 2000 and tested in both Windows 2000 and Windows XP.While you can use
Windows NT,Windows 2000, or Windows XP to complete the activities and projects, you
may notice some minor differences in your output if you are not using Windows 2000.

Visit Our World Wide Web Site

Additional materials designed especially for this book might be available for your course.
Periodically search www.course.com for more details.

1

CHAPTER

1
CREATING YOUR FIRST JAVA

PROGRAM
In this chapter, you will:

� Learn about programming
� Understand object-oriented programming concepts
� Learn about the Java programming language
� Start a Java program
� Add comments to a Java program
� Run a Java program
� Modify a Java program

As you read your e-mail, a sinking feeling descends on you. There’s no
denying the message: “Please see me in my office as soon as you are

free—Lynn Greenbrier.” Lynn Greenbrier is the head of programming for
Event Handlers Incorporated, and you have worked for her as an intern for
only two weeks. Event Handlers manages the details of private and corpo-
rate parties; every client has different needs, and the events are interesting
and exciting.

“Did I do something wrong?” you ask as you enter her office. “Are you
going to fire me?”

Almost like a mind reader, Lynn stands to greet you and says, “Please wipe
that worried look off your face! I want to see if you are interested in a new
challenge. Our programming department is going to create several new pro-
grams in the next few months.We’ve decided that the Java programming lan-
guage is the way to go. It’s object-oriented, platform independent, and
perfect for applications on the World Wide Web, which is where we want to
expand our marketing efforts.”

“I’m not sure what ‘object-oriented’ and ‘platform independent’ mean,” you
say,“but I’ve always been interested in computers, and I’d love to learn more
about programming.”

“Based on your aptitude tests, you’re perfect for programming,” Lynn says. “Let’s get
started now. I’ll describe the basics to you.”

LEARNING ABOUT PROGRAMMING

A computer program is simply a set of instructions that you write to tell a computer what
to do. Computers are constructed from circuitry that consists of small on/off switches, so
you could write a computer program by writing something along the following lines:

firstƒswitch—on
secondƒswitch—off
thirdƒswitch—off
fourthƒswitch—on

Your program could go on and on, for several thousand switches.A program written in
this style is written in machine language, which is the most basic circuitry-level lan-
guage. The problems with this approach lie in keeping track of the many switches
involved in programming any worthwhile task, and in discovering the errant switch or
switches if the program does not operate as expected.Additionally, the number and loca-
tion of switches varies from computer to computer, which means that you would need
to customize a machine language program for every type of machine on which you want
the program to run.

Fortunately, programming has evolved into an easier task because of the development of
high-level programming languages.A high-level programming language allows you
to use a vocabulary of reasonable terms such as “read,” “write,” or “add,” instead of the
sequences of on and off switches that perform these tasks. High-level languages also
allow you to assign intuitive names to areas of computer memory, such as
“hoursWorked” or “rateOfPay,” rather than having to remember the memory locations
(switch numbers) of those values.

Each high-level language has its own syntax, or rules of the language. For example,
depending on the specific high-level language, you might use the verb “print” or “write”
to produce output.All languages have a specific, limited vocabulary and a specific set of
rules for using that vocabulary. Programmers use a computer program called a compiler
to translate their high-level language statements into machine code.The compiler issues
an error message each time the programmer uses the programming language incorrectly;
subsequently, the programmer can correct the error and attempt another translation by
compiling the program again. Other languages, including Java, use an interpreter to
read the compiled code line by line at run time. A Java interpreter can run as a stand-
alone program, or it can be part of a Web browser such as Netscape Navigator or
Microsoft Internet Explorer where it can be invoked automatically to run applets in a
Web page.The ability to run applets in a Web browser is one feature that distinguishes
Java from other programming languages.When you are learning a computer program-
ming language, such as the Java programming language, C++, or Visual Basic, you really
are learning the vocabulary and syntax rules for that language.

2 Chapter 1 Creating Your First Java Program

Understanding Object-Oriented Programming Concepts 3

In addition to learning the correct syntax for a particular language, a programmer also
must understand computer programming logic.The logic behind any program involves
executing the various statements and procedures in the correct order to produce the
desired results. For example, you would not write statements to tell the computer
program to process data until it had been properly read into the program. Similarly, you
might be able to use a computer language’s syntax correctly, but be unable to execute a
logically constructed, workable program. Examples of logical errors include multiplying
two values when you meant to divide them, or producing output prior to obtaining the
appropriate input. Tools that will help you visualize and understand logic will be
presented in Chapter 5.

UNDERSTANDING OBJECT-ORIENTED PROGRAMMING CONCEPTS

There are two popular approaches to writing computer programs: procedural program-
ming and object-oriented programming.

Procedural programming involves using your knowledge of a programming language
to create computer memory locations that can hold values—for example, numbers and
text, in electronic form.The computer memory locations are called variables because
they hold values that might vary. For example, a payroll program written for a company
might contain a variable named rateOfPay.The memory location referenced by the name
rateOfPay might contain different values (a different value for every employee of the
company) at different times. During the execution of the payroll program, each value
stored under the name rateOfPay might have many operations performed on it—the
value might be read from an input device, the value might be multiplied by another vari-
able representing hours worked, and the value might be printed on paper. For conve-
nience, the individual operations used in a computer program are often grouped into
logical units called procedures. For example, a series of four or five comparisons and
calculations that together determine an individual’s federal withholding tax value might
be grouped as a procedure named calculateFederalWithholding. A procedural program
defines the variable memory locations, and then calls a series of procedures to input,
manipulate, and output the values stored in those locations.A single procedural program
often contains hundreds of variables and thousands of procedure calls.

Object-oriented programming is an extension of procedural programming in which you
take a slightly different approach to writing computer programs.Writing object-oriented
programs involves both creating objects and creating applications that use those objects.
Objects often interrelate with other objects, and once created, objects can be reused over
and over again to develop new programs.Thinking in an object-oriented manner involves
envisioning program components as objects that are similar to concrete objects in the real
world; then you can manipulate the objects to achieve a desired result.

If you’ve ever used a computer that uses a command-line operating system (such as DOS),
and if you’ve also used a GUI (graphical user interface, such as Windows), then you are
familiar with the difference between procedural and object-oriented programs. If you want

1

to move several files from a floppy disk to a hard disk, you can use either a typed command
at a prompt or command line, or you can use a mouse in a graphical environment to
accomplish the task. The difference lies in whether you issue a series of commands, in
sequence, to move the three files, or you drag icons representing the files from one screen
location to another, much as you would physically move paper files from one file cabinet
to another in your office.You can move the same three files using either operating system,
but the GUI system allows you to manipulate the files like their real-world paper
counterparts. In other words, the GUI system allows you to treat files as objects.

Objects both in the real world and in object-oriented programming are made up of
states and methods. The states of an object are commonly referred to as its attributes.
Attributes are the characteristics that define an object as part of a class. For example,
some of your automobile’s attributes are its make, model, year, and purchase price. Other
attributes include whether the automobile is currently running, its gear, its speed, and
whether it is dirty. All automobiles possess the same attributes, but not, of course, the
same values for those attributes. Similarly, your dog has the attributes of its breed, name,
age, and whether his or her shots are current.

A class is a term that describes a group or collection of objects with common proper-
ties. An instance of a class is a technical term for an existing object of a class.Therefore,
your red Chevrolet automobile with the dent can be considered an instance of the class
that is made up of all automobiles, and your Golden Retriever dog named Goldie is an
instance of the class that is made up of all dogs.Thinking of items as instances of a class
allows you to apply your general knowledge of the class to individual members of the
class. A particular instance of an object takes on, or inherits, its attributes from a more
general category. If a general class Dog has defined attributes and methods, they can be
passed on to a specific class Golden Retriever Dog with minimal programming effort.
If your friend purchases an Automobile, you know it has a model name, and if your
friend gets a Dog, you know the dog has a breed.You might not know the exact con-
tents of your friend’s Automobile, its current state or her Automobile’s speed or her
Dog’s shots, but you do know what attributes exist for the Automobile and Dog classes.
Similarly, in a GUI operating environment, you expect each component to have specific,
consistent attributes, such as a menu bar and a title bar, because each component inher-
its these attributes as a member of the general class of GUI components.

By convention, programmers using the Java programming language begin
their class names with an uppercase letter. Thus, the class that defines the
attributes and methods of an automobile would probably be named
Automobile, and the class for dogs would probably be named Dog. However,
following this convention is not required to produce a workable program.

Besides attributes, objects can use methods to accomplish tasks.A method is a self-contained
block of program code. Automobiles, for example, can move forward and backward.They
can also be filled with gasoline or be washed, both of which can be programmed as meth-
ods to change some of their attributes. Methods exist for ascertaining certain attributes, such

Tip

4 Chapter 1 Creating Your First Java Program

Learning About the Java Programming Language 5

as the current speed of an Automobile and the current status of its gas tank. Similarly, a Dog
can walk or run, eat food, and get a bath, and there are methods to determine how hungry
the Dog is. GUI operating system components can be maximized, minimized, and dragged.
Like procedural programs, object-oriented programs have variables (attributes) and proce-
dures (methods), but the attributes and methods are encapsulated into objects that are then
used much like real-world objects. Encapsulation refers to the hiding of data and methods
within an object. Encapsulation provides the security that keeps data and methods safe from
inadvertent changes. Programmers sometimes refer to encapsulation as using a “black box,”
or a device that you can use without regard to the internal mechanisms.A programmer gets
to access and use the methods and data contained in the black box but cannot change them.

If an object’s methods are well written, the user is unaware of the low-level details of
how the methods are executed, and the user must simply understand the interface or
interaction between the method and the object. For example, if you can fill your
Automobile with gasoline, it is because you understand the interface between the gas
pump nozzle and the vehicle’s gas tank opening.You don’t need to understand how the
pump works mechanically or where the gas tank is located inside your vehicle. If you
can read your speedometer, it does not matter how the displayed figure is calculated.As
a matter of fact, if someone produces a superior, more accurate speed-determining
device and inserts it in your Automobile, you don’t have to know or care how it operates,
as long as your interface remains the same.The same principles apply to well-constructed
objects used in object-oriented programs.

LEARNING ABOUT THE JAVA PROGRAMMING LANGUAGE

The Java programming language was developed by Sun Microsystems as an
object-oriented language that is used both for general-purpose business programs and
for interactive World Wide Web-based Internet programs. Some of the advantages that
have made the Java programming language so popular in recent years are its security
features, and the fact that it is architecturally neutral, which means that you can
use the Java programming language to write a program that will run on any platform,
or operating system.

Java can be run on a wide variety of computers because Java does not execute instruc-
tions on a computer directly. Instead, Java runs on a hypothetical computer known as
the Java virtual machine(JVM).

The Java Environment shown in Figure 1-1 is described as follows: the Java program-
ming statements known as source code are first constructed using a text editor.Then
a special compiler known as the Java compiler converts the source code into a binary
program of byte code. A program called the Java Interpreter checks the byte code
and executes the byte code instructions line by line within the Java virtual machine.
Since the Java program is isolated from the native operating system, the Java program is
insulated from the particular hardware on which it is run. Because of this insulation, the
JVM provides security against intruders getting at your computer’s hardware through the

1

operating system. In contrast, when using other programming languages, software ven-
dors usually have to produce multiple versions of the same product (a DOS version,
Windows version, Macintosh version, Unix version, and so on) so all users can use the
program.With the Java programming language, one program version will run on all these
platforms.

For simplicity, the terms “Java program” and “program for the Java pro-
gramming language” are used interchangeably throughout this text.

The Java programming language also is simpler to use than many other object-oriented
languages.The Java programming language is modeled after the C++ programming lan-
guage. Although neither language is “simple” to read or understand on first exposure,
the Java programming language does eliminate some of the most difficult-to-understand
features in C++, such as pointers and multiple inheritance.

Java Program Types
You can write two kinds of programs using Java. Programs that are embedded in a Web
page are called Java applets. Stand-alone programs are called Java applications. Java appli-
cations can be further subdivided into console applications, which support character out-
put to a computer screen in a DOS window, for example, and windowed applications,
which create a graphical user interface (GUI) with elements such as menus, toolbars, and
dialog boxes. Console applications are the easiest applications to create; we will start using
them in the next section.Windowed applications will be introduced in Chapter 11.

Tip

Java Source Code

Java Compiler

Java Virtual Machine

Java Interpreter

Computer Operating
System

Figure 1-1 Java enviroment

6 Chapter 1 Creating Your First Java Program

Starting a Java Program 7

STARTING A JAVA PROGRAM

At first glance, even the simplest Java program involves a fair amount of confusing syn-
tax. Consider the following simple program.This program is written on seven lines, and
its only task is to print “First Java program” on the screen.

publicƒclassƒFirst
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒSystem.out.println("FirstƒJavaƒprogram");
ƒƒ}
}

The statement that does the actual work in this program is
System.out.println("FirstƒJavaƒprogram");.

All Java programming language statements end with a semicolon.

The text “First Java program” is a literal string of characters; that is, it is a series of
characters that will appear exactly as entered. Any literal string in Java appears between
double quotation marks, as opposed to single quotation marks as in ‘First Java program’.
Even though code is written on multiple lines for ease of reading, the literal string can-
not be broken because parts of the literal string will appear on different lines.

The string “First Java program” appears within parentheses because the string is an argu-
ment to a method, and arguments to methods always appear within parentheses.
Arguments consist of information that a method requires to perform its task. For exam-
ple, you might place a catalog order with a company that sells sporting goods. Processing
a catalog order is a method that consists of a set of standard procedures. However, each
catalog order requires information such as which item number you are ordering and the
quantity of the item desired; this information can be considered the order’s argument.
If you order two of item 5432 from a catalog, you expect different results than if you
order 1,000 of item 9008. Likewise, if you pass the argument “Happy Holidays” to a
method, you expect different results than if you pass the argument “First Java program”.

Within the statement System.out.println("FirstƒJavaƒprogram");, the
method to which you are passing “First Java program” is named println().The println()
method prints a line of output on the screen, positions the insertion point on the next
line, and stands ready for additional output.

Method names usually are referenced followed by their parentheses, as in
println(), so you can distinguish method names from variable names.

Tip

Tip

1

Within the statement System.out.println("First Java program");, out is an
object. The out object represents the screen. Several methods, including println(), are
available with the out object. Of course, not all objects have a println() method (for
instance, you can’t print to a keyboard, to your Automobile, or to your Dog), but the
creators of the Java platform assumed you frequently would want to display output on
a screen. Therefore, the out object was created and endowed with the method named
println(). In this chapter, you will create your own objects and endow them with your
own methods.

The print() method is very similar to the println() method. With println(), after
the message prints, the insertion point appears on the following line. With
print(), the insertion point does not advance to a new line; it remains on the
same line as the output.

Within the statement System.out.println("First Java program");, System
is a class. Therefore, System defines the attributes of a collection of similar “System”
objects, just as the Dog class defines the attributes of a collection of similar Dog objects.
One of the System objects is out. (You can probably guess that another object is in, and
that it represents an input device.)

The Java programming language is case sensitive; the class named System is a
completely different class from one named system, SYSTEM, or even sYsTeM.

The dots (periods) in the statement System.out.println("First Java program");
are used to separate the names of the class, object, and method.You will use this same class-
dot-object-dot-method format repeatedly in your Java programs.

The statement that prints the string “First Java program” is embedded in the program
shown in Figure 1-2.

Everything that you use within a Java program must be part of a class.When you write
public class First, you are defining a class named First.You can define a Java class
using any name or identifier you need, as long as it meets the following requirements:

� A class name must begin with a letter of the alphabet (which includes any
non-English letter, such as α or π), an underscore, or a dollar sign.

Figure 1-2 Printing a string

public class First
{

public static void main(String[] args)
{
System.out.println("First Java program");

}
}

Tip

Tip

8 Chapter 1 Creating Your First Java Program

Starting a Java Program 9

� A class name can contain only letters, digits, underscores, or dollar signs.

� A class name cannot be a Java programming language reserved keyword, such
as public or class (see Figure 1-3 for a list of reserved keywords).

� A class name cannot be one of the following values: true, false, or null.

The Java programming language is based on Unicode, which is an interna-
tional system of character representation. The term letter indicates English-
language letters, as well as characters from Arabic, Greek, and other
alphabets.

It is a Java programming language standard to begin class names with an uppercase let-
ter and employ other uppercase letters as needed to improve readability.Table 1-1 lists
some valid and conventional class names for the Java programming language.

Class Name Description

Employee Begins with an uppercase letter

UnderGradStudent Begins with an uppercase letter, contains no spaces, and emphasizes
each new word with an initial uppercase letter

InventoryItem Begins with an uppercase letter, contains no spaces, and emphasizes
the second word with an initial uppercase letter

Budget2004 Begins with an uppercase letter and contains no spaces

Table 1-1 Some valid class names in the Java programming language

Figure 1-3 Java programming language reserved keywords

abstract
Boolean
break
byte
byvalue
case
cast
catch
char
class
const
continue
default
do
double
else
extends
final
finally

float
for
future
generic
goto
if
implements
import
inner
instanceof
int
interface
long
native
new
null
operator
outer
package

private
protected
public
rest
return
short
static
super
switch
synchronized
this
throw
throws
transient
try
var
void
volatile
while

Tip

1

You should follow established conventions for the Java programming lan-
guage so your programs will be easy for other programmers to interpret and
follow. This book uses established Java programming conventions.

In Figure 1-2, the line public class First contains the keyword class, which iden-
tifies First as a class.The reserved word public is an access modifier.An access modifier
defines the circumstances under which a class can be accessed. Public access is the most lib-
eral type of access; you will learn about public and other types of access in Chapter 3.

You enclose the contents of all classes within curly braces ({ and }). A class can contain
any number of data items and methods. In Figure 1-2, the class First contains only one
method within its curly braces.The name of the method is main(), and the main() method
contains its own set of parentheses and only one statement—the println() statement.

In general, whitespace is optional in the Java programming language. Whitespace
is any combination of spaces, tabs, and carriage returns (blank lines). However,
you cannot use whitespace within any identifier or keyword. You can insert white-
space between words or lines in your program code by typing spaces, tabs, or
blank lines because the compiler will ignore these extra spaces. You use white-
space to organize your program code and make it easier to read.

For every opening curly brace ({) in a Java program, there must be a corresponding closing
curly brace (}).The placement of the opening and closing curly braces is not important to
the compiler. For example, the following method is executed exactly the same as the one
shown in Figure 1-2.The only difference is that the method is organized differently.This

Tip

Class Name Description

an employee Space character is illegal

Inventory Item Space character is illegal

class class is a reserved word

2001Budget Class names cannot begin with a digit

phone# The # symbol is not allowed

Table 1-3 Some illegal class names in the Java programming language

Class Name Description

employee Begins with a lowercase letter

Undergradstudent New words are not indicated with initial uppercase letters;
difficult to read

Inventory_Item The underscore is not commonly used to indicate new words

BUDGET2004 Appears as all uppercase letters

Table 1-2 Some unconventional class names in the Java programming language

Tip

10 Chapter 1 Creating Your First Java Program

Starting a Java Program 11

location of the curly braces is common in professional code. Usually, code in which you ver-
tically align each pair of opening and closing curly braces is easier to read and is used
throughout this textbook. Strive to type your code so it is easy to read.

publicƒstaticƒvoidƒmain(String[]ƒargs)ƒ{
System.out.println("FirstƒJavaƒprogram");
}

The method header for the main() method is quite complex.The meaning and purpose
of each of the terms used in the method header will become clearer as you complete
this textbook; a brief explanation will suffice for now.

In the method header public static void main(String[] args), the word
public is an access modifier, just as it is when you define the First class. In the English
language, the word static means showing little change, or stationary. In the Java pro-
gramming language, the reserved keyword static ensures that main() is accessible even
though no objects of the class exist. It also indicates that every member created for the
First class will have an identical, unchanging main() method.Within the Java program-
ming language, static also implies uniqueness. Only one main() method for the First
class will ever be stored in the memory of the computer. Of course, other classes even-
tually might have their own, different main() methods.

In English, the word void means empty.When the keyword void is used in the main()
method header, it does not indicate that the main() method is empty, but rather, that the
main() method does not return any value when it is called.This doesn’t mean that main()
doesn’t produce output—in fact, the method does. The main() method does not send
any value back to any other method that might use it.You will learn more about return
values in Chapter 3.

Not all classes have a main() method; in fact many do not. All Java applications how-
ever, must include a method named main(), and most Java applications have additional
methods.When you execute a Java application, the compiler always executes the main()
method first.

In the method header public static void main(String[] args), you already
might recognize that the contents between the parentheses, (String[] args), must
represent an argument passed to the main() method, just as the string “First Java pro-
gram” is an argument passed to the println() method. String represents a Java class that
can be used to represent character strings.The identifier args is used to hold any Strings
that might be sent to the main() method.The main() method could do something with
those arguments, such as print them, but in Figure 1-2 the main() method does not actu-
ally use the args identifier. Nevertheless, you must place an identifier within the main()
method’s parentheses.The identifier does not need to be named args—it could be any
legal Java identifier—but the name args is traditional.

When you refer to the String class in the main() method header, the square
brackets indicate an array of String objects. You will learn more about arrays
and the String class in Chapter 6.Tip

1

The simple program shown in Figure 1-2 has many pieces to remember. However, for
now, you can use the program shown in Figure 1-4 as a shell, where you replace the line
/******/ with any statements that you want to execute.

Now that you understand the basic framework of a program written in the Java pro-
gramming language, you are ready to enter your first Java program into a text editor. It
is a tradition among programmers that the first program you write in any language pro-
duces “Hello, world!” as its output.You will create such a program now.You can use any
text editor, such as Notepad,Textpad, or any other text-processing program.

To write your first Java program:

1. Start any text editor (such as Notepad or Textpad, but be sure the file is saved
with the extension .txt), and then open a new document, if necessary.
(Textpad is the easiest program to use to write your programs.)

2. Type the class header publicƒclassƒHello. In this example, the class
name is Hello.You can use any valid name you want for the class. If you
choose Hello, you must refer to the class as Hello, and not as hello, because
the Java programming language is case sensitive.

3. Press [Enter] once, type {, press [Enter] again, and then type }.You will add
the main() method between the curly braces. Although it is not required, it is
a good practice to place each curly brace on its own line.This makes your
code easier to read.

4. As shown in Figure 1-5, add the main() method header between the curly
braces and then type a set of curly braces for main().

Figure 1-5 The main() method shell for the Hello class

public class Hello
{

public static void main(String[] args)
{
}

}

Figure 1-4 Shell output program

public class First
{

public static void main(String[] args)
{
/******/

}
}

12 Chapter 1 Creating Your First Java Program

Adding Comments to a Java Program 13

Next add the statement within the main() method’s brackets that will produce the out-
put, “Hello, world!”.

5. Use Figure 1-6 as a guide for adding a println() statement to the main() method.

6. Save the program as Hello.java in the Chapter.01 folder on your Student
Disk. It is important that the file extension is .java. If it is not, the compiler
for the Java programming language will not recognize the program.

Many text editors attach their own filename extension (such as .txt or .doc)
to a saved file. Double-check your saved file to ensure that it does not have
a double extension (such as Hello.java.txt). If the file has a double extension,
rename the file. If you explicitly type quotation marks surrounding a filename
(such as “Hello.java”), most text editors will save the file as you specify, with-
out adding an extension. Make sure that you save your .java files as text
documents. The default for Notepad is to save all documents as text.

ADDING COMMENTS TO A JAVA PROGRAM

As you can see, even the simplest Java program takes several lines of code, and contains
somewhat perplexing syntax. Large programs that perform many tasks include much
more code, and as you write longer programs, it becomes increasingly difficult to remem-
ber why you included steps, or how you intended to use particular variables. Program
comments are nonexecuting statements that you add to a program for the purpose of
documentation. Programmers use comments to leave notes for themselves and for others
who might read their programs in the future. At the very least, your programs should
include comments indicating the program’s author, the date, and the program’s name or
function.The best practice dictates that a brief comment be made to tell the purpose for
each class and its methods.

It is suggested that as you work through this book you add comments as the
first three lines of every program. The comments should contain the program
name, your name, and the date. Your instructor might ask you to include
additional comments.

Tip

Help
?

Figure 1-6 main() method for the Hello class

public class Hello
{

public static void main(String[] args)
{

System.out.println("Hello, world");
}

}

1

Comments also can serve a useful purpose when you are developing a program. If a
program is not performing as expected, you can comment out various statements and
subsequently run the program to observe the effect.When you comment out a state-
ment, you turn it into a comment so the compiler will not execute its command.This
helps you pinpoint the location of errant statements in malfunctioning programs.

There are three types of comments in the Java programming language:

� Line comments start with two forward slashes (//) and continue to the end
of the current line. Line comments can appear on a line by themselves or at
the end of a line following executable code.

� Block comments start with a forward slash and an asterisk (/*) and end
with an asterisk and a forward slash (*/). Block comments can appear on a
line by themselves, on a line before executable code, or after executable code.
Block comments also can extend across as many lines as needed.

� A special case of block comments are javadoc comments.They begin with a
forward slash and two asterisks (/**) and end with an asterisk and a forward
slash (*/).You can use javadoc comments to generate documentation with a
program named javadoc.

The forward slash (/) and the backslash (\) characters often are confused, but
they are two distinct characters. You cannot use them interchangeably.

The Java Development Kit (JDK) includes the javadoc tool, which contains classes
that you can use when writing programs in the Java programming language.

Figure 1-7 shows how comments are used in code.

Next you will add comments to your Hello.java program.

Figure 1-7 Using comments in a program

//Demonstrating comments
/* This shows

that these comments
don't matter */

System.out.println("Hello");//This line executes
// up to where the comment started

/**Everything but the println() line
 is a comment. */

Tip

Tip

14 Chapter 1 Creating Your First Java Program

Running a Java Program 15

To add comments to your program:

1. Position the insertion point at the top of the file, press [Enter] to insert a
new line, press the Up arrow key to go to that line, and then type the fol-
lowing comments at the top of the file. Press [Enter] after typing each line.
Insert your name and today’s date where indicated.

// FilenameƒHello2.java
// Writtenƒbyƒ<yourƒname>
// Writtenƒonƒ<today’sƒdate>

2. Scroll to the end of the line that reads public class Hello, change the
class name to Hello2, press [Enter], and then type the following block
comment in the program:

/*ƒƒThisƒprogramƒdemonstratesƒtheƒuseƒofƒtheƒprintln()
methodƒtoƒprintƒtheƒmessageƒHello,ƒworld!ƒƒ*/

3. Save the file as Hello2.java in the Chapter.01 folder on your Student Disk.

RUNNING A JAVA PROGRAM

After you write and save your program, there are two steps that must occur before you
can view the program output.

1. You must compile the program you wrote (called the source code) into
bytecode.

2. You must use the Java interpreter to translate the bytecode into executable
statements.

To compile your source code from the command line, you type javac followed by the
filename of the file that contains the source code. For example, to compile a file named
First.java, you would type javacƒFirst.java and then press [Enter]. There will be
one of three outcomes:

� You receive a message such as Badƒcommandƒorƒfilename.

� You receive one or more program language error messages.

� You receive no messages, which means that the program compiled successfully.

When compiling, if the source code file is not in the current path, you can
type a full path with the filename, for example, javac
c:\java\myprograms\First.java.Tip

1

If you receive a message such as Bad command or filename, it might mean one of
the following:

� You misspelled the command javac.

� You misspelled the filename.

� You are not within the correct subfolder or subdirectory on your command line.

� The Java programming language was not installed properly. (See Appendix for
information on installation.)

If you receive a programming language error message, then there are one or more syn-
tax errors in the source code.A syntax error is a programming error that occurs when
you introduce typing errors into your program. For example, if your class name is “first”
(with a lowercase f) in the source code, but you saved the file as First.java, you will get
an error message, such as public class first should not be defined in
First.java, after compiling the program because “first” and “First” are not the same
in a case-sensitive language. If this error occurs, you must reopen the text file that con-
tains the source code and make the necessary corrections.

If you receive no error messages after compiling the code in a file named First.java, then
the program compiled successfully, and a file named First.class was created and saved in
the same folder as the program text file.After a successful compile, you can run the class
file on any computer that has a Java language interpreter.

To run the program from the command line, you type javaƒFirst. Figure 1-8 shows
the program’s output. Next you will compile and interpret your Hello2.java program.

To compile and interpret your Hello2.java program with comments:

1. Go to the command-line prompt for the drive and folder or subdirectory in
which you saved Hello2.java.

2. At the command line, type javacƒHello2.java.

Figure 1-8 Output of the First program

16 Chapter 1 Creating Your First Java Program

Modifying a Java Program 17

If you receive an error message, look in the section “Running a Java Program”
to find its cause, and then make the necessary corrections. Save the file again,
and then repeat Steps 1 and 2 until your program compiles successfully.

3. When the compile is successful, execute your program by typing
javaƒHello2 at the command line, and then press [Enter].The
output should appear on the next line, as shown in Figure 1-9.

When you run a Java program using the java command, do not add the
.class extension to the filename. If you type javaƒFirst, the interpreter
will look for a file named First.class. If you type javaƒFirst.class, the
interpreter will incorrectly look for a file named First.class.class.

MODIFYING A JAVA PROGRAM

After viewing the program output, you might decide to modify the program to get a
different result. For example, you might decide to change the First program’s output
from First Java program to the following:

Myƒnewƒandƒimproved
Javaƒprogram

To produce the new output, first you must modify the text file that contains the exist-
ing program.You may also want to change the class name to First2 to indicate that the
First program has changed. You will need to change the literal string that currently
prints, and then add an additional text string. Figure 1-10 shows the program to change
the output.

Tip

Figure 1-9 Output of the Hello2 program

Help
? 1

The three changes are the class name change of First to First2, the addition of the statement
System.out.println("My new and improved");, and the removal of the word
“First” from the string in the statement System.out.println("Java'ƒprogram");.
However, if you type java First2 at the command line right now, you will not see the
new output—you will see the old output. Before the new source code will execute, you
must do the following:

1. Save the file with the changes using the same filename (First2.java).

2. Compile the First2 class with the javac command.

3. Interpret the First2.class bytecode with the java command.

Next you will change your Hello2 class and rerun your program.

To change the Hello2 class and rerun the program:

1. Open the file Hello2.java in your text editor. Change both the comment
name and the class name to Hello3.

2. Add the following statement below the statement that prints “Hello, world!”:
System.out.println("I'mƒreadyƒforƒJavaƒprogramming!");.
Make sure to type the semicolon at the end of the statement and use the
correct case.

3. Save the file as Hello3.java in the Chapter.01 folder on your Student Disk.
Changing the Hello2 class name to Hello3 and saving the file as Hello3 calls
attention to the change being made to the Hello2 class.

4. At the command line, compile the file by typing the command
javacƒHello3.java.

If you receive compile errors, return to the Hello3.java file in the text editor,
fix the errors, and then repeat Steps 3 and 4 until the program compiles
successfully.

5. Interpret and execute the class by typing the command java Hello3, and
then press [Enter].Your output should look like Figure 1-11.

Help
?

Figure 1-10 Changing a program’s output

public class First2
{

public static void main(String[] args)
{
System.out.println("My new and improved");
System.out.println("Java program");

}
}

18 Chapter 1 Creating Your First Java Program

Modifying a Java Program 19

Errors and Debugging
When typing errors are made as code is entered and compiled, the compiler will
produce an error message as explained in the examples earlier in the chapter. The
exact ror message depends on the compiler. In the First program of Figure 1-2, typing
the System.out.println() code as system.out.println("FirstƒJava
Program"); produces an error message similar to “cannot resolve symbol…”. This
is a compile-time error commonly referred to as a syntax error.The compiler detects
the violation of language rules and refuses to translate the program to machine code.
The compiler will try to report as many errors as it can find during compilation so
that you can fix as many errors as possible. Sometimes one error in syntax causes sub-
sequent errors that normally would not be errors if the first syntax error did not exist.
You should correct the errors that make sense to you and then recompile.

A second kind of error occurs when the syntax of the program is correct and the
program is compiled but produces incorrect results. This is a run-time error or logic
error. In the First program of Figure 1-1, typing the System.out.println() code
as System.out.println("FrstƒJavaƒProgram"; does not produce an error.
The compiler does not find the spelling error of “Frst” instead of “First”. Errors of this
type must be detected by carefully examining the program output. It is the responsibil-
ity of the program author to test programs and find any logic errors. Good program-
ming practice stresses programming structure and development that helps minimize
errors.Additionally, each chapter in this book has four programs for debugging that will
give you practice finding and correcting syntax and logic errors.

FAQs, JDKs, Documentation, and Tutorials
A great wealth of material exists at the Sun Microsystems Web site, http://java.sun.com.
Of particular value are the FAQs (Frequently Asked Questions) that you can link to from
a site search of the Web site. By searching the site for FAQs, you can locate the
collections of frequently asked questions that provide brief answers to many common

Figure 1-11 Output of the revised Hello program

1

questions about Java software and products. A site search for the Java Development Kit
(JDK) will help you locate and download the latest JDK for free. At the time of this
writing the latest version is The JavaTM 2 Platform, Standard Edition v1.4.0, available in
Windows, Linux, and Solaris operating systems.You can search and browse documenta-
tion online or you can download the documentation file for the SDK and install it on
your computer. Once installed, you can search and browse documentation locally.

A downloadable Java tutorial titled “The Java Tutorial: A practical guide for pro-
grammers”, with hundreds of complete working examples is available from
http://java.sun.com/docs/books/tutorial/. The tutorial is organized into trails—groups of
lessons on a particular subject.You can start the tutorial at the beginning and navigate
sequentially from beginning to end, or jump from one trail to another.As you study each
textbook chapter you are encouraged to make good use of these support materials.

CHAPTER SUMMARY
❒ Objects are made up of states and methods.The states of an object also are known

as its attributes. An individual object is an instance of a class; the object inherits its
attributes from the class.The user of an object does not need to understand the
details of any method, but must understand the interface with the object.

❒ A program written in Java is run on a standardized hypothetical computer called
the Java virtual machine (JVM) that exists virtually inside your machine by a pro-
gram.When your program is compiled into bytecode, an interpreter within the
JVM subsequently interprets the bytecode and interfaces with the operating system
to produce the program results.

❒ All Java programming language statements end with a semicolon. Periods (called
dots) are used to separate classes, objects, and methods in program code.The con-
tents of all classes are contained within opening and closing curly braces. A series of
characters that appears between double quotation marks is a literal string. Java pro-
gramming language methods might require arguments or messages to perform the
appropriate task.

❒ Everything that you use within a Java program must be part of a class. A Java pro-
gramming language class might take any name or identifier that begins with either
an uppercase or lowercase letter of the alphabet, and contains only uppercase and
lowercase letters, digits, and underscores. A class name cannot be a reserved key-
word of the Java programming language.

❒ The reserved word public is an access modifier that defines the circumstances
under which a class can be accessed.The keyword static in a method header
indicates that every member of a class will have an identical, unchanging method.
The keyword void in a method header indicates that the method does not return
any value when it is called.

20 Chapter 1 Creating Your First Java Program

Review Questions 21

❒ All Java application programs must have a method named main(). Most Java applica-
tions have additional methods.

❒ Program comments are nonexecuting statements that you add to a program for the
purpose of documentation.There are three types of comments in the Java program-
ming language: line comments begin with two forward slashes (//); block com-
ments begin with a forward slash and an asterisk (/*) and end with an asterisk and
a forward slash (*/); and javadoc comments begin with a forward slash and two
asterisks (/**) and end with an asterisk and a forward slash (*/).

❒ To compile your source code from the command line, type javac followed by the
name of the file that contains the source code. If the file resides in a different path
from the command prompt, use the full path and filename.When you compile your
source code, the compiler creates a file with a .class extension.You can run the
.class file on any computer that has a Java language interpreter by entering the
java command followed by the name of the class file. Do not type the .class
extension with the filename.

❒ When you modify a program, before it will execute correctly, you must do the
following: save the file with the changes using the same filename, compile the
class with the javac command, and interpret the class bytecode with the java
command.

❒ To avoid and minimize syntax and logic errors you must enter code carefully and
closely examine your program’s output.

REVIEW QUESTIONS
1. The most basic circuitry-level computer language, which consists of on and off

switches, is .

a. a high-level language

b. machine language

c. the Java programming language

d. C++

2. Languages that let you use a vocabulary of descriptive terms such as “read,”
“write,” or “add” are known as languages.

a. high-level

b. machine

c. procedural

d. object-oriented

1

3. The rules of a programming language constitute its .

a. objects

b. logic

c. format

d. syntax

4. A translates high-level language statements into machine code.

a. programmer

b. syntax detector

c. compiler

d. decipherer

5. Computer memory locations are called .

a. compilers

b. variables

c. addresses

d. appellations

6. For convenience, the individual operations used in a computer program are often
grouped into logical units called .

a. procedures

b. variables

c. constants

d. logistics

7. Envisioning program components as objects that are similar to concrete objects in
the real world is the hallmark of .

a. command-line operating systems

b. procedural programming

c. object-oriented programming

d. machine languages

8. An object’s attributes also are known as its .

a. states

b. orientations

c. methods

d. procedures

9. An instance of a(n) inherits its attributes from it.

a. object

b. procedure

22 Chapter 1 Creating Your First Java Program

Review Questions 23

c. method

d. class

10. The Java programming language is architecturally .

a. specific

b. oriented

c. neutral

d. abstract

11. You must compile programs written in the Java programming language into
.

a. bytecode

b. source code

c. javadoc statements

d. object code

12. All Java programming language statements must end with a .

a. period

b. comma

c. semicolon

d. closing parenthesis

13. Arguments to methods always appear within .

a. parentheses

b. double quotation marks

c. single quotation marks

d. curly braces

14. In a Java program, you must use to separate classes, objects,
and methods.

a. commas

b. semicolons

c. periods

d. forward slashes

15. All Java programs must have a method named .

a. method()

b. main()

c. java()

d. Hello()

1

16. Nonexecuting program statements that provide documentation are called
.

a. classes

b. notes

c. comments

d. commands

17. The Java programming language supports three types of comments:
, , and javadoc.

a. line, block

b. string, literal

c. constant, variable

d. single, multiple

18. After you write and save a program file, you it.

a. interpret and then compile

b. interpret and then execute

c. compile and then resave

d. compile and then interpret

19. The command to execute a compiled program is .

a. run

b. execute

c. javac

d. java

20. You save text files containing Java language source code using the file extension
.

a. .java

b. .class

c. .txt

d. .src

21. The Java Virtual machine, or JVM, refers to a(n) .

a. interpreter

b. operating system

c. hypothetical computer

d. compiler

24 Chapter 1 Creating Your First Java Program

Exercises 25

EXERCISES
1. For each of the following Java programming language identifiers, note whether

they are legal or illegal:

a. weeklySales

b. last character

c. class

d. MathClass

e. myfirstinitial

f. phone#

g. abcdefghijklmnop

h. 23jordan

i. my_code

j. 90210

k. year2000problem

l. abffraternity

2. Name some attributes that might be appropriate for each of the following classes:

a. TelevisionSet

b. EmployeePaycheck

c. PatientMedicalRecord

3. Write, compile, and test a program that prints your first name on the screen. Save
the program as Name.java in the Chapter.01 folder on your Student Disk.

4. Write, compile, and test a program that prints your full name, street address, city,
state, and zip code on three separate lines on the screen. Save the program as
Address.java in the Chapter.01 folder on your Student Disk.

5. Write, compile, and test a program that displays the following pattern on the screen:

X
XXX

XXXXX
XXXXXXX

X

Save the program as Tree.java in the Chapter.01 folder on your Student Disk.

1

6. Write, compile, and test a program that prints your initials on the screen.
Compose each initial with five lines of initials, as in the following example:

J FFFFFF

J F

J FFFF

J J F

JJJJJJ F

Save the program as Initial.java in the Chapter.01 folder on your Student Disk.

7. Write, compile, and test a program that prints all the objectives listed at the
beginning of this chapter. Save the program as Objectives.java in the Chapter.01
folder on your Student Disk.

8. Write, compile, and test a program that displays the following pattern on the screen:

*
* *

* * *
* *
*

Save the program as Diamond.java in the Chapter.01 folder on your Student Disk.

9. Write, compile, and test a program that displays the following statement about
comments:

“Program comments are nonexecuting statements you add to a program for the
purpose of documentation.”

Also include the same statement in three different comments in the program; each
comment should use one of the three different methods of including comments
in a Java program. Save the program as Comments.java in the Chapter.01 folder
on your Student Disk.

10. Each of the following files in the Chapter.01 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugOne1.java will become FixDebugOne1.java.

a. DebugOne1.java

b. DebugOne2.java

c. DebugOne3.java

d. DebugOne4.java

26 Chapter 1 Creating Your First Java Program

Case Project 27

CASE PROJECT
Business Cards Limited is a company that designs and prints personal business cards.They
have asked you to write a simple program using Java to provide personal business card
information for a typical order.The format to be displayed is shown in the table below:

Write, compile, and test a Java program to print the table layout using your own per-
sonal information. Be sure to use good documentation principles for your program. Save
the program as CardLayout in the Chapter.01 folder on your Student Disk.

Information LayoutInt Integer

First Name Last Name

Address 1

Address 2

City State Zip

Home Phone

Work Phone

Table 1-4 CardLayout format

Case
Project

1

29

CHAPTER

2
USING DATA WITHIN

A PROGRAM
In this chapter, you will:

� Use constants and variables
� Learn about the int data type
� Write arithmetic statements
� Use the Boolean data type
� Learn about floating-point data types
� Understand numeric type conversion
� Work with the char data type
� Learn about ASCII and Unicode

How are you doing with your first programs?” asked Lynn Greenbrier
during a coffee break. “OK, I think,” I replied with just a bit of doubt

in my voice. “I sure wish I could do some calculations, though,” I contin-
ued.“Writing code that only prints the output I coded using println() state-
ments isn’t exactly what I had in mind when I considered a job in
programming.” “Well then,” Lynn replied,“let’s start learning how Java uses
different data types to perform arithmetic and other kinds of calculations.”

USING CONSTANTS AND VARIABLES

You can categorize data as variable or constant. Data is constant when it cannot be
changed after a program is compiled; data is variable when it might change. For exam-
ple, if you include the statement System.out.println(459); in a Java program, the
number 459 is a constant. Every time the program containing the constant 459 is exe-
cuted, the value 459 will print.You can refer to the number 459 as a literal constant
because its value is taken literally at each use.

Besides using literal constants, you can use symbolic constants, which you will
learn about in Chapter 4.

On the other hand, you can set your data up as a variable. For example, if you cre-
ate a variable named ovenTemperature, and include the statement
System.out.println(ovenTemperature); within a Java program, then differ-
ent values might display when the program is executed multiple times, depending on
what value is stored in ovenTemperature each time the program is run.

Variables are named memory locations that your program can use to store values. The
Java programming language provides for eight primitive types of data:

� boolean

� float

� byte

� int

� char

� long

� double

� short

The eight primitive data types are called primitive types because they are simple and
uncomplicated. Primitive types also serve as the building blocks for more complex data
types, called reference types.The objects you begin creating in Chapter 3 are examples
of reference types.

Declaring Variables
You name variables using the same naming rules for legal class identifiers described in
Chapter 1. Basically, variable names must start with a letter and cannot be any reserved

Tip

30 Chapter 2 Using Data Within a Program

Using Constants and Variables 31

keyword. You must declare all variables you want to use in a program. A variable
declaration includes the following:

� A data type that identifies the type of data that the variable will store

� An identifier that is the variable’s name

� An optional assigned value, when you want a variable to contain an
initial value

� An ending semicolon

Variable names usually begin with lowercase letters to distinguish them from
class names. However, variable names can begin with either an uppercase or
a lowercase letter.

For example, the variable declaration intƒmyAgeƒ=ƒ25; declares a variable of type int
named myAge and assigns it an initial value of 25.This is a complete statement that ends
in a semicolon.The equals sign (=) is the assignment operator.Any value to the right
of the equals sign is assigned to the variable on the left of the equals sign.An assignment
made when you declare a variable is an initialization; an assignment made later is sim-
ply an assignment. Thus, intƒmyAgeƒ=ƒ25; initializes myAge to 25, and a subse-
quent statement myAgeƒ=ƒ42; might assign a new value to the variable.You should
note that the expression 25ƒ=ƒmyAge is illegal.

The variable declaration intƒmyAge; also declares a variable of type int named myAge,
but no value is assigned at the time of creation.

You can declare multiple variables of the same type in separate statements on different
lines. For example, the following statements declare two variables—the first variable is
named myAge and its value is 25.The second variable is named yourAge and its value
is 19.

intƒmyAgeƒ=ƒ25;
intƒyourAgeƒ=ƒ19;

You also can declare two variables of the same type in a single statement by separating
the variable declarations with a comma, as shown in the following statement:

intƒmyAgeƒ=ƒ25,ƒyourAgeƒ=ƒ19;ƒ

However, if you want to declare variables of different types, you must use a separate state-
ment for each type.The following statements declare two variables of type int (myAge
and yourAge) and two variables of type double (mySalary and yourSalary):

intƒmyAge,ƒyourAge;
doubleƒmySalary,ƒyourSalary;

Tip

2

LEARNING ABOUT THE INT DATA TYPE

In the Java programming language, you use variables of type int to store (or hold) integers,
or whole numbers.An integer can hold any whole number value from –2,147,483,648 to
2,147,483,647.When you assign a value to an int variable, you do not type any commas;
you type only digits and an optional plus or minus sign to indicate a positive or negative
integer.

The legal integer values are –231 through 231–1. These are the highest and
lowest values that you can store in four bytes of memory, which is the size of
an int variable.

The types byte, short, and long are all variations of the integer type.You use byte or short
if you know a variable will need to hold only small values so you can save space in mem-
ory.You use a long if you know you will be working with very large values. Table 2-1
shows the upper and lower value limits for each of these types. It is important to choose
appropriate types for the variables you will use in a program. If you attempt to assign a
value that is too large for the data type of the variable, the compiler will issue an error
message and the program will not execute. If you choose a data type that is larger than
you need, you waste memory. For example, a personnel program might use a byte vari-
able for number of dependents (because a limit of 127 is more than enough), a short for
hours worked in a month (because 127 isn’t enough), and an integer for an annual salary
(because even though a limit of 32,000 might be large enough for your salary, it isn’t
enough for the CEO).

If your program uses a literal constant integer, such as 932, the integer is an
int by default. If you need to use a constant higher than 2,147,483,647, you
must follow the number with the letter L to indicate long. For example,
longƒmosquitosInTheNorthWoodsƒ=ƒ2444555888L; stores a num-
ber that is greater than the maximum limit for the int type. You can type
either an uppercase or lowercase L to indicate the long type, but the upper-
case L is preferred to avoid confusion with the number one.

Next you will write a program to declare and display numeric values.

Type Minimum Value Maximum Value Size in Bytes

byte –128 127 1

short –32,768 32,767 2

int –2,147,483,648 2,147,483,647 4

long –9,223,372,036,854,775,808 9,223,372,036,854,775,807 8

Table 2-1 Limits on integer values by type

Tip

Tip

32 Chapter 2 Using Data Within a Program

Learning about the int Data Type 33

To declare and display values in a program:

1. Open a new document in your text editor.

2. Create a class header and an opening and closing curly brace for a new class
named DemoVariables by typing the following:

publicƒclassƒDemoVariables
{
}

3. Position the insertion point after the opening curly brace, press [Enter], press
[Spacebar] several times to indent the line, and then type the following
main() method and its curly braces:

publicƒstaticƒvoidƒmain(String[]ƒargs)
{
}

4. Position the insertion point after the opening curly brace in the main()
method, press [Enter], press [Spacebar] several times to indent the line, and
then type intƒoneIntƒ=ƒ315; to declare a variable of type int named
oneInt with a value of 315.

You can declare variables at any point within a method prior to their first use.
However, it is common practice to declare variables first, and place method
calls second.

5. Press [Enter] at the end of the oneInt declaration statement, indent the line,
and then type the following two output statements.The first statement uses
the print() method to output “The int is ” and leaves the insertion point on
the same output line.The second statement uses the println() method to out-
put the value of oneInt and advances the insertion point to a new line.

System.out.print("Theƒintƒisƒ");
System.out.println(oneInt);

When your output contains a literal string such as “The int is ”, you should
type a space before the closing quotation mark so there is a space between
the end of the literal string and the value that prints.

6. Save the file as DemoVariables.java in the Chapter.02 folder on your
Student Disk.

7. Compile the file from the command line by typing javac
DemoVariables.java. If necessary, correct any errors, save the file,
and then compile again.

8. Execute the program from the command line by typing
javaƒDemoVariables.The output is shown in Figure 2-1.

Tip

Tip

2

Even though you intend to add additional statements to the DemoVariables program, you
compiled and executed the program at this point to make sure that it is working exactly
as intended. Sometimes it is a good idea to write and compile your programs in steps, so
you can identify any syntax or logical errors as you go, instead of waiting until you finish
writing the entire program. Next you will declare two more variables in your program.

To declare two more variables in the program:

1. Return to the DemoVariables.java file in the text editor. Rename the class
DemoVariables2.

2. Position the insertion point at the end of the line that contains the oneInt
declaration, press [Enter], and then type the following variable declarations
on separate lines:

shortƒoneShortƒ=ƒ23;
longƒoneLongƒ=ƒ1234567876543L;

3. Position the insertion point at the end of the line that contains the println()
method that displays the oneInt value, press [Enter], and then type the fol-
lowing statements to display the values of the two new variables:

System.out.print("Theƒshortƒisƒ");
System.out.println(oneShort);
System.out.print("Theƒlongƒisƒ");
System.out.println(oneLong);

4. Save the program using the filename DemoVariables2.java.

5. Compile the program by typing javacƒDemoVariables2.java. If neces-
sary, correct any errors, save the file, and then compile again.

6. Execute the program by typing javaƒDemoVariables2.The output is
shown in Figure 2-2.

Figure 2-1 Output of the DemoVariables program

34 Chapter 2 Using Data Within a Program

Learning about the int Data Type 35

In the previous program, you used two print methods to print a compound phrase with
the following code:

System.out.print("Theƒlongƒisƒ");
System.out.println(oneLong);

To reduce the amount of typing, you can use one method and combine the arguments
with a plus sign using the following statement: System.out.println("The long
isƒ"ƒ+ƒoneLong);. It doesn’t matter which format you use—the result is the same,
as you will see next.

To change the two print methods into a single statement:

1. Open the DemoVariables2.java text file, and rename the class
DemoVariables3.

2. Use the mouse to select the two statements that print “The int is ” and the
value of oneInt, and then press [Delete] to delete them. In place of the
deleted statements, type the following println() statement:
System.out.println("Theƒintƒisƒ"ƒ+ƒoneInt);.

3. Select the two statements that produce output for the short variable, press
[Delete] to delete them, and then type the statement
System.out.println("Theƒshortƒisƒ"ƒ+ƒoneShort);.

4. Finally, select the two statements that produce output for the long variables,
delete them, and replace them with
System.out.println("Theƒlongƒisƒ"ƒ+ƒoneLong);.

5. Save, compile, and test the program.The output is shown in Figure 2-3.

Figure 2-2 Output of the DemoVariables2 program

2

WRITING ARITHMETIC STATEMENTS

Table 2-2 describes the five standard arithmetic operators for integers.You use the arith-
metic operators to manipulate values in your programs.

You will learn about the shortcut arithmetic operators for the Java program-
ming language in Chapter 5.

You do not need to perform a division operation before you can perform a
modulus operation. A modulus operation can stand alone.

The operators / and % deserve special consideration. When you divide two integers,
whether they are integer constants or integer variables, the result is an integer. In other
words, any fractional part of the result is lost. For example, the result of 45 / 2 is 22, even
though the result is 22.5 in a mathematical expression.When you use the modulus opera-
tor with two integers, the result is an integer with the value of the remainder after division

Tip

Operator Description Example

+ Addition 45 + 2, the result is 47

– Subtraction 45 – 2, the result is 43

* Multiplication 45 * 2, the result is 90

/ Division 45 / 2, the result is 22 (not 22.5)

% Modulus (remainder) 45 % 2, the result is 1 (that is, 45 / 2 = 22
with a remainder of 1)

Table 2-2 Integer arithmetic operators

Tip

Figure 2-3 Output of the DemoVariables3 program

36 Chapter 2 Using Data Within a Program

Writing Arithmetic Statements 37

takes place—the result of 45 % 2 is 1 because 2 “goes into” 45 twenty-two times with
a remainder of 1.

Next you will add some arithmetic statements to the DemoVariables3.java program.

To use arithmetic statements in a program:

1. Open the DemoVariables3.java file in your text editor, and change the class
to DemoVariables4.

2. Position the insertion point at the end of the last line of the current variable
declarations, press [Enter], and then type the following declarations:

intƒvalue1ƒ=ƒ43,ƒvalue2ƒ=ƒ10,ƒsum,ƒdifference,ƒ
ƒƒproduct,ƒquotient,ƒmodulus;

3. Position the insertion point after the statement that prints the oneLong vari-
able, press [Enter], and then type the following statements on separate lines:

sumƒ=ƒvalue1ƒ+ƒvalue2;
differenceƒ=ƒvalue1ƒ-ƒvalue2;
productƒ=ƒvalue1ƒ*ƒvalue2;
quotientƒ=ƒvalue1ƒ/ƒvalue2;
modulusƒ=ƒvalue1ƒ%ƒvalue2;

4. Press [Enter], and then type the following output statements:

System.out.println("Sumƒisƒ"ƒ+ƒsum);
System.out.println("Differenceƒisƒ"ƒ+ƒdifference);
System.out.println("Productƒisƒ"ƒ+ƒproduct);
System.out.println("Quotientƒisƒ"ƒ+ƒquotient);
System.out.println("Modulusƒisƒ"ƒ+ƒmodulus);

5. Save the program as DemoVariables4.java.

6. Compile and run the program.Your output should look like Figure 2-4.
Analyze the output and confirm that the arithmetic is correct.

Figure 2-4 Output of the DemoVariables4 program

2

When you combine mathematical operations in a single statement, you must understand
operator precedence, or the order in which parts of a mathematical expression are eval-
uated. Multiplication, division, and modulus always take place prior to addition or sub-
traction in an expression. For example, the expression intƒresultƒ=ƒ2ƒ+ƒ3ƒ*ƒ4;
results in 14, because the multiplication (3 * 4) occurs before adding 2.You can override
normal operator precedence by putting the operation to perform first in parentheses.The
statement intƒresultƒ=ƒ(2ƒ+ƒ3)ƒ*ƒ4; results in 20, because the addition within
the parentheses takes place first, and then that result (5) is multiplied by 4.

You will learn more about operator precedence in Chapter 5.

USING THE BOOLEAN DATA TYPE

Boolean logic is based on true-or-false comparisons. Whereas an int variable can hold
millions of different values (at different times), a Boolean variable can hold only one
of two values—true or false.The following statements declare and assign appropri-
ate values to Boolean variables:

booleanƒisItPaydayƒ=ƒfalse;
booleanƒareYouBrokeƒ=ƒtrue;

You also can assign values based on the result of comparisons to Boolean variables. The
Java programming language supports six comparison operators.A comparison operator
compares two items; an expression containing a comparison operator has a Boolean value.
Table 2-3 describes the comparison operators.

You will learn about other Boolean operators in Chapter 5.

Operator Description true Example false Example

< Less than 3 < 8 8 < 3

> Greater than 4 > 2 2 > 4

== Equal to 7 == 7 3 == 9

<= Less than or equal to 5 <= 5 8 <= 6

>= Greater than or equal to 7 >= 3 1 >= 2

!= Not equal to 5 != 6 3 != 3

Table 2-3 Comparison operators

Tip

Tip

38 Chapter 2 Using Data Within a Program

Using The Boolean Data Type 39

When you use any of the operators that have two symbols (==, <=, >=, or !=), you
cannot place any whitespace between the two symbols.

Legal, declaration statements might include the following statements, which compare
two values directly:

booleanƒisSixBiggerƒ=ƒ(6ƒ>ƒ5);ƒƒƒƒ
ƒƒ//ƒValueƒstoredƒwouldƒbeƒtrue
booleanƒisSevenSmallerOrEqualƒ=ƒ(7ƒ<=ƒ4);ƒƒ
ƒƒ//ƒValueƒstoredƒwouldƒbeƒfalse

Variable names are easily identified as Boolean if you use a form of “to be”
(such as “is” or “are”) as part of the variable name.

The Boolean expressions are more meaningful when variables (that have been assigned
values) are used in the comparisons, as in the following examples. In the first statement,
the hours variable is compared to a constant value of 40. If the hours variable is not
greater than 40, then the expression evaluates to false. In the second statement, the
income variable must be greater than 100000 for the expression to evaluate to true.

booleanƒovertimeƒ=ƒ(hoursƒ>ƒ40);
booleanƒhighTaxBracketƒ=ƒ(incomeƒ>ƒ100000);

Next you will add two Boolean variables to the DemoVariables4.java file.

To add Boolean variables to a program:

1. Open the DemoVariables4.java file in your text editor and change the class
to DemoVariables5.

2. Position the insertion point at the end of the line with the integer variable
declarations, press [Enter], and then type boolean isProgrammingFun =
true,ƒisProgrammingHardƒ=ƒfalse; on one line to add two new
Boolean variables to the program.

Next add some print statements to display the values.

3. Press [Enter], and then type the following statements:

System.out.println("TheƒvalueƒofƒisProgrammingFunƒisƒ"ƒ
ƒƒ+ƒisProgrammingFun);
System.out.println("TheƒvalueƒofƒisProgrammingHardƒisƒ"ƒ
ƒƒ+ƒisProgrammingHard);

4. Save the file as DemoVariables5.java, compile it, and then test the program.
The output appears in Figure 2-5.

Tip

2

LEARNING ABOUT FLOATING-POINT DATA TYPES

A floating-point number contains decimal positions.The Java programming language
supports two floating-point data types: float and double.A float data type can hold val-
ues up to six or seven significant digits of accuracy. A double data type can hold 14 or
15 significant digits of accuracy.The term significant digits refers to the mathemati-
cal accuracy of a value. For example, a float given the value 0.324616777 will display as
0.324617 because the value is only accurate to the sixth decimal position. Table 2-4
shows the minimum and maximum values for each data type.

A float given the value 324616777 will display as 3.24617e+008, which
means approximately 3.24617 times 10 to the 8th power, or 324617000. The
e stands for exponent; the format is called scientific notation. The large value
contains only six significant digits.

A value written as –3.4 * 1038 indicates that the value is –3.4 multiplied by
10 to the 38th power, or 10 with 38 trailing zeros—a very large number.

Just as an integer constant, such as 178, is an int by default, a floating-point number con-
stant such as 18.23 is a double by default.To store a value explicitly as a float, you can
type the letter F after the number, as in floatƒpocketChangeƒ=ƒ4.87F;.You can

Tip

Type Minimum Maximum Size in Bytes

Float –3.4 * 1038 3.4 * 1038 4

Double –1.7 * 10308 1.7 * 10308 8

Table 2-4 Limits on floating-point values

Tip

Figure 2-5 Output of the DemoVariables5 program

40 Chapter 2 Using Data Within a Program

Learning about Floating-Point Data Types 41

type either a lowercase or an uppercase F.You also can type D (or d) after a floating-
point value to indicate it is a double, but even without the D, the value will be stored
as a double by default.

As with ints, you can perform the mathematical operations of addition, subtraction, mul-
tiplication, and division with floating-point numbers; however, you cannot perform
modulus operations using floating-point values. (Floating-point division yields a
floating-point result, so there is no remainder.)

Next you will add some floating-point variables to the DemoVariables5.java file and per-
form arithmetic with them.

To add floating-point variables to the program:

1. Open the DemoVariables5.java file in your text editor and change the class
name to DemoVariables6.

2. Position the insertion point after the line that declares the Boolean variables,
press [Enter], and then type doubleƒdoubNum1 =ƒ2.3, doubNum2 =
14.8,ƒdoubResult; on one line to add some new floating-point variables.

3. Press [Enter], and then type the following statements to perform arithmetic
and produce output:

doubResultƒ=ƒdoubNum1ƒ+ƒdoubNum2;
System.out.println("Theƒsumƒofƒtheƒdoublesƒisƒ"ƒ
ƒƒ+ƒdoubResult);
doubResultƒ=ƒdoubNum1ƒ*ƒdoubNum2;
System.out.println("Theƒproductƒofƒtheƒdoublesƒisƒ"
ƒƒ+ƒdoubResult);

4. Save the file as DemoVariables6.java, compile it, and then run the program.
The output is shown in Figure 2-6.

Figure 2-6 Output of the DemoVariables6 program

2

UNDERSTANDING NUMERIC TYPE CONVERSION

When you are performing arithmetic with variables or constants of the same type, the
result of the arithmetic retains the same type. For example, when you divide two inte-
gers, the result is an integer, and when you subtract two doubles, the result is a double.
Often, however, you might want to perform mathematical operations on unlike types.
In the following example you multiply an integer by a double:

intƒhoursWorkedƒ=ƒ37;
doubleƒpayRateƒ=ƒ6.73;
doubleƒgrossPayƒ=ƒhoursWorkedƒ*ƒpayRate;

When you perform arithmetic operations with operands of unlike types, the Java pro-
gramming language chooses a unifying type for the result.The Java programming lan-
guage then implicitly (or automatically) converts nonconforming operands to the
unifying type. The following list of operands ranks the order for establishing unifying
types between two variables:

1. double

2. float

3. long

4. int

5. short

6. byte

An operand is simply any value used in an arithmetic or logical operation.

In other words, grossPay is the result of multiplication of an int and a double, so grossPay
itself must be a double. Similarly, the addition of a short and an int results in an int.

You can explicitly (or purposely) override the unifying type imposed by the Java pro-
gramming language by performing a type cast. Type casting involves placing the
desired result type in parentheses, followed by the variable or constant to be cast. For
example, two type casts are performed in the following code:

doubleƒbankBalanceƒ=ƒ189.66;
floatƒweeklyBudgetƒ=ƒ(float)ƒbankBalanceƒ/ƒ4;
ƒƒ//ƒweeklyBudgetƒisƒ47.415,ƒone-fourthƒofƒbankBalance
intƒdollarsƒ=ƒ(int)ƒweeklyBudget;
ƒƒ//ƒdollarsƒisƒ47,ƒtheƒintegerƒpartƒofƒweeklyBudget

Tip

42 Chapter 2 Using Data Within a Program

Working with the char Data Type 43

It is easy to lose data when performing a cast. For example, the largest byte
value is 127 and the largest int value is 2,147,483,647, so the following state-
ments produce distorted results:

intƒanOkayIntƒ=ƒ200;
byteƒaBadByteƒ=ƒ(byte)anOkayInt;

A byte is constructed from eight 1s and 0s, or binary digits. The first binary
digit, or bit, holds a 0 or 1 to represent positive or negative. The remaining
seven bits store the actual value. When the integer value 200 is stored in the
byte variable, its large value consumes the eighth bit, turning it to a 1, and
forcing the aBadByte variable to appear to hold the value –72, which is inac-
curate and misleading.

The double value bankBalanceƒ/ƒ4 is converted to a float before it is stored in
weeklyBudget, and the float value weeklyBudget is converted to an int before it is stored
in dollars.When the float value is converted to an int, the decimal place values are lost.

WORKING WITH THE CHAR DATA TYPE

You use the char data type to hold any single character.You place constant character
values within single quotation marks because the computer stores characters and inte-
gers differently. For example, the statements charƒaCharValueƒ=ƒ'9'; and
intƒaNumValueƒ=ƒ9; are legal. The statements charƒaCharValueƒ=ƒ9; and
intƒaNumValueƒ=ƒ'9'; might produce undesirable results. If these variables are used
in a println statement such as System.out.println("aCharValue is" +
aCharValueƒ+ƒ"aNumValueƒisƒ"ƒ+ƒaNumValue); the resulting output is a
blank and the number 57, which are ASCII codes. Figure 2-7 shows ASCII decimal
codes and character equivalents, which are covered later in this chapter. A number can
be a character, but it must be enclosed in single quotation marks and declared as a char
type. However, you cannot store an alphabetic letter in a numeric type.The following
code shows how you can store any character string using the char data type:

charƒmyInitialƒ=ƒ'J';
charƒpercentSignƒ=ƒ'%';
charƒnumThatIsACharƒ=ƒ'9';

A variable of type char can hold only one character.To store a string of characters, such
as a person’s name, you must use a data structure called a String. Unlike single charac-
ters, which use single quotation marks, string constants are written between double quo-
tation marks. For example, the expression that stores the name Audrey as a string in a
variable named firstName is stringƒfirstNameƒ=ƒ"Audrey";.

You will learn more about Strings in Chapter 7.

Tip

Tip 2

You can store any character—including nonprinting characters such as a backspace or a
tab—in a char variable. To store these characters, you must use an escape sequence,
which always begins with a backslash. For example, the following code stores a back-
space character and a tab character in the char variables aBackspaceChar and aTabChar:

charƒaBackspaceCharƒ=ƒ'\b';
charƒaTabCharƒ=ƒ'\t';

In the preceding code, the escape sequence indicates a unique value for the character,
instead of the letters b or t.Table 2-5 describes some common escape sequences that are
used in the Java programming language.

LEARNING ABOUT ASCII AND UNICODE

The characters used in the Java programming language are represented in Unicode,
which is a 16-bit coding scheme for characters. For example, the letter A actually is
stored in computer memory as a set of 16 zeros and ones as 0000 0000 0100 0001 (the
space inserted after each set of four digits is for readability). Because 16-digit numbers
are difficult to read, programmers often use a shorthand notation called hexadecimal,
or base 16. In hexadecimal shorthand, 0000 becomes 0; 0100 becomes 4; and 0001
becomes 1; so the letter A is represented in hexadecimal as 0041.You tell the compiler
to treat the four-digit hexadecimal 0041 as a single character by preceding it with the
\u escape sequence.Therefore, there are two ways to store the character A:

charƒletterƒ=ƒ'A';
charƒletterƒ=ƒ'\u0041';

For more information about Unicode, go to http://www.unicode.org.

Tip

Escape Sequence Description

\b Backspace

\t Tab

\n Newline or linefeed

\f Form feed

\r Carriage return

\” Double quotation mark

\’ Single quotation mark

\\ Backslash

Table 2-5 Common escape sequences

44 Chapter 2 Using Data Within a Program

Learning about ASCII and Unicode 45

The second option using hexadecimal is obviously more difficult and confusing than the
first method, so it is not recommended that you store letters of the alphabet using the
hexadecimal method. However, there are some interesting values you can produce using
the Unicode format. For example, the sequence ‘\u0007’ is a bell that produces a noise
if you send it to output. Letters from foreign alphabets that use characters instead of let-
ters (Greek, Hebrew, Chinese, and so on) and other special symbols (foreign currency
symbols, mathematical symbols, geometric shapes, and so on) are available using
Unicode, but not on a standard keyboard, so it is important that you know how to use
Unicode characters.

The most widely used character set is ASCII (American Standard Code for Information
Interchange).There are 128 characters in the ASCII character set, which are shown in
Figure 2-7 with their decimal code or numerical code and equivalent character repre-
sentation. The first 32 characters and the last character are control characters and are
nonprintable.These characters can be entered by holding down [Ctrl] and pressing a let-
ter on the keyboard. For example,The Tab key or ^I(Ctrl I) produces a character 9, which
produces a hard tab when pressed.

Figure 2-7 ASCII Character Set

2

The relationship of ASCII and Unicode is that by adding eight zeros to any ASCII char-
acter gives the character’s value in Unicode.The ASCII values are important because they
allow you to show nonprintable characters, such as a carriage return, in decimal codes.
Also, ASCII codes are often used when sorting numbers and strings. So when you need
to sort characters in ascending order, numbers beginning with decimal 48 or 0 are sorted
first, then capital letters starting with decimal 65 or A, and then lowercase letters start-
ing with decimal code 97 or a.

Next you will add statements to your DemoVariables6.java file to use the \n and \t
escape sequences.

To use escape sequences in a program:

1. Open the DemoVariables6.java file in your text editor and change the class
name to DemoVariables7.

2. Position the insertion point after the last method line in the program, press
[Enter], and then type the following:

System.out.println("\nThisƒisƒonƒoneƒline\nThisƒonƒ
ƒƒƒanother");
System.out.println("Thisƒshows\thow\ttabs\twork");

3. Save the file as DemoVariables7.java, compile, and then test the program.
Your output should look like Figure 2-8.

CHAPTER SUMMARY
❒ Data is constant when it cannot be changed after a program is compiled; data is

variable when it might change.

❒ Variables are named memory locations that your program can use to store values.
You can name a variable using any legal identifier. A variable name must start with a

Figure 2-8 Output of the DemoVariables7 program demonstrating escape sequences

46 Chapter 2 Using Data Within a Program

Review Questions 47

letter and cannot be a reserved keyword.You must declare all variables you want to
use in a program. A variable declaration requires a type and a name; it can also
include an assigned value.

❒ The Java programming language provides for eight primitive types of data: Boolean,
byte, char, double, float, int, long, and short.

❒ You can declare multiple variables of the same type in separate statements or in a
single statement, separated by commas.

❒ There are five standard arithmetic operators for integers: + – * / and %.

❒ Operator precedence is the order in which parts of a mathematical expression are
evaluated. Multiplication, division, and modulus always take place prior to addition
or subtraction in an expression. Right and left parentheses can be added within an
expression when exceptions to this rule are required.When more than one pair of
parentheses are added, the innermost expression surrounded by parentheses is evalu-
ated first.

❒ A Boolean type variable can hold a true or false value.

❒ There are six comparison operators: > < == >= <= and !=.

❒ A floating-point number contains decimal positions.The Java programming lan-
guage supports two floating-point data types: float and double.

❒ When you perform mathematical operations on unlike types, Java implicitly con-
verts the variables to a unifying type.You can explicitly override the unifying type
imposed by the Java programming language by performing a type cast.

❒ You use the char data type to hold any single character.You type constant character
values in single quotation marks.You type String constants that store more than one
character between double quotation marks.You can store some characters using an
escape sequence, which always begins with a backslash.

❒ The characters used in Java programming are represented in the 16-bit
Unicode scheme.

REVIEW QUESTIONS
1. When data cannot be changed after a program is compiled, the data

is .

a. constant

b. variable

c. volatile

d. mutable

2

2. Which of the following is not a primitive data type in the Java programming
language?

a. Boolean

b. byte

c. int

d. sector

3. Which of the following elements is not required in a variable declaration?

a. a type

b. an identifier

c. an assigned value

d. a semicolon

4. The assignment operator in the Java programming language is .

a. =

b. ==

c. :=

d. ::

5. Which of the following values can you assign to a variable of type int?

a. 0

b. 98.6

c. ‘S’

d. 5,000,000,000,000

6. Which of the following data types can store a value in the least amount of memory?

a. short

b. long

c. int

d. byte

7. The modulus operator .

a. is represented by a forward slash

b. provides the remainder of integer division

c. provides the remainder of floating-point division

d. Answers b. and c. are correct.

8. According to the rules of operator precedence, division always takes place prior to
.

a. multiplication

b. modulus

48 Chapter 2 Using Data Within a Program

Review Questions 49

c. subtraction

d. Answers a. and b. are correct.

9. A Boolean variable can hold .

a. any character

b. any whole number

c. any decimal number

d. the values true or false

10. The “equal to” comparison operator is .

a. =

b. ==

c. !=

d. !!

11. The value 137.68 can be held by a variable of type .

a. int

b. float

c. double

d. Two of the preceding answers are correct

12. When you perform arithmetic with values of diverse types, the Java programming
language .

a. issues an error message

b. implicitly converts the values to a unifying type

c. requires you to explicitly convert the values to a unifying type

d. requires you to perform a cast

13. If you attempt to add a float, an int, and a byte, the result will be a(n)
.

a. float

b. int

c. byte

d. error message

14. You use a to explicitly override an implicit type.

a. mistake

b. type cast

c. format

d. type set

2

15. Which assignment is correct?

a. charƒaCharƒ=ƒ5;

b. charƒaCharƒ=ƒ"W";

c. charƒaCharƒ=ƒ'*';

d. Two of the preceding answers are correct

16. An escape sequence always begins with a(n) .

a. ‘e’

b. forward slash

c. backslash

d. equals sign

17. The 16-bit coding scheme employed by the Java programming language is
.

a. Unicode

b. ASCII

c. EBCDIC

d. hexadecimal

EXERCISES
1. What is the numeric value of each of the following expressions as evaluated by

the Java programming language?

a. 4 + 6 * 3

b. 6 / 3 * 7

c. 18 / 2 + 14 / 2

d. 16 / 2

e. 17 / 2

f. 28 / 5

g. 16 % 2

h. 17 % 2

i. 28 % 5

j. 28 % 5 * 3 + 1

k. (2 + 3) * 4

l. 20 / (4 + 1)

50 Chapter 2 Using Data Within a Program

Exercises 51

2. What is the value of each of the following Boolean expressions?

a. 4 > 1

b. 5 <= 18

c. 43 >= 43

d. 2 == 3

e. 2 + 5 == 7

f. 3 + 8 <= 10

g. 3 != 9

h. 13 != 13

i. –4 != 4

j. 2 + 5 * 3 == 21

3. Which of the following expressions are illegal? For the legal expressions, what is
the numeric value of each, as evaluated by the Java programming language?

a. 2.3 * 1.2

b. 5.67 – 2

c. 25.0 / 5.0

d. 7.0 % 3.0

e. 8 % 2.0

4. Choose the best data type for each of the following so that no memory storage is
wasted. Give an example of a typical value that would be held by the variable, and
explain why you chose the type you did.

a. your age

b. the U.S. national debt

c. your shoe size

d. your middle initial

5. Use a text editor to write a Java program that declares variables to represent the
length and width of a room in feet. Use Room as the class name. Assign appropri-
ate values to the variables—for example, length = 15 and width = 25. Compute
and display the floor space of the room in square feet (area = length * width).
Display more than just a value as output; also display explanatory text with the
value—for example, Theƒfloorƒspaceƒisƒ375ƒsquareƒfeet.. Save the
program as Room.java in the Chapter.02 folder on your Student Disk.

6. Use a text editor to write a Java program that declares variables to represent the
length and width of a room in feet, and the price of carpeting per square foot in
dollars and cents. Use Carpet as the class name.Assign appropriate values to the vari-
ables. Compute and display, with explanatory text, the cost of carpeting the room.
Save the program as Carpet.java in the Chapter.02 folder on your Student Disk.

2

7. Write a program that declares variables to represent the length and width of a
room in feet, and the price of carpeting per square yard in dollars and cents. Use
Yards as the class name. Assign the value 25 to the length variable and the value
42 to the width variable. Compute and display the cost of carpeting the room.
(Hint: There are nine square feet in one square yard.) Save the program as
Yards.java in the Chapter.02 folder on your Student Disk.

8. Write a program that declares a minutes variable that represents minutes worked
on a job, and assign a value. Use Time as the class name. Display the value in
hours and minutes. For example, 197 minutes becomes 3 hours and 17 minutes.
Save the program as Time.java in the Chapter.02 folder on your Student Disk.

9. Write a program that declares variables to hold your three initials. Display the
three initials with a period following each one, as in J.M.F. Save the program as
Initials.java in the Chapter.02 folder on your Student Disk.

10. Write a program that contains variables that hold your tuition fee and your book
fee. Display the sum of the variables. Save the program as Fees.java in the
Chapter.02 folder on your Student Disk.

11. Write a program that contains variables that hold your hourly rate of pay and
number of hours that you worked. Display your gross pay, your withholding tax,
which is 15 percent of your gross pay, and your net pay (gross pay – withholding).
Save the program as Payroll.java in the Chapter.02 folder on your Student Disk.

12. a. Write a program that calculates and displays the conversion of $57 into dollar-
bill form—20’s, 10’s, 5’s, and 1’s. Create a separate method to do the calculation
and the display. Pass 57 as a variable to this method. Save the program as
Dollars.java in the Chapter.02 folder on your Student Disk.

b. In the Dollars.java program, alter the value of the variable that holds the
amount of money. Run the program and confirm that the amount of each
denomination calculates correctly.

13. Write a program that calculates and displays the amount of money you would
have if you invested $1,000 at 5 percent interest for one year. Use the formula:
Future Amount = Principal * Rate * Time. Save the program as Interest.java in
the Chapter.02 folder on your Student Disk.

14. Write a program that illustrates the use of casting. Start with an integer, float, and
double, and perform casts on the integer, float, and double. Print the results of
each cast. Save the program as Types.java in the Chapter.02 folder on your
Student Disk.

15. Write a program that displays FirstName, LastName, Address, and Phone on one
line of output, and your first name, last name, address, and phone number on the
second line. Make sure that your data lines up with the headings. Save the pro-
gram as Escape.java in the Chapter.02 folder on your Student Disk.

52 Chapter 2 Using Data Within a Program

Case Project 53

16. Write a program to convert Fahrenheit temperature to Centigrade. Use the normal
human body temperature of 98.6 degrees Fahrenheit, as the test case. Use the for-
mula Centigrade = 5/9 (Fahrenheit -32). Save the program as
FahrenheitToCentigrade.java in the Chapter.02 folder on your Student Disk.

17. Write a program that will output the following table of inventory items:

Save the program as Inventory.java in the Chapter.02 folder on your Student Disk.

18. Each of the following files in the Chapter.02 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugTwo1.java will become FixDebugTwo1.java.

a. DebugTwo1.java

b. DebugTwo2.java

c. DebugTwo3.java

d. DebugTwo4.java

CASE PROJECT
Travel Tickets Company sells tickets for airlines, tours, and other travel-related ser-
vices. Because long ticket numbers have often been entered incorrectly by agents,
Travel Tickets has asked you to code a program that will indicate if a ticket number
entry is invalid.The program also should prompt the agent to check and reenter the
correct ticket number.Ticket numbers are 10 to 12 characters long.Ticket numbers
are designed so that if you drop the last digit of the number, then divide the number
by 7, the remainder of the division will be identical to the last dropped digit.This
process is illustrated in the following example:

Step 1 Ticket number 12344321566

Step 2 Remove last digit, leaving 1234432156

Step 3 Divide remaining number by 7. 1234432156 divided by 7

Step 4 Remainder of 6 matches the digit dropped from the ticket.

Step 5 Because the last digit matches the remainder of the division, the ticket
number is valid.

Case
Project

Item Num Item Name Units On Hand

B1242 Bolt Each 1000

N1242 Nut Each 1200

W1242 Washer Each 1150

N2323 Nails Lbs 2250

2

Although you cannot write the entire application, write a program that allows the declara-
tion of a variable to hold the ticket number 1234432156 (first 10 digits of the 11-digit ticket
number 12344321566), remove the last digit, divide the number by 7, and print the result
of the division,which should be the digit 6 in this example for the ticket to be valid.Declare
a second variable to hold the ticket number 2323454567 (first 10 digits of the 11-digit
ticket number 23234545678), divide the number by 7, and print the result of the division.
Is either of the entered ticket numbers valid by Travel Tickets rules? Save the case as
TicketNumber.java in the Chapter.02 folder on your Student Disk.

54 Chapter 2 Using Data Within a Program

55

CHAPTER

3
USING METHODS, CLASSES,

AND OBJECTS
In this chapter, you will:

� Create methods with no arguments, a single argument, and
multiple arguments

� Create methods that return values
� Learn about class concepts
� Create a class
� Use instance methods
� Declare objects
� Organize classes
� Use constructors

How do you feel about programming so far?” asks your new mentor, Lynn
Greenbrier, who is head of computer programming for Event Handlers

Incorporated.

“It’s fun!” you reply. “It’s great to see something actually work, but I still
don’t understand what the other programmers are talking about when they
mention ‘object-oriented programming.’ I think everything is an object, and
objects have methods, but I’m not really clear on this whole thing at all.”

“Well then,” Lynn says, “let me explain methods, classes, and objects.”

PREVIEWING THE SETUPSITE PROGRAM USING THE EVENTSITE CLASS

You will now preview the SetUpSite program that is saved on your Student Disk.

To preview the SetUpSite program on your Student Disk:

1. Start your text editor, open the Chap3EventSite.java file from the
Chapter.03 folder on your Student Disk, and then examine the code.This file
contains a class definition for a class that stores information about event sites
used by Event Handlers Incorporated to host planned events.

2. Go to the command line, and then type javac Chap3EventSite.java to
compile the Chap3EventSite.java file.

3. Use your text editor to open the Chap3SetUpSite.java file from the
Chapter.03 folder, and then examine the code.This file contains a program
that assigns values to the data regarding event sites that Event Handlers
Incorporated uses to hold events.The program then displays that data on the
screen.You will create a similar program in this chapter.

4. At the command line, type javac Chap3SetUpSite.java to compile
the Chap3SetUpSite.java file.

5. Type java Chap3SetUpSite to execute the program. Information about
an event site used by Event Handlers Incorporated will appear on the screen
as shown in Figure 3-1.

Although the output shown in Figure 3-1 is modest, you have just witnessed several
important programming concepts in action.The Chap3EventSite file contains a class def-
inition that represents a real-life object—a site at which Event Handlers can hold an event.
The class includes methods to assign values to and get values from data fields that pertain
to event sites.The Chap3SetUpSite file creates an actual site with data representing a site
number, a fee, and a manager’s name.You will create similar files in this chapter.

Figure 3-1 Output of the Chap3SetUpSite program

56 Chapter 3 Using Methods, Classes, and Objects

Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 57

CREATING METHODS WITH NO ARGUMENTS, A SINGLE ARGUMENT,
AND MULTIPLE ARGUMENTS

A method is a series of statements that carry out a task.Any class can contain an unlim-
ited number of methods. Within a class, the simplest methods you can invoke don’t
require any arguments or return any values. Consider the simple First Java program’s First
class that you saw in Chapter 1 and that appears in Figure 3-2.

Suppose you want to add three additional lines of output to this program to display your
company’s name and address. You can simply add three new println() statements, but
instead you might choose to create a method to display the three lines.

Although there are differences, if you have used other programming lan-
guages, you can think of methods as being similar to procedures, functions,
or subroutines.

There are two major reasons to create a method to display the three lines. First, the
main() method will remain short and easy to follow because main() will contain just one
statement to call a method, rather than three separate println() statements to perform
the work of the method.What is more important is that a method is easily reusable.After
you create the name and address method, you can use it in any program that needs the
company’s name and address. In other words, you do the work once, and then you can
use the method many times. A method must include the following:

� A declaration (or header or definition)

� An opening curly brace

� A body

� A closing curly brace

The method declaration contains the following:

� Optional access modifiers

� The return type for the method

Tip

Figure 3-2 The First class

public class First
{
ƒƒƒpublic static void main(String[] args)
ƒƒƒ{
ƒƒƒƒSystem.out.println("FirstƒJavaƒProgram");
ƒƒƒ}
}

3

� The method name

� An opening parenthesis

� An optional list of method arguments (you separate the arguments with com-
mas if there is more than one)

� A closing parenthesis

You first learned about access modifiers in Chapter 1.The access modifier for a method
can be any of the following modifiers:public,private,protected, or static. Most
often, methods are given public access. Endowing a method with public access means
any class can use it.Additionally, like main(), any method that can be used from anywhere
within the class (that is, any class-wide method) requires the keyword modifier static.
Therefore, you can write the nameAndAddress() method shown in Figure 3-3.According
to its declaration, the method is public and static. It returns nothing, so its return
type is void.The method receives nothing, so its parentheses are empty. Its body, con-
sisting of three println() statements, appears within curly braces.

You place the entire method within the program that will use it, but not within any
other method. Figure 3-4 shows where you can place a method in the First program.

If the main() method calls the nameAndAddress() method, then you simply use the
nameAndAddress() method’s name as a statement within the body of main(). Figure 3-5
shows the complete program.

Figure 3-4 Placement of methods

public class First
{
 public static void main(String[] args)
 {
 System.out.println("Firstƒjavaƒprogram");
 }

// You can place additional methods here,
// outside the main() method
}

Figure 3-3 The nameAndAddress() method

public static void nameAndAddress()
{
ƒƒSystem.out.println("Event Handlers Incorporated");
 System.out.println("8900 U.S. Hwy 14");
 System.out.println("Crystal Lake, IL 60014");
}

58 Chapter 3 Using Methods, Classes, and Objects

Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 59

The output from the program shown in Figure 3-5 appears in Figure 3-6. Because the
main() method calls the nameAndAddress() method before it prints the phrase “First Java
program”, the name and address appear first in the output.

If you want to use the nameAndAddress() method in another program, one additional
step is required. In the Java programming language, the new program, with its own
main() method, is a different class. If you place the nameAndAddress() method within
the new class, the compiler will not recognize it unless you write it as
First.nameAndAddress(); to notify the new class that the method is located in the
First class. Notice the use of the class name, followed by a dot, and then followed by the
method.You have used similar syntax for the System.out.println() method.

Each of two different classes can have their own method named
nameAndAddress(). Such a method in the second class would be entirely dis-
tinct from the identically named method in the first class.Tip

Figure 3-6 Output of the First program with the nameAndAddress() method

Figure 3-5 First class calling the nameAndAddress() method

public class First
{
 public static void main(String[] args)
 {
 nameAndAddress();
 System.out.println("FirstƒJavaƒprogram");
 }
 public static void nameAndAddress()
 {
 System.out.println
 ("Event Handlers Incorporated");
 System.out.println("8900 U.S. Hwy 14");
 System.out.println("Crystal Lake, IL 60014");
 }
}

3

Next you will create a new class named SetUpSite, which you will eventually use to set
up one EventSite object. For now, the class will contain a main() method and a
statementOfPhilosophy() method for Event Handlers Incorporated.

To create the SetUpSite class:

1. Open a new document in your text editor.

2. Type the following shell program to create a SetUpSite class and an empty
main() method:

publicƒclassƒSetUpSite
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒ}
}

3. Place the insertion point to the right of the opening bracket in the main()
method, press [Enter] to start a new line, and then type
statementOfPhilosophy(); between the curly braces of the main() method
to place a call to a statementOfPhilosophy() method.

4. Type the following code for the statementOfPhilosophy() method just before
the closing curly brace for the SetUpSite class code:

publicƒstaticƒvoidƒstatementOfPhilosophy()
{
ƒƒSystem.out.println("EventƒHandlersƒIncorporatedƒis");
ƒƒSystem.out.println
ƒƒƒƒ("dedicatedƒtoƒmakingƒyourƒevent");
ƒƒSystem.out.println("aƒmostƒmemorableƒone.");
}

5. Save the file as SetUpSite.java in the Chapter.03 folder on your Student Disk.

6. At the command line, compile the program by typing javac
SetUpSite.java. If you receive any error messages, you must correct their
cause. Figure 3-7 shows the error message received when println()is spelled
incorrectly within the SetUpSite.java file. Notice the message indicates that
the file is SetUpSite.java, the line on which the error occurs is line 10, and
the error is “method prinln…not found…”To help you, Java displays the
offending line, and a caret appears just below and after the word that the
compiler doesn’t understand.To correct the spelling error, you return to the
SetUpSite.java file, fix the mistake, save the file, and then compile it again.

60 Chapter 3 Using Methods, Classes, and Objects

Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 61

7. Execute the program using the command java SetUpSite.Your output
should look like Figure 3-8.

If you want one class to call the method of another class, both classes should
reside in the same folder. If they are not saved in the same place, your com-
piler will issue the error message, “undefined variable or class name.”

Next you will see how to call the statementOfPhilosophy() method from another class.

To call a method from another class:

1. First, open a new document in your text editor, and then enter the program
that appears in Figure 3-9.

Help
?

Figure 3-8 Output of the SetUpSite program

Figure 3-7 SetUpSite program with a syntax error

3

2. Save the file as TestStatement.java in the Chapter.03 folder on your
Student Disk.

3. Compile the program with the command javac TestStatement.java.

If necessary, correct any errors, save the file, and then repeat Step 3 to com-
pile the file again.

4. Execute the program with the command java TestStatement.Your out-
put should look like Figure 3-10.

It is also possible to revise SetUpSite.java by removing the main() method and the
statementOfPhilosophy() call from the SetUpSite.java text document. The remaining
text would appear as shown in Figure 3-11, with only the statementOfPhilosophy()
method remaining.

Figure 3-10 Output of the TestStatement program

Help
?

Figure 3-9 TestStatement program

public class TestStatement
{
 public static void main(String[] args)
 {
 System.out.println
 ("Calling method from another class:");
 SetUpSite.statementOfPhilosophy();
 }
}

62 Chapter 3 Using Methods, Classes, and Objects

Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 63

To revise the SetUpSite program:

1. Remove the main() method and the statementOfPhilosophy() call from the
SetUpSite.java text document.

2. Save the revised program as SetUpSite2.java.

3. Type javac SetUpSite2.java and compile the program as the
SetUpSite2.class. Because there is no longer a main() method, you can’t run
the revised program by typing java SetUpSite2.

You can also include the new SetUpSite2 program as a class within the TestStatement
program.

To add the SetUpSite2 program to TestStatement.java:

1. Open the TestStatement.java text document in your text editor, and then
change the class name to TestStatement2.

2. Open the SetUpSite2 text document containing the StatementOfPhilosophy()
method in a separate text window.

3. Click Edit in the SetUpSite2 text window menu, and then click Select All
to select the SetUpSite2 class text.

4. Click Edit and then click Copy to copy the SetUpSite2 class text.

5. Switch to the open TestStatement2.java text document, place the insertion
point in front of public classTestStatement2 and then press [Enter]
to create a blank line above public classTestStatement2.

6. Place the insertion point at the beginning of the blank line, click Edit, and
then click Paste to paste the SetUpSite2 class text.

7. Position the insertion point on the keyword public and delete it.

8. Save the program as TestStatement2.java.

9. Type the command javac TestStatement2.java.

Figure 3-11 SetUpSite2 program

public class SetUpSite2
{
 public static void statementOfPhilosophy()
 {
 System.out.println("Event Handlers Incorporated is");
 System.out.println("dedicated to making your event");
 System.out.println("a most memorable one.");
 }
}

3

10. Type the command java TestStatement2. Your revised TestStatement2
program should look like Figure 3-12.The output for this program is shown
in Figure 3-13.

Because you must name a file from a class exactly the same as the public class
name, you must remove the public class modifier from the SetUpSite2 class.
If you don’t, you will receive an error message. The compiler will not know
which name to assign to the class file from two class programs if each pro-
gram has a public class modifier.

Figure 3-13 Output of the TestStatement2 program

Tip

Figure 3-12 Revised TestStatement2 program

class SetUpSite2
{
public static void statementOfPhilosophy()
{

System.out.println("Event Handlers Incorporated is");
System.out.println("dedicated to making your event");
System.out.println("a most memorable one.");

}
}
public class TestStatement2
{
public static void main(String[] args)
{

System.out.println
("Calling method from another class:");
SetUpSite.statementOfPhilosophy();

}
}

64 Chapter 3 Using Methods, Classes, and Objects

Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 65

Creating Methods that Require a Single Argument
Some methods require additional information. If a method could not receive your com-
munications, called arguments, then you would have to write an infinite number of
methods to cover every possible situation. For example, when you make a restaurant
reservation, you do not need to employ a different method for every date of the year at
every possible time of day. Rather, you can supply the date and time as information to
the method, which is then carried out in the same manner, no matter what date and
time are involved. If you design a method to square numeric values, it makes sense to
design a square() method that you can supply with an argument that represents the value
to be squared, rather than having to develop a square1() method, a square2() method,
and so on.

An important principle of object-oriented programming is the notion of implementation
hiding. When you make a request to a method, you don’t know the details of how the
method is executed. For example, when you make a reservation, you do not need to know
how the reservation is actually made at the restaurant—perhaps it is written in a book,
marked on a large chalkboard, or entered into a computerized database.The implementa-
tion details don’t concern you as a client, and if the restaurant changes its methods from
one year to the next, the change does not affect your use of the reservation method.With
well-written object-oriented programming methods, implementation hiding allows
that the invoking program must know the name of the method and what type of infor-
mation to send it (and what type of return to expect), but the program does not need
to know how the method works. Additionally, you can substitute a new, improved
method and, as long as the interface to the method does not change, you won’t need to
make any changes in programs that invoke the method.

At any call, the println() method can receive any one of an infinite number of
arguments. No matter what message is sent to println(), the message displays
correctly.

Hidden implementation methods are often referred to as existing in a black box.

When you write the method declaration for a method that can receive an argument,
you must include the following items within the method declaration parentheses:

� The type of the argument

� A local name for the argument

For example, the declaration for a public method named predictRaise() that displays a
person’s salary plus a 10 percent raise could have the declaration public void
predictRaise(double moneyAmount). You can think of the parentheses in a

Tip

Tip

3

method declaration as a funnel into the method—data arguments listed there are
“dropped in” to the method.

The argument double moneyAmount within the parentheses indicates that the
predictRaise() method will receive a figure of type double.Within the method, the figure (or
salary amount) will be known as moneyAmount. Figure 3-14 shows a complete method.

The predictRaise() method is a void method because it does not need to return any
value to any class that uses it—its only function is to receive the moneyAmount value,
multiply it by 1.10 (resulting in a 10 percent salary increase), and then display the result.

Within a program, you can call the predictRaise() method by using either a constant
value or a variable as an argument. Thus, both predictRaise(472.25); and
predictRaise(mySalary); invoke the predictRaise() method correctly, assuming
that mySalary is declared as a double value and assigned an appropriate value.You can
call the predictRaise() method any number of times, with a different constant or vari-
able argument each time. Each of these arguments becomes known as moneyAmount
within the method. The identifier moneyAmount holds any double value passed into
the method. It’s interesting to note that if the value in the method call is a variable, it
might possess the same identifier as moneyAmount, or a different one, such as mySalary.
The identifier moneyAmount is simply a placeholder while it is being used within the
method, no matter what name it “goes by” in the calling program.

The variable moneyAmount is a local variable to the predictRaise() method.

If a programmer changes the way in which the 10 percent raise is calculated—for exam-
ple, by coding newAmount = moneyAmount + (moneyAmount * .10);—no pro-
gram that uses the predictRaise() method will ever know the difference.The program will
pass a value into predictRaise() and then a calculated result will appear on the screen.

Figure 3-15 shows a complete program that uses the predictRaise() method twice.The
program’s output appears in Figure 3-16.

Tip

Figure 3-14 The predictRaise() method

public void predictRaise(double moneyAmount)
{
 double newAmount;
 newAmount = moneyAmount * 1.10;
 System.out.println
 ("With raise salary is " + newAmount);
}

66 Chapter 3 Using Methods, Classes, and Objects

Creating Methods with No Arguments, a Single Argument, and Multiple Arguments 67

Notice the output in Figure 3-16. Floating-point arithmetic is always some-
what imprecise.

Creating Methods that Require Multiple Arguments
A method can require more than one argument.You can pass multiple arguments to a
method by listing the arguments within the call to the method and separating them with
commas. For example, rather than creating a predictRaise() method that adds a 10 per-
cent raise to every person’s salary, you might prefer creating a method to which you can
pass two values—the salary to be raised, as well as a percentage figure by which to raise
it. Figure 3-17 shows a method that uses two such arguments.

Tip

Figure 3-16 Output of the DemoRaise program

Figure 3-15 Complete program using the predictRaise() method twice

public class DemoRaise
{
 public static void main(String[] args)
 {
 double mySalary = 200.00;
 System.out.println("Demonstrating some raises:");
 predictRaise(400.00);
 predictRaise(mySalary);
 }
 public static void predictRaise(double moneyAmount)
 {
 double newAmount;
 newAmount = moneyAmount * 1.10;
 System.out.println("With raise salary is " +
 newAmount);
 }
}

3

Note that a declaration for a method that receives two or more arguments
must list the type for each argument separately, even if the arguments have
the same type.

In the header of the predictRaiseGivenIncrease() method, the arguments in parentheses
are shown on separate lines to fit in this book’s margin space.You could place the paren-
theses and arguments on the same line as the function header.

In Figure 3-17, two arguments (double moneyAmount and double percentRate) appear
within the parentheses in the method header.The arguments are separated by a comma, and
each argument requires its own named type (in this case, both are double) as well as an iden-
tifier. When values are passed to the method in a statement such as
predictRaiseGivenIncrease(mySalary,promisedRate);, the first value passed
will be referenced as moneyAmount within the method, and the second value passed will be
referenced as percentRate.Therefore, it is very important that arguments passed to the method
be passed in the correct order.The call predictRaiseGivenIncrease(200.00,.10);
results in output representing a 10 percent raise based on a $200 salary amount (or $220), but
predictRaiseGivenIncrease(.10,200.00); results in output representing a 200 per-
cent raise based on a salary of 10 cents (or $20.10).

If two method arguments are the same type—for example, two doubles—
passing them to a method in the wrong order results in a logical error. If a
method expects arguments of diverse types, then passing arguments in
reverse order constitutes a syntax error.

You can write a method so that it takes any number of arguments in any order. However,
when you call a method, the arguments you send to a method must match—both in
number and in type—the arguments listed in the method declaration. Thus, a method
to compute an automobile salesperson’s commission amount might require arguments
such as an integer value of a car sold, a double percentage commission rate, and a char-
acter code for the vehicle type.The correct method will execute only when three argu-
ments of the correct types are sent in the correct order.

Tip

Tip

Figure 3-17 The predictRaiseGivenIncrease() method

public void predictRaiseGivenIncrease
 (double moneyAmount, double percentRate)
{
 double newAmount;
 newAmount = moneyAmount * (1 + percentRate);
 System.out.println("With raise salary is " +
 newAmount);
}

68 Chapter 3 Using Methods, Classes, and Objects

Creating Methods that Return Values 69

The arguments in a method call are often referred to as actual parameters.
The variables in the method declaration that accept the values from the actual
parameters are the formal parameters.

CREATING METHODS THAT RETURN VALUES

The return type for a method can be any type used in the Java programming language,
which includes the primitive (or scalar) types int, double, char, and so on, as well as class
types (including class types you create). Of course, a method can also return nothing, in
which case the return type is void.

A method’s return type is known more succinctly as a method’s type. For example, the
declaration for the nameAndAddress() method is written public static void
nameAndAddress().This method is public and it returns no value, so it is type void.
A method that returns true or false, depending on whether or not an employee
worked overtime hours might be public Boolean overtime(). This method is
public and it returns a Boolean value, so it is type Boolean.

In addition to returning the primitive types, a method can return a class type.
If a class named BankLoan exists, a method might return an instance of a
BankLoan, as in public BankLoan approvalProcess(). In other
words, a method can return anything from a simple int to a complicated
BankLoan with 20 data fields.

The header for a method that displays a raise amount is public static void
predictRaise(double moneyAmount). If you want to create a method to return
the new, calculated salary value rather than display the raised salary, the header would be
public double calculateRaise(double moneyAmount). Figure 3-18 shows
this method.

Notice the return type double in the method header.Also notice the return statement that
is the last statement within the method.The return statement causes the value stored in
newAmount to be sent back to any method that calls the calculateRaise() method.

If a method returns a value, then when you call the method, you will usually want to
use the returned value, although you are not required to do so. For example, when you

Figure 3-18 The calculateRaise() method

public void calculateRaise(double moneyAmount)
{
 double newAmount;
 newAmount = moneyAmount * 1.10;
 return newAmount;
}

Tip

Tip

3

invoke the calculateRaise() method, you might want to assign the value to a double vari-
able named myNewSalary, as in myNewSalary = calculateRaise(mySalary);.
The calculateRaise() method returns a double, so it is appropriate to assign the returned
value to a double variable.

Alternately, you can choose to display a method’s returned value directly, without stor-
ing it in any variable, as in System.out.println("New salary is " +
calculateRaise(mySalary));. In this last statement, the call to the
calculateRaise() method is made from within the println() method call. Because
calculateRaise() returns a double, you can use the method call calculateRaise() in the
same way that you would use any simple double value. For example, besides printing the
value of calculateRaise(), you can perform math with it, assign it, and so on.

Next you will add a method to the SetUpSite2 class that both receives an argument and
returns a value.The purpose of the method is to take the current year and calculate how
long Event Handlers Incorporated has been in business.

To add a method that receives an argument and returns a value:

1. Open the SetUpSite2.java file in the text editor, and then change the class
file to SetUpSite3.

2. Position the insertion point to the right of the opening curly brace of the
main() method of the class, and then press [Enter] to start a new line.

3. Type int currentYear = 2003; to declare a variable to hold the cur-
rent year, and then press [Enter].

4. Type int age; to declare another variable to hold the age of Event
Handlers Incorporated.

5. Position the insertion point at the end of the call to the
statementOfPhilosophy() method in the main() method of the class, and then
press [Enter] to start a new line.You will add a call to receive the current
year and calculate how long Event Handlers Incorporated has been in busi-
ness by subtracting the year of its inception, which is 1977.

6. Type age = calculateAge(currentYear); as a call to a
calculateAge() method.

7. Press [Enter], and then type System.out.println("Serving you for
" + age + " years"); to print the number of years the company has
been in business. Now you will write the calculateAge() method.

8. Position the insertion point after the closing bracket of the
statementOfPhilosophy() method, press [Enter] to start a new line before the
closing bracket of the program, and then enter the method shown in Figure 3-19.
The method will receive an integer value.Within the calculateAge() method,
the value will be known as currDate. Note that the name currDate does not
possess the same identifier as currentYear, which is the variable being passed
in, although it could. Notice also that the method declaration indicates an int
value will be returned.

70 Chapter 3 Using Methods, Classes, and Objects

Learning about Class Concepts 71

9. Save the file as SetUpSite3.java, compile it, and correct any errors. Execute
the program and confirm that the results are correct. See Figure 3-20.

LEARNING ABOUT CLASS CONCEPTS

When you think in an object-oriented manner, everything is an object, and every object
is a member of a class.You can think of any inanimate physical item as an object—your
desk, your computer, and the building in which you live are all called objects in every-
day conversation.You can also think of living things as objects—your houseplant, your
pet fish, and your sister are objects. Events are also objects—the stock purchase you
made, the mortgage closing you attended, or a graduation party that was held in your
honor are all objects.

Everything is an object, and every object is a member of a more general class.Your desk
is a member of the class that includes all desks, and your pet fish a member of the class
that contains all fish. An object-oriented programmer would say that your desk is an
instance of the Desk class and your fish is an instance of the Fish class.These statements
represent is-a relationships, relationships that are correct only if said in the proper
order.You can say, “My oak desk with the scratch on top is a Desk and my goldfish
named Moby is a Fish.” You can’t say, “My Desk is an oak desk with a scratch on top
or a Fish is a goldfish named Moby,” because both a Desk and a Fish are much more
general. The difference between a class and an object parallels the difference between

Figure 3-20 Output of the SetUpSite3 program with the calculateAge() method

Figure 3-19 The calculateAge() method

public static int calculateAge(int currDate)
{
 int yrs;
 yrs = currDate - 1977;
 return yrs;
} 3

abstract and concrete. An object is an instantiation of a class, or one tangible example
of a class.Your goldfish, my guppy, and the zoo’s shark each constitute one instantiation
of the Fish class.

The concept of a class is useful because of its reusability. Objects inherit attributes from
classes, and all objects have predictable attributes because they are members of certain
classes. For example, if you are invited to a graduation party, you automatically know
many things about the object (the party).You assume there will be a starting time, a cer-
tain number of guests, some quantity of food, and some kind of gifts.You understand
what a party entails because of your previous knowledge of the Party class of which all
parties are members.You don’t know the number of guests, what food will be served, or
what gifts will be received at this particular party, but you understand that because all
parties have guests and refreshments, then this one must too. Similarly, you can also apply
this thinking to the stock market. Even though every stock market purchase is unique,
each stock purchase must have a dollar amount and a number of shares.

The data components of a class are often referred to as the instance variables
of that class. Also, class object attributes are often called fields to help distin-
guish them from other variables you might use.

In addition to their attributes, class objects have methods associated with them, and every
object that is an instance of a class is assumed to possess the same methods. For example,
for all parties, at some point, you must set the date and time.You might name these meth-
ods setDate() and setTime(). Party guests need to know the date and time, and might use
methods named getDate() and getTime() to find out the date and time of the party.

Your graduation party, then, might possess the identifier myGraduationParty.As a mem-
ber of the Party class, myGraduationParty, like all parties, might have data members for
the date and time methods setDate() and setTime().When you use them, the setDate()
and setTime() methods require arguments, or information passed to them. For example,
myGraduationParty.setDate(“May 12”) and myGraduationParty.setTime(“6 P.M.”)
invoke methods that are available for myGraduationParty and send it arguments.When
you use an object and its methods, think of being able to send a message to the object
to direct it to accomplish some task—you can tell the party object named
myGraduationParty to set the date and time you request. Even though
yourAnniversaryParty is also a member of the Party class, and even though it also has
setDate() and setTime() methods, the arguments you send to yourAnniversaryParty will
be different from those you send to myGraduationParty.Within any object-oriented pro-
gram, you are continuously making requests to objects’ methods, and often including
arguments as part of those requests.

Additionally, some methods used in a program must return a message or value. If one of
your party guests uses the getDate() method, the guest hopes that the method will
respond with the desired information. Similarly, within object-oriented programs, meth-
ods are often called upon to return a piece of information to the source of the request.

Tip

72 Chapter 3 Using Methods, Classes, and Objects

Creating a Class 73

For example, a method within a Payroll class that calculates federal withholding tax
might return a tax figure in dollars and cents, and a method within an Inventory class
might return true or false, depending on the method’s determination of whether or not
an item is at the reorder point.

There are two parts to object-oriented programming. First, you must create the classes
of objects from which objects will be instantiated, and second, you must write other
classes to use the objects (and their data and their methods).The same programmer does
not need to accomplish these two tasks. Often, you will write programs that use classes
created by others; similarly, you might create a class that others will use to instantiate
objects within their own programs. You can call a program or class that instantiates
objects of another prewritten class a class client or class user.

The System class that you used in Chapter 1 is an example of using a class
that was written by someone else. You did not have to create it or its println()
method; both were created for you by Java’s creators.

CREATING A CLASS

When you create a class, first you must assign a name to the class, and then you must
determine what data and methods will be part of the class. Suppose you decide to cre-
ate a class named Employee. One instance variable of Employee might be an employee
number, and two necessary methods might be a method to set (or provide a value for)
the employee number and another method to get (or retrieve) that employee number.
To begin, you create a class header with three parts:

� An optional access modifier

� The keyword class

� Any legal identifier you choose for the name of your class

For example, a header for an Employee class is public class Employee.The key-
word public is a class access modifier.You can use the following class access modifiers
when defining a class: public, final, or abstract. If you do not specify an access
modifier, access becomes public.

Public classes are accessible by all objects, which means that public classes can be extended,
or used as a basis for any other class.The most liberal form of access is public. Public access
means that if you develop a good Employee class, and some day you want to develop two
more-specific classes, SalariedEmployee and HourlyEmployee, then you will not have to
start from scratch. Each new class can become an extension of the original Employee class,
inheriting its data and methods.The other access modifiers (or the omission of any access
modifier) impose at least some limitations on extensibility. (You use the other access mod-
ifiers only under special circumstances.) You will use the public access modifier for most of
your classes.

Tip

3

After writing the class header public class Employee, you write the body of the
Employee class, containing its data and methods, between a set of curly braces. Figure 3-21
shows the shell for the Employee class.

You place the instance variables, or fields, for the Employee class as statements within
the curly braces. For example, you can declare an employee number that will be stored
as an integer simply as int empNum;. However, programmers frequently include an
access modifier for each of the class fields and declare the empNum as private int
empNum;.

The allowable field modifiers are private, public, static, and final. Most class
fields are private, which provides the highest level of security. Private access means
that no other classes can access a field’s values, and only methods of the same class are
allowed to set, get, or otherwise use private variables. Private access is sometimes called
information hiding, and is an important component of object-oriented programs. A
class’s private data can be changed or manipulated only by a class’s own methods, and
not by methods that belong to other classes. In contrast, most class methods are not usu-
ally private.The resulting private data/public method arrangement provides a means
for you to control outside access to your data—only a class’s nonprivate methods can be
used to access a class’s private data.The situation is similar to hiring a public reception-
ist to sit in front of your private office and control which messages you receive (perhaps
deflecting trivial or hostile ones) and which messages you send (perhaps checking your
spelling, grammar, and any legal implications).The way in which the nonprivate meth-
ods are written controls how you use the private data.

The field modifiers are the same as the method modifiers with one addition—
the final modifier. You will learn to use the final modifier in Chapter 4.

The entire class so far appears in Figure 3-22. It defines a public class named Employee,
with one field, which is a private integer named empNum.

Next you will create a class to store information about event sites for Event Handlers
Incorporated.

To create the class:

1. Open a new document in your text editor.

Tip

Figure 3-21 Employee class shell

public class Employee
{
 //Instance variables and methods go here
}

74 Chapter 3 Using Methods, Classes, and Objects

Using Instance Methods 75

2. Type the following class header and the curly braces to surround the class body:

publicƒclassƒEventSiteƒ
{
}

3. Type private int siteNumber; between the curly braces to insert the
private data field that will hold an integer site number for each event site
used by the company.

4. Save the file as EventSite.java in the Chapter.03 folder on your Student Disk.

5. To ensure you have not made any typographical errors, compile the class by typ-
ing javac EventSite.java at the command-line prompt. If necessary, cor-
rect any errors, save your work, and then compile again. Do not execute the class.

USING INSTANCE METHODS

Besides data, classes contain methods. For example, one method you need for an
Employee class that contains an empNum is the method to retrieve (or return) any
Employee’s empNum for use by another class. A reasonable name for this method is
getEmpNum(), and its declaration is public int getEmpNum() because it will have
public access, return an integer (the employee number), and possess the identifier
getEmpNum(). Figure 3-23 shows the complete getEmpNum() method.

The getEmpNum() method contains just one statement: the statement that accesses the
value of the private empNum field.

Notice that, unlike the class methods you created earlier in this chapter, the getEmpNum()
method does not employ the static modifier.The keyword static is used for class-
wide methods, but not for methods that “belong” to objects. If you are creating a program
with a main() method that you will execute to perform some task, then many of your

Figure 3-23 The getEmpNum() method

public int getEmpNum()
{
 return empNum;
}

Figure 3-22 Employee class with one data field

public class Employee
{
 private int empNum;
}

3

methods will be static so you can call them from within main(). However, if you are cre-
ating a class from which objects will be instantiated, most methods will probably be non-
static because you will associate the methods with individual objects. Methods used with
object instantiations are called instance methods.

You can call class methods without creating an instance of the class. Instance
methods require an instantiated object.

Next you will add an instance method to the EventSite2 class that will retrieve the value
of an event site’s number.

To add an instance method to the EventSite2 class:

1. Open the EventSite.java file in your text editor and change the class name
to EventSite2.

2. Within the EventSite2 class’s curly braces and after the declaration of the
siteNumber field, enter the following getSiteNumber() method to return the
site number to any calling class:
publicƒintƒgetSiteNumber()
{
ƒƒreturnƒsiteNumber;
}

3. Save the file as EventSite2.java.

When a class contains data fields, you want a means to assign values to the data fields.
For an Employee class with an empNum field, you need a method with which to set
the empNum. Figure 3-24 shows a method that sets the empNum.The method is a void
method because there is no need to return any value to a calling program.The method
receives an integer, locally called emp, to be assigned to empNum.

Next you will add a setSiteNumber() method to the EventSite2 class.This method takes
an integer argument and assigns it to the siteNumber of an EventSite object.

To add a method to the EventSite3 class:

1. Open the EventSite2.java program, change the class name to EventSite3,
then add the following method to the EventSite3.java file after the final
curly brace for the getSiteNumber() method, but prior to the closing curly
brace for the EventSite3 class:

Figure 3-24 The setEmpNum() method

public static void setEmpNum(int emp)
{
 empNum = emp;
}

Tip

76 Chapter 3 Using Methods, Classes, and Objects

Declaring Objects 77

publicƒvoidƒsetSiteNumber(intƒn)
{
ƒƒsiteNumberƒ=ƒn;
}

The argument n represents any number sent to this method.

2. Save the file as EventSite3.java, compile it, and then correct any syntax
errors. (You cannot run this file as a program.)

DECLARING OBJECTS

Declaring a class does not create any actual objects.A class is just an abstract description
of what an object will be like if any objects are ever actually instantiated. Just as you
might understand all the characteristics of an item you intend to manufacture long
before the first item rolls off the assembly line, you can create a class with fields and
methods long before you instantiate any objects which are members of that class.

A two-step process creates an object that is an instance of a class. First, you supply a type
and an identifier, just as when you declare any variable, and then you allocate computer
memory for that object. For example, you might define an integer as int someValue;
and you might define an Employee as Employee someEmployee;, where
someEmployee stands for any legal identifier you choose to represent an Employee.

When you declare an integer as int someValue;, you notify the compiler that an
integer named someValue will exist, and you reserve computer memory for it at the
same time.When you declare the someEmployee instance of the Employee class, you are
notifying the compiler that you will use the identifier someEmployee. However, you are
not yet setting aside computer memory in which the Employee named someEmployee
might be stored—that is done only for primitive type variables.To allocate the needed
memory, you must use the new operator. After you define someEmployee with the
Employee someEmployee; statement, the statement that actually sets aside enough
memory to hold a someEmployee = new Employee();.

You can also define and reserve memory for someEmployee in one statement, as in
Employee someEmployee = new Employee();. In this statement, Employee is the
object’s type (as well as its class), and someEmployee is the name of the object.The equals
sign is the assignment operator, so a value is being assigned to someEmployee.The new
operator is allocating a new, unused portion of computer memory for someEmployee.
The value that the statement is assigning to someEmployee is a memory address at which
someEmployee is to be located.You do not need to be concerned with what the actual
memory address is—when you refer to someEmployee, the compiler will locate it at the
appropriate address for you—but someEmployee does need to know its own address.

Every object name is also a reference—that is, a computer memory location.

Tip

3

The last portion of the statement, Employee(), with its parentheses, looks suspiciously
like a method name. In fact, it is the name of a method that constructs an Employee
object. Employee() is a constructor method. You will write your own constructor
methods later in this section, but when you don’t write a constructor method for a class
object, Java writes one for you, and the name of the constructor method is always the
same as the name of the class whose objects it constructs.

Next you will instantiate an EventSite3 object.

To instantiate an object:

1. Open the SetUpSite3.java file from the Chapter.03 folder in your text edi-
tor. Change the class name to SetUpSite4.

2. Place the insertion point at the end of int age within the main() method,
press [Enter] to start a new line, and then type EventSite3 oneSite =
new EventSite3(); to allocate memory for a new EventSite4 object
named oneSite.

3. Save the file as SetUpSite4.java and then compile it. If necessary, correct
any errors, and save and compile again.

After an object has been instantiated, its methods can be accessed using the object’s iden-
tifier, a dot, and a method call. For example, if an Employee class method to change a salary
is written using the code in Figure 3-25, and an Employee was declared with Employee
clerk = new Employee();, then the clerk’s salary can be changed to 350.00 with the
call clerk.changeSalary(350.00);. The method changeSalary() is applied to the
object clerk, and the argument 350.00 (a double type value) is passed to the method.

Within the same program, the statements Employee secretary = new
Employee(); and secretary.changeSalary(420.00); would apply the same
changeSalary() method, but using a different argument value, to different objects that
belong to the same class.

Next you will add calls to the getSiteNumber() and setSiteNumber() methods for the
oneSite object member of the EventSite3 class.

To add the calls to the methods for the oneSite object member:

1. Open the file SetUpSite4.java in your text editor and change the class to
SetUpSite5.

Figure 3-25 The changeSalary() method

public void changeSalary(double newAmount)
{
 salary = newAmount;
}

78 Chapter 3 Using Methods, Classes, and Objects

Declaring Objects 79

2. Just below the declaration for oneSite, to provide the SetUpSite5() method
with a variable to hold any site number returned from the getSiteNumber()
method, type int number;, and then press [Enter].

3. Next call the method setSiteNumber() to set the site number for oneSite.
Type oneSite.setSiteNumber(101);.The number in parentheses could
be any integer number.

4. After the statement that prints the age of the company,
System.out.println("Serving you for " + age + " years");, to
call the getSiteNumber() method and assign its return value to the number vari-
able, type number = oneSite.getSiteNumber();, and then press [Enter].

5. To add a call to the println() method to display the value stored in number,
type System.out.println("The number of the event site is
" + number);.

6. Save the program file as SetUpSite5.java in the Chapter.03 folder on your
Student Disk.

7. Compile the program by typing javac SetUpSite5.java. Correct any
errors and compile again, if necessary.

8. Execute the program by typing java SetUpSite5.Your output should
look like Figure 3-26.

Figure 3-26 Output of the SetUpSite5 program

3

ORGANIZING CLASSES

Most classes you create will have more than one data field and more than two methods.
For example, in addition to requiring an employee number, an Employee needs a last
name, a first name, and a salary, as well as methods to set and get those fields. Figure 3-27
shows how you could code the data fields for Employee.

Although there is no requirement to do so, most programmers place data fields in some
logical order at the beginning of a class. For example, the empNum is most likely used
as a unique identifier for each employee (what database users often call a primary key),
so it makes sense to list the employee number first in the class.An employee’s last name
and first name “go together,” so it makes sense to store these two Employee components
adjacently. Despite these common-sense rules, there is a lot of flexibility in how you
position your data fields within any class.

A unique identifier is one that should have no duplicates within an applica-
tion. For example, an organization might have many employees with the last
name Johnson or a salary of $400.00, but there will be only one employee
with employee number 128.

Because there are two String components in the current Employee class, they might be
declared within the same statement, such as private String empLastName,
empFirstName;. However, it is usually easier to identify each Employee field at a
glance if the fields are listed vertically.

Even if the only methods created for the Employee class include one set method and
one get method for each instance variable, eight methods are required. Consider an
Employee record for most organizations and you will realize that many more fields are
often required (such as address, phone number, hire date, number of dependents, and so
on), as well as many more methods. Finding your way through the list can become a for-
midable task. For ease in locating class methods, many programmers store them in alpha-
betical order. Other programmers arrange values in pairs of “get” and “set” methods, an
order that also results in functional groupings. Figure 3-28 shows how the complete class
definition for an Employee might appear.

Tip

Figure 3-27 Employee class with data fields

public class Employee
{
 private int empNum;
 private String empLastName;
 private String empFirstName;
 private double empSalary;
//Methods will go here
}

80 Chapter 3 Using Methods, Classes, and Objects

Organizing Classes 81

The Employee class is still not a particularly large class, and each of its methods is very
short, but it is already becoming quite difficult to manage. It certainly can support some
well-placed comments, as shown in Figure 3-29.

Figure 3-28 Employee class with data fields and methods

public class Employee
{
 private int empNum;
 private String empLastName;
 private String empFirstName;
 private double empSalary;
 public int getEmpNum()
 {
 return empNum;
 }
 public void setEmpNum(int num)
 {
 empNum = num;
 }
 public String getFirstName()
 {
 return empFirstName;
 }
 public void setFirstName(String name)
 {
 empFirstName = name;
 }
 public String getLastName()
 {
 return empLastName;
 }
 public void setLastName(String name)
 {
 empLastName = name;
 }
 public double getEmpSal()
 {
 return empSalary;
 }
 public void setEmpSal(double sal)
 {
 empSalary = sal;
 }
}

3

Although good program comments are crucial to creating understandable
code, you will not be asked to include them in most examples in this book in
an effort to save space.

To expand the EventSite3 class to contain data fields and methods:

1. Open the EventSite3.java file from the Chapter.03 folder in the text editor,
and change the class name to EventSite4.Your program looks like Figure 3-30.

Figure 3-30 EventSite4.java class

public class EventSite4
{
 private int siteNumber;
 public int getSiteNumber()
 {
 return siteNumber;
 }
 public void setSiteNumber(int n)
 {
 siteNumber = n;
 }
}

Tip

Figure 3-29 Employee class with data fields, methods, and comments

//Programmer: Joyce Farrell
//Date April 22, 2003
//Employee.java to hold employee data

public class Employee
{
//private data members
private int empNum;
private String empLastName;
private String empFirstName;
private double empSalary;

//getEmpNum method returns employee number
public int getEmpNum()
{
return empNum;

}
//setEmpNum method returns employee number
public void setEmpNum(int num)
{
empNum = num;

}
//... and so on

}

82 Chapter 3 Using Methods, Classes, and Objects

Organizing Classes 83

You will add two new data fields to the EventSite4 class: a double to hold a
usage fee for the site, and a String to hold the site manager’s last name.

2. Position the insertion point at the end of the declaration of the private
int siteNumber; variable, press [Enter] to start a new line, and then type
private double usageFee; and private String managerName;
on separate lines.

You will also enter four new methods to set and get data from each of the
two new fields.To ensure that the methods are easy to locate later, you will
place them in alphabetical order within the class.

3. Position the insertion point after the end of the closing curly brace of the
getSiteNumber() method, press [Enter] to start a new line, and then enter
the following getUsageFee() method:

publicƒdoubleƒgetUsageFee()
{
ƒƒreturnƒusageFee;
}

4. Position the insertion point at the end of the private String
managerName; declaration, press [Enter] to start a new line, and then enter
the following getManagerName() method:

publicƒStringƒgetManagerName()
{
ƒƒreturnƒmanagerName;
}

5. Position the insertion point after the closing bracket of the getSiteNumber()
method, press [Enter] to start a new line, and then enter the following
setUsageFee() method:

publicƒvoidƒsetUsageFee(doubleƒamt)
{
ƒƒusageFeeƒ=ƒamt;
}

6. Position the insertion point after the closing curly brace of the getUsageFee()
method, press [Enter], and then enter the following setManagerName() method:

publicƒvoidƒsetManagerName(Stringƒname)
{
ƒƒmanagerNameƒ=ƒname;
}

7. Start a line above each of the methods, and add a comment describing the
function of the method.

3

8. Save the file as EventSite4.java and compile it by typing the command
javac EventSite4. If necessary, correct any errors, save the file, and then
compile again.

You have created an EventSite4 class that contains both data and methods. However, no
actual event sites exist yet. You must write a program that instantiates one or more
EventSite objects to give actual values to the data fields for that object, and to manipu-
late the data in the fields using the class methods. Next you will create a program to test
the new, expanded EventSite4 class.

To create the test program:

1. Open a new document in the text editor, and then enter the class that tests
the new expanded EventSite4 class.The class should look like Figure 3-31.

You should get into the habit of documenting your programs with your name,
today’s date, and a brief explanation of the program. Your instructor might
also ask you to insert additional information as comment text.

2. Save the file as TestExpandedClass.java in the Chapter.03 folder on your
Student Disk. Compile the program and correct any errors, if necessary.

3. Execute the class with the command-line statement java
TestExpandedClass. Your output should look like Figure 3-32.

Tip

Figure 3-31 The TestExpandedClass class

//Programmer: Joyce Farrell
//Date: April 22, 2003
//Program: TestexpandedClass
//Tests the expanded EventSite4 class
public class TestExpandedClass
{
 public static void main(String[] args)
 {
 EventSite4 oneSite = new EventSite4()
 oneSite.setSiteNumber(101);
 oneSite.setUsageFee(32508.65);
 oneSite.setManagerName("Jefferson");
 System.out.print("The number of the event site is ");
 System.out.println(oneSite.getSiteNumber());
 System.out.println("Usage fee "
 + oneSite.getUsageFee());
 System.out.println("Manager is "
 + oneSite.getManagerName());
 }
}

84 Chapter 3 Using Methods, Classes, and Objects

Using Constructors 85

USING CONSTRUCTORS

When you create a class, such as Employee, and instantiate an object with a statement
such as Employee chauffeur = new Employee();, you are actually calling a
method named Employee() that is provided by the Java compiler. A constructor
method is a method that establishes an object. The constructor method named
Employee() establishes one Employee with the identifier chauffeur, and provides the fol-
lowing specific initial values to the Employee’s data fields:

� Numeric fields are set to 0 (zero).

� Character fields are set to Unicode ‘\u0000’.

� The Boolean fields are set to false.

� The object type fields are set to null (or empty).

If you do not want an Employee’s fields to hold these default values, or if you want to
perform additional tasks when you create an Employee, then you can write your own
constructor method. Any constructor method you write must have the same name as
the class it constructs, and constructor methods cannot have a return type. For example,
if every Employee has a starting salary of $300.00, then you could write the construc-
tor method for the Employee class that appears in Figure 3-33. Any Employee instanti-
ated will have a default empSal figure of 300.00.

Figure 3-33 Employee class constructor

Employee()
{
 empSal = 300.00;
}

Figure 3-32 Output of the TestExpandedClass program

3

You can write any statement in a constructor. Although you usually have no reason to
do so, you could print a message from within a constructor or perform any other task.
Next you will add a constructor to the EventSite4 class, and demonstrate that it is called
when an EventSite4 object is instantiated.

To add a constructor to the EventSite4 class:

1. Open the EventSite4.java file in your text editor. Change the class name to
EventSite5.

2. Place the insertion point at the end of the line containing the last field decla-
ration private String managerName;, and then press [Enter] to start a
new line.

3. Add the following constructor function that sets any EventSite siteNumber to
999 and any manager’s name to “ZZZ” upon construction:

EventSite5()
{
ƒƒsiteNumberƒ=ƒ999;
ƒƒmanagerNameƒ=ƒ"ZZZ";
}

4. Save the file as EventSite5.java, compile it, and correct any errors.

5. Open a new text file and create a test class named TestConstructor using
the code shown in Figure 3-34.

6. Save the file as TestConstructor.java in the Chapter.03 folder on your
Student Disk, compile the file, and correct any syntax errors.

7. Execute the program and confirm that it declares a oneSite object of type
EventSite5, calls the constructor, and assigns the indicated initial values, as
shown in Figure 3-35.

Figure 3-34 TestConstructor class

public class TestConstructor
{
 public static void main(String[] args)
 {
 EventSite5 oneSite = new EventSite5();
 System.out.print("The number of the event site is ");
 System.out.println(oneSite.getSiteNumber());
 System.out.print("The manager is ");
 System.out.println(oneSite.getManagerName());
 }
}

86 Chapter 3 Using Methods, Classes, and Objects

Chapter Summary 87

CHAPTER SUMMARY
❒ A method is a series of statements that carry out a task. Methods must include a

declaration (or header or definition), an opening curly brace, a body, and a closing
curly brace. A method declaration contains optional access modifiers, the return
type for the method, the method name, an opening parenthesis, an optional list of
method arguments, and a closing parenthesis.

❒ You place a method within the program that will use it, but not within any other
method. If you place a method call within a class that does not contain the
method, you must use the class name, followed by a dot, followed by the method.
Some methods require a message or argument.

❒ When you write the method declaration for a method that can receive an argu-
ment, you need to include the type of the argument and a local name for the argu-
ment within the method declaration parentheses.You can call a method within a
program using either a constant value or a variable as an argument.

❒ You can pass multiple arguments to methods by listing the arguments and separat-
ing them by commas within the call to the method.The arguments you send to the
method must match both in number and in type the parameters listed in the
method declaration.

❒ The return type for a method (the method’s type) can be any Java type, including
void.You use a return statement to send a value back to a program that calls a method.

❒ Objects inherit attributes from classes. Class objects have attributes and methods
associated with them. Class instance methods that will be used with objects are not
usually static.You can send messages to objects. Additionally, some methods used in
a program must return a message or value.

Figure 3-35 Output of the TestConstructor program

3

❒ A class header contains an optional access modifier, the keyword class, and any legal
identifier you choose for the name of your class.The instance variables, or fields, of
a class are placed as statements within the class’s curly braces.

❒ Declaring a class does not create any actual objects; you must instantiate any objects
that are members of a class.To create an object that is an instance of a class, you
supply a type and an identifier, and then you allocate computer memory for that
object using the new operator.

❒ A constructor method establishes an object and provides specific initial values for
the object’s data fields. A constructor method always has the same name as the class
of which it is a member. By default, numeric fields are set to 0 (zero), character
fields are set to Unicode ‘\u0000’, Boolean fields are set to false, and object type
fields are set to null.

REVIEW QUESTIONS
1. Methods must include all of the following except .

a. a declaration

b. a call to another method

c. curly braces

d. a body

2. All method declarations contain .

a. the keyword static

b. one or more access modifiers

c. arguments

d. parentheses

3. A public method named computeSum() is located in classA.To call the method
from within classB, use the statement .

a. computeSum(classB);

b. classB(computeSum());

c. classA.computeSum();

d. You cannot call computeSum() from within classB.

4. Which of the following method declarations is correct for a method named
displayFacts() if the method receives an int argument?

a. public void int displayFacts()

b. public void displayFacts(int)

c. public void displayFacts(int data)

d. public void displayFacts()

88 Chapter 3 Using Methods, Classes, and Objects

Review Questions 89

5. The method with the declaration public int aMethod(double d) is a
method type .

a. int

b. double

c. void

d. You cannot determine the method type.

6. Which of the following is a correct call to a method declared as double
aMethod(char code)?

a. double aMethod();

b. double aMethod('V');

c. aMethod(int 'M');

d. aMethod('Q');

7. A method is declared as public void showResults(double d, int i).
Which of the following is a correct method call?

a. showResults(double d, int i);

b. showResults(12.2, 67);

c. showResults(4, 99.7);

d. Two of the above answers are correct.

8. The method with the declaration public char procedure(double d) has
a method type of .

a. public

b. char

c. procedure

d. double

9. The method public Boolean testValue(int response) returns
.

a. a Boolean value

b. an integer value

c. no value

d. You cannot determine what is returned.

10. Which of the following could be the last legally coded line of a method declared
as public int getVal(double sum)?

a. return;

b. return 77;

c. return 2.3;

d. Any of the above could be the last coded line of the method.

3

11. The data components of a class often are referred to as the of
that class.

a. access types

b. instance variables

c. methods

d. objects

12. Class objects have both attributes and .

a. fields

b. data

c. methods

d. instances

13. You send messages to an object through its .

a. fields

b. methods

c. classes

d. data

14. A program or class that instantiates objects of another prewritten class is a(n)
.

a. class client

b. superclass

c. object

d. patron

15. The body of a class is written .

a. as a single statement

b. within parentheses

c. between curly braces

d. as a method call

16. Most class fields are .

a. private

b. public

c. static

d. final

90 Chapter 3 Using Methods, Classes, and Objects

Exercises 91

17. The concept of allowing a class’s private data to be changed only by a class’s own
methods is known as .
a. structured logic
b. object orientation
c. information hiding
d. data masking

18. When you declare a variable, as in double salary;, you .
a. also must explicitly allocate memory for it
b. need not explicitly allocate memory for it
c. must explicitly allocate memory for it only if it is stored in a class
d. can declare it to use no memory

19. If a class is named Student, then the class constructor name is .
a. any legal Java identifier
b. any legal Java identifier that begins with S
c. StudentConstructor
d. Student

20. If you use the default constructor, .
a. numeric fields are set to 0 (zero)
b. character fields are set to blank
c. Boolean fields are set to true
d. object type fields are set to 0 (zero)

EXERCISES
1. Name any device you use every day. Discuss how implementation hiding is

demonstrated in the way this device works. Is it a benefit or a drawback to you
that implementation hiding exists for methods associated with this object?

2. a. Create a class named Numbers whose main() method holds two integer vari-
ables. Assign values to the variables. Create two additional methods, sum() and
difference(), that compute the sum of and difference between the values of the
two variables, respectively. Each method should perform the computation and
display the results. In turn, call each of the two methods from main(), passing
the values of the two integer variables. Save the program as Numbers.java in
the Chapter.03 folder on your Student Disk.

b. Add a method named product() to the Numbers class.The product() method
should compute the multiplication product of two integers, but not display the
answer. Instead, it should return the answer to the calling main() program,
which displays the answer. Save the program as Numbers2.java in the
Chapter.03 folder on your Student Disk.

3

3. Create a class named Eggs. Its main() method holds an integer variable named
numberOfEggs to which you will assign a value. Create a method to which you
pass numberOfEggs.The method displays the eggs in dozens; for example, 50 eggs
is 4 full dozen (with 2 eggs remaining). Save the program as Eggs.java in the
Chapter.03 folder on your Student Disk.

4. Create a class named Monogram. Its main() method holds three character vari-
ables that hold your first, middle, and last initials, respectively. Create a method to
which you pass the three initials and which displays the initials twice—once in
the order first, middle, last, and a second time in traditional monogram style (first,
last, middle). Save the program as Monogram.java in the Chapter.03 folder on
your Student Disk.

5. Create a class named Exponent. Its main() method holds an integer value, and in
turn passes the value to a method that squares the number and to a method that
cubes the number.The main() method prints the results. Create the two methods
that respectively square and cube an integer that is passed to them, returning the
calculated value. Save the program as Exponent.java in the Chapter.03 folder on
your Student Disk.

6. Create a class named Cube that displays the result of cubing a number. Pass a
number to a method that cubes a number and returns the result.The display
should execute within the main() method that calls the cube method. Save the
program as Cube.java in the Chapter.03 folder on your Student Disk.

7. Create a program that displays the result of a sales transaction.The calculation
requires three numbers.The first number represents the product price.The second
number is the salesperson commission.These two numbers should be added
together.The third value represents a customer discount; subtract this third num-
ber from the result of the addition. Create two classes.The first class,Transaction,
contains the method to do the calculation.The three numbers are passed to this
method by a statement in the other class.The display is performed in the class
that calls the calculation method. Save the program as Calculator.java in the
Chapter.03 folder on your Student Disk.

8. Write a program that displays the result of dividing two numbers and also displays
any remainder. Do the calculation and display in the same method, which is a
separate method from the main() method. Save the program as Divide.java in the
Chapter.03 folder on your Student Disk.

9. a. Create a class named Pizza. Data fields include a String for toppings (such as
pepperoni), an integer for diameter in inches (such as 12), and a double for price
(such as 13.99). Include methods to get and set values for each of these fields.
Save the class as Pizza.java in the Chapter.03 folder on your Student Disk.

b. Create a class named TestPizza that instantiates one Pizza object and demon-
strates the use of the Pizza set and get methods. Save this class as
TestPizza.java in the Chapter.03 folder of your Student Disk.

92 Chapter 3 Using Methods, Classes, and Objects

Exercises 93

10. a. Create a class named Student. A Student has fields for an ID number, number of
credit hours earned, and number of points earned. (For example, many schools
compute grade point averages based on a scale of 4, so a three-credit-hour class
in which a student earns an A is worth 12 points.) Include methods to assign
values to all fields. A Student also has a field for grade point average. Include a
method to compute the grade point average field by dividing points by credit
hours earned.Write methods to display the values in each Student field. Save
this class as Student.java in the Chapter.03 folder on your Student Disk.

b. Write a class named ShowStudent that instantiates a Student object from the
class you created. Compute the Student grade point average, and then display
all the values associated with the Student. Save the program as
ShowStudent.java in the Chapter.03 folder on your Student Disk.

c. Create a constructor method for the Student class you created.The constructor
should initialize each Student’s ID number to 9999 and his or her grade point
average to 4.0.Write a program that demonstrates that the constructor works
by instantiating an object and displaying the initial values. Save the program as
Student2.java.

11. a. Create a class named Circle with fields named radius, area, and diameter.
Include a constructor that sets the radius to 1. Also include methods named
setRadius(), getRadius(), computeDiameter(), which computes a circle’s diame-
ter, and computeArea(), which computes a circle’s area. (The diameter of a circle
is twice its radius, and the area is 3.14 multiplied by the square of the radius.)
Save the class as Circle.java in the Chapter.03 folder of your Student Disk.

b. Create a class named TestCircle whose main() method declares three Circle objects.
Using the setRadius() method, assign one Circle a small radius value and assign
another a larger radius value. Do not assign a value to the radius of the third circle;
instead, retain the value assigned at construction. Call computeDiameter() and
computeArea() for each circle and display the results. Save the program as
TestCircle.java in the Chapter.03 folder on your Student Disk.

12. a. Create a class named Checkup with fields that hold a patient number, two
blood pressure figures (systolic and diastolic), and two cholesterol figures (LDL
and HDL). Include methods to get and set each of the fields. Include a method
named computeRatio() that divides LDL cholesterol by HDL cholesterol and
displays the result. Include an additional method named ExplainRatio() that
explains that HDL is known as “good cholesterol” and that a ratio of 3.5 or
lower is considered optimum. Save the class as Checkup.java in the
Chapter.03 folder of your Student Disk.

b. Create a class named TestCheckup whose main() method declares four Checkup
objects. Provide values for each field for each patient.Then display the values.
Blood pressure numbers are usually displayed with a slash between the systolic and
diastolic values. (Typical numbers are values such as 110/78 or 130/90.) With the
cholesterol figures, display the explanation of the cholesterol ratio calculation.
(Typical numbers are values such as 100 and 40 or 180 and 70.) Save the program
as TestCheckup.java in the Chapter.03 folder on your Student Disk.

3

13. Write a program that displays employee IDs and first and last names of employees.
Use two classes.The first class named Emp contains the employee data and sepa-
rate methods to set the IDs and names.The other class creates objects for the
employees and uses the objects to call the set methods. Create several employees
and display their data. Save the program as Employee.java in the Chapter.03
folder on your Student Disk.

14. Write a program that displays an invoice of several items. It should contain the
item name, quantity, price, and total cost on each line for the quantity and item
cost. Use two classes.The first class Inv contains the item data and methods to get
and set the item name, quantity, and price.The other class creates objects for the
items and uses the objects to call the set and get methods. Save the program as
Invoice.java in the Chapter.03 folder on your Student Disk.

15. Write a program that schedules several meetings for a meeting room. It should
contain the day of the week, starting time, and ending time for each meeting. Use
two classes.The first class contains the meeting data and methods to get and set
the day of the week and starting and ending times.The other class creates objects
for the meetings and uses the objects to call the set and get methods. Save both
classes in the program as RoomSchedule.java in the Chapter.03 folder on your
Student Disk.

16. Write a program that calculates and displays the weekly salary for an employee
who earns $25 an hour, works 40 regular hours, 13 overtime hours, and earns
time and one-half (wage * 1.5) for overtime hours worked. Create a separate
method to do the calculation and return the result to be displayed. Save the pro-
gram as Salary.java in the Chapter.03 folder on your Student Disk.

17. a. Write a program that calculates and displays the conversion of $57 into dollar-
bill form—20’s, 10’s, 5’s, and 1’s. Create a separate method to do the calculation
and display. Pass 57 as a variable to this method. Save the program as
Dollars.java in the Chapter.03 folder on your Student Disk.

b. In the Dollars.java program, alter the value of the variable that holds the
amount of money. Run the program and confirm that the amount of each
denomination calculates correctly.

18. Write a program that calculates and displays the amount of money you would
have if you invested $1,000 at 5 percent interest for one year. Create a separate
method to do the calculation and return the result to be displayed. Save the pro-
gram as Interest.java in the Chapter.03 folder on your Student Disk.

19. a. Create a bank account named Account.The class should have one instance
variable named balance.Write two constructors, one to set the value of balance
to 0.0 when called, and a second that will receive a balance as a double value
passed to the constructor.Write instance methods to add to, subtract from, and
set the balance to 0.0.Write other instance methods as needed.

b. Write a program to instantiate an Account object.With the Account object,
open an account, add a deposit to the account, withdraw an amount from the

94 Chapter 3 Using Methods, Classes, and Objects

Case Project 95

account, and close the account. After each transaction, print the Account bal-
ance. Save the program as TestAccount.java in the Chapter.03 folder on your
Student Disk.

20. Each of the following files saved in the Chapter.03 folder on your Student Disk
has syntax and/or logical errors. In each case, determine and fix the problem. After
you correct the errors, save each file using the same filename preceded with Fix.
For example, DebugThree1.java will become FixDebugThree1.java.

a. DebugThree1.java

b. DebugThree2.java

c. DebugThree3.java

d. DebugThree4.java

CASE PROJECT
Event Handlers wants to develop an Employee program to set and retrieve employee ID
numbers, employee salaries, and first and last employee names.The current list of
employees and their data are as follows:

The program will require a constructor that sets the names to “Unknown”, ID’s to “0”,
and Salaries to “0.00”. As a programmer, your task is to write the necessary classes to
accomplish the tasks given by the specifications.

Employee Name Employee ID Employee Salary

Kim Yee 101 $40,000.00

John Reynolds 102 $55,000.00

Elena Gonzales 103 $50,500.00

Jim O’Shea 104 $75,000.00

Table 3-1 Employee data

Case
Project

3

97

CHAPTER

4
ADVANCED OBJECT CONCEPTS

In this chapter, you will:
� Understand blocks and scope
� Overload a method
� Learn about ambiguity
� Send arguments to constructors
� Overload constructors
� Learn about the this reference
� Work with constants
� Use automatically imported, prewritten constants and methods
� Use prewritten imported methods
� Learn about Gregorian calendars

Lynn Greenbrier, your mentor at Event Handlers Incorporated, pops her
head into your cubicle on Monday morning. “How’s the programming

going?” she asks.

“I’m getting the hang of using objects,” you tell her, “but I want to create
lots of objects, and it seems like I will need so many methods for the classes
that I create that it will be very hard to keep track of them.”You pause a
moment and add,“And all these set methods are driving me crazy. I wish an
object could just start with values.”

“Anything else bothering you?” Lynn asks.

“Well,” you reply,“since you asked, shouldn’t some objects and methods that
are used by all kinds of programmers already be created for me? I can’t be
the first person who ever thought about taking a square root of a number
or calculating a billing date for 10 days after service.”

“You’re in luck!” Lynn smiles. “Java’s creators have already thought about
these things. Let me tell you about some of the more advanced things you
can do with your classes.”

UNDERSTANDING BLOCKS AND SCOPE

Within any class or method, the code between a pair of curly braces is called a block.
For example, the program shown in Figure 4-1 contains two blocks.The first block, or
outside block, begins immediately after the method declaration and ends at the end of
the method.The second block, or inside block, is contained within the second set of
curly braces and contains three statements: the declaration of anotherNumber and two
println() statements. The inside block is nested within the outside block. A block can
exist entirely within another block, or entirely outside and separate from another block,
but blocks can never overlap.

If you declare a variable in one program that you write, you cannot use that variable in
another program. Similarly, when you declare a variable within a block, you cannot ref-
erence that variable outside the block.The portion of a program within which you can
reference a variable is the variable’s scope. A variable comes into existence, or comes
into scope, when you declare it. A variable ceases to exist, or goes out of scope, at
the end of the block in which it is declared.

Although you can create as many variables and blocks as you need within any
program, it is not wise to do so without a reason. The use of unnecessary vari-
ables and blocks increases the likelihood of improper use of variable names
and scope.

In the methodWithTwoBlocks() method shown in Figure 4-1, the variable aNumber
exists from the point of its declaration until the end of the method.This means aNumber
exists both in the outer block and within the inner block, and can be used anywhere in
the method.The variable anotherNumber comes into existence within the inner block;
anotherNumber ceases to exist when the inner block ends, and cannot be used beyond
its block.

Tip

public static void methodWithTwoBlocks()
{

int aNumber = 22;
// aNumber comes into existence

System.out.println("Number is " + aNumber);
{

int anotherNumber = 99;
// anotherNumber comes into existence
System.out.println("aNumber is " + aNumber);
System.out.println("anotherNumber is " +
anotherNumber);

} // End of block - anotherNumber ceases to exist
System.out.println("aNumber is " + aNumber);

} // End of outer block - aNumber ceases to exist

Figure 4-1 The methodWithTwoBlock() method

98 Chapter 4 Advanced Object Concepts

Understanding Blocks and Scope 99

Figure 4-2 shows some invalid statements. The first assignment aNumberƒ=ƒ75; is
invalid because aNumber has not been declared yet. Similarly, Invalid statement 2,
anotherNumberƒ=ƒ489;, is invalid because it has not been declared yet. Statement 3
is also invalid because anotherNumber still has not been declared. After you declare
anotherNumber, you can use it for the remainder of the block, but Invalid statement 4
is outside the block and anotherNumber has gone out of scope. The last statement in
Figure 4-2, aNumberƒ=ƒ29;, will not work because it falls outside the block in which
aNumber was declared; it actually falls outside the methodWithTwoBlocks() method.

You are not required to vertically align the opening and closing braces for a
block, but your programs are much easier to read if you do.

Within a method, you can declare a variable with the same name multiple times, as long
as each declaration is in its own, nonoverlapping block. For example, the two declara-
tions of variables named someVar in Figure 4-3 are valid because each variable is con-
tained within its own block.The first instance of someVar has gone out of scope before
the second instance comes into scope.

Tip

public static void methodWithTwoBlocks()
{

aNumber = 75;// Invalid statement
int aNumber = 22;
System.out.println("aNumber is " + aNumber);
anotherNumber = 489;// Invalid statement 2
{

anotherNumber = 165;// Invalid statement 3
int anotherNumber = 99;
System.out.println("aNumber is " + aNumber);
System.out.println("anotherNumber is " +
anotherNumber);

}
System.out.println("aNumber is " + aNumber);
System.out.println("anotherNumber is " +

anotherNumber); // Invalid statement 4
}
anumber = 29;// Invalid statement 5

Figure 4-2 The methodWithTwoBlock() method with some invalid statements

4

You cannot declare the same variable name more than once within a block. For exam-
ple, in Figure 4-4, the second declaration of aValue causes an error because you cannot
declare the same variable twice within the outer block of the method. By the same rea-
soning, the third declaration of aValue is also invalid, even though it appears within a
new block.The block that contains the third declaration is entirely within the outside
block, so the first declaration of aValue has not gone out of scope.

If you declare a variable within a class, and use the same variable name within a method
of the class, then the variable used inside the method takes precedence, or overrides,
the first variable. For example, consider a class that holds Employee information includ-
ing two integer fields, aNum and aDept, as shown in Figure 4-5.

Figure 4-5 shows an Employee class with two integers and two void methods. When a
TestEmployee2 program instantiates an Employee object with a statement such as
EmployeeƒadminAssistantƒ=ƒnewƒEmployee();, then either empMethod() or
anotherEmpMethod() can be called using the adminAssistant object and the dot operator (.),
as in adminAssistant.empMethod() or adminAssistant.anotherEmpMethod().

public static methodWithRedeclarations()
{

int aValue = 35;
System.out.println(aValue);
int aValue = 99; // Invalid - second declaration
{

int anotherValue = 58; // Valid
int aValue = 99; // Invalid - third declaration
// This block is inside the outer block

}
}

Figure 4-4 Invalid methodWithRedeclarations()

public static twoDeclarations()
{

{ // Begin first block
int someVar = 7;
System.out.println(someVar);

} // End first block
{ // Begin second block

int someVar = 845;
System.out.println(someVar);

} // End second block
}

Figure 4-3 The twoDeclarations() method

100 Chapter 4 Advanced Object Concepts

Understanding Blocks and Scope 101

When the method call is adminAssistant.empMethod();, the output will indicate
that aNum is 88 and aDept is 55.The empMethod() will use the local aNum valued at
88, but use the class aDept valued at 55. When the method call is
adminAssistant.anotherEmpMethod();, the output will show that aNum is 44
and aDept is 55; in both cases, the class variables are used because they have not been
overridden within anotherEmpMethod().When you write programs, it is best to avoid
confusing situations that arise when you give the same name to a class variable and a
method variable. But, if you do use the same name, be aware that within the method,
the method variable will override the class variable.

Next you will create a method with several blocks to demonstrate block scope.

To demonstrate block scope:

1. Start your text editor, and then open a new document, if necessary.

2. Type the header for a class named DemoBlock as publicƒclass
DemoBlock. On the next three lines, type the opening curly brace ({), the
main() method header, publicƒstaticƒvoidƒmain(String[]ƒargs),
and the main()’s opening curly brace ({).

3. On a new line that is indented one column, declare an integer by typing:

intƒxƒ=ƒ1111;

4. On new, indented lines, type the following two println() statements:

System.out.println("Demonstratingƒblockƒscope");
System.out.println("In firstƒblockƒxƒisƒ"ƒ+ƒx);

public class Employee
{

private int aNum = 44;
private int aDept = 55;
public void empMethod()
{

int aNum = 88;
//aNum overrides the class variable aNum
System.out.println("aNum is " + aNum;
System.out.println("aDept is " + aDept;

}
public void anotherEmpMethod()
{

System.out.println("aNum is " + aNum;
System.out.println("aDept is " + aDept;

}
}

Figure 4-5 Employee2 class with an overriding variable

4

5. Begin a new block by typing an opening curly brace on the next line.
Within the new block, declare another integer by typing intƒyƒ=ƒ2222;.
Within this new block, type the following two statements to display the
values of x and y:

System.out.println("Inƒsecondƒblockƒxƒisƒ"ƒ+ƒx);
System.out.println("Inƒsecondƒblockƒyƒisƒ"ƒ+ƒy);

6. End the block by typing a closing curly brace (}). On the next line, begin a
new block with an opening curly brace.Within this new block, declare a new
integer with the same name as the integer declared in the previous block by
typing intƒyƒ=ƒ3333;

7. Enter two println() statements, a method call, and two more println()
statements, as follows:

System.out.println("Inƒthirdƒblockƒxƒisƒ"ƒ+ƒx);
System.out.println("Inƒthirdƒblockƒyƒisƒ"ƒ+ƒy);
demoMethod();
System.out.println("Afterƒmethodƒxƒisƒ"ƒ+ƒx);
System.out.println("Afterƒmethodƒblockƒyƒisƒ"ƒ+ƒy);

8. Close this block by typing a closing curly brace.

9. Type System.out.println("Atƒtheƒendƒxƒisƒ"ƒ+ƒx);, and then
type a closing curly brace.This last statement in the program displays the
value of x.

10. Finally, enter the following demoMethod() that creates its own x and y, assigns
different values, and then displays them:

publicƒstaticƒvoidƒdemoMethod()
{
ƒƒintƒxƒ=ƒ8888,ƒyƒ=ƒ9999;
ƒƒSystem.out.println("InƒdemoMethodƒxƒisƒ"ƒ+ƒx);
ƒƒSystem.out.println("InƒdemoMethodƒblockƒyƒisƒ"ƒ+ƒy);
}

11. Type the final closing curly brace, and then save the file as DemoBlock.java
in the Chapter.04 folder on your Student Disk. At the command prompt,
compile the file by typing the command javac DemoBlock.java. If nec-
essary, correct any errors and compile again.

12. Run the program by typing the command java DemoBlock.Your output
should look like Figure 4-6.

It is important to understand the impact that blocks have on your variables. Once you
understand the scope of variables, you can more easily locate the source of many errors
within your programs.

102 Chapter 4 Advanced Object Concepts

Overloading a Method 103

To gain a more complete understanding of blocks and scope, change the val-
ues of x and y in the program, and try to predict the exact output before
resaving, recompiling, and rerunning the program.

OVERLOADING A METHOD

Overloading involves using one term to indicate diverse meanings, or writing multi-
ple methods with the same name, but with different arguments. When you use the
English language, you overload words all the time.When you say “open the door,”“open
your eyes,” and “open a computer file,” you are talking about three very different actions
using very different methods, and producing very different results. However, anyone who
speaks English fluently has no trouble understanding your meaning because the verb
open is understood in the context of the noun that follows it.

When you overload a Java method, you write multiple methods with a shared name.The
compiler understands your meaning based on the arguments you use with the method.
For example, suppose you create a class method to apply a simple interest rate to a bank
balance. The method receives two double arguments—the balance and the interest
rate—and displays the multiplied result. Figure 4-7 shows the method.

public static void simpleInterest(double bal, double rate)
{

double interest;
interest = bal * rate;
System.out.println("Interest on " + bal + " at " +

rate + " interest rate is " + interest);
}

Figure 4-7 The simpleInterest() method with two double arguments

Tip

Figure 4-6 Output of the DemoBlock program

4

The simpleInterest() method can receive integer arguments even though it is
defined as needing double arguments because integers will be promoted or
cast automatically to doubles, as you learned in Chapter 1.

When a program calls the simpleInterest() method and passes double values, as in
simpleInterest(1000.00, 0.04), the simple interest will be calculated correctly
as four percent of $1000.00. Assume, however, that the interest rate passed to the
simpleInterest() method comes from inconsistent user input. Some users who want to
indicate an interest rate of four percent might type .04; others might type 4 and assume
that they are typing four percent. When the simpleInterest() method is called with the
arguments $1000.00 and .04, the interest is calculated correctly as 40.00. When the
method is called using $1000.00 and 4, the interest is calculated incorrectly as 4000.00.

A solution for the conflicting use of numbers to represent parameter values is to over-
load the simpleInterest() method. For example, in addition to the simpleInterest()
method shown in Figure 4-7, you could add the method shown in Figure 4-8.

Note the rateAsPercent figure is calculated by dividing by 100.0, and not by
100. If two integers are divided, the result is a truncated integer; dividing by
a double 100.0 causes the result to be a double. Alternately, you could use an
explicit cast such as (double)rate/100.00.

If the method simpleInterest() is called using two double arguments, as in
simpleInterest(1000.00, .04), the first simpleInterest() method shown in
Figure 4-7 will execute. However, if an integer is used as the second parameter in the
call to simpleInterest(), as in simpleInterest(1000.00, 4), then the method
shown in Figure 4-8 will execute.The whole number rate figure will be divided by 100.0
correctly before it is used to determine the interest earned.

Tip

public static void simpleInterest(double bal, int rate)
// Notice rate type
{

double interest, rateAsPercent;
rateAsPercent = rate/100.0;
// Converts whole number rate to decimal equivalent
interest = bal * rateAsPercent;
System.out.println("Interest on " + bal + " at " +

rate + " interest rate is " + interest);
}

Figure 4-8 The simpleInterest() method with a double and an integer argument

Tip

104 Chapter 4 Advanced Object Concepts

Overloading a Method 105

Of course, you could use methods with different names to solve the dilemma of produc-
ing an accurate simple interest figure—for example, simpleInterestRateUsingDouble()
and simpleInterestRateUsingInt(). Using this approach requires that you place a decision
within your program to determine which of the two methods to call, but it is more con-
venient to use one method name and then let the interpreter determine which method
to use. Also, it is easier to remember one reasonable name for tasks that are functionally
identical except for argument types.

You will learn about placing a decision within your program in Chapter 5.

Next you will overload methods to display event dates for Event Handlers Incorporated.
The methods will take one, two, or three integer arguments. If there is one argument, it
is the month, and the event is scheduled for the first day of the given month in the year
2003. If there are two arguments, they are the month and the day in the year 2003.Three
arguments represent the month, day, and year.

In addition to creating your own class to store dates, you can use a built-in
Java class to handle dates. You will learn about this class later in this chapter.

To overload an overloadDate() method to take one, two, or three arguments:

1. Open a new file in your text editor.

2. Create the following DemoOverload class, with three integer variables and
three calls to an overloadDate() method:

publicƒclassƒDemoOverload
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒƒƒintƒmonthƒ=ƒ6,ƒdayƒ=ƒ24,ƒyearƒ=ƒ2003;
ƒƒƒƒoverloadDate(month);
ƒƒƒƒoverloadDate(month,day);
ƒƒƒƒoverloadDate(month,day,year);
ƒƒ}

3. Create the following overloadDate() method that requires one argument:

publicƒstaticƒvoidƒoverloadDate(intƒmm)
{
ƒSystem.out.println("Event dateƒ"ƒ+ƒmmƒ+ƒ"/1/2003");
}

Tip

Tip

4

4. Create the following overloadDate() method that requires two arguments:

publicƒstaticƒvoidƒoverloadDate(intƒmm,ƒintƒdd)
{
ƒSystem.out.println("Eventƒdateƒ"ƒ+ƒmmƒ+ƒ"/"ƒ+
ƒƒddƒ+ƒ"/2003");
}

5. Create the following overloadDate() method that requires three arguments:

publicƒstaticƒvoidƒoverloadDate(intƒmm,ƒintƒdd,ƒintƒyy)
{
ƒSystem.out.println("Eventƒdateƒ"ƒ+ƒmmƒ+ƒ"/"ƒ+ƒ
ƒƒddƒ+ƒ"/"ƒ+ƒyy);
}

6. Type the closing curly brace for the DemoOverload class.

7. Save the file as DemoOverload.java in the Chapter.04 folder on your
Student Disk.

8. Compile the program, correct any errors, recompile if necessary, and then exe-
cute the program. Figure 4-9 shows the output. Notice that whether you call
the overloadDate() method using one, two, or three arguments, the date prints
correctly because you have successfully overloaded the overloadDate() method.

LEARNING ABOUT AMBIGUITY

When you overload a method, you run the risk of creating an ambiguous situation—
one in which the compiler cannot determine which method to use. For example, con-
sider the simple method shown in Figure 4-10.

Figure 4-9 Output of the DemoOverload program

106 Chapter 4 Advanced Object Concepts

Learning About Ambiguity 107

If you declare doubleValue as a double variable, and intValue as an int variable, then
either method call simpMeth(doubleValue); or simpMeth(intValue); results
in the output “Method receives double parameter”.When you call the method with the
double argument, the method works as expected.When you call the method with the
integer argument, then the integer is cast as (or promoted to) a double, and the method
also works.

Note that if the method with the declaration void simpMeth(double d)
did not exist, but the declaration void simpMeth(int i) did exist, then
the method call simpMeth(doubleValue); would fail. Although an inte-
ger can be promoted to a double, a double cannot become an integer. This
makes sense if you consider the potential loss of information when a double
value is reduced to an integer.

If you add a second overloaded simpMeth() method within a program that takes an inte-
ger parameter (as shown in Figure 4-11), then the output changes when you call
simpMeth(intValue);. Instead of promoting an integer argument to a double, the
compiler recognizes a more exact match for the method call that uses the integer argu-
ment, so it calls the version of the method that produces the output “Method receives
integer parameter”.

A more complicated and potentially ambiguous situation arises when the compiler can-
not determine which of several versions of a method to use. Consider the following
overloaded simpleInterest() method declarations:

publicƒstaticƒvoidƒsimpleInterest(doubleƒbal,ƒdoubleƒrate)
publicƒstaticƒvoidƒsimpleInterest(doubleƒbal,ƒintƒrate)
ƒƒ//ƒNoticeƒrateƒtype

A call to simpleInterest() with two double arguments executes the first version of the
method, and a call to simpleInterest() with a double and an integer argument executes
the second version of the method. With each of these calls, the compiler can find an

void simpMeth(int i)
{

System.out.println("Method receives integer parameter");
}

Figure 4-11 The simpMeth() method with an integer argument

Tip

void simpMeth(double d)
{

System.out.println("Method receives double parameter");
}

Figure 4-10 The simpMeth() method with a double argument

4

exact match for the arguments you send. However, if you call simpleInterest() using two
integer arguments, as in simpleInterest(300,6);, an ambiguous situation arises
because there is no exact match for the method call. Because two integers can be pro-
moted to two doubles (thus matching the first version of the overloaded method), or
just one integer can be promoted to a double (thus matching the second version), the
compiler does not know which version of the simpleInterest() method to use and the
program will not execute.You could argue that int, int is “closer” to double, int than it is
to double, double, but the compiler does not make such decisions for you.

An overloaded method is not ambiguous on its own—it only becomes
ambiguous if you create an ambiguous situation. A program containing a
potentially ambiguous situation will run problem free if you do not make any
ambiguous method calls.

It is important to note that you can overload methods correctly by providing different
argument lists for methods with the same name. Methods with identical names that have
identical argument lists, but different return types, are not overloaded—they are illegal.
For example, int aMethod(int x) and void aMethod(int x) cannot coexist
within a program. The compiler determines which of several versions of a method to
call based on argument lists.When the method call aMethod(17); is made, the com-
piler will not know which method to execute because both methods take an integer
argument.

SENDING ARGUMENTS TO CONSTRUCTORS

In Chapter 3, you learned that Java automatically provides a constructor method when
you create a class.You also learned that you can write your own constructor method,
and that you often do so when you want to ensure that fields within classes are initial-
ized to some appropriate default value.Additionally, you can write constructor methods
that receive arguments. Such arguments are often used for initialization purposes when
the values that you want to assign to objects upon creation might vary.

For example, consider the Employee class with two data fields shown in Figure 4-12. Its
constructor method assigns 999 to each potentially instantiated Employee’s empNum.
Any time an Employee object is created using a statement such as Employee
partTimeWorker = new Employee();, even if no other data-assigning methods are
ever used, you are ensured that the partTimeWorker Employee, like all Employees, will
have an initial empNum of 999.

Tip

108 Chapter 4 Advanced Object Concepts

Sending Arguments to Constructors 109

You can use a setEmpNum() method to assign values to individual Employee
objects after construction, but a constructor method assigns the values at the
time of creation.

Alternately, you might choose to create Employees with initial empNums that differ for
each Employee.To accomplish this within a constructor, you need to pass an employee
number to the constructor. Figure 4-13 shows an Employee constructor that receives an
argument. With this constructor, an argument is passed using a statement, such as
EmployeeƒpartTimeWorkerƒ=ƒnewƒEmployee(881);. When the constructor
executes, the integer within the method call is passed to Employee() and assigned to the
empNum.

To demonstrate a constructor with an argument, you will use a new commented ver-
sion of the EventSite5 class you created in Chapter 3.

To alter a constructor:

1. Open a new file in your text editor, and then enter the EventSite6 class
shown in Figure 4-14.This file is similar to the EventSite5.java text file you
created in Chapter 3, but comments have been added for clarity. Save the file
as EventSite6.java in the Chapter.04 folder on your Student Disk.

Employee(int num)
{

empNum = num;
}

Figure 4-13 Employee constructor method with an argument

Tip

public class Employee
{

private int empNum;
private double empSalary;
// Constructor method
Employee()
{

empNum = 999
}
// Other methods go here

}

Figure 4-12 Employee class

4

2. Modify the existing constructor by typing the following code so that the
constructor takes an argument for the site number and then assigns the argu-
ment value to the siteNumber field:
EventSite6(intƒsiteNum)
{
ƒƒsiteNumberƒ=ƒsiteNum;
ƒƒmanagerNameƒ=ƒ"ZZZ";
}

public class EventSite6
{

private int siteNumber;
private double usageFee;
private String managerName;
//Constructor
EventSite
{

siteNumber = 999;
managerName = "ZZZ";

}
//getManagerName() gets managerName
public String getManagerName()
{

return managerName;
}
//getSiteNumber() gets the siteNumber
public int getSiteNumber()
{

return siteNumber;
}
//getUsageFee() gets the usageFee
public double getUsageFee()
{

return usageFee;
}
//setManagerName() assigns a name to the manager
public void setManagerName(String name)
{

managerName = name;
}
//setSiteNumber() assigns a siteNumber
public void setSiteNumber(int n)
{

siteNumber = n;
}
//setUsageFee() assigns a value to the usage fee
public void setUsageFee(double amt)
{

usageFee = amt;
}

}

Figure 4-14 EventSite6.java class

110 Chapter 4 Advanced Object Concepts

Overloading Constructors 111

3. Save the file and then compile and correct any errors.

4. Open a new text file to create a short program to demonstrate the construc-
tor at work by typing the following code:

publicƒclassƒDemoConstruct
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒEventSite6ƒaSiteƒ=ƒnewƒEventSite6(678);
ƒƒSystem.out.println("Siteƒnumberƒisƒ"ƒ
ƒƒƒƒ+ƒaSite.getSiteNumber());
ƒƒ}
}

5. Save the file as DemoConstruct.java in the Chapter.04 folder, and then
compile and test the program.The site number (678) should be assigned to
the aSite object.

OVERLOADING CONSTRUCTORS

If you create a class from which you instantiate objects, Java automatically provides you
with a constructor. Unfortunately, if you create your own constructor, the automatically
created constructor no longer exists.Therefore, once you create a constructor that takes
an argument, you no longer have the option of using the automatic constructor that
requires no arguments.

Fortunately, as with any other method, you can overload constructors. Overloading con-
structors provides you with a way to create objects with or without initial arguments,
as needed. For example, in addition to using the provided constructor method shown in
Figure 4-14, you can create the second constructor method for the Employee class
shown in Figure 4-15. When both constructors reside within the Employee class, you
have the option of creating an Employee object, either with or without an initial
empNum value. When you create an Employee object with EmployeeƒaWorkerƒ=
newƒEmployee();, the constructor with no arguments is called and the Employee
object receives an initial empNum value of 999.When you create an Employee object
with EmployeeƒanotherWorkerƒ=ƒnewƒEmployee(7677);, the constructor that
requires an integer is used, and the anotherWorker Employee receives an initial
empNum of 7677.

Employee()
{

empNum = 999;
}

Figure 4-15 Employee constructor method with no argument

4

Similarly, if you want to pass values to initialize field values for siteNumber and
managerName, you can create a constructor that requires two arguments.You can use
the arguments to initialize field values, but you can also use arguments for any other pur-
pose. For example, you could use the presence or absence of an argument simply to
determine which of two possible constructors to call, yet not make use of the argument
within the constructor method. As long as the constructor argument lists differ, there is
no ambiguity in which constructor method to call.

Next you will overload the EventSite6 constructor to take either no arguments, in which
case the site number is 999, or to take an argument that is the site number.

To overload the EventSite6 constructor:

1. In your text editor, open the EventSite6.java text file from the Chapter.04
folder on your Student Disk, and save it as EventSite7.java. Change the class
name to EventSite7.

2. Position the insertion point at the end of the comment //ƒConstructor,
type s to make the word Constructors, and then press [Enter] to start a
new line.

3. Above the existing constructor that requires an argument, add the new over-
loaded constructor that requires no argument by typing the following:

EventSite7()
{
ƒsiteNumberƒ=ƒ999;
ƒmanagerNameƒ=ƒ"ZZZ";
}

4. Rename the old EventSite6 constructor to EventSite7.

5. Save the file, compile, and correct any errors.

6. In your text editor, open the DemoConstruct.java file from the Chapter.04
folder on your Student Disk, and change the class name to DemoConstruct2.

7. Change the statement EventSite6ƒaSiteƒ=ƒƒnewƒEventSite6(678);,
to EventSite7ƒaSiteƒ=ƒnewƒEventSite7(678);, position the insertion
point at the end of this statement and then press [Enter] to start a new line.

8. Create a new EventSite7 with no constructor argument by typing
EventSite7ƒanotherSiteƒ=ƒnewƒEventSite7();

9. Position the insertion point after the println() statement that displays the site
number of
aSite,ƒSystem.out.println("Siteƒnumberƒisƒ"ƒ+ƒƒaSite.getS
iteNumber());, and then press [Enter] to start a new line.Then type the
following statement to print the site number of anotherSite:

System.out.println("Anotherƒsiteƒnumberƒisƒ"
ƒƒƒ+ƒanotherSite.getSiteNumber());

112 Chapter 4 Advanced Object Concepts

Learning About the this Reference 113

10. Save the program, compile, and test the program.The two site numbers
should print as 678 and 999.

11. Close your text editor.

LEARNING ABOUT THE this REFERENCE

When you start creating classes from objects that you instantiate, the classes can become
large very quickly. Besides data fields, each class can have many methods, including sev-
eral overloaded versions. If you instantiate many objects of a class, the computer mem-
ory requirements can become substantial. Fortunately, it is not necessary to store a
separate copy of each variable and method for each instantiation of a class.

Usually you want each instantiation of a class to have its own data fields. If an Employee
class contains fields for employee number, name, and salary, every individual Employee
object will need a unique number, name, and salary values. However, when you create
a method for the Employee class, any Employee object can use the same method.
Whether the method performs a calculation, sets a field value, or constructs an object,
the instructions are the same for each instantiated object.Therefore, you store just one
copy of a method that all instantiated objects use.

When you use an object method, you use the object name, a dot, and the method
name—for example, aWorker.getEmpNum();. When you refer to the
aWorker.getEmpNum() method, you are referring to the general, shared Employee class
getEmpNum() method; aWorker has access to the method because aWorker is a mem-
ber of the Employee class. However, within the getEmpNum() method, when you access
the empNum field, you access aWorker’s private, individual copy of the empNum field.
Because many Employees might exist, but just one copy of the method exists no mat-
ter how many Employees there are, when you call aWorker.getEmpNum();, the com-
piler must determine whose copy of empNum should be returned by the single
getEmpNum() method.

The compiler accesses the correct object’s field because you implicitly pass to the
getEmpNum method a reference to aWorker. This reference is called the this refer-
ence and is a reserved word in Java. For example, the two getEmpNum() methods shown
in Figure 4-16 perform identically. The first method simply uses the this reference
without you being aware of it; the second method uses the this reference explicitly.

When you pass a reference, you pass a memory address.

Usually you neither want nor need to refer to the this reference within the methods
you write, but the this reference is always there, working behind the scenes, so that the
data field for the correct object can be accessed.

Tip

4

Recall that methods associated with individual objects are instance methods.

In Chapter 3, you learned that most methods you create within a class are nonstatic—
methods that you associate with individual objects.You also created static methods. For
example, the main() method in a program and the method’s main() calls without an
object reference are static. These methods do not have a this reference because they
have no object associated with them; therefore, they are called class methods.

You can also create class variables, which are variables that are shared by every instan-
tiation of a class. For example, you might have a company ID number that is the same
for all Employee objects. You can add a static class variable to the class definition, as
shown in Figure 4-17. Also shown in figure 4-17 is a simple method to display the
employee number along with the employee’s COMPANY_ID.

public class Employee
{

static private int COMPANY_ID = 12345;
private int empNum;
private double empSalary;
Employee(int num)
// Constructor requiring employee number

empNum = num;
}
public void showCompanyID()
{

System.out.println("Worker " + empNum
+ " has company ID " + COMPANY_ID);

}
// Other class methods can go here

}

Figure 4-17 Employee class with a static ID number field

Tip

public void getEmpNum()
{

return empNum;
}
public void getEmpNum()
{

return this.empNum;
}

Figure 4-16 The getEmpNum() methods with implicit and explicit this references

114 Chapter 4 Advanced Object Concepts

Working with Constants 115

No matter how many Employee objects are eventually instantiated, each will refer to
the single COMPANY_ID field. For example, if two Employees are created with
Employee firstWorker =ƒnew Employee(444); and Employee
secondWorker = newƒEmployee(777);, when you write the statement
firstWorker.showCompanyID(), its output is Workerƒ444 has company ID_
12345, and when you write secondWorker.showCompanyID();, the statement’s
output is Worker 777 has COMPANY_ID 12345.The different workers have indi-
vidual IDs, but the same company ID.

Additionally, if you change the value of COMPANY_ID in the Employee class, the value
changes for all class instantiations.Therefore, besides values such as a company ID, good
candidates for static class variables are fields such as a legal minimum wage or a maxi-
mum number of hours that an employee is allowed to work in a single week.When such
values change for one employee, they change uniformly for all employees.

WORKING WITH CONSTANTS

In Chapter 2, you learned to create literal constants within a program.A literal constant
is a fixed value that does not change, such as the literal string “First Java program.”
Variables, on the other hand, do change.When you declare intƒempNum;, you expect
that the value stored in empNum will be different at different times or for different
employees.

Sometimes, however, a variable or data field should be constant; that is, it should not be
changed during the execution of a program. This is known as a constant variable.
While the concept of a constant variable is somewhat of an oxymoron, there are situa-
tions where using a constant variable is reasonable. For example, the value for a com-
pany ID is fixed, so you do not want any methods to alter the company ID value while
a program is running.To prevent alteration, insert the keyword final in the company
ID declaration.Then the name COMPANY_ID becomes a symbolic constant, which
indicates that when you compile any program that uses an object that contains the
COMPANY_ID, the field has a final, unalterable value. By convention, constant fields
are written using all uppercase letters. The compiler does not require using uppercase
identifiers for constants, but using uppercase identifiers helps you distinguish symbolic
constants from variables. For readability, you can insert underscores between words in
symbolic constants.

Mathematical constants are good candidates for receiving final status. For
example, when PI is defined as staticƒfinal double PI = 3.14159;,
it appropriately becomes a constant that should never take on any other
value. A fixed sales tax rate static final double SALES_TAX =
0.075; remains fixed for every use within a program.

Tip

4

You can use the keyword final with methods or classes. When used in this
manner, final indicates limitations placed on inheritance. You will learn
more about inheritance as you become more proficient at object-oriented
programming.

You cannot change the value of a symbolic constant after declaring it; any attempt to
do so will result in a compiler error.You must initialize a constant with a value; this
makes sense when you consider that a constant cannot be changed later. If a constant
does not receive a value upon creation, it can never receive a value. Figure 4-18 shows
a typical declaration of a constant.

A constant always has the same value within a program, so you might wonder why you
cannot use the actual, literal value. For example, why not code 12345 when you need
the company ID rather than going to the trouble of creating the COMPANY_ID sym-
bolic constant? There are at least three good reasons to use the symbolic constant rather
than the literal one:

� The number 12345 is more easily recognized as the company ID if it is asso-
ciated with an identifier such as COMPANY_ID.

� If the company ID changes, you would change the value of COMPANY_ID
at one location within your program—where the constant is defined—rather
than searching for every use of 12345 to change it to a different number.
Also, being able to make the change at one location saves you valuable
programming time.

� Even if you are willing to search for every instance of 12345 in a program to
change it to the new company ID value, you might inadvertently change the
value to one that is being used for something else, such as an employee’s
employee number or salary.

Next you will create a class variable to hold the location of the company headquarters for
Event Handlers Incorporated.The location of the company headquarters is an ideal can-
didate for a class variable. Because the headquarters location is the same for every event
no matter where the actual event is held, the value for the headquarters location should
be stored just once, but every EventSite7 object should have access to the information.

public class Employee
{

static final private int COMPANY_ID = 12345;
// Rest of class goes here

Figure 4-18 Employee class with the symbolic constant COMPANY_ID

Tip

116 Chapter 4 Advanced Object Concepts

Working with Constants 117

To create a class variable for the EventSite7 class:

1. In your text editor, open the EventSite7.java text file from the Chapter.04
folder on your Student Disk, and then change the class name to EventSite8.
Save the file as EventSite8. java.

2. Position the insertion point after the opening curly brace of the class, and
then press [Enter] to start a new line.

3. Type the class variable:

staticƒfinalƒpublicƒStringƒHEADQUARTERSƒ=ƒ"CrystalƒLake,ƒ
IL";

A static variable can be either public or private. If the variable is
private, then you must write a method in your class to access it.

4. Change the EventSite7() constructor to EventSite8(), and then
change the EventSite7(intƒsiteNum) constructor to EventSite8(int
siteNum).

5. Save the file and compile.

6. Start a new file in your text editor, and then create the demonstration pro-
gram named DemoClassVar shown in Figure 4-19.This program shows the
headquarters location is the same for all EventSites.

7. Save the file as DemoClassVar.java in the Chapter.04 folder. Compile and
test the program. Figure 4-20 shows the program’s output.

public class DemoClassVar
{

public static void main(String[] args)
{

EventSite8 oneSite = new EventSite8();
EventSite8 anotherSite = new EventSite8();
oneSite.setSiteNumber(101);
anotherSite.setSiteNumber(202);
System.out.print("The number of one site is ");
System.out.println(oneSite.getSiteNumber());
System.out.print("Headquarters located at ");
System.out.println(oneSite.HEADQUARTERS);
System.out.print("The number of another site is ");
System.out.println(anotherSite.getSiteNumber());
System.out.print("Headquarters located at ");
System.out.println(anotherSite.HEADQUARTERS);

}
}

Figure 4-19 DemoClassVar program

Tip

4

USING AUTOMATICALLY IMPORTED, PREWRITTEN CONSTANTS AND
METHODS

There are many times when you need to create classes from which you will instantiate
objects.You can create an Employee class with fields appropriate for describing employ-
ees and their functions, and an Inventory class with fields appropriate for whatever type
of item it is that you manufacture.There are, however, many classes that a wide variety
of programmers need. Rather than having each Java programmer “reinvent the wheel,”
the creators of Java created nearly 500 classes for you to use in your programs.

You already used several of the prewritten classes without being aware of it. System,
Character, Boolean, Byte, Short, Integer, Long, Float, and Double are actually classes
from which you can create objects.These classes are stored in a package, or a library
of classes, which is simply a folder that provides a convenient grouping for classes.There
are many Java packages containing classes that are available only if you explicitly name
them within your program, but the group of classes that contains the previously listed
classes is used so frequently that it is available automatically to every program you write.
The package that is implicitly imported into every Java program is named java.lang.
The classes it contains are the fundamental classes, or basic classes, as opposed to the
optional classes that must be explicitly named.

You will begin to import optional classes explicitly later in this chapter.

The class java.lang.Math contains constants and methods that you can use to perform
common mathematical functions.All of the constants and methods in the Math class are
static—they are class variables and class methods. A commonly used constant is PI.

Tip

Figure 4-20 Output of the DemoClassVar program

118 Chapter 4 Advanced Object Concepts

Using Automatically Imported, Prewritten Constants and Methods 119

Within the Math class, the declaration for PI is publicƒfinalƒstatic double PI
= 3.14159265358979323846;. Notice that PI is:

� public, so any program can access it directly

� final, so it cannot be changed

� static, so only one copy exists

� double, so it holds a large floating-point value

In geometry, PI is an approximation of the value of the ratio of the circum-
ference of a circle to its diameter.

Another useful constant is E, which represents the base of natural logarithms.
Its definition is public final static double E =
2.7182818284590452354;.

You can use the value of PI within any program you write by referencing the full pack-
age path in which PI is defined; for example areaOfCircle = java.lang.Math.PI
* radius * radius;. However, the Math class is imported automatically into your
programs, so if you simply reference Math.PI, Java will recognize this code as a short-
cut to the full package path. Therefore, the preferred (and simpler) statement is
areaOfCircle = Math.PIƒ*ƒradiusƒ* radius;.

In addition to constants, there are many useful methods available within the Math class.
For example, the Math.max() method returns the larger of two values, and the method
Math.abs() returns the absolute value of a number. The statement largerValueƒ=
Math.max(32,ƒ75) results in largerValue assuming the value 75, and the statement
posValƒ=ƒMath.abs(-245); results in posVal assuming the value 245.Table 4-1 lists
some common Math class methods.

Method Meaning

abs(x) Absolute value of x

acos(x) Arccosine of x

asin(x) Arcsine of x

atan(x) Arctangent of x

atan2(x,y) Theta component of the polar coordinate (r,theta) that corresponds to the
Cartesian coordinate x,y

ceil(x) Smallest integral value not less than x (ceiling)

Table 4-1 Common Math class methods

Tip

Tip

4

Because all constants and methods in the Math class are classwide, there is
no need to create an instance. You cannot instantiate objects of type Math
because the constructor for the Math class is private and your programs can-
not access the constructor.

Unless you are a mathematician, you won’t use many of these Math class methods, and
it is unwise to do so unless you understand their purposes. For example, because it is
illegal to take the square root of a negative number, the method call imaginaryNumber
=ƒMath.sqrt(-12); causes a compiler error and does not execute.

Next you will use the Math class to perform some basic calculations.

To write a program that uses some Math class methods:

1. Open a new file in your text editor.Type the DemoMath class header
publicƒclassƒDemoMath. On a new line, type the opening curly brace
for the class, and then press [Enter].

2. Type the main() method header
publicƒstaticƒvoidƒmain(String[]ƒargs), press [Enter], type the
opening curly brace for the main() method, and then press [Enter] to create
a new line.

3. Create a double variable named val by typing doubleƒvalƒ=ƒ26.9;, and
then press [Enter].

Tip

Method Meaning

cos(x) Cosine of x

exp(x) Exponent, where e is the base of the natural logarithms

floor(x) Largest integral value not greater than x

log(x) Natural logarithm of x

max(x,y) Larger of x and y

min(x,y) Smaller of x and y

pow(x,y) x raised to the y power

random() Random double number between 0.0 and 1.0

rint(x) Closest integer to x (x is a double, and the return value is expressed as
a double)

round(x) Closest integer to x (where x is a float or double, and the return value is
an integer or long)

sin(x) Sine of x

sqrt(x) Square root of x

tan(x) Tangent of x

Table 4-1 Common Math class methods (continued)

120 Chapter 4 Advanced Object Concepts

Using Automatically Imported, Prewritten Constants and Methods 121

4. Type the following statement that displays the value on the screen:
System.out.println("Theƒvalueƒisƒ"ƒ+ƒval);

5. On separate lines, type the following statements to demonstrate the Math
class methods:

System.out.print("Absoluteƒvalueƒofƒvalƒisƒ");
System.out.println(Math.abs(val));
System.out.print("Absoluteƒvalueƒofƒ-valƒisƒ");
System.out.println(Math.abs(-val));
System.out.print("Theƒsquareƒrootƒofƒvalƒisƒ");
System.out.println(Math.sqrt(val));
System.out.print("Valƒroundedƒisƒ");
System.out.println(Math.round(val));
System.out.print("A randomƒnumberƒisƒ");
System.out.println(Math.random());
System.out.print("8.0ƒraisedƒtoƒtheƒ2ƒpowerƒisƒ");
System.out.println(Math.pow(8.0,ƒ2));

The expression -val means “negative val.” The minus sign (-) used in this
manner is a unary or single-argument operator. You will learn more about
unary operators in Chapter 5.

6. Add closing curly braces for the main() method and for the class.

7. Save the program as DemoMath.java in the Chapter.04 folder on your
Student Disk, compile the program, run it, and then compare your results to
Figure 4-21.

8. Add additional statements that demonstrate any of the other Math methods
that you might use in your programs. Save, compile, and test the program again.

Figure 4-21 Output of the DemoMath program

Tip

4

USING PREWRITTEN IMPORTED METHODS

Java contains hundreds of classes, only a few of which—such as java.lang—are included
automatically in the programs you write.To use any of the other prewritten classes, you
must use one of three methods:

� Use the entire path with the class name.

� Import the class.

� Import the package which contains the class you are using.

For example, the java.util class package contains useful methods that deal with dates and
times.Within this package, a class named Date is defined.You can instantiate an object
of type Date from this class by using the full class path, as in java.util.Date
myAnniversaryƒ=ƒnewƒjava.util.Date();. Alternately, you can shorten the
declaration of myAnniversary to DateƒmyAnniversaryƒ=ƒnewƒDate(); by includ-
ing importƒjava.util.Date; as the first line in your program.An import statement
allows you to abbreviate lengthy class names by notifying the Java program that when
you use Date, you mean the java.util.Date class.You must place any import statement
you use before any executing statement in your program.That is, you can have a blank
line or a comment line—but nothing else—prior to an import statement.

Date is not a reserved word; it is a class you are importing. If you do not want
to import the java utility’s Date class, you are free to write your own Date class.

An alternative to importing a class is to import an entire package of classes.You can use
the asterisk (*) as a wildcard symbol to represent all the classes in a package.Therefore,
the import statement importƒjava.util.*; imports the Date class and any other
java.util classes as well.There is no disadvantage to importing the extra classes, and you
will most commonly see the wildcard method in professionally written Java programs.

You cannot use the Java language wildcard exactly like a DOS or UNIX wild-
card because you cannot import all the Java classes with import java.*;.
The Java wildcard works only with specific packages such as import
java.util.*; or importƒjava.lang.*;.

Notice that the import statement ends with a semicolon. The import statement
does not move the entire imported class or package into your program as its
name implies. Rather, it simply notifies the program that you will be using the
data and method names that are part of the imported class or package.

The Date class has several constructors. For example, if you construct a Date object with five
integer arguments, they become the year, month, day, hour, and minutes.A Date object con-
structed with three integer arguments assumes the arguments to be the year, month, and day,

Tip

Tip

Tip

122 Chapter 4 Advanced Object Concepts

Using Prewritten Imported Methods 123

and the time is set to midnight.The constructor that takes no argument assigns the current
moment to a Date object. The current moment is the number of milliseconds that have
elapsed since midnight, January 1, 1970.Therefore, the statement Date myAnniversary
=ƒnewƒDate() assigns a value that is a very large 12- or 13-digit number to the
myAnniversary variable.You can retrieve this number with a method named getTime().The
statement System.out.println("Millisecondsƒsince 1/1/70ƒareƒ"ƒ+
myAnniversary.getTime()); results in the output Milliseconds since 1/1/70
areƒ1066233611927 when the program is run at midnight on October 15, 2003.

If you set the hours in a Date object, a 24-hour clock is assumed—for
example, 13 is 1 P.M.

Although it is interesting, the number of milliseconds elapsed since 1970 is not a useful
piece of information for most people. Fortunately, the Date class does contain a variety
of methods such as setMonth(), getMonth(), setDay(), getDay(), setYear(), and getYear(),
which supply more-useful information.The program shown in Figure 4-22 shows the
values of two dates being set and retrieved.

import java.util.*;
public class DemoDate
{

public static void main(String[] args)
{

Date toDay = new Date();
Date birthDay = new Date(82,6,14);
System.out.println(toDay);
System.out.print("Current month is ");
System.out.println(toDay.getMonth());
System.out.print("Current day is ");
System.out.println(toDay.getDate());
System.out.print("Current year is ");
System.out.println(toDay.getYear());
System.out.print("Birth month is ");
System.out.println(birthDay.getMonth());
System.out.print("Birth day is ");
System.out.println(birthDay.getDate());
System.out.print("Birth year is ");
System.out.println(birthDay.getYear());

}
}

Figure 4-22 DemoDate program

Tip

4

You can perform arithmetic using dates. For example, if toDay is declared to hold today’s
date with DateƒtoDayƒ=ƒnewƒDate();, then you can use the following code to find
out the due date of a bank certificate that matures in 180 days by adding 180 to the day
part of the Date object:

toDay.setDate(toDay.getDate()ƒ+ƒ180);
System.out.println("Inƒ180ƒdaysƒitƒwillƒbeƒ"ƒ+ƒtoDay);

The compiler will interpret an incorrect date, such as March 32, as being April 1.
This makes many calculations with dates easier. For example, if you bill a cus-
tomer on August 30 and allow 10 days for payment, you can add 10 to the
billing day, and the compiler will understand August 40 to be September 9.

For information about time, including how leap years and leap seconds are
calculated, go to the U.S. Naval Observatory Web site at
http://tycho.usno.navy.mil.

Any year that you use with these Date class methods is a value that is 1900 less than the
actual year. For example, 82 means 1982 and 105 means 2005.The month is a value from
0 through 11; January is 0, February is 1, and so on.You must be aware of this value
organization when analyzing the meaning of a date.

Next you will use the Date class by declaring some Date variables and keeping track of
the length of time it takes for the program to run.

To write a program that uses the Date class:

1. Open a new file in your text editor.

2. For the first line in the file, type importƒjava.util.*;, press [Enter],
and then indent the line two spaces.

3. Begin a DemoDate2 class with the header publicƒclassƒDemoDate2.
Press [Enter], type the opening curly brace for the class, and then press
[Enter] again.

4. On the new line, indent two more spaces, and then type the following
main() class header: publicƒstaticƒvoidƒmain(String[]ƒargs). On
a new line, enter the opening curly brace for the main() method, and then
press [Enter].

5. Declare a variable named startTime, and then assign it the current time by
typing DateƒstartTimeƒ=ƒnewƒDate();.

6. Declare another variable to hold the day your Java programming class began, for
example, DateƒclassStartƒ=ƒnewƒDate(103,7,25); (where 103,7,25 in
this example is August 25, 2003). Don’t forget that the current year is 1900 less
than the actual year and that the months are numbered 0 through 11.

Tip

Tip

124 Chapter 4 Advanced Object Concepts

Using Prewritten Imported Methods 125

7. Display the current date and the class start date by typing the following:

System.out.println("Theƒcurrentƒdateƒisƒ"ƒ+ƒstartTime);
System.out.println("Theƒclassƒstartedƒonƒ"ƒ+ƒclassStart);

8. Save the file as DemoDate2.java in the Chapter.04 folder on your
Student Disk.

Now enter a statement to print the time it takes to run this program.You will create a
new endTime object that will hold the current date and time of its creation. Depending
on the speed of the computer processor you are using, this time should be a few hun-
dred milliseconds later than it was when the program started. The calculation involves
using the getTime() method for the endTime and startTime objects and displaying the
difference between the two values.

To use the getTime() method:

1. Open DemoDate2.java, if necessary, and then change the class name to
DemoDate3.java.

2. Position the insertion point after the last print statement, press [Enter], and
then type the following code to include the getTime() method:

DateƒendTimeƒ=ƒnewƒDate();
System.out.print("Timeƒelapsedƒisƒ");
System.out.print(endTime.getTime()ƒ-ƒ
ƒstartTime.getTime());
System.out.println("ƒmilliseconds");

3. Add the closing curly brace for the main() method as well as the closing
curly brace for the program.

4. Save the program as DemoDate3.java, and then compile and test the
program.

When you compile the DemoDate3.java program, you might receive the fol-
lowing error from the compiler: DemoDate3.javaƒusesƒor overrides
a deprecated API. Recompile with "-deprecation" for
details. 1ƒwarning. This warning indicates that your program com-
piled successfully. A deprecated API simply indicates that your program uses
something that has been improved in subsequent versions of Java. If you
want to see information about the methods that are deprecated, then you can
recompile the DemoDate3 program using javacƒ-deprecation
DemoDate3.java.

5. Add some extra println() statements to the program, and save, compile, and
run the program again. Does the program take longer to execute?

Help
?

4

LEARNING ABOUT GREGORIAN CALENDARS

The preceding Help text indicates that Date is a deprecated API. Most of the methods
in the Date class have been replaced by the GregorianCalendar class to support the
Gregorian calendar, the calendar used in most of the western world.There are seven con-
structors for GregorianCalendar objects.The default creates a calendar with the current
date and time in the default locale.You can use other constructors to specify the year,
month, day, hour, minute, and second.You create a calendar object with the default con-
structor GregorianCalendarƒcalendarƒ=ƒnewƒGregorianCalendar();. To
calculate time in milliseconds, you can use the getTimeInMillis() method, as in
calendar.getTimeInMillis().

Information such as the day, month, and year can be retrieved from a GregorianCalendar
object by using a class get() method, and then specifying what you want as an argument.
All values returned are of type int. For example, you could get the day of the year with
the statement intƒdayOfYearƒ=ƒcalendar.get(calendar.DAY_OF_YEAR);.
Some of the possible arguments to the get() method are shown in Table 4-2.

Next you will construct a program using the GregorianCalendar class and using some
of the arguments to the GregorianCalendar get() method.

To write a program that uses the GregorianCalendar class:

1. Open a new file in your text editor.

2. For the first line in the file, type importƒjava.util.*;, press [Enter],
and then indent the line two spaces.

3. Begin by typing a header class publicƒclassƒBirthdate. Press [Enter],
type the opening curly brace for the class, and then press [Enter] again.

Arguments Values returned by get()

DAY_OF_YEAR A value of 1 to 366

DAY_OF_MONTH A value from 1 to 31

DAY_OF_WEEK SUNDAY, MONDAY, …, SATURDAY, corresponding to values of 1 to 7

YEAR The current year, for example, 2003

MONTH JANUARY, FEBRUARY, …, DECEMBER, corresponding to values of 0 to 11

HOUR A value of 1 to 12 being the current hour in the A.M. or P.M.

AM_PM A.M. or P.M., which correspond to values of 0 to 1

HOUR_OF_DAY A value of 0 to 23

MINUTE The current minute in the current hour, a value of 0 to 59

SECOND The second in the current minute, a value of 0 to 59

MILLISECOND The millisecond in the current second, a value of 0 to 999

Table 4-2 Some possible returns from the GregorianCalendar get() method

126 Chapter 4 Advanced Object Concepts

Learning About Gregorian Calendars 127

4. On the new line, indent two more spaces, and then type the following main
class header: public static void main(String[] args).Type the opening
curly brace for the main() method, and then press [Enter].

5. Declare integer values to hold a birthdate year, month, and day. Place each on
a separate line by pressing [Enter] after each integer declaration:
intƒayearƒ=ƒ1940;
intƒamonthƒ=ƒ0;//monthƒisƒ0ƒtoƒ11
intƒadayƒ=ƒ31;

6. Create a new GregorianCalendar object acalendar as GregorianCalendar
acalendar = new GregorianCalendar(ayear,amonth,aday);.

7. Press [Enter] and create a second new GregorianCalendar bcalendar as
GregorianCalendarƒbcalendarƒ=ƒnewƒGregorianCalendar();.

8. Press [Enter], and then create three separate calls to the get() method, storing
each value returned in a separate integer variable byear, bmonth, and bday:
intƒbyearƒ=ƒbcalendar.get(bcalendar.YEAR);
intƒbmonthƒ=ƒbcalendar.get(bcalendar.MONTH);
intƒbdayƒ=ƒbcalendar.get(bcalendar.DAY_OF_WEEK);

9. Display the current year, month, and day by typing the following:
System.out.println("Theƒcurrentƒyearƒisƒ"ƒ+ƒbyear);
System.out.println("Theƒcurrentƒmonthƒisƒ"ƒ+ƒbmonth);
System.out.println("Theƒcurrentƒdayƒisƒ"ƒ+ƒbday);
System.out.println("Onƒthis dayƒyou areƒ"ƒ+(byearƒ-
ƒayear)+ƒ"ƒyearsƒold");

10. Finally, put the closing curly braces on separate lines to end the main()
method and the Birthday class.

11. Save the file as Birthdate.java in the Chapter.04 folder on your Student
Disk. Compile and run the program.The output is shown in Figure 4-23.
Note that your results may differ from the output shown in Figure 4-23.

Figure 4-23 Output of the Birthdate program

4

CHAPTER SUMMARY
❒ A variable’s scope is the portion of a program within which you can reference that

variable. A variable comes into scope (comes into existence) when you declare it,
and goes out of scope (ceases to exist) at the end of the block in which it is
declared.

❒ A block is the code between a pair of curly braces.You can nest blocks within
other blocks.Within a method, you can declare a variable with the same name mul-
tiple times as long as each declaration is in its own, nonoverlapping block.Within
nested blocks, you cannot declare the same variable name more than once. If you
declare a variable within a class and use the same variable name within a method of
the class, then the variable used inside the method takes precedence, or overrides,
the first variable.

❒ Overloading involves writing multiple methods with the same name but different
argument lists. Methods that have identical argument lists but different return types
are not overloaded; they are illegal.

❒ Constructor methods can receive arguments and be overloaded. If you explicitly cre-
ate a constructor for a class, the automatically created constructor no longer exists.

❒ You store just one copy of a method for use with each object.You store separate
copies of data fields for each object.The compiler accesses the correct object’s data
fields because you implicitly pass a this reference to class methods. Static methods
do not have a this reference because they have no object associated with them.
Static methods are also called class methods.

❒ Static class variables are those variables that are shared by every instantiation of a class.

❒ After a program is compiled, literal constants never change. Also, the values stored
in symbolic constants never change.You create a symbolic constant by inserting the
keyword final before a variable name. By convention, constant fields are written
using all uppercase letters. A constant must be initialized with a value.

❒ Java contains nearly 500 prewritten classes which are stored in a package, which is
simply a folder that provides a convenient grouping for classes.The package that is
implicitly imported into every Java program is named java.lang.The classes it con-
tains are the fundamental classes, as opposed to the optional classes, which must be
explicitly named.

❒ The class java.lang.Math contains constants and methods that can be used to per-
form common mathematical functions. All of the constants and methods in the
Math class are static—they are class variables and class methods. Common useful
Math class methods include those used for finding an absolute value, taking a square
root, and rounding. To use a prewritten class other than java.lang, you must use the
entire path with the class name, import the class, or import the package that
contains the class.

128 Chapter 4 Advanced Object Concepts

Review Questions 129

❒ An import statement allows you to abbreviate lengthy class names by notifying the
Java program that when you use class names you are referring to those within the
imported class. Any import statement you use must be placed before any executing
statement in your program. An alternative to importing a class is to import an
entire package of classes.To do so, you can use the asterisk (*) as a wildcard symbol
to represent all the classes in a package.

❒ The Date class has several constructors: one that takes no argument and assigns the
current moment to a Date object; and others that take the date, or the date and
time.The current moment is the number of milliseconds that have elapsed since
midnight, January 1, 1970.You can retrieve this number with the getTime()
method.The Date class contains a variety of other methods, such as setMonth(),
getMonth(), setDay(), getDay(), setYear(), and getYear(), which supply more-useful
information.

❒ The GregorianCalendar class is the calendar generally used in the western world.
The GregorianCalandar class has seven constructors and a number of get() methods
to define and manipulate dates and time.

REVIEW QUESTIONS
1. The code between a pair of curly braces in a method is a .

a. function

b. block

c. brick

d. sector

2. When a block exists within another block, the blocks are .

a. structured

b. nested

c. sheltered

d. illegal

3. The portion of a program within which you can reference a variable is the
variable’s .

a. range

b. space

c. domain

d. scope

4

4. You can declare a variable with the same name multiple times .

a. within a statement

b. within a block

c. within a method

d. never

5. If you declare a variable within a class, and declare and use the same variable
name within a method of the class, .

a. the variable used inside the method takes precedence

b. the class variable takes precedence

c. they become the same variable with the same memory address

d. an error will occur

6. A method variable will a class variable with the same name.

a. acquiesce to

b. destroy

c. override

d. alter

7. Overloaded methods must have the same .

a. name

b. number of arguments

c. argument names

d. type of argument

8. If a method is written to receive a double argument, and you pass an integer to
the method, then the method will .

a. work correctly; the integer will be promoted to a double

b. work correctly; the integer will remain an integer

c. execute; but any output will be incorrect

d. not work; an error message will be issued

9. A constructor arguments.

a. can receive

b. cannot receive

c. must receive

d. can receive a maximum of 10

10. A constructor overloaded.

a. can be

b. cannot be

130 Chapter 4 Advanced Object Concepts

Review Questions 131

c. must be

d. is always automatically

11. Usually you want each instantiation of a class to have its own copy of
.

a. the data fields

b. the class methods

c. both of the above

d. none of the above

12. If you create a class and instantiate two objects, you usually store
for use with the objects.

a. one copy of each method

b. two copies of the same method

c. two different methods

d. data only, not methods

13. The this reference .

a. can be used implicitly

b. must be used implicitly

c. must not be used implicitly

d. must not be used

14. Methods that you associate with individual objects are .

a. private

b. public

c. static

d. nonstatic

15. Variables that are shared by every instantiation of a class are .

a. class variables

b. private variables

c. public variables

d. illegal

16. The keyword final in a variable declaration indicates .

a. the end of the program

b. a static field

c. a symbolic constant

d. that no more variables will be declared in the program

4

17. Java classes are stored in a folder or .

a. packet

b. package

c. bundle

d. gaggle

18. Which of the following statements determines the square root of a number and
assigns it to the variable s?

a. sƒ=ƒsqrt(number);

b. sƒ=ƒMath.sqrt(number);

c. numberƒ=ƒsqrt(s);

d. numberƒ=ƒMath.sqrt(s);

19. A GregorianCalandar object can be created with one of
constructors.

a. two

b. four

c. seven

d. nine

20. The get() method using the DAY_OF_WEEK argument returns
.

a. SUNDAY to SATURDAY

b. a value from 0 to 6

c. a value from 1 to 7

d. a value of 1 to 6

EXERCISES
1. a. Create a class named Commission that includes three variables: a double sales

figure, a double commission rate, and an integer commission rate. Create two
overloaded methods named computeCommission().The first method takes two
double arguments representing sales and rate, multiplies them, and then displays
the results.The second method takes two arguments: a double sales figure and
an integer commission rate.This method must divide the commission rate fig-
ure by 100.0 before multiplying by the sales figure and displaying the commis-
sion. Supply appropriate values for the variables, and write a main() method
that tests each overloaded method. Save the program as Commission.java in

132 Chapter 4 Advanced Object Concepts

Exercises 133

the Chapter.04 folder on your Student Disk, and then compile and test the
program.

b. Add a third overloaded method to the Commission program you created in
Exercise 1a.The third overloaded method takes a single argument representing
sales.When this method is called, the commission rate is assumed to be 7.5
percent and the results are displayed.To test this method, add an appropriate
call in the Commission program’s main() method. Save the program as
Commission2.java in the Chapter.04 folder on your Student Disk, and then
compile and test it.

2. Create a class named Pay that includes five double variables that hold hours
worked, rate of pay per hour, withholding rate, gross pay, and net pay. Create three
overloaded computeNetPay() methods. Gross pay is computed as hours worked,
multiplied by pay per hour.When computeNetPay() receives values for hours, pay
rate, and withholding rate, it computes the gross pay and reduces it by the appro-
priate withholding amount to produce the net pay.When computeNetPay()
receives two arguments, the withholding rate is assumed to be 15 percent.When
computeNetPay() receives one argument, the withholding rate is assumed to be
15 percent, and the hourly rate is assumed to be 4.65.Write a main() method that
tests all three overloaded methods. Save the program as Pay.java in the
Chapter.04 folder on your Student Disk.

3. a. Create a class named Household that includes data fields for the number of
occupants and the annual income, as well as methods named setOccupants(),
setIncome(), getOccupants(), and getIncome() that set and return those values,
respectively. Additionally, create a constructor that requires no arguments and
automatically sets the occupants field to 1 and the income field to 0. Save this
file as Household.java in the Chapter.04 folder on your Student Disk. Create a
program named TestHousehold that demonstrates that each method works cor-
rectly. Save the file as TestHousehold.java in the Chapter.04 folder on your
Student Disk.

b. Create an additional overloaded constructor for the Household class you created
in Exercise 3a.This constructor receives an integer argument and assigns the
value to the occupants field. Add any needed statements to TestHousehold to
ensure that the overloaded constructor works correctly, save it, and then test it.

c. Create a third overloaded constructor for the Household class you created in
Exercises 3a and 3b.This constructor receives two arguments, the values of
which are assigned to the occupants and income fields, respectively. Alter the
TestHousehold program to demonstrate that each version of the constructor
works properly. Save the program, and then compile and test it.

4. Create a class named Box that includes integer data fields for length, width, and
height. Create three constructors that require one, two, and three arguments,
respectively.When one argument is used, assign it to length, assign zeros to height
and width, and print “Line created”.When two arguments are used, assign them to
length and width, assign zero to height, and print “Rectangle created”.When three
arguments are used, assign them to the three variables and print “Box created”.

4

Save this file as Box.java in the Chapter.04 folder of your Student Disk. Create a
program named TestBox that demonstrates that each method works correctly. Save
the test file as TestBox.java in the Chapter.04 folder on your Student Disk.

5. What is the result when you compile and run the following code? Why?

classƒScope
{
ƒintƒscopeIntƒ=ƒ1;
ƒvoidƒscopeDisplay()
ƒ{
ƒƒƒintƒscopeIntƒ=ƒ10;
ƒƒƒSystem.out.println("scopeInt = " + scopeInt);
}
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
{
ƒƒƒScopeƒscopeExerciseƒ=ƒnewƒScope();
ƒƒƒscopeExercise.scopeDisplay();
ƒ}
ƒ}

6. a.What is the result when you compile and run the following code? Why?

classƒOverload
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒƒOverloadƒoverloadExerciseƒ=ƒnewƒOverload();
ƒƒƒoverloadExercise.methodOv();
ƒƒƒoverloadExercise.methodOv(6.1,ƒ3);
ƒ}
ƒvoidƒmethodOv()
ƒ{
ƒƒƒSystem.out.println("noƒarguments");
ƒ}
ƒvoidƒmethodOv(doubleƒdblArg,ƒintƒintArg)
ƒ{
ƒƒƒSystem.out.println("dblArgƒ=ƒ"ƒ+ƒdblArgƒ+ƒ"intArgƒ=ƒ"ƒ+
ƒƒƒƒƒƒintArg);
ƒƒ}
}

b. What happens when you compile and run the program shown in Exercise 6a if
you replace the line overloadExercise.methodOv(6.1,ƒ3); with
overloadExercise.methodOv(6,ƒ3);, and why?

c. What happens if you change the program shown in Exercise 6a as follows,
and why?

classƒOverload
{
ƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

134 Chapter 4 Advanced Object Concepts

Exercises 135

ƒƒ{
ƒƒƒOverloadƒoverloadExerciseƒ=ƒnewƒOverload();
ƒƒƒoverloadExercise.methodOv(6.1, 3.2);
ƒƒ}
ƒƒvoid methodOv(double dblArg,ƒfloatƒfltArg)
ƒƒ{
ƒƒƒSystem.out.println("dblArgƒ=ƒ"ƒ+ƒdblArgƒ+ƒ"ƒfltArgƒ=ƒ"ƒ
+ƒfltArg);
ƒƒƒ}
ƒƒvoidƒmethodOv(floatƒfltArg,ƒdoubleƒdblArg)
ƒƒ{
ƒƒƒSystem.out.println("dblArgƒ=ƒ"ƒ+ƒdblArgƒ+ƒ"ƒfltArgƒ=ƒ"
ƒƒƒƒƒƒ+ƒfltArg);
ƒƒ}
}

d. If the program shown in Exercise 6c results in a compile error, how would you
fix the program so it compiles and runs successfully?

7. Create a class named Shirt with data fields for collar size and sleeve length.
Include a constructor method that takes arguments for each field. Also include a
String class variable named material and initialize it to “cotton”.Write a program
named TestShirt to instantiate three Shirt objects with different collar sizes and
sleeve lengths, and then display all the data, including material, for each shirt. Save
both the Shirt.java and TestShirt.java programs in the Chapter.04 folder of
your Student Disk.

8. Create a class named CheckingAccount with data fields for an account number
and a balance. Include a constructor method that takes arguments for each field.
Include a double class variable that holds a value for the minimum balance
required before a monthly fee is applied to the account. Set the minimum balance
to 200.00.Write a program named TestAccount in which you instantiate two
CheckingAccount objects and display the account number, balance, and minimum
balance without fee for both accounts. Save both the CheckingAccount.java
and TestAccount.java programs in the Chapter.04 folder on your Student Disk.

9. Write a Java program to determine the answers for each of the following:

a. the square root of 30

b. the sine and cosine of 100

c. the value of the floor, ceiling, and round of 44.7

d. the larger and the smaller of the character K and the integer 70

Save the file as MathTest.java in the Chapter.04 folder on your Student Disk.

10. Write a program to calculate how many milliseconds it is from today until the
first day of next summer (assume that this date is June 21). Use the Date class.
Save the file as Summer.java in the Chapter.04 folder on your Student Disk.

4

11. Write a program to calculate how many days it is from today until the end of the
current year. Use the Date class. Save the file as YearEnd.java in the Chapter.04
folder on your Student Disk.

12. What is the result when you compile and run the following code, and why?

publicƒclassƒMathEx6
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒƒSystem.out.println(Math.round(1.49));
ƒƒƒƒSystem.out.println(Math.round(1.50));
ƒƒƒƒSystem.out.println(Math.round(-1.49));
ƒƒƒƒSystem.out.println(Math.round(-1.50));
ƒƒƒ}
}

13. What is the result when you compile and run the following code, and why?

publicƒclassƒMathEx13
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒƒSystem.out.println(Math.ceil(1.49));
ƒƒƒSystem.out.println(Math.ceil(1.50));
ƒƒƒSystem.out.println(Math.ceil(-1.49));
ƒƒƒSystem.out.println(Math.ceil(-1.50));
ƒƒ}
}

14. What is the result when you compile and run the following code, and why?

publicƒclassƒMathEx14
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒƒSystem.out.println(Math.floor(1.49));
ƒƒƒSystem.out.println(Math.floor(1.50));
ƒƒƒSystem.out.println(Math.floor(-1.49));
ƒƒƒSystem.out.println(Math.floor(-1.50));
ƒ}
}

15. Modify the Employee class shown in Figure 4-17 by changing the class name to
EmployeeWithDate.Then change the showCompanyID() method so it shows the
current date, in addition to the employee number and company ID. Save the file
as EmployeeWithDate.java in the Chapter.04 folder on your Student Disk.
Then write a program that creates and displays two or more EmployeeWithDate
objects. Save this new program as UseEmployeeWithDate.java in the
Chapter.04 folder on your Student Disk.

136 Chapter 4 Advanced Object Concepts

Case Project 137

16. Write a program to calculate how many milliseconds it is from today until the
first day of next summer (assume that this date is June 21). Use the
GregorianCalendar class. Save the file as Summer2.java in the Chapter.04 folder
on your Student Disk.

17. Write a program to calculate how many days it is from today until the end of the
current year. Use the GregorianCalendar class. Save the file as YearEnd2.java in
the Chapter.04 folder on your Student Disk.

18. Each of the following files in the Chapter.04 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, save DebugThree1.java as FixDebugFour1.java.

a. DebugFour1.java

b. DebugFour2.java

c. DebugFour3.java

d. DebugFour4.java

CASE PROJECT
The Pool Associates operates a business that offers a variety of services to the general
public who own swimming pools. Each year, Pool Associates cleans local pools and
fills those pools when needed. Because swimming pools require a different amount of
time to service, your job is to write a program that calculates the amount of time it
will take to fill the pools with water.Then a reasonable estimate of fill-up time can be
made before the job begins.This will enable Pool Associates to charge for pool fill-up
on the basis of estimated hours.The table below gives some necessary parameters for
estimating the fill-up time for a small pool and a large pool. Calculate the fill-up time
for a small pool and a large pool. A small pool is considered 20 by 12 by 4 feet, and a
large pool 30 by 20 by 10 feet. Save the program as Swimming.java in the
Chapter.04 folder on your Student Disk.

Problem Parameters

Pool Volume L*W*D

Pool Capacity L*W*D*CAPACITY

Time to Fill L*W*D*CAPACITY/(RATE_OF_FLOW*60)

RATE_OF_FLOW 50.0 gal/min

CAPACITY 7.5 gal/cubic foot

L – pool length

W – pool width

D – pool depth

Case
Project

4

139

CHAPTER

5
INPUT AND SELECTION

In this chapter, you will:
� Accept keyboard input
� Use the JOptionPane class for GUI input and output
� Draw flowcharts
� Make decisions with the if and if...else structures
� Use compound statements in an if or if...else structure
� Nest if and if...else statements
� Use AND and OR operators
� Use the switch statement
� Use the conditional and NOT operators
� Understand precedence

Lynn Greenbrier asks, “Why are you frowning?”

“It’s fun writing programs,” you tell her,“but I don’t think my programs can
do much yet.When I use programs written by other people, I can respond
to questions and make choices. In addition, other people’s programs keep
running for a while—the programs I write finish as soon as they start.”

“You’re disappointed because the programs you’ve written so far simply
carry out a sequence of steps,” Lynn says.“You need to make your programs
interactive by accepting user input.To be able to do this, you need to learn
about decision-making structures.”

PREVIEWING THE CHOOSEMANAGER PROGRAM USING THE EVENT CLASS

To preview the ChooseManager program using the Event class:

1. In your text editor, open the Chap5Event.java file from the Chapter.05
folder on your Student Disk and examine the code.This file contains a class
definition for a class that stores information about events that Event Handlers
Incorporated will handle.You will create a similar class file in this chapter.

2. At the command line, compile the Chap5Event.java file using the com-
mand javac Chap5Event.java.

3. Open the Chap5ChooseManager.java file from the Chapter.05 folder on
your Student Disk and examine the code.This file contains a program that
will demonstrate prompting the user for input and creating objects based on
the input.

4. At the command line, compile the Chap5ChooseManager.java file using
the command javac Chap5ChooseManager.java.

5. Execute the program by typing the command java Chap5ChooseManager.
At the prompt to enter C, P, or N, ignore the directions, and enter an invalid
letter. Do this as many times as you like—the program will continue to prompt
you until you enter a valid letter.Then enter C, P, or N to see the name of the
manager and the minimum charge assigned to your event.You will create a
similar program in this chapter.

ACCEPTING KEYBOARD INPUT

In Chapters 1 through 4 of this book, you wrote programs that created objects, performed
mathematical calculations, and produced output.A shortcoming of these programs is that
when you write the program you must know the values with which you want to work.
It is far more useful to provide values to your program at run time, that is, while the
program is executing.A program that accepts values at run time is interactive because it
exchanges communications, or interacts, with the user. Providing values during the exe-
cution of a program requires input; the simplest form of input to use is keyboard entry
from the program’s user.

You already have used the System class and its out object and println() method to produce
output.The in object is similar; it has access to a method named read() that retrieves data
from the keyboard. Figure 5-1 shows a program that accepts simple user input.

The DemoInput class shown in Figure 5-1 has just one method—a main() method.
At the end of the line containing the main() method header is the phrase throws
Exception.The main() methods you have written that use System.out.println();
have not required this phrase, but programs you write using System.in.read(); do.
An exception is an error situation. Errors are the “exception to the rule.” Unfortunately,

140 Chapter 5 Input and Selection

Accepting Keyboard Input 141

when a program user provides input, all sorts of error situations can arise. For example,
the keyboard might be disconnected or the user might enter the wrong type of data.As
you become a better Java programmer, you learn to handle these exceptional situations
by writing code to take appropriate action, such as issuing detailed messages that explain
the problem to the user. For now, however, you can let the compiler handle the prob-
lem by throwing the exception, or passing the error to the operating system.The code
throws Exception after the main() method header accomplishes this; a program that
reads keyboard input will not compile without this phrase.

You write Exception with an uppercase E because it is a class name.
Classes, by convention, begin with uppercase letters.

In Figure 5-1, a character named userInput is declared inside the main() method of the
DemoInput program.The string “Please enter a character ” prints on the screen.A mes-
sage requesting user input commonly is called a prompt because it prompts or coaches
the user to enter an appropriate response.

You are not required to supply a prompt every time there is user input, but
you almost always will want to do so. Unless you supply a prompt, your user
will see a blank screen and won’t know how to proceed.

The statement userInputƒ=ƒ(char)System.in.read(); in the DemoInput program
accomplishes three separate tasks:

� The method call System.in.read(); gets the input from the keyboard.
The read() method accepts a byte and returns an integer.

� The cast (char) converts the returned integer into a character.

� The assignment userInput = assigns the converted character to the vari-
able userInput.

Tip

Tip

Figure 5-1 DemoInput program

public class DemoInput
{
 public static voidƒmain(String[] args) throws Exception
 {
 char userInput;
 System.out.println("Please enter a character ");
 userInput = (char)System.in.read();
 System.out.println("You entered " + userInput);
 }
}

5

At first, it might not make sense that System.in.read(); returns an integer value.
However, Java’s creators chose to have System.in.read(); behave this way for the
following reasons:

� To the computer, all values are integers because computers store input (and
everything else) as a series of 0s and 1s.The character A, for example, is
stored in Unicode as 0000 0000 0100 0001, which can also be expressed as
‘\u0041’ or decimal 65.You learned (in Chapter 2) that the ASCII code is an
8-bit code. Unicode is a 16-bit code that represents a much larger character
set that includes special and international characters.

� The System.in.read() method must return a value to indicate that no input is
available. For example, when you use System.in.read() to read records from a
disk file, at some point the compiler reaches the end of the file and no more
input is available. Java’s creators decided that the System.in.read() method
should return the value -1 when the compiler reaches the end of a file.To
accomplish this, the read() method must have a return type of int.

The final statement in the DemoInput program shown in Figure 5-1,
System.out.println("Youƒenteredƒ"ƒ+ƒuserInput);, echoes, or repeats,
the userInput character.When you write interactive programs, it is a good idea to echo
the input so the user can visually confirm that the data is correct.

When you run the DemoInput program, the prompt appears on the screen. The pro-
gram will not proceed any further until you type a character and press [Enter].The read()
method accepts precisely one byte of input.Therefore, you cannot enter a floating-point
number or a string of characters.

Next you will write a simple program that accepts three bytes of user input and echoes them.

To write a program that accepts and echoes user input:

1. Start your text editor, and then open a new text file.

2. Type the class header for a UsersInitials class, public class
UsersInitials, press [Enter], type the opening curly brace for the class,
and then press [Enter] again.

3. Type the header for the main() method, public static void
main(String[] args) throws Exception, press [Enter], type the
opening curly brace for the main() method, and then press [Enter] again.

4. Type the following declarations for three character variables: char
firstInit, middleInit, lastInit;.

5. On new lines, prompt the user for three initials by typing the following:
System.out.println("Pleaseƒenterƒyourƒthreeƒinitials.");
System.out.println
ƒƒƒ("Doƒnotƒuseƒperiodsƒorƒspacesƒbetweenƒinitials.");
System.out.println("PressƒEnterƒwhenƒyou'reƒdone.");

142 Chapter 5 Input and Selection

Accepting Keyboard Input 143

The instruction “Do not use periods or spaces between initials.” is important because
you will write the program to accept only three characters from the keyboard. If a user
enters A.B.C., then six characters were entered—three letters and three periods.The first
letter would become firstInit, the first period would become secondInit, and the second
letter would become thirdInit.There would be no room to store the second period, the
third letter, or the last period.

It is customary to type a println() statement all on one line. The println() state-
ment sometimes appears on two lines in this book due to printing limitations.

6. On new lines, type the following code to read each of the three initials into
the appropriate variables:

firstInitƒ=ƒ(char)System.in.read();
middleInitƒ=ƒ(char)System.in.read();
lastInitƒ=ƒ(char)System.in.read();ƒ

7. On a new line, type the following code to write the statements that will echo
the three initials to the screen:

System.out.println("Yourƒinitialsƒareƒ"ƒ+ƒfirstInitƒ+ƒ
ƒƒƒmiddleInitƒ+ƒlastInit);

8. On new lines, type the two closing curly braces that respectively close the
main() method and the UsersInitials class.

9. Save the file as UsersInitials.java in the Chapter.05 folder on your Student
Disk, and then compile and run the program.When you are prompted for
three initials, enter any three characters and confirm that they are echoed to
the screen correctly.Your output should look like Figure 5-2.

Figure 5-2 Output of the UsersInitials program

Tip 5

The UsersInitials program works correctly as long as the user follows directions by enter-
ing three initials and pressing [Enter] only once after typing all three initials. However,
just as if the user types periods between initials, a problem also occurs if the user presses
[Enter] after typing each initial, as you will see next.

To demonstrate that the user should not press [Enter] after typing each initial:

1. Run the UsersInitials program again at the command prompt.When you see
the prompt to enter your initials, type an initial and then press [Enter].The
program will terminate before you can type the second initial.The output
will display only one initial, as shown in Figure 5-3.

The problem occurs because when you use read() to accept a character from the key-
board, every key you press—including [Enter]—is accepted, one at a time. When you
type your first initial, it is correctly stored in the firstInit variable.When you press [Enter]
after entering the first initial, the value for [Enter] is stored in two bytes—the middleInit
and the lastInit variables.When all three variables display on the screen, you see the first
initial and the insertion point on a new line below the initial. The insertion point
advances a line because the middleInit and lastInit together hold the [Enter] value.

The values for the two bytes occupied by [Enter] are ‘\u000D’ and ‘\u000A’,
or decimal 13 and 10.

You can deal with this input problem by being very specific in your instructions to the
user and insisting that the user type all three initials before pressing [Enter]. Alternately,
you can ask the user for one initial at a time, and take care of [Enter] yourself.You can
absorb the extra [Enter] key after each initial by reading it in with two read() method
calls, and then not storing the bytes anywhere, as you will see next.

Tip

Figure 5-3 Output of the UsersInitials program when the user presses [Enter] after the
first initial

144 Chapter 5 Input and Selection

Accepting Keyboard Input 145

Depending on the version of JDK you are using, you might require only one
extra read() statement to absorb [Enter]. For now, use one or two read()
statements so all programs work correctly with your compiler. Later in this
chapter, you will learn to use dialog boxes to eliminate the [Enter] problem.

To eliminate the [Enter] problem in the UsersInitials program:

1. In the UsersInitials.java text file, change the class name to UsersInitials2.
Delete the following three lines of code that prompt the user for initials:
System.out.println("Pleaseƒenterƒyourƒthreeƒinitials.");
System.out.println
ƒƒƒ("Doƒnotƒuseƒperiodsƒorƒspacesƒbetweenƒinitials.");
System.out.println("PressƒEnterƒwhenƒyou'reƒdone.");

2. Replace the deleted lines with the following single statement:
System.out.print("Enterƒyourƒfirstƒinitialƒandƒpressƒ
Enter.ƒ");.

3. Position the insertion point at the end of the read() statement that reads the
firstInit variable, press [Enter] to start a new line, and then type the follow-
ing statements to read in the two [Enter] bytes without storing them:
System.in.read();ƒSystem.in.read();.

4. Press [Enter], and then type the following prompt for the second initial on
the new line:
System.out.print("Enterƒyourƒsecondƒinitialƒandƒpressƒ
Enter.ƒ");.

5. Position the insertion point at the end of the statement that reads the
middleInit variable, press [Enter] to start a new line, and then type the
following statements to read [Enter] pressed after the second initial, and to
prompt for the third initial:
System.in.read();ƒ
System.in.read();
System.out.print
ƒƒƒ("EnterƒyourƒthirdƒinitialƒandƒpressƒEnter.ƒ");

You might choose to place a final System.in.read();
System.in.read(); statement after the statement that reads the third ini-
tial, to discard its [Enter]. Because the program doesn’t accept any more input
after reading the third initial, these extra read() statements will not affect pro-
gram execution. However, if you add extra read() statements to absorb the
last [Enter], the [Enter] following the third initial already will be discarded if
you add additional input steps to this program later.

6. Save the program as UsersInitials2.java, compile, and run the program.
Respond to each prompt by typing your initial and then pressing [Enter].
Your output should display your three initials correctly.

Tip

Tip

5

USING THE JOPTIONPANE CLASS FOR GUI INPUT AND OUTPUT

Often referred to as Swing components, the classes found in the javax.swing package
define GUI elements and provide alternatives to the System.in.read() and
System.out.println() methods found in the java.lang package.The Swing classes are part
of a more general set of GUI programming capabilities that are collectively referred to
as the Java Foundation Classes, or JFC for short. JFC includes Swing component
classes and selected classes from the java.awt package.

Swing will be introduced in greater detail starting in Chapter 9. In this chapter,
only a few components that deal with input and output are demonstrated.

To access the Swing components used in this chapter, it is necessary to import the
javax.swing package using import javax.swing.*;. Recall that you learned that the
asterisk(*) is used as a wildcard symbol to represent all the classes in a package.

The Swing component JOptionPane can be used to create standard dialog boxes.These
dialog boxes are small windows that ask a question, warn a user, or provide brief impor-
tant user messages.As such, they provide a GUI interface to communicate with the user,
as opposed to the nonwindowed standard input and output methods presented so far.
These dialog boxes also provide methods that automatically handle input and output.

Three standard dialog boxes of the JOptionPane class are:

� InputDialog—prompts the user for text input

� MessageDialog—displays a user message

� ConfirmDialog—asks the user a question, with buttons for Yes, No, and
Cancel responses

Input Dialog Boxes
An input dialog box asks a question and uses a text field for entering a response.You
can create an input dialog box using the showInputDialog() method.There are two
components or arguments with this method, the parent component and the string com-
ponent.The string component is composed of a string or icon to be displayed in the dia-
log box.When no parent component is used, the keyword null is substituted.

The input dialog method returns a string that represents a user’s response. In Chapter 2
you learned that a String is an object that can hold more than one character. In the exam-
ple, StringƒfirstNameƒ=ƒ"Audrey";, the statement stores the name Audrey as a
string in a variable named firstName. The ShowInputDialog() method returns a string. For
example, Figure 5-4 shows an input dialog box created with the statement
Stringƒresponseƒ=ƒJOptionPane.showInputDialog(null,ƒ"Enterƒyour
firstƒname");. If the user types “Audrey”, then clicks the OK button or presses [Enter]
on the keyboard, the response string will contain “Audrey”.

Tip

146 Chapter 5 Input and Selection

Using the JOptionPane Class for GUI Input and Output 147

When the keyword null is used as the first argument in the
showInputDialog() method, it can be omitted entirely. Thus,
Stringƒresponseƒ= JOptionPane.showInputDialog("Enter
your first name"); is also correct.

An overloaded version of the showInputDialog() method contains more options; it
allows the programmer flexibility in controlling the appearance of the input dialog box.
The showInputDialog() method with four arguments can be used to display a title
in the dialog box title bar and a message that describes the type of dialog box.The first
two arguments (or components) are the same as in the shorter method, and the last two
arguments are as follows:

� The title to be displayed in the title bar

� A class variable describing the type of dialog box—ERROR_MESSAGE,
INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE,
or WARNING_MESSAGE

When the statement JOptionPane.showInputDialog(null,"Whatƒisƒyour
areaƒcode?:",ƒ"Enterƒareaƒcode",ƒJOptionPane.QUESTION_MESSAGE); is
executed, it displays the input dialog box shown in Figure 5-5. Note that the title bar dis-
plays “Enter area code,” and the dialog box shows a question mark icon.

Message Dialog Boxes
The message dialog box uses a simple window to display information. A message dialog
box is created with the showMessageDialog() method.The arguments are the same as with
the input dialog box—the parent component (if any) and the string component composed of

Figure 5-5 Input dialog box with four arguments

Tip

Figure 5-4 Input dialog box containing user input

5

a string or icon to display in the box. Unlike the input dialog box, the message dialog box
does not return any user response. For example, if a string variable named response holds
“Audrey”, then the statement JOptionPane.showMessageDialog(null,response);
displays “Audrey” as shown in Figure 5-6.

You can also create a message dialog box with more options.The showMessageDialog()
method with four arguments is used to display a title in the dialog box title bar and
a message that best describes its message type.The first two arguments are the same as the
shorter method, and the last two arguments are as follows:

� The title to be displayed in the title bar

� A class variable describing the type of dialog box—ERROR_MESSAGE,
INFORMATION_MESSAGE, PLAIN_MESSAGE, QUESTION_MESSAGE,
and WARNING_MESSAGE

When the statement JOptionPane.showMessageDialog(null,"Thisƒprogram
willƒselfƒdestructƒinƒ10ƒseconds:","ProgramƒDestructionƒAlert",
JOptionPane.WARNING_MESSAGE); is executed, it displays a message dialog box as
shown in Figure 5-7. Note that the title bar displays Program Destruction Alert, and the
dialog box shows a warning sign with an exclamation mark.

Confirm Dialog Boxes
An easy way to create a confirm dialog box which displays the options Yes, No, and Cancel,
is with the showConfirmDialog() method. Like the previous dialog boxes, the two
arguments are the same—the parent component (if any) and the string component com-
posed of a string or icon to display in the box.When you use null as the first argument
to showConfirmDialog(), the dialog box is centered on the screen. When you use the
showConfirmDialog() method, it returns one of three possible integer values, each a class

Figure 5-7 Message dialog box with four arguments

Figure 5-6 The resulting message dialog box

148 Chapter 5 Input and Selection

Using the JOptionPane Class for GUI Input and Output 149

variable of JOptionPane:YES_OPTION, NO_OPTION, and CANCEL_OPTION. To
set an integer named option equal to the class variable NO_OPTION,you write the state-
ment int optionƒ=ƒJOptionPane.NO_OPTION;.

The statement JOptionPane.showConfirmDialog(null, "Are you ready to
quit"); displays the dialog box shown in Figure 5-8.The program will not terminate,
however, without a statement to stop the program.To stop the program, you can call the
exit() method from the System class with an argument of 0, for example,
System.exit(0);. When you include this statement at the end of your dialog box
programs they terminate correctly.

You can also create a confirm dialog box with five components.The first two arguments
are the same as for the previous input dialog box and message dialog box examples.The
last three components represent:

� The title to be displayed in the title bar

� An integer that indicates which option button will be shown (It should be
equal to the class variables YES_NO_CANCEL_OPTION or
YES_NO_OPTION.)

� An integer that describes the kind of dialog box, using the class variables
ERROR_MESSAGE, INFORMATION_MESSAGE, PLAIN_MESSAGE,
QUESTION MESSAGE, or WARNING_MESSAGE

When the statement JOptionPane.showConfirmDialog(null,"Aƒdataƒinput
errorƒhasƒoccurred,ƒtryƒagain!",ƒ"Dataƒinputƒerror", JOptionPane.
YES_NO_OPTION, JOptionPane.ERROR_MESSAGE); is executed, it displays an input
dialog box as shown in Figure 5-9. Note that the title bar displays Data Input Error, the
YES and NO buttons appear, and the dialog box shows the error message,“A data input
error has occurred, try again!” It also displays the ERROR_MESSAGE type with an
octagonal icon.

Figure 5-8 The resulting confirm dialog box

5

Next you will use the dialog box methods to create a class comparable to the UserInitials
class presented earlier in this chapter.

To write a program that accepts and displays user input:

1. Start your text editor, open a new file, type the import statement, import
javax.swing.*;, and then press [Enter].

2. Type the class header for a DialogInitials class, publicƒclass
DialogInitials, press [Enter], type the opening curly brace for the class,
and then press [Enter] again.

3. Type the header for the main() method, publicƒstaticƒvoid
main(String[]ƒargs), press [Enter], type the opening curly brace for
the main() method, and then press [Enter] again.

4. Type the statement to create an input dialog box and store user input in a
String variable named response; Stringƒresponseƒ=ƒJOptionPane.
showInputDialog(null,ƒ"Pleaseƒenterƒthree initials:");,
and then press [Enter].

5. Type the statement to create a message dialog box to display the user’s input
stored in the String response; JOptionPane.showMessageDialog(null,
response);, and then press [Enter].

6. Type the statement to create a confirm dialog box that asks the user to confirm
that the initials entered are correct: JOptionPane.showConfirmDialog
(null, "Are the initials correct?");.

7. Add the statement to close the program: System.exit(0);. Press [Enter],
type the closing curly braces for the main() method, press [Enter] a second
time, and then type the closing curly brace for the class.

8. Save the file as DialogInitials in the Chapter.05 folder on your Student Disk,
and then compile and run the program.When you are prompted for three ini-
tials, enter any three letters and confirm that they are displayed correctly.
Finally, click the YES button when the message “Are the initials correct?”
appears.The sequence of input, output, and confirmation of input are shown
in Figures 5-10 through 5-12.

Figure 5-9 Confirm dialog box with five arguments

150 Chapter 5 Input and Selection

Drawing Flowcharts 151

Examples of the capabilities of dialog boxes introduced in this chapter will be
expanded and used as programming structures for decision making in this and
future chapters.

DRAWING FLOWCHARTS

This section is not a thorough discussion of flowcharting. Instead, it is a brief introduc-
tion, so you can use flowcharts as a visual aid in the next sections of this chapter.

When computer programmers write programs, they seldom simply sit down at a key-
board and begin typing. Programmers must plan the complex portions of programs
using paper and pencil tools. Programmers often use pseudocode, or lists of tasks that
must be accomplished, to help them plan a program’s logic. Using pseudocode requires
that you write down the steps needed to accomplish a given task.You write pseudocode
in English; you concentrate on the logic required, and not the syntax used in any pro-
gramming language. As a matter of fact, a task you pseudocode does not have to be

Tip

Figure 5-12 Confirm dialog box

Figure 5-11 Message dialog box

Figure 5-10 Input dialog box with initials entered

5

computer related. If you have ever written a list of things you must accomplish during
a day (for example; 1. Wash car, 2. Study for test, 3. Buy birthday gift for Mom), then
you have written pseudocode. A flowchart is similar to pseudocode, but you write the
steps in diagram form, as a series of shapes connected by arrows.

You learned the difference between a program’s logic and its syntax in the
Running a Program section of Chapter 1.

Some programmers use a variety of shapes to represent different tasks in their flow-
charts, but you can draw simple flowcharts that express very complex situations using
just rectangles and diamonds.You use a rectangle to represent any unconditional step,
and a diamond to represent any decision. For example, Figure 5-13 shows a flowchart
of a day’s tasks.

Sometimes your days don’t consist of a series of unconditional tasks—some tasks may
or may not occur based on decisions you make. Using diamond shapes, flowchart cre-
ators draw paths to alternate courses of action emanating from the sides of the dia-
monds. Figure 5-14 shows a flowchart of a day’s tasks in which some tasks are based
on decisions.

Study for test

Wash Car

Buy birthday gift
for Mom

Figure 5-13 Flowchart of a day’s tasks

Tip

152 Chapter 5 Input and Selection

Drawing Flowcharts 153

Looks
like rain

Wash car

Yes

No

Test
Cancelled

Study for test

Yes

No

Still speaking
to Mom

Buy birthday
gift for Mom

Yes

No

Figure 5-14 Flowchart of a day’s tasks with decisions

5

MAKING DECISIONS WITH THE if AND if...else STRUCTURES

You can already write a program that produces different output based on input; for exam-
ple, a user who types JFK into the UsersInitials program receives different output than a
user who types FDR. Additionally, after you learn to write programs that can accept
input, you gain a powerful new capability—you can alter the events that occur within a
program based on user input. Now you can make decisions.

Making a decision involves choosing between alternate courses of action based on some
value within a program. For example, the program that produces your paycheck can
make decisions about the proper amount to withhold for taxes, the program that guides
a missile can alter its course, and a program that monitors your blood pressure during
surgery can determine when to sound an alarm. Making decisions is what makes com-
puter programs seem “smart.”

The value upon which a decision is made is always a Boolean value, which in turn is
always one of two values—true or false. Figure 5-15 shows the logic of the decision
structure. Recall from Figure 5-14 that each decision structure was couched in a yes and
no answer, rather than a Boolean true or false value.

One statement you can use to make a decision is the if statement. For example, you
can store a value in an integer variable named someVariable, and then print the value of
someVariable when the user wants to see it. As you can see in Figure 5-16, you can
prompt the user to enter Y or N (for “Yes” or “No”) and store the response in a char-
acter variable.

Boolean
expression

Resulting
action

true

false

Figure 5-15 Decision structure

154 Chapter 5 Input and Selection

Making Decisions with the if and if...else Structures 155

The following is the if statement that makes the decision to print. Note that the dou-
ble equals sign (==) is used to determine equality.

if(userResponse == 'Y')
ƒƒSystem.out.println
ƒƒƒ("The value of someVariable is " + someVariable);

Remember that you reference character values using single quotation marks.

If the userResponse variable holds the value ‘Y,’ then the Boolean value of the expres-
sion userResponseƒ==ƒ'Y' is true, and the subsequent println() statement will
execute. If the value of the expression userResponseƒ==ƒ'Y' is false, then the
println() statement will not execute. The userResponseƒ==ƒ'Y' expression will be
false if userResponse holds anything other than ‘Y,’ including ‘y,’ ‘N,’ ‘n,’ ‘A,’ or any
other value.

The Boolean expression (userResponseƒ==ƒ'Y') must appear within parentheses.

You are not required to leave a space between the keyword if and the opening paren-
theses, but if you do, the statement is easier to read and is less likely to be confused with
a method call.Also, there is no semicolon at the end of the first line of the if statement
if(userResponseƒ==ƒ'Y') because the statement does not end there. The state-
ment ends after the println() call, so that is where you type the semicolon.You also could
type the same statement on one line and execute it in the same manner. However, the
two-line format is more conventional and easier to read, so you will usually type if and
the Boolean expression on one line, press [Enter], and then indent a few spaces before
coding the action that will occur if the Boolean expression evaluates as true. Be care-
ful—when you use the two-line format, do not type a semicolon at the end of the first
line, as in the following example:

if(userResponseƒ==ƒ'Y');ƒƒ
//ƒNoticeƒtheƒincorrectƒsemicolonƒhere
ƒSystem.out.println("TheƒvalueƒofƒsomeVariableƒisƒ"ƒ+ƒ
ƒsomeVariable);

Tip

Figure 5-16 Storing a user’s response

char userResponse;
int someVariable = 512;
System.out.println
 ("Do you want to see the value of someVariable?");
System.out.println("Enter Y for yes or N for no");
char userResponse = (char)System.in.read();

5

When this if expression is evaluated, the statement ends if it evaluates as true.Whether
the expression evaluates as true or false, execution continues with the next inde-
pendent statement that prints someVariable. In this case, because of the incorrect semi-
colon, the if statement accomplishes nothing.

Another very common programming error occurs when a programmer uses a single
equals sign rather than the double equals sign when attempting to determine equiva-
lency. The expression userResponseƒ=ƒ'Y' does not compare userResponse to ‘Y.’
Instead, it attempts to assign the value ‘Y’ to the userResponse variable.When the expres-
sion is part of an if statement, this assignment is illegal. The confusion arises in part
because the single equals sign is used within Boolean expressions in if statements in
many other programming languages, such as COBOL, Pascal, and BASIC.Adding to the
confusion, Java programmers use the word equals when speaking of equivalencies. For
example, you might say, “If userResponse equals ‘Y’…” rather than “If userResponse is
equivalent to ‘Y’…”

An alternative to using a Boolean expression, such as userResponse == 'Y', is to
store the Boolean expression’s value in a Boolean variable. For example, if userSaidYes is
a Boolean variable, then userSaidYesƒ=ƒ(userResponseƒ==ƒ'Y'); compares
userResponse to ‘Y’ and stores true or false in userSaidYes.Then you can write the
if as if(userSaidYes).... This adds an extra step to the program, but makes the
if statement more similar to an English statement.

The if...else Structure
Consider the following statement:

if(userResponseƒ==ƒ'Y')
System.out.println("TheƒvalueƒofƒsomeVariableƒisƒ"ƒ
ƒ+ƒsomeVariable);

Such a statement is sometimes called a single-alternative if because you only perform
an action based on one alternative, which is the case when userResponse is ‘Y.’ Often you
require two options for the next course of action, or a dual-alternative if. For exam-
ple, if the user does not respond ‘Y’ to a prompt, you might want to print a message that
at least acknowledges that the response was received.The if...else statement pro-
vides the mechanism to perform one action when a Boolean expression evaluates as
true, and performs a different action when a Boolean expression evaluates as false.
Figure 5-17 shows the logic for the if...else structure. Figure 5-18 shows an exam-
ple of the if...else structure coded in Java. In Figure 5-18, the value of someVariable
is printed when userResponse is equivalent to ‘Y.’When userResponse is any other value,
the program prints the message “Too bad.”

You can code an if without an else, but it is illegal to code an else with-
out an if.

Tip

156 Chapter 5 Input and Selection

Making Decisions with the if and if...else Structures 157

The indentation shown in the if...else example shown in Figure 5-18 is
not required, but is standard usage. You vertically align the keyword if with
the keyword else, and then indent the action statements that depend on
the evaluation.

When you execute the code shown in Figure 5-18, only one of the println() statements
will execute; the one that executes depends upon the evaluation of (userResponse
==ƒ'Y'). Each println() statement is a complete statement, so each statement ends with
a semicolon.

Next you will start writing a program for Event Handlers Incorporated that determines
which of several employees will be assigned to manage a client’s scheduled event.To begin,
you will prompt the user to answer a question about the event type, and then the program
will display the name of the manager who handles such events.There are two event types:
corporate events, handled by Dustin Britt; and private events, handled by Carmen Lindsey.

To write a program that chooses between two managers:

1. Open a new text file, and then enter the code to choose a manager:

publicƒclassƒChooseManager
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒƒ{

Tip

Figure 5-18 A dual-alternative if structure

if(userResponse == 'Y')
 System.out.println("The value of someVariable is"
 + someVariable);
else
 System.out.println("Too bad.");

userResponse
== ‘y’

Print “The value of
some variable is”
+ someVariable

truefalse

Print
“Too bad”

Figure 5-17 The if...else structure

5

2. On a new line, declare a variable that will hold the type of event by typing
charƒeventType;.

3. On a new line, type the three-line prompt that explains what is expected of
the user:

System.out.println
ƒ("Enterƒtypeƒofƒeventƒyouƒareƒscheduling");
System.out.println("Cƒforƒaƒcorporateƒevent");
System.out.println("Pƒforƒaƒprivateƒevent");

4. On a new line, type the statement that reads in the type of event:

eventTypeƒ=ƒ(char)System.in.read();.

5. On a new line, type the print() statement that explains the output:

System.out.print("Theƒmanagerƒforƒthisƒeventƒwillƒbeƒ");.

6. Code the if...else structure to determine which of two managers will be
assigned to the event.

if(eventTypeƒ==ƒ'C')
ƒSystem.out.println("DustinƒBritt");
else
ƒSystem.out.println("CarmenƒLindsey");

7. Type the two closing curly braces to end the main() method and the
ChooseManager class.

8. Save the program as ChooseManager.java in the Chapter.05 folder on your
Student Disk, then compile and run the program. Confirm that the program
selects the correct manager when you choose C for a corporate event or P
for a private event.

USING COMPOUND STATEMENTS IN AN if OR if...else STRUCTURE

Often there is more than one action to take following the evaluation of a Boolean
expression within an if statement. For example, you might want to print several sepa-
rate lines of output or perform several mathematical calculations.To execute more than
one statement that depends on the evaluation of a Boolean expression, you use a pair of
curly braces to place the dependent statements within a block. For example, the pro-
gram segment shown in Figure 5-19 determines whether an employee has worked more
than 40 hours in a single week, and if so, the program computes regular and overtime
salary, and then prints the results.

When you create a block, you do not have to place multiple statements within
it. It is perfectly legal to block a single statement.

Tip

158 Chapter 5 Input and Selection

Using Compound Statements in an if or if...else Structure 159

If you compare Figures 5-19 and 5-20, you will see that in Figure 5-19, the regularPay
calculation, the overTimePay calculation, and the println() statement are executed only
when hoursWorkedƒ>ƒ40 is true. In Figure 5-20, the curly braces are omitted.Within
the program in Figure 5-20, when hoursWorkedƒ>ƒ40 is true, regularPay is calcu-
lated and the if expression ends.The next three statements that compute overTimePay
and print the results always execute every time the program runs, no matter what value
is stored in hours. These last three statements are not dependent on the if statement;
they are independent, stand-alone statements. The indentation might be deceiving; it
looks as though four statements depend on the if statement, but indentation does not
cause statements following an if statement to be dependent. Rather, curly braces are
required if the four statements must be treated as a block.

The code shown in Figure 5-20 might not compile if regularPay is not assigned a value—
the compiler will recognize that you are attempting to print the value of regularPay with-
out calculating it. However, if you have assigned a value to regularPay, you can compile
the program, but the output still will not be what you intended. Within the code seg-
ment shown in Figure 5-20, if hoursWorked is greater than 40, then the program prop-
erly calculates both regular and overtime pay. Because hoursWorkedƒ>ƒ40 is true, the
regularPay calculation is made.The overTimePay calculation and the println() statements
will execute as well because they are just statements that always execute and do not
depend on the if statement.

However, in Figure 5-20, if the hoursWorked value is 40 or less—30, for example—then
the regularPay calculation will not execute (it executes only if(hoursWorkedƒ>ƒ40)),
but the next three independent statements will execute.The variable regularPay will hold
whatever value you have previously assigned to it—0.0, for example—and the program

Figure 5-20 if statement with a single dependent statement

if(hoursWorked > 40)
 regularPay = 40 * rate; // The if structure ends here
 overTimePay = (hoursWorked - 40) * 1.5 * rate;
 System.out.println("Regular pay is " + regularPay);
 System.out.println("Overtime pay is " + overTimePay);

Figure 5-19 An if statement with multiple dependent statements

if(hoursWorked > 40)
{
 regularPay = 40 * rate;
 overTimePay = (hoursWorked - 40) * 1.5 * rate;
 // Time and a half for hours over 40
 System.out.println("Regular pay is " + regularPay);
 System.out.println("Overtime pay is " + overTimePay);
} // The if structure ends here

5

will calculate the value of overTimePay as a negative number (because 30 - 40 results in
-10).Therefore, the output will be incorrect.

Just as you can block statements to depend on an if, you can also block statements to
depend on an else. Figure 5-21 shows an if structure with two dependent statements
and an else with two dependent statements. The program executes the final two
println() statements without regard to the hoursWorked variable’s value; the println()
statements are not part of the if structure.

Next you will create an Event class. Each Event object includes two data fields: the type
of event, and the base price Event Handlers charges per hour for the event type. The
Event class also contains a constructor method and get methods for the two fields.

To create the Event class:

1. Open a new text file, and type the class header for the Event class,ƒ
publicƒclassƒEvent. Press [Enter] and then type the opening curly
brace for the class on the new line.

2. Type the following declarations for two data fields to hold the type of event
and the minimum hourly rate that Event Handlers charges:

privateƒcharƒeventType;
privateƒdoubleƒeventMinRate;

3. Type the following constructor for the Event class.The constructor will
require two arguments with which you will fill the two data fields.

publicƒEvent(charƒevent,ƒdoubleƒrate)
{
ƒeventTypeƒ=ƒevent;
ƒeventMinRateƒ=ƒrate;
}

Figure 5-21 An if...else statement with multiple dependent statements

if(hoursWorked > 40)
{
 regularPay = 40 * rate;
 overTimePay = (hoursWorked - 40) * 1.5 * rate;
 // Time and a half for hours over 40
}
else
{
 regularPay = hours * rate;
 overTimePay = 0.0;
}
System.out.println("Regular pay is " + regularPay);
System.out.println("Overtime pay is " + overTimePay);

160 Chapter 5 Input and Selection

Using Compound Statements in an if or if...else Structure 161

4. On new lines, type the following two get methods that return the field values:

publicƒcharƒgetEventType()
{
ƒreturnƒeventType;
}
publicƒdoubleƒgetEventMinRate()
{
ƒreturnƒeventMinRate;
}

5. Type the closing curly brace for the class.

6. Save the file as Event.java in the Chapter.05 folder on your Student Disk,
then compile the file and correct any errors.

Now that you have created an Event class, you can modify the ChooseManager program
to perform multiple tasks based on user input.You will display a message to indicate which
manager is assigned to the event, and you will also instantiate a unique Event object, with
different minimum rates to charge based on the type of event.

To modify the ChooseManager program:

1. Open the ChooseManager.java text file from the Chapter.05 folder on
your Student Disk, and change the class name to ChooseManager2.You will
declare two constants to hold the corporate hourly rate and the private
hourly rate. If these hourly rates change in the future, they will be easy to
locate at the top of the file, where you can change their values.

2. Position the insertion point just after the opening curly brace for the
ChooseManager2 class, press [Enter] to start a new line, and then type the
following two constants:

staticƒfinalƒdoubleƒCORP_RATEƒ=ƒ75.99;
staticƒfinalƒdoubleƒPRI_RATEƒ=ƒ47.99;

Within the main() method of the ChooseManager2 class, you will define an
Event object named anEvent.You do not want to construct the Event object
until you discover whether it will be a corporate or private event; you simply
want to declare it now.

3. Position the insertion point to the right of the statement that declares the
eventType character variable, press [Enter] to start a new line, and then type
the event declaration as Event anEvent;.

4. Next type the following lines to modify the if...else structure that cur-
rently prints a manager’s name, so that the if and else each control a block
of two statements.The first statement in each block still prints the manager’s
name.The second statement constructs an appropriate Event object.

if(eventTypeƒ==ƒ'C')
{

5

ƒƒSystem.out.println("DustinƒBritt");
ƒƒanEventƒ=ƒnewƒEvent(eventType,ƒCORP_RATE);
}
else
{
ƒƒSystem.out.println("CarmenƒLindsey");
ƒƒanEventƒ=ƒnewƒEvent(eventType,ƒPRI_RATE);
}

5. To confirm that the event was constructed properly, type the following two
println() statements immediately after the closing brace for the if...else
structure:

System.out.println("Eventƒtypeƒisƒ"ƒ+ƒanEvent.
getEventType());
System.out.println("Minimumƒrateƒchargedƒisƒ$"ƒ+ƒ
anEvent.getEventMinRate());

6. Save the program as ChooseManager2.java. Compile and run the program
several times with different input at the prompt. Confirm that the output
shows that the event has the correct manager, type, and rate based on how
you respond to the prompt (with C or P).

NESTING if AND if...else STATEMENTS

Within an if or an else statement, you can code as many dependent statements as you
need, including other if and else statements. Just as spoons are nested inside each
other in a drawer, statements with an if inside another if commonly are called nested
if statements. Nested if statements are particularly useful when two conditions must
be met before some action is taken.

For example, suppose you want to pay a $50 bonus to a salesperson only if the sales-
person sells more than three items that total more than $1,000 in value during a speci-
fied time. Figure 5-22 shows the logic for this situation. Figure 5-23 shows the code to
solve the problem.

Notice there are no semicolons in the code shown in Figure 5-23 until after the bonus
= 50; statement.The expression itemsSoldƒ>ƒ3 is evaluated. If this expression is true,
then the program evaluates the second Boolean expression (totalValueƒ>ƒ1000). If
that expression is also true, then the bonus assignment executes and the if structure ends.

162 Chapter 5 Input and Selection

Using AND and OR Operators 163

USING AND AND OR OPERATORS

For an alternative to nested if statements, you can use the AND operator within a
Boolean expression to determine whether two expressions are both true.The AND oper-
ator is written as two ampersands (&&). For example, the code shown in Figure 5-24
works exactly the same as the code shown in Figure 5-23.The itemsSold variable is tested,
and if it is greater than 3, then the totalValue is tested. If totalValue is greater than $1000,
then the bonus is set to $50.

Figure 5-23 Nested if statement

if(itemsSold > 3)
 if(totalValue > 1000)
 bonus = 50;

totalValue
>1000

bonus
=50

true

false

itemsSold
>3

true

false

Figure 5-22 Nested if structure

5

You are never required to use the AND operator because using nested if statements
always achieves the same result, but using the AND operator often makes your code
more concise, less error prone, and easier to understand.

It is important to note that when you use the AND operator, you must include a com-
plete Boolean expression on each side of the && operator. If you want to set a bonus
to $400 if a saleAmount is both over $1000 and under $5000, the correct statement is
if(saleAmountƒ>ƒ1000ƒ&&ƒsaleAmountƒ<ƒ5000)ƒbonusƒ=ƒ400;. Even though
the saleAmount variable is used on both sides of the AND expression, the statement
if(saleAmountƒ>ƒ1000ƒ&&ƒ<ƒ5000)... is incorrect and will not compile.

With the AND operator, both Boolean expressions must be true before the action in the
statement can occur.You can use the OR operator, which is written as ||, when you want
some action to occur, even if only one of two conditions is true. For example, if you want
to give a bonus of $200 if a salesperson satisfies at least one of two conditions—selling more
than 100 items or selling any number of items that total more than $3000 in value—then
you can write the code using either of the ways shown in Figure 5-25. Figure 5-26 shows
the program logic.

A common use of the OR operator is to decide to take action whether a char-
acter variable is uppercase or lowercase, as in if(selectionƒ==ƒ'A'ƒ||
selectionƒ==ƒ'a')ƒ.... The subsequent action occurs whether the
selection variable holds an uppercase or lowercase A.

Sometimes situations arise in which there are more than two possible courses of action
to take. Consider a situation in which salespeople can receive one of three possible com-
mission rates based on their sales. For example, a sale totaling $1001 or more earns the
salesperson an eight percent commission, a sale totaling $500 to $1000 earns six percent

Figure 5-25 Code using two if statements and the OR operator

// Using two ifs
if(itemsSold > 100)
 bonus = 200;
else if(totalValue > 3000)
 bonus = 200;
// Using the OR operator
if(itemsSold > 100 || totalValue > 3000)
 bonus = 200;

Tip

Figure 5-24 Using the AND operator

if(itemsSold > 3 && totalValue > 1000)
 bonus = 50;

164 Chapter 5 Input and Selection

Using AND and OR Operators 165

of the sale amount, and any sale totaling $499 or less earns five percent. Using three
separate if statements to test single Boolean expressions results in some incorrect com-
missions. Examine the code shown in Figure 5-27.

Figure 5-27 Incorrect assignment of three commissions

if(saleAmount > 1000)
 commRate = .08;
if(saleAmount > 500)
 commRate = .06;
if(saleAmount <= 500)
 commRate = .05;
System.out.println("Commission rate is " + commRate);

totalValue
>3000

bonus
=200

true

itemsSold
>100

bonus
=200

truefalse

false

Figure 5-26 Diagram of the OR logic

5

As long as you are dealing with whole dollar amounts, the expression
if(saleAmountƒ>ƒ1000) can be expressed just as well as
if(saleAmountƒ>=ƒ1001). Additionally, if(1000ƒ<ƒsaleAmount)
and if(1001ƒ<=ƒsaleAmount) have the same meaning. Use whichever
has the clearest meaning for you.

Using the code shown in Figure 5-27, if a saleAmount is $5000, the first if statement
executes.The Boolean expression (saleAmount > 1000) evaluates as true, and .08
is correctly assigned to commRate. However, when a saleAmount is $5000, the next if
expression, (saleAmountƒ>ƒ500), also evaluates as true, so the commRate, which
was eight percent, is incorrectly reset to six percent.

A partial solution to this problem is to use an else statement following the
if(saleAmountƒ>=ƒ1000) expression, as shown in Figure 5-28.

You can place and indent the if following an else, but a program with
many nested if...else combinations soon grows very long and “deep,”
and with indentations, later statements in the nest would move farther and
farther to the right on the page. For easier-to-read code, Java programmers
commonly place each else and its subsequent if on the same line.

With the new code in Figure 5-28, when the saleAmount is $5000, the expression
(saleAmountƒ>ƒ1000) is true and the commRate becomes eight percent. When
the saleAmount is not greater than $1000, the else statement executes and correctly
sets the commRate to six percent.

The code shown in Figure 5-28 works,but it is somewhat inefficient.When the saleAmount
is any amount over $500, either the first if sets commRate to eight percent for amounts
over $500, or its else sets commRate to six percent for amounts over $500.The Boolean
value tested in the next statement, if(saleAmount <= 500), is always false. Rather
than unconditionally asking if(saleAmount <= 500), it’s easier to use an else. If the
saleAmount is not over $1000 and it is also not over $500, it must, by default, be less than
or equal to 500. Figure 5-29 shows this improved logic and Figure 5-30 shows its code.
Within a nested if...else, it is most efficient to ask the most likely question first. In
other words, if you know that most saleAmount values are over 1000, compare saleAmount

Tip

Figure 5-28 Inefficient assignment of three commissions

if(saleAmount > 1000)
 commRate = .08;
else if(saleAmount > 500) // Notice the else
 commRate = .06;
if(saleAmount <= 500)
 commRate = .05;
System.out.println("Commission rate is " + commRate);

Tip

166 Chapter 5 Input and Selection

Using AND and OR Operators 167

to that value first. If, however, you know that most saleAmounts are small, you should ask
if(saleAmount <= 500) first.

Figure 5-30 Correct assignment of three commissions

if(saleAmount >= 1000)
 commRate = .08;
else if(saleAmount > 500)
 commRate = .06;
else commRate = .05;
System.out.println("Commission rate is " + commRate);

saleAmount
>500

commRate
=.06

true

saleAmount
>1000

commRate
=.08

truefalse

false

Print
“Commission rate
is” + commRate

commRate
=.05

Figure 5-29 Improved OR logic

5

Currently, the ChooseManager2 program identifies an event as a corporate event and
assigns an appropriate manager and rate when the user enters C at the event-type
prompt.When the user enters any other character, the event is considered to be private.
Next you will improve the ChooseManager2 program so that if the user does not enter
either C or P, an Event object with an “invalid” X-type is instantiated.

To improve the ChooseManager2 program:

1. If necessary, start your text editor and open the ChooseManager2.java file
from the Chapter.05 folder on your Student Disk, and then change the class
name to ChooseManager3.

2. Change the if...else structure that tests the eventType so that it becomes
a nested if...else with three possibilities.When the user inputs anything
other than C or P, display an error message and create an Event object with a
code ‘X’ for the eventType and a rate of 0.0 for the minEventRate.

Remember that the Event constructor that you created earlier in this chapter
requires both a character and a double argument.

if(eventTypeƒ==ƒ'C')
{
ƒSystem.out.println("DustinƒBritt");
ƒanEventƒ=ƒnewƒEvent(eventType,ƒCORP_RATE);
}
elseƒif(eventTypeƒ==ƒ'P')
{
ƒSystem.out.println("CarmenƒLindsey");
ƒanEventƒ=ƒnewƒEvent(eventType,ƒPRI_RATE);
}
else
{
ƒSystem.out.println("Invalidƒentry!");
ƒanEventƒ=ƒnewƒEvent('X',0.0);
}

3. Save the program as ChooseManager3.java, compile it, and then run the
program several times to confirm that user responses of C or P result in valid
Event objects, and that other responses result in an error message and an
event of type X.

USING THE switch STATEMENT

By nesting a series of if and else statements, you can choose from any number of alter-
natives. For example, suppose you want to print a student’s class year based on a stored
number. Figure 5-31 shows the program.

Tip

168 Chapter 5 Input and Selection

Using the switch Statement 169

An alternative to the series of nested if statements is to use the switch statement.The
switch statement is useful when you need to test a single variable against a series of
exact integer or character values.The switch structure uses four keywords:

� switch starts the structure and is followed immediately by a test expression
enclosed in parentheses

� case is followed by one of the possible values for the test expression and
a colon

� break optionally terminates a switch structure at the end of each case

� default optionally is used prior to any action that should occur if the test
variable does not match any case

You are not required to list the case values in ascending order as shown here.
It is most efficient to list the most common case first, instead of the case with
the lowest value.

Figure 5-32 Sample case structure

switch(year)
{
 case 1:
 System.out.println("Freshman");
 break;
 case 2:
 System.out.println("Sophomore");
 break;
 case 3:
 System.out.println("Junior");
 break;
 case 4:
 System.out.println("Senior");
 break;
 default:

System.out.println("Invalid year");
}

Tip

Figure 5-31 Multiple alternatives

if(year == 1)
 System.out.println("Freshman");
else if(year == 2)
 System.out.println("Sophomore");
else if(year == 3)
 System.out.println("Junior");
else if(year == 4)
 System.out.println("Senior");
else System.out.println("Invalid year");

5

Figure 5-32 shows the case structure used to print the four school years.

The switch structure shown in Figure 5-32 begins by evaluating the year variable
shown in the switch statement. If the year is equal to the first case value, which is 1,
then the statement that prints “Freshman” will execute.The break statement bypasses
the rest of the switch structure, and execution continues with any statement after the
closing curly brace of the switch structure.

If the year variable is not equivalent to the first case value of 1, then the next case value
is compared, and so on. If the year variable does not contain the same value as any of
the case statements, then the default statement or statements execute.

You can leave out the break statements in a switch structure. However, when you
omit the break, if the program finds a match for the test variable, then all the state-
ments within the switch statement from that point forward will execute. For example,
if you omit each break statement in the code shown in Figure 5-32, when the year is
3, the first two cases will be bypassed, but “Junior,” “Senior,” and “Invalid year” all will
print.You should intentionally omit the break statements if you want all subsequent
cases to execute once the test variable is matched.

You are never required to use a switch structure; you can always achieve the same
results with nested if statements. The switch structure is simply convenient to use
when there are several alternate courses of action which depend on a single integer or
character variable.Additionally, it makes sense to use switch only when there are a rea-
sonable number of specific matching values to be tested. For example, if every sale
amount from $1 to $500 requires a five percent commission, it is not reasonable to test
every possible dollar amount using the following code:

switch(saleAmount)
{
ƒcaseƒ1:
ƒƒcommRateƒ=ƒ.05;
ƒƒbreak;
ƒcaseƒ2:
ƒƒcommRateƒ=ƒ.05;
ƒƒbreak;
ƒcaseƒ3:
ƒƒcommRateƒ=ƒ.05;
ƒƒbreak;
ƒ//ƒ...andƒsoƒonƒforƒseveralƒhundredƒmoreƒcases
}

Because 500 different dollar values result in the same commission, one test—
if(saleAmount <= 500)—is far more reasonable than listing 500 separate cases.

Next you will modify the ChooseManager3 program to account for a new type of event.
Besides corporate and private, there will be special rates for nonprofit organizations.The
entered code for nonprofit events will be N, and Robin Armanetti will be the manager
assigned to these events.You will convert your nested if statements to a switch structure.

170 Chapter 5 Input and Selection

Using the Conditional and NOT Operator 171

To convert the ChooseManager3 decision-making process to a switch structure:

1. Open the ChooseManager3.java file and change the class name to
ChooseManager4. Position the insertion point at the end of the statement
that declares the constant for PRI_RATE, press [Enter] to start a new line,
and then type the constant for NON_PROF_RATE, staticƒfinalƒ
doubleƒNON_PROF_RATEƒ=ƒ40.99;.

2. To the list of current prompts, add the following prompt to tell the user to
enter N for nonprofit organization events:

System.out.println("Nƒforƒnon-profitƒevent");

3. Delete the if...else statements that presently are used to determine
whether the user entered C or P, and then replace them with the following
switch structure:

switch(eventType)
{
ƒcaseƒ'C':
ƒƒSystem.out.println("DustinƒBritt");
ƒƒanEventƒ=ƒnewƒEvent(eventType,ƒCORP_RATE);
ƒƒbreak;
ƒcaseƒ'P':
ƒƒSystem.out.println("CarmenƒLindsey");
ƒƒanEventƒ=ƒnewƒEvent(eventType,ƒPRI_RATE);
ƒƒbreak;
ƒcaseƒ'N':
ƒƒSystem.out.println("RobinƒArmanetti");
ƒƒanEventƒ=ƒnewƒEvent(eventType,ƒNON_PROF_RATE);
ƒƒbreak;
ƒdefault:
ƒƒSystem.out.println("Invalidƒentry!");
ƒƒanEventƒ=ƒnewƒEvent('X',0.0);
}

Remember from Chapter 2 that characters are stored as integers. That is why
they are allowed as the case variables in a switch statement.

4. Save the file as ChooseManager4.java, compile, and test the program. Make
sure the correct output appears when you enter C, P, N, or some other value
as keyboard input.

USING THE CONDITIONAL AND NOT OPERATORS

Java provides one more way to make decisions.The conditional operator requires three
expressions separated with a question mark and a colon, and it is used as an abbreviated
version of the if...else structure. As with the switch structure, you are never

Tip

5

required to use the conditional operator; it is simply a convenient shortcut.The syntax of
the conditional operator is testExpressionƒ?ƒtrueƒResultƒ:ƒfalseƒResult;.

The first expression, testExpression, is a Boolean expression that is evaluated as true or
false. If it is true, then the entire conditional expression takes on the value of the
expression following the question mark (trueResult). If the value of the testExpression
is false, then the entire expression takes on the value of falseResult. For example,
suppose that you want to assign the smallest price to a sale item. Let the variable a be the
advertised price and the variable b be the discounted price on the sale tag.The expres-
sion for assigning the smallest cost is smallerNumƒ=ƒ(aƒ<ƒb)ƒ?ƒaƒ: b;.When eval-
uating the expression aƒ<ƒb, where a is less than b, the entire conditional expression takes
the value of a, which then is assigned to smallerNum. If a is not less than b, then the
expression assumes the value of b, and b is assigned to smallerNum.

You use the NOT operator, which is written as the exclamation point (!), to negate
the result of any Boolean expression. Any expression that evaluates as true becomes
false when preceded by the NOT operator, and accordingly, any false expression
preceded by the NOT operator becomes true.

For example, suppose a monthly car insurance premium is $200 if the driver is age 25
or younger, and $125 if the driver is age 26 or older. Each of the following if state-
ments (which have been placed on single lines for convenience) correctly assigns the
premium values:

if(ageƒ<=ƒ25)ƒƒpremiumƒ=ƒ200;ƒƒƒƒelseƒpremiumƒ=ƒ125;
if(!(ageƒ<=ƒ25))ƒpremiumƒ=ƒ125;ƒƒƒelseƒpremiumƒ=ƒ200;
if(ageƒ>=ƒ26)ƒpremiumƒ=ƒ125;ƒƒƒelseƒpremiumƒ=ƒ200;
if(!(ageƒ>=ƒ26))ƒpremiumƒ=ƒ200;ƒƒƒƒelseƒpremiumƒ=ƒ125;

The statements with the NOT operator are somewhat harder to read, particularly
because they require the double set of parentheses, but the result of the decision-
making process is the same in each case. Using the NOT operator is clearer when
the value of a Boolean variable is tested. For example, a variable initialized as
Boolean oldEnoughƒ=ƒ(ageƒ>=ƒ25); can become part of the relatively easy-
to-read expression if(!oldEnough)....

UNDERSTANDING PRECEDENCE

You learned in Chapter 2 that operations have higher and lower precedences. For exam-
ple, within an arithmetic expression, multiplication and division are always performed
prior to addition or subtraction. Table 5-2 shows the precedence of the operators you
have used so far.

172 Chapter 5 Input and Selection

Understanding Precedence 173

In general, the order of precedence agrees with common algebraic usage. For example, in any
mathematical expression such as xƒ=ƒaƒ+ƒb, the arithmetic is done first and the assignment
is done last, as you would expect.The relationship of && and || might not be as obvious.
Consider the program segment shown in Figure 5-33 and try to predict its output.

With the first if statement, the AND operator takes precedence over the OR operator,
so age < 25 && gender == 'M' is evaluated first.The value is false because age
is not less than 25 and gender is not ‘M.’ So the expression is reduced to “tickets > 3”
or false. Because the value of the tickets variable is greater than 3, the entire expres-
sion is true, and “Do not insure” is printed.

Even though the AND operator is evaluated first in the expression age < 25
&& gender == 'M' || tickets > 3, you can add extra parentheses,
as in (age < 25 && gender == 'M') || tickets > 3. The out-
come is the same, but the intent is clearer to someone reading your code.

In the second if statement shown in Figure 5-33, parentheses have been added so the OR
operator is evaluated first.The expression ticketsƒ>ƒ3ƒ||ƒageƒ<ƒ25 is true because
tickets is greater than 3. So the expression evolves to trueƒ&&ƒgenderƒ== 'M'. Because
gender is not ‘M,’ the value of the entire expression is false, and the “Bad risk” statement
does not print.The following two conventions are important to keep in mind:

� The order in which you use operators makes a difference.

Tip

Figure 5-33 Demonstrating AND and OR operator precedence

int tickets = 4;
int age = 40;
char gender = 'F';
if(tickets > 3 || age < 25 && gender == 'M')
 System.out.println("Do not insure");
if((tickets > 3 || age < 25) && gender == 'M')
 System.out.println("Bad risk");

Precedence Operator(s) Symbol(s)

Highest Multiplication, division * / %

Addition, subtraction + -

Relational > < >= <=

Equality == !=

Logical AND &&

Logical OR ||

Conditional ?:

Lowest Assignment =

Table 5-1 Operator precedence for operators used so far

5

� You can always use parentheses to change precedence or make your inten-
tions clearer.

CHAPTER SUMMARY
❒ An interactive program accepts values at run time.When you write interactive programs,

it is often a good idea to echo the input so the user can confirm visually that the data
entered is correct.The message that requests user input commonly is called a prompt.

❒ An exception is an error situation.You can let the compiler handle the problem by
throwing the exception, or you can pass the error to the operating system.When the
System.in.read() method accepts input from the keyboard it throws Exception.The
method System.in.read() accepts a byte from the keyboard and returns an integer value.

❒ The JOptionPane component, part of the javax.swing package, can be used to cre-
ate standard dialog boxes.These dialog boxes are small windows that ask a question,
warn a user, or provide brief important user messages. As such, they provide a GUI
interface to communicate with the user as opposed to the nonwindowed standard
input and output methods presented thus far.

❒ Three standard dialog boxes of the JOptionPane class are: an input dialog box that
prompts the user for text input, a message dialog box that displays a user message,
and a confirm dialog box that asks the user a question using buttons for Yes, No,
and Cancel responses.

❒ Making a decision involves choosing between two alternate courses of action based
on some value within a program.You can use the if statement to make a decision
based on a Boolean expression that evaluates as true or false. If the Boolean
expression enclosed in parentheses within an if statement is true, then the subse-
quent statement or block will execute.

❒ A single-alternative if performs an action based on one alternative; a dual-alternative
if, or if...else, provides the mechanism for performing one action when a
Boolean expression evaluates as true.When a Boolean expression evaluates as
false, a different action occurs.

❒ To execute more than one statement that depends on the evaluation of a Boolean
expression, you use a pair of curly braces to place the dependent statements within a
block.Within an if or an else statement, you can code as many dependent state-
ments as you need, including other if and else statements. Nested if statements
are particularly useful when two conditions must be met before some action occurs.

❒ You can use the AND operator (&&) within a Boolean expression to determine
whether two expressions are both true.You use the OR operator (||) when you
want to carry out some action even if only one of two conditions is true.

❒ You use the switch statement to test a single variable against a series of exact
integer or character values.

174 Chapter 5 Input and Selection

Review Questions 175

❒ The conditional operator requires three expressions, a question mark, and a colon,
and it is used as an abbreviated version of the if...else statement.

❒ You use the NOT operator (!) to negate the result of any Boolean expression.

❒ Operator precedence makes a difference.You can always use parentheses to change
precedence or make your intentions clearer.

REVIEW QUESTIONS
1. Which of the following is typically used in a flowchart to indicate a decision?

a. square

b. rectangle

c. diamond

d. oval

2. A message that requests user input is commonly called a .

a. coach

b. prompt

c. hint

d. port

3. Which of the following is not a type of if statement?

a. single-alternative if

b. dual-alternative if

c. double-alternative if

d. nested if

4. Standard dialog boxes of the JOptionPane class include .

a. InputDialog—Prompts the user for text input

b. MessageDialog—Displays a user message

c. ConfirmationDialog—Asks the user a question, with buttons for Yes, No, and
Cancel responses

d. all of the above

5. The JOptionPane class contains methods to create a(n) .

a. input dialog box

b. message dialog box

c. confirm dialog box

d. all the above

5

6. An easy way to create a Yes, No, Cancel dialog box is with the .

a. showConfirmDialog() method

b. showInputDialog() method

c. showMessDialog() method

d. none of the above

7. A decision is based on a(n) value.

a. Boolean

b. absolute

c. definitive

d. convoluted

8. The value of (4 > 7) is .

a. 4

b. 7

c. true

d. false

9. Assuming the variable q has been assigned the value 3, which of the following
statements prints XXX?

a. if(qƒ>ƒ0)ƒSystem.out.println("XXX");

b. if(qƒ>ƒ7);ƒSystem.out.println("XXX");

c. Both of the above statements print XXX.

d. Neither of the above statements prints XXX.

10. What is the output of the following code segment?

tƒ=ƒ10;
if(tƒ>ƒ7)
{
ƒSystem.out.println("AAA");
ƒSystem.out.println("BBB");
}

a. AAA

b. BBB

c. AAAƒ

BBB

d. nothing

176 Chapter 5 Input and Selection

Review Questions 177

11. When you code an if statement within another if statement, as in if(a > b)
if(cƒ>ƒd)ƒxƒ=ƒ0;, then the if statements are .

a. notched

b. nestled

c. nested

d. sheltered

12. The operator that combines two conditions into a single Boolean value that is
true when both of the conditions are true is .

a. $$

b. !!

c. ||

d. &&

13. The operator that combines two conditions into a single Boolean value that is
true when at least one of the conditions is true is .

a. $$

b. !!

c. ||

d. &&

14. Assuming a variable f has been initialized to 5, which of the following statements
sets g to 0?

a. if(fƒ>ƒ6ƒ||ƒfƒ==ƒ5)ƒgƒ=ƒ0;

b. if(fƒ<ƒ3ƒ||ƒfƒ>ƒ4)ƒgƒ=ƒ0;

c. if(fƒ>=ƒ0ƒ||ƒfƒ<ƒ2)ƒgƒ=ƒ0;

d. All of the above statements set g to 0.

15. Which if the following groups has the lowest operator precedence?

a. Relational

b. Equality

c. Addition

d. Logical OR

16. You can use the statement to terminate a case in a switch
structure.

a. switch

b. end

c. case

d. break

5

17. The switch argument within a switch structure requires a(n)
.

a. integer value

b. character value

c. double value

d. integer or character value

18. Assuming a variable w has been assigned the value 15, then the statement
wƒ==ƒ15ƒ?ƒxƒ=ƒ2ƒ:ƒxƒ=ƒ0; assigns .

a. 15 to w

b. 2 to x

c. 0 to x

d. nothing

19. Assuming a variable y has been assigned the value 6, then the value of !(yƒ<ƒ7)
is .

a. 6

b. 7

c. true

d. false

20. Assuming aƒ=ƒ5 and bƒ=ƒ9, then the value of aƒ>ƒ0ƒ&&ƒƒbƒ<ƒ10ƒ||ƒbƒ> 1
is .

a. 5

b. 9

c. true

d. false

EXERCISES
In the following exercises, save each program that you create in the Chapter.05 folder
on your Student Disk.

1. a. Write a program that prompts the user for a four-character password, accepts
four characters, and then echoes the characters to the screen. Save the program
as Password.java in the Chapter.05 folder on your Student Disk.

b. Write a program that prompts the user for a four-character password, accepts
four characters, and then echoes the characters to the screen.Test the first
character. If it is B, issue a message that the password is valid; otherwise issue
a message that the password is not valid. Save the program as Password.java
in the Chapter.05 folder on your Student Disk.

178 Chapter 5 Input and Selection

Exercises 179

c. Write a program that prompts the user for a four-character password, accepts
four characters, and then echoes the characters to the screen.Test all four char-
acters. If the characters spell BOLT, then issue a message that the password is
valid; otherwise issue a message that the password is not valid. Save the pro-
gram as PasswordC.java in your Chapter.05 folder on your Student Disk.

2. a. Write a program for a furniture company. Ask the user to choose P for pine,
O for oak, or M for mahogany. Show the price of a table manufactured with
the chosen wood. Pine tables cost $100, oak tables cost $225, and mahogany
tables cost $310. Save the program as Furniture.java in the Chapter.05
folder on your Student Disk.

b. Add a prompt to the program you wrote in Exercise 2a to ask the user to specify
a large (L) or a small (S) table.Add $35 to the price of any large table. Save the
program as FurnitureSizes.java in the Chapter.05 folder on your Student Disk.

3. Write a program for a college’s admissions office. Create variables to store a stu-
dent’s numeric high school grade point average (for example, 3.2) and an admis-
sion test score. Print the message “Accept” if the student has any of the following:

❒ A grade point average of 3.0 or above and an admission test score of at least 60

❒ A grade point average below 3.0 and an admission test score of at least 80

If the student does not meet either of the qualification criteria, print “Reject.” Save
the program as Admission.java in the Chapter.05 folder on your Student Disk.

4. Write a program that stores an hourly pay rate and hours worked. Compute gross pay
(hours times rate), withholding tax, and net pay (gross pay minus withholding tax).
Withholding tax is computed as a percentage of gross pay based on the following:

Gross Pay Withholding Percentage

Up to and including 300.00 10

300.01 and up 12

Save the program as Payroll.java in the Chapter.05 folder on your Student Disk.

5. a. Write a program that stores two integers and allows the user to enter a character.
If the character is A, add the two integers. If it is S, subtract the second integer
from the first; if it is M, multiply the integers. Display the results of the arith-
metic. Save the program as Calculate.java in the Chapter.05 folder on your
Student Disk.

b. Modify the Calculate program so the user also can enter a D for divide. If the
second number is zero, then display an error message; otherwise divide the first
number by the second and display the results. Save the program as
Calculate2.java in the Chapter.05 folder on your Student Disk.

6. a. Write a program for a lawn-mowing service.The lawn-mowing season lasts 20
weeks.The weekly fee for mowing a lot under 400 square feet is $25.The fee
for a lot 400 square feet or more but under 600 square feet is $35 per week.
The fee for a lot 600 square feet or over is $50 per week. Store the values in

5

the length and width variables and then print the weekly mowing fee, as well
as the seasonal fee. Save the program as Lawn.java in the Chapter.05 folder on
your Student Disk.

b. To the Lawn program created in 6a, add a prompt that asks the user whether
the customer wants to pay A) once, B) twice, or C) 20 times per year. If the
user enters A for once, the fee for the season is simply the seasonal total. If
the customer requests two payments, each payment is half the seasonal fee
plus a $5 service charge. If the user requests 20 separate payments, add a $3
service charge per week. Print the payment amount. Save the program in the
Chapter.05 folder on your Student Disk as Lawn2.

7. a. Write a program that compares your checking account balance with your savings
account balance (two doubles).Assign values to both variables, compare them,
and then display either “Checking is higher” or “Checking is not higher”. Save
the program as Balance.java in the Chapter.05 folder on your Student Disk.

b. Write a program so that it compares your checking account balance and your
savings account balance to less than zero. If both statements are true, then dis-
play the message “Both accounts in the red”. If the first balance is less than the
second balance, and the first balance is greater than or equal to zero, then dis-
play the message “Both accounts in the black”. Save the program as
Balance2.java in the Chapter.05 folder on your Student Disk.

8. Write a program that asks a user to input an initial. Display the full name of an
employee who matches the initial: A is Armando, B is Bruno, and Z is Zachary. All
other entries should cause a “No such employee” message to display. Save the pro-
gram as PickEmployee.java in the Chapter.05 folder on your Student Disk.

9. Write a program that asks the user to type a digit from the keyboard. If the character
entered is not a digit, display an error message. Save the program as GetDigit.java
in the Chapter.05 folder on your Student Disk.

10. Write a program that stores an IQ score. If the score is a number less than 0 or greater
than 200, issue an error message; otherwise, issue an “above average”,“average”, or
“below average” message for scores over, at, or under 100, respectively. Save the pro-
gram as IQ.java in the Chapter.05 folder on your Student Disk.

11. Write a program for a college’s admissions office. Create variables that store a
numeric high school grade point average (for example, 3.2) and an admission test
score. Print the message “Accept” if the student has any of the following:

❒ A grade point average of 3.6 or above and an admission test score of at least 60

❒ A grade point average of 3.0 or above and an admission test score of at least 70

❒ A grade point average of 2.6 or above and an admission test score of at least 80

❒ A grade point average of 2.0 or above and an admission test score of at least 90

If the student does not meet any of the qualifications, print “Reject.” Save the
program as Admission2.java in the Chapter.05 folder on your Student Disk.

180 Chapter 5 Input and Selection

Exercises 181

12. Write a program that stores an employee’s hourly pay rate and hours worked.
Compute gross pay (hours times rate), withholding tax, and net pay (gross pay
minus withholding tax).Withholding tax is computed as a percentage of gross
pay based on the following:

Gross Pay Withholding Percentage

0 to 300.00 10

300.01 to 400.00 12

400.01 to 500.00 15

500.01 and over 20

Save the program as Payroll2.java in the Chapter.05 folder on your Student Disk.

13. Write a program that recommends a pet for a user based on the user’s lifestyle.
Prompt the user to enter whether he or she lives in an apartment, house, or dormi-
tory (A, H, or D) and the number of hours the user is home during the average day.
The user will select an hour category from a menu:A) 18 or more; B) 10 to 17;
C) 8 to 9; D) 6 to 7; or E) 0 to 5. Print your recommendation based on the following:

Residence Hours Home Recommendation

House 18 or more Pot bellied pig

House 10 through 17 Dog

House Fewer than 10 Snake

Apartment 10 or more Cat

Apartment Fewer than 10 Hamster

Dormitory 6 or more Fish

Dormitory Fewer than 6 Ant farm

Save the program as PetAdvice.java in the Chapter.05 folder on your Student Disk.

14. Write a program that declares two ints named myNumberOfSiblings and
yourNumberOfSiblings. Display an appropriate message to indicate whether your
friend has more, fewer, or the same number of siblings as you. Display the number
of siblings whether the if statement is true or not. Save the program as
Siblings.java in the Chapter.05 folder on your Student Disk.

15. Write a program that compares the number of college credits you have earned
with the number of college credits earned by a classmate or friend. Display an
appropriate message to indicate whether your classmate has earned more, fewer, or
the same number of credits as you. Display the number of college credits whether
the if statement is true or not. Save the program as Credits.java in the
Chapter.05 folder on your Student Disk.

16. Write a program that displays a menu of three items in a store, with a price for each
item. Include characters a, b, and c so the user can select a menu item. Prompt the
user to choose an item using the character that corresponds to the item.After the
user makes the first selection, show a prompt to ask if another selection will be made.
The user should respond Y or N to this prompt (for yes or no). If the user types N,

5

display the cost of the item. If the user types Y, allow the user to select another item
and then display the total cost of the two items. Use the switch statement to check
the menu selection. Save the program as Store.java in the Chapter.05 folder on your
Student Disk.

17. Write a program using input, message, and dialog boxes to accept users’ first and last
names. Display the first and last names as they are entered. Prompt the user to verify
that the names entered are correct. Use an if...else structure with a confirm dia-
log box to determine if the user clicks the No or Cancel options. Print appropriate
messages if the user clicks No or cancel. Exit the program. Save the program as
DemoDialog.java in the Chapter.05 folder on your Student Disk.

18. Write a program using the input dialog box that asks the question.“What is your zip
code?” and displays “Enter Your Zip Code” in the title bar.The type of the dialog box
should be QUESTION_MESSAGE.The program should display the zip code entered.
Save the program as ZipDialog.java in the Chapter.05 folder on your Student Disk.

19. Write a program using the confirm dialog box that asks “Error reading file. Do you
want to try again?”.The confirm dialog box title should read “File input error”.The
user should see an error message icon and have a Yes or No option. Save the program
as ErrorDialog.java in the Chapter.05 folder on your Student Disk.

20. Write a message dialog box that displays the message, “This program has finished
installing.”The message dialog box title should read “Installing Program”. Save the
program in the Chapter.05 folder on your Student Disk as InstallDialog.

21. Each of the following files in the Chapter.05 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, save DebugFive1.java as FixDebugFive1.java.

a. DebugFive1.java

b. DebugFive2.java

c. DebugFive3.java

d. DebugFive4.java

CASE PROJECT
Widget Company runs a small factory that makes several types of nuts and bolts.They
employ factory workers that are paid one of three hourly rates depending on skill level:
(a) 7.00, (b) 10.00, or (c) 12.00. Each factory worker can work: (a) 40 hours, (b) 45 hours,
and (c) 50 hours per week. All hours over 40 are paid at double time.

Jack Smith, the factory manager, wants you to write an interactive Java payroll program
that will calculate the gross pay for a factory worker. Hours worked and hourly pay rate
are to be entered from the keyboard. Once the figures are entered for an employee, the
program prints out: (1) the hours worked, (2) the hourly pay rate, (3) the regular pay for
40 hours, and (4) the overtime pay. The class name is pay.java. Save the program as
Pay.java in the Chapter.05 folder on your Student Disk.

Case
Project

182 Chapter 5 Input and Selection

183

CHAPTER

6
LOOPING

In this chapter, you will:
� Learn about the loop structure
� Use a while loop
� Use shortcut arithmetic operators
� Use a for loop
� Learn how and when to use a do...while loop
� Learn about nested loops

Still having problems?” asks Lynn Greenbrier, who is watching intently as
you code a new program.

“My programs can finally respond to questions and make choices,” you reply.
“But I still feel like something is missing.”

“It’s probably because you want to do the same task more than once with-
out writing the procedure more than one time,” Lynn suggests. “Let me
introduce you to the control structure called looping.”

PREVIEWING THE EVENINT PROGRAM

To preview the EvenInt program:

1. In your text editor, open the Chap6EvenInt.java file from the Chapter.06
folder on your Student Disk and examine the code.This file contains a defin-
ition for a class that loops through all integers from 1 to 100, and during
looping prints each integer and all the integers by which it can be evenly
divided.You will create a similar class file in this chapter.

2. At the command line, compile the Chap6EvenInt.java file using the com-
mand javacƒChap6EvenInt.java.

3. Execute the program by typing the command javaƒChap6EvenInt. Press
[Enter] repeatedly to see the evenly divisible numbers.They are displayed
twenty at a time.

LEARNING ABOUT THE LOOP STRUCTURE

If making decisions is what makes programs seem smart, then looping is what makes
programs seem powerful.A loop is a structure that allows repeated execution of a block
of statements.Within a looping structure, a Boolean expression is evaluated. If it is true,
then a block of statements, called the loop body, executes and the Boolean expression
is evaluated again. As long as the expression is true, the statements in the loop body
continue to execute.When the Boolean evaluation is false, the loop ends. Figure 6-1
shows a diagram of the logic of a loop.

Boolean
expression

Loop
body

true

false

Figure 6-1 Logic of a loop

184 Chapter 6 Looping

Using a while Loop 185

One execution of any loop is called an iteration.

USING A while LOOP

You can use a while loop to execute a body of statements continually as long as the
Boolean expression continues to be true. A while loop consists of the keyword while
followed by a Boolean expression within parentheses, followed by the body of the loop,
which can be a single statement or a block of statements surrounded by curly braces.

You can use a while loop when you need to perform a task a predetermined number
of times.A loop that executes a specific number of times is a definite loop or a counted
loop.To write a definite loop, you initialize a loop control variable, and while the loop
control variable does not pass a limit, you continue to execute the body of the while
statement.You must include in the body of the while loop a statement that alters the
loop control variable. For example, the program segment shown in Figure 6-2 prints the
series of integers 1 through 10.The variable val starts the loop holding a value of 1, and
while the value remains under 11, the val continues to print and be incremented.

The code shown in Figure 6-3 causes the message “Hello” to display (theoretically)
forever because there is no code to end the loop. A loop that never ends is called an
infinite loop.

An infinite loop might not actually execute infinitely. Eventually the computer
memory will be exhausted (literally and figuratively) and execution will stop.
Also, it’s possible that the processor has a time-out feature. Either way, and
depending on your system, quite a bit of time could pass before the loop
stops running.

Figure 6-3 An infinite loop

whileƒ(4ƒ>ƒ2)
ƒƒSystem.out.println("Hello");

Tip

Figure 6-2 Printing the integers 1 through 10 with a while loop

intƒvalƒ=ƒ1;
whileƒ(valƒ<ƒ11)
{
ƒƒSystem.out.println(val);
ƒƒ++val;
}

Tip

6

In Figure 6-3, the expression 4ƒ>ƒ2 evaluates to true.You obviously never need to
make such an evaluation, but if you do so in this while loop, the body of the loop is
entered and “Hello” displays. Next, the expression is evaluated again. The expression
4ƒ>ƒ2 is still true, so the body is entered again.“Hello” displays repeatedly; the loop
never finishes because 4ƒ>ƒ2 is never false.

It is a bad idea to intentionally write an infinite loop. However, even experienced
programmers write them by accident. So, before you start writing any loops, it is good
to know how to break out of an infinite loop in case you find yourself in the midst of
one. If you think your program is in a loop, you can press and hold [Ctrl], and then press
C or [Break].

To prevent a while loop from executing infinitely, four separate actions must occur:

1. A named loop control variable is initialized to a starting value.

2. The loop control variable is tested in the while statement.

3. If the test expression is true, the body of the while statement must take
some action that alters the value of the loop control variable.

4. The action of the body statement(s) must eventually change the value of the
control variable so that the test of the while statement evaluates to false.

All of these conditions are met by the example in Figure 6-4. First, a loop control
variable loopCount is named and set to a value of 1. Second, the statement
while(loopCountƒ<ƒ3) is tested. Third, the loop body is executed because the
loopControl variable loopCount is less than 3. Note that the loop body shown in
Figure 6-4 consists of two statements made into a block by their surrounding curly
braces. The first statement prints “Hello,” and then the second statement adds one to
loopCount. The next time loopCount is evaluated, it is 2. It is still less than 3, so the
loop body executes again. “Hello” prints a second time, and loopCount becomes 3.
Fourth, because the expression loopCountƒ<ƒ3 now evaluates to false, the loop
ends. Program execution then continues with any subsequent statements.

To an algebra student, a statement such as loopCountƒ=ƒloopCountƒ+ƒ1
looks wrong—a value can never be one more than itself. In programming,
however, loopCountƒ=ƒloopCountƒ+ƒ1; takes the value of loopCount,
adds one to it, and then assigns the new value back into loopCount.

Figure 6-4 A simple loop that executes twice

loopCountƒ=ƒ1;
whileƒ(loopCountƒ<ƒ3)
{
ƒƒSystem.out.println("Hello");
ƒƒloopCountƒ=ƒloopCountƒ+ƒ1;
}

Tip

186 Chapter 6 Looping

Using a while Loop 187

If the curly braces are omitted from the code shown in Figure 6-4, the while loop stops
at the end of the “Hello” statement. Adding one to the loopCount is no longer part of
a block that contains the loop, so an infinite situation is created.

Also, if a semicolon is mistakenly placed at the end of the partial statement
whileƒ(loopCountƒ<ƒ3);, the loop is also infinite.This loop has an empty body,
or a body with no statements in it, so the Boolean expression is evaluated, and because
it is true, the loop body is entered. Because the loop body is empty, no action is taken,
and the Boolean expression is evaluated again. Nothing has changed, so it is still true,
the empty body is entered, and the infinite loop continues.

It is very common to alter the value of a loop control variable by adding one to it, or
incrementing the variable. However, not all loops are controlled by adding one. The
loop shown in Figure 6-5 prints “Hello” twice, just as the loop in Figure 6-4 does, but
its loop is controlled by subtracting 1 from a loop control variable, or decrementing it.

In the program segment shown in Figure 6-5, the variable loopCount begins with a
value of 10.The loopCount is greater than 8, so the loop body prints “Hello” and decre-
ments loopCount so it becomes 9.The Boolean expression in the while loop is tested
again. Because 9 is more than 8, “Hello” prints again and loopCount becomes 8. Now
loopCount is not greater than 8, so the loop ends.

The possibilities are endless. Figure 6-6 shows the loopCount being increased by 5,
and the results are still the same—the loop prints “Hello” twice. In general, you should
not use such unusual methods because they simply make a program confusing. The
clearest and best method is to start loopCount at 0 or 1, and continue while it is less
than 2 or 3, incrementing by one each time through the loop.

Figure 6-6 A third simple loop that executes twice

loopCountƒ=ƒ30;
whileƒ(loopCountƒ<ƒ40)
{
ƒƒSystem.out.println("Hello");
ƒƒloopCountƒ=ƒloopCountƒ+ƒ5;
}

Figure 6-5 Another simple loop that executes twice

loopCountƒ=ƒ10;
whileƒ(loopCountƒ>ƒ8)
{
ƒƒSystem.out.println("Hello");
ƒƒloopCountƒ=ƒloopCountƒ-ƒ1;
}

6

Within a loop, you are not required to alter the loop control variable by adding to it or
subtracting from it.When you write a loop that is controlled by an arithmetic result, you
need to know how many times you want a loop to execute. Often, the value of a loop
control variable is not altered by arithmetic, but instead is altered by user input. For
example, perhaps you want to continue performing some task as long as the user indi-
cates a desire to continue. In that case, when you write the program you do not know
whether the loop will be executed two times, 200 times, or at all.

Unlike a loop that you program to execute a fixed number of times, a loop
controlled by the user is a type of indefinite loop because you don’t know how
many times it will eventually loop.

Consider a simple program in which you display a bank balance and ask the user whether
he or she wants to see what the balance will be after interest has accumulated for each
year. Each time the user indicates a desire to continue, an increased balance appears,
reflecting one more year of accumulated interest.When the user finally indicates a desire
to exit, the program ends.The program appears in Figure 6-7.

Figure 6-7 LoopingBankBal program

publicƒclassƒLoopingBankBal
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒƒ{
ƒƒƒƒdoubleƒbankBalƒ=ƒ1000;
ƒƒƒƒdoubleƒintRateƒ=ƒ0.04;
ƒƒƒƒcharƒresponse;
ƒƒƒƒSystem.out.println
ƒƒƒƒƒƒ("Doƒyouƒwantƒtoƒseeƒyourƒbalance?ƒYƒorƒN");
ƒƒƒƒresponseƒ=ƒ(char)System.in.read();
ƒƒƒƒSystem.in.read();ƒSystem.in.read();
ƒƒƒƒƒƒƒƒ//ƒAbsorbsƒEnterƒkey
ƒƒƒƒwhileƒ(responseƒ==ƒ'Y')
ƒƒƒƒ{
ƒƒƒƒƒƒSystem.out.println("Bankƒbalanceƒisƒ"ƒ+ƒbankBal);
ƒƒƒƒƒƒbankBalƒ=ƒbankBalƒ+ƒbankBalƒ*ƒintRate;
ƒƒƒƒƒƒSystem.out.println
ƒƒƒƒƒƒƒƒ("Doƒyouƒwantƒtoƒseeƒnextƒyear'sƒbalance?ƒY orƒN");
ƒƒƒƒƒƒresponseƒ=ƒ(char)System.in.read();
ƒƒƒƒƒƒSystem.in.read();ƒSystem.in.read();
ƒƒƒƒƒƒƒƒ//ƒAbsorbsƒEnterƒkey
ƒƒƒƒ}
ƒƒƒƒSystem.out.println("Haveƒaƒniceƒday!");
ƒƒ}
}ƒ

Tip

188 Chapter 6 Looping

Using a while Loop 189

The program shown in Figure 6-7 continues to display bank balances while the response
is Y. It could also be written to display while the response is not N, as in
whileƒ(responseƒ!=ƒ'N').... A value that a user must supply to stop a loop is
called a sentinel value.

The program shown in Figure 6-7 contains three variables: a bank balance, an interest
rate, and a response. The program asks the user, “Do you want to see your balance?”
and reads the response. Recall that the second and third read() statements are required
to accept [Enter] that is typed after the Y or N entry.The loop in the program begins
with while(responseƒ==ƒ'Y'). If the user types any response other than Y, then
the loop body never executes; instead, the next statement to execute is the “Have a nice
day!” statement at the bottom of the program. However, if the user enters Y, then all
five statements within the loop body will execute.The current balance will display, and
then the program increases the balance by the interest rate value. The program then
prompts the user to type Y or N, and two characters are entered—the response and
[Enter].The loop ends with a closing curly brace, and program control returns to the
top of the loop, where the Boolean expression in the while loop is tested again. If the
user typed Y, then the loop is entered and the increased bankBal value that was calcu-
lated is finally displayed.

Next you will improve the ChooseManager4 program so the user cannot make an
invalid choice for the type of event.

To improve the ChooseManager4 program:

1. If necessary, start your text editor and then open the ChooseManager4.java
text file from the Chapter.06 folder on your Student Disk.

2. Position the insertion point to the right of the statement that reads in the
character for the event type, press [Enter] to start a new line, and then type
the beginning of the while loop that will continue to execute while the
user’s entry is not one of the three allowed event types:

whileƒ(eventTypeƒ!=ƒ'C'ƒ&&ƒeventTypeƒ!=ƒ'P'ƒ
&&ƒeventTypeƒ!=ƒ'N')

3. On a new line, type the opening curly brace for the while loop, press
[Enter], and then type the two statements that will accept the [Enter]
key carriage return and line feed remaining from the user’s data entry:

System.in.read();ƒSystem.in.read();ƒ

4. On a new line, display the following message so the user knows the data
entry was invalid:

System.out.println("EntryƒmustƒbeƒCƒorƒPƒorƒN!");

5. On another new line, read in the eventType value again by typing:

eventTypeƒ=ƒ(char)System.in.read();

6

6. On a new line, type the closing curly brace for the while loop. After making
it through the while loop you just added, the program is guaranteed that the
eventType is C, P, or N, so you can make the nonprofit event the default case.

7. Change the statement caseƒ'N': to default:, and then delete the three
lines that represent the current default case—the existing default keyword
and the System.out.printIn("InvalidƒEntry"); statement that
follow it.

8. Save, compile, and test the program. No matter how many invalid entries you
make, the program will continue to prompt you until you enter C, P, or N.

USING SHORTCUT ARITHMETIC OPERATORS

It is common to increase the value of a variable in a program.As you saw in the last sec-
tion, many loops are controlled by continually adding one to some variable, or incre-
menting, as in countƒ=ƒcountƒ+ƒ1;. Similarly, in the looping bank balance program,
the program increased a bank balance by an interest amount with the statement
bankBalƒ=ƒbankBalƒ+ƒbankBalƒ*ƒintRate;. In other words, the bank balance
became its old value plus a new interest amount; this process is known as accumulating.

Because increasing a variable is so common, Java provides you with several shortcuts
for incrementing and accumulating.The statement countƒ+=ƒ1; is identical in meaning
to countƒ=ƒcountƒ+ƒ1. The += adds and assigns in one operation. Similarly,
bankBalƒ+=ƒbankBalƒ*ƒintRate; increases a bankBal by a calculated inter-
est amount.

When you want to increase a variable’s value by exactly one, you can use two other
shortcut operators—the prefix ++ and the postfix ++. To use a prefix ++, you type
two plus signs before the variable name. The statement someValueƒ=ƒ6;followed by
++someValue; results in someValue holding 7—one more than it held before you
applied the ++.To use a postfix ++, you type two plus signs just after a variable name.
The statements anotherValueƒ=ƒ56;ƒanotherValue++; result in anotherValue
containing 57.

You can use the prefix ++ and postfix ++ with variables, but not with con-
stants. An expression such as ++84; is illegal because an 84 must always
remain an 84. However, you can create a variable as intƒvalƒ=ƒ84 and
then write ++val; or val++; to increase the variable’s value.

The prefix and postfix increment operators are unary operators because you use them
with one value. Most arithmetic operators, such as those used for addition and multipli-
cation, are binary operators—they operate on two values.

Tip

190 Chapter 6 Looping

Using Shortcut Arithmetic Operaters 191

When you simply want to increase a variable’s value by one, there is no difference
between using the prefix and postfix increment operators. Each operator results in
increasing the variable by one. However, these operators do function differently.When
you use the prefix ++, the result is calculated and stored, and then the variable is used.
For example, if bƒ=ƒ4; and cƒ=ƒ++b;, this results in both b and c holding the value
5.When you use the postfix ++, the variable is used and then the result is calculated and
stored. For example, if bƒ=ƒ4; and then cƒ=ƒb++;, 4 will be assigned to c, and then
after the assignment, b is increased and takes the value 5. In other words, if bƒ=ƒ4, then
the value of b++ is also 4, but after the statement is completed, the value of b will be 5.
If dƒ=ƒ8 and eƒ=ƒ8, both ++dƒ==ƒ9 and e++ƒ==ƒ8 are true expressions.

Similar logic can be applied when you use the prefix and the postfix decrement opera-
tors. For example, if bƒ=ƒ4; and cƒ=ƒb—;, 4 will be assigned to c, and then after the
assignment, b is decreased and takes the value 3. If bƒ=ƒ4; and cƒ=ƒ—b;, b will be
decreased to 3 and 3 will be assigned to c.

Next you will add a program that demonstrates how prefix and postfix operators are
used in incrementation, and how incrementing affects the expressions that contain these
operators.

To demonstrate the effect of the prefix and postfix increment operators:

1. Open a new text file and begin a demonstration class named DemoIncrement
by typing:

ƒpublicƒclassƒDemoIncrement
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{

2. On a new line, add a variable v and assign it a value of 4.Then declare a vari-
able named plusPlusV and assign it a value of ++v by typing:

intƒvƒ=ƒ4;
intƒplusPlusVƒ=ƒ++v;

The last statement, intƒplusPlusVƒ=ƒ++v;, will increase v to 5, so before
declaring a vPlusPlus variable to which you assign v++, reset v to 4 by typing:

vƒ=ƒ4;
intƒvPlusPlusƒ=ƒv++;

4. Add the following statements to print the three values:

System.out.println("vƒisƒ"ƒ+ƒv);
System.out.println("++vƒisƒ"ƒ+ƒplusPlusV);
System.out.println("v++ƒisƒ"ƒ+ƒvPlusPlus);

5. Add the closing curly brace for the main() method and the closing curly
brace for the DemoIncrement class.

6

6. Save the file as DemoIncrement.java in the Chapter.06 folder on your
Student Disk. Compile and execute the program.Your output should look
like Figure 6-8.

To illustrate how comparisons are made, add a few more variables to the DemoIncrement
program.

7. Position the insertion point to the right of the last println() statement, and
then press [Enter] to start a new line.

8. Add three new integer variables and two new Boolean variables.The first
Boolean variable compares ++w to y; the second Boolean variable compares
x++ to y:

intƒwƒ=ƒ17,ƒxƒ=ƒ17,ƒyƒ=ƒ18;
booleanƒcompare1ƒ=ƒ(++wƒ==ƒy);
booleanƒcompare2ƒ=ƒ(x++ƒ==ƒy);

9. Add the following statements to display the values stored in the compare
variables:

System.out.println("Firstƒcompareƒisƒ"ƒ+ƒcompare1);
System.out.println("Secondƒcompareƒisƒ"ƒ+ƒcompare2);

10. Save, run, and compile the program.

Besides using the shortcut operator +=, you can use -=, *=, and /=. Each of these oper-
ators is used to perform the operation and assign the result in one step. For example,
balanceDueƒ-=ƒpayment subtracts payment from balanceDue and assigns the result
to balanceDue.

Figure 6-8 Output of the DemoIncrement program

192 Chapter 6 Looping

Using a for Loop 193

USING A for LOOP

A for loop is a special loop that is used when a definite number of loop iterations is
required. Recall that a while loop, also a definite loop type, has a variable number of
iterations and may not execute the body of its loop at all if the initial test condition is
false.The for loop is used when one or more loop iterations are known to be needed.
You will need definite loops frequently when you write programs, and the for loop pro-
vides you with a shorthand notation that you can use to create those definite loops.When
you use a for loop, you can indicate the starting value for the loop control variable, the
test condition that controls loop entry, and the expression that alters the loop control vari-
able all in one convenient place.

You begin a for loop with the keyword for followed by a set of parentheses.Within
the parentheses there are three sections separated by exactly two semicolons.The three
sections are usually used for the following:

� Initializing the loop control variable

� Testing the loop control variable

� Updating the loop control variable

The body of the for statement follows the parentheses. As with an if statement or a
while loop, you can use a single statement as the body of a for loop, or you can use
a block of statements enclosed in curly braces.The for statement shown in Figure 6-9
produces the same output as the while statement shown previously in Figure 6-2—it
prints the integers 1 through 10.

You did not have to declare the variable val within the for statement.
If you declared val earlier in the program block as intƒval; before
the for statement begins, then the for statement would be
for(valƒ=ƒ1;ƒvalƒ<ƒ11;ƒ++val). In other words, the for
statement does not need to declare a variable; it can simply give a start-
ing value to a previously declared variable. Generally, it is not considered
to be good practice to reuse variables in for statements.

Within the parentheses of the for statement shown in Figure 6-9, the first section prior to
the first semicolon declares a variable named val and initializes it to 1.The program will
execute this statement once, no matter how many times the body of the for loop executes.

Tip

Figure 6-9 Printing the integers 1 through 10 with a for loop

for(intƒvalƒ=ƒ1;ƒvalƒ<ƒ11;ƒ++val)
{
ƒƒSystem.out.println(val);
}

6

After the initialization expression executes, program control passes to the middle, or
test section, of the for statement. If the Boolean expression found there evaluates to
true, then the body of the for loop is entered. In the program segment shown in
Figure 6-9, val is set to 1, so when valƒ<ƒ11 is tested, it evaluates to true.The loop
body prints the val.

After the loop body executes, the final one-third of the for loop executes, and val is
increased to 2. Following the third section, program control returns to the second sec-
tion, where val is compared to 11 a second time. Because val is still less than 11, the body
executes: val (now 2) prints, and then the third, altering portion of the for loop exe-
cutes again.The variable val increases to 3, and the for loop continues.

Eventually, when val is not less than 11 (after 1 through 10 have printed), the for loop
ends, and the program continues with any statements that follow the for loop.

Although the three sections of the for loop are most commonly used for initializing,
testing, and incrementing, you can also perform the following tasks:

� Initialization of more than one variable by placing commas between the sep-
arate statements, as in for(gƒ=ƒ0,ƒhƒ=ƒ1;ƒgƒ<ƒ6;ƒ++g)

� Performance of more than one test, as in
for(gƒ=ƒ0;ƒgƒ<ƒ3ƒ&&ƒhƒ>ƒ1;ƒ++g)

� Decrementation or performance of some other task, as in
for(gƒ=ƒ5;ƒgƒ>=ƒ1;ƒ—g)

� Leaving one or more portions of the for loop empty, although the two
semicolons are still required as placeholders

Usually you should use the for loop for its intended purpose—a shorthand way of pro-
gramming a definite loop. Occasionally, you will encounter a for loop that contains no
body, such as for(xƒ=ƒ0;ƒxƒ<ƒ100000;ƒ++x);.This kind of loop exists simply to
use time—for instance, when a brief pause is desired during program execution.

Java also contains a built-in method to pause program execution. The sleep()
method is part of the Thread class in the java.lang package.

LEARNING HOW AND WHEN TO USE A do...while LOOP

With all the loops you have written so far, the loop body might execute many times, but
it is also possible that the loop will not execute at all. For example, recall the bank bal-
ance program that displays compound interest, part of which is shown in Figure 6-10.

Tip

194 Chapter 6 Looping

Learn How and When to Use a do...while Loop 195

The program segment begins with the user prompt,“Do you want to see your balance?
Y or N”. If the user does not type Y, the loop body never executes. The while loop
checks a value at the “top” of the loop before the body has a chance to execute.
Sometimes you might need a loop body to execute at least one time. If so, you want to
write a loop that checks at the “bottom” of the loop after the first iteration. The
do...while loop checks the bottom of the loop after one repetition has occurred.

Figure 6-11 shows a do...while loop for the bank balance program. The loop starts
with the keyword do.The body of the loop follows and is contained within curly braces.
The bankBal variable is output before the user has any option of responding. At the end
of the loop, the user is prompted,“Do you want to see next year’s balance? Y or N”. Now
the user has the option of seeing more balances, but the first prompt was unavoidable.The
user’s response is checked at the bottom of the loop. If it is Y, then the loop repeats.

In any situation where you want to loop, you are never required to use a do...while
loop. Within the bank balance example, you could simply unconditionally display the
bank balance once, prompt the user, and then start a while loop that might not be
entered. However, when you know you want to perform some task at least one time,
the do...while loop is convenient.

Figure 6-11 Part of the bank balance program with a do...while loop

do
{
ƒƒSystem.out.println("Bankƒbalanceƒisƒ"ƒ+ƒbankBal);
ƒƒbankBalƒ=ƒbankBalƒ+ƒbankBalƒ*ƒintRate;
ƒƒSystem.out.println
ƒƒƒƒ("Doƒyouƒwantƒtoƒseeƒnextƒyear'sƒbalance?ƒY orƒN");
ƒƒresponseƒ=ƒ(char)System.in.read();
ƒƒSystem.in.read();ƒSystem.in.read();ƒ//ƒAbsorbsƒEnterƒkey
}ƒwhileƒ(responseƒ==ƒ'Y');

Figure 6-10 Part of the bank balance program with a while loop

System.out.println("Doƒyouƒwantƒtoƒseeƒyourƒbalance?ƒYƒorƒN");
responseƒ=ƒ(char)System.in.read();
System.in.read();ƒSystem.in.read();ƒ//ƒAbsorbsƒEnterƒkey
whileƒ(responseƒ==ƒ'Y')
{
ƒƒSystem.out.println("Bankƒbalanceƒisƒ"ƒ+ƒbankBal);
ƒƒbankBalƒ=ƒbankBalƒ+ƒbankBalƒ*ƒintRate;
ƒƒSystem.out.println
ƒƒƒƒ("Doƒyouƒwantƒtoƒseeƒnextƒyear'sƒbalance?ƒY orƒN");
ƒƒresponseƒ=ƒ(char)System.in.read();
ƒƒSystem.in.read();ƒƒ//ƒAbsorbsƒEnterƒkey
}

6

LEARNING ABOUT NESTED LOOPS

Just as if statements can be nested, so can loops.You can place a while loop within a
while loop, a for loop within a for loop, a while loop within a for loop, or use
any combination you can think of.

For example, suppose you want to find all the numbers that divide evenly into 100.You
can write a for loop that sets a variable to 1 and increments it to 100. Each of the 99
times through the loop, if 100 is evenly divisible by the number (that is, if 100%num is
equivalent to 0), then the program prints the number. Next you will write a program
that determines all the integers that divide evenly into 100.

To find all the numbers that divide evenly into 100, you actually have to test
divisors only through 50. You cannot evenly divide any number by a number
that is more than half of the original number.

To write a program that finds the values that divide evenly into 100:

1. Open a new text file.

2. Begin the program named EvenInt by typing the following code to declare
an integer variable named num:

publicƒclassƒEvenInt
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒintƒnum;

3. Type a statement that explains the purpose of the program:

System.out.print("100ƒisƒevenlyƒdivisibleƒbyƒ");ƒ

4. Write the for loop that varies num from 1 to 99.With each iteration of the
loop, test whether 100%num is 0. If you divide 100 by a number and there is
no remainder, then the number goes into 100 evenly.

for(numƒ=ƒ1;ƒnumƒ<ƒ100;ƒ++num)
ƒif(100%numƒ==ƒ0)
ƒƒSystem.out.print(numƒ+ƒ"ƒ");ƒ
ƒƒ//ƒPrintƒtheƒnumberƒandƒtwoƒspaces

5. Add an empty println() statement to advance the insertion point to the next
line by typing System.out.println();.

6. Type the closing curly braces for the main() method and the EvenInt class.

7. Save the program as EvenInt.java in the Chapter.06 folder on your Student
Disk. Compile and run the program.The program prints 100 is evenly divisi-
ble by 1 2 4 5 10 20 25 50.

Tip

196 Chapter 6 Looping

Learning About Nested Loops 197

What if you want to know what number goes evenly into 100, but also what every num-
ber up to 100 can be evenly divided by? You can write 99 more loops, or you can place
the current loop inside a different, outer loop, as you will do next.

When you use a loop within a loop, you should always think of the outer loop as the
all-encompassing loop. When you describe the task at hand, you often use the word
“each” when referring to the inner loop. For example, if you want to print three mail-
ing labels each for 20 customers, the label variable would control the inner loop:

ƒfor(customerƒ=ƒ1;ƒcustomerƒ<=ƒ20;ƒ++customer)
ƒfor(labelƒ=ƒ1;ƒlabelƒ<=3;ƒ++label)
ƒƒprintLabelMethod();

If you want to print divisors for each number from 1 to 100, then the loop that varies
the number to be divided is the outside loop.You need to perform 100 mathematical
calculations on each number, so that constitutes the “smaller” or inside loop.

To create a nested loop to print even divisors for every number up to 100:

1. Open the file EvenInt.java in your text editor, and then save the class as
EventInt2. Create an outer loop that uses the variable testNum to test
every number from 1 to 100. Position the insertion point after the declaration
of num but before the semicolon that ends the declaration, and then type a
comma and testNum.

2. Position the insertion point to the right of the line with the variable declara-
tions, press [Enter] to start a new line, and then type the other for loop:

for(testNumƒ=ƒ1;ƒtestNumƒ<=ƒ100;ƒ++testNum)

3. Press [Enter], and then type the opening curly brace for this loop on the
next line.

4. Change the statement that prints “100 is evenly divisible by “ to the following:

System.out.print(testNumƒ+ƒ"ƒisƒevenlyƒdivisibleƒbyƒ");

5. Change the for statement that varies num from 1 to 100 so it only varies
num from 1 to testNum. For example, during each iteration, if testNum is
46, you want to divide it only by numbers that are 45 or less.Type the fol-
lowing code to make this change:

for(numƒ=ƒ1;ƒnumƒ<ƒtestNum;ƒ++num)

6. Change the statement that tests 100%num to if(testNum%numƒ==ƒ0).

7. Following the empty println() statement, add the closing curly brace for the
outer for loop.

8. Save the file as EventInt2, compile, and run the program.The output will
scroll on the screen.When it stops, it should look similar to Figure 6-12.

6

When the program executes, 100 lines of output display on the screen. But, as Figure 6-12
shows, the first 76 (or so) lines scroll so rapidly that you can’t read them. It would help if
you could stop the output after every 20 lines or so; then you would have time to read the
messages. Next you will use the modulus operator for this task. If you stop output when
testNum is 20, 40, 60, and 80, then you can test testNum to see if it is evenly divisible by
20.When it is, you can pause program execution by asking the user to press [Enter] and
accept keyboard input.

To pause your program after every 20 lines of output:

1. At the end of the EvenInt file and just prior to the closing brace for the for
loop, type the following code to test testNum to determine if 20 divides into
it evenly, then tell the user to press [Enter] and accept an [Enter] key from
the keyboard (you don’t have to store the entered key in a variable):

if(testNumƒ%ƒ20ƒ==ƒ0)
{
ƒSystem.out.println("PressƒEnterƒtoƒcontinue");
ƒSystem.in.read();ƒSystem.in.read();
}

2. Because the program now uses the System.in.read() method, you must posi-
tion the insertion point at the end of the main() method header line and add
throwsƒException.

3. Save, compile, and test the program. It will pause after every 20 lines of output
and wait until you press [Enter] before continuing until the program ends.

CHAPTER SUMMARY
❒ A loop is a structure that allows repeated execution of a block of statements. A loop

that never ends is called an infinite loop. A loop that executes a specific number of
times is a definite loop or counted loop.You can nest loops.

Figure 6-12 Output of the EvenInt2 program

Depending on your
monitor resolution, you
may see more lines than
are displayed here

198 Chapter 6 Looping

Review Questions 199

❒ Within a looping structure, a Boolean expression is evaluated, and if it is true, a
block of statements called the loop body executes; then the Boolean expression is
evaluated again.

❒ You can use a while loop to execute a body of statements continually while
some condition continues to be true.

❒ To execute a while loop, you initialize a loop control variable, test it in a while
statement, and then alter the loop control variable in the body of the while
structure.

❒ The += operator adds and assigns in one operation.

❒ The prefix ++ and the postfix ++ increase a variable’s value by one.The prefix --
and postfix -- decrement operators reduce a variable’s value by one.When you use
the prefix ++, the result is calculated and stored, and then the variable is used.
When you use the postfix ++, the variable is used, and then the result is calculated
and stored.

❒ Unary operators are used with one value. Most arithmetic operators are binary
operators that operate on two values.

❒ The shortcut operators +=, -=, *=, and /= perform operations and assign the result
in one step.

❒ A for loop initializes, tests, and increments in one statement.There are three
sections within the parentheses of a for loop that are separated by exactly two
semicolons.

❒ The do...while loop tests a Boolean expression after one repetition has taken
place, at the bottom of the loop.

REVIEW QUESTIONS
1. A structure that allows repeated execution of a block of statements is a(n)

.

a. cycle

b. loop

c. ring

d. iteration

2. A loop that never ends is a(n) loop.

a. iterative

b. infinite

c. structured

d. illegal

6

3. To construct a loop that works correctly, you should initialize a loop control
.

a. variable

b. constant

c. structure

d. condition

4. What is the output of the following code?

bƒ=ƒ1;
whileƒ(bƒ<ƒ4)
System.out.println(bƒ+ƒ"ƒ");

a. 1

b. 1 2 3

c. 1 2 3 4

d. 1 1 1 1 1 1...

5. What is the output of the following code?

bƒ=ƒ1;
whileƒ(bƒ<ƒ4)
{
ƒSystem.out.println(bƒ+ƒ"ƒ");
ƒbƒ=ƒbƒ+ƒ1;
}

a. 1

b. 1 2 3

c. 1 2 3 4

d. 1 1 1 1 1...

6. What is the output of the following code?

eƒ=ƒ1;
whileƒ(eƒ<ƒ4);
System.out.println(eƒ+ƒ"ƒ");

a. 1

b. 1 1 1 1 1 1...

c. 1 2 3 4

d. 4 4 4 4 4 4...

200 Chapter 6 Looping

Review Questions 201

7. If totalƒ=ƒ100 and amtƒ=ƒ200, then after the statement totalƒ+=ƒamt,
.

a. total is equal to 200

b. total is equal to 300

c. amt is equal to 100

d. amt is equal to 300

8. The modulus operator % is a operator.

a. unary

b. binary

c. tertiary

d. postfix

9. The prefix ++ is a operator.

a. unary

b. binary

c. tertiary

d. postfix

10. If gƒ=ƒ5, then the value of the expression ++g is .

a. 4

b. 5

c. 6

d. 7

11. If hƒ=ƒ9, then the value of the expression h++ is .

a. 8

b. 9

c. 10

d. 11

12. If jƒ=ƒ5 and kƒ=ƒ6, then the value of j++ƒ==ƒk is .

a. 5

b. 6

c. true

d. false

6

13. You must always include in a for loop’s parentheses.

a. two semicolons

b. three semicolons

c. two commas

d. three commas

14. The statement for(aƒ=ƒ0;ƒaƒ<ƒ5;ƒ++a)ƒSystem.out.print(aƒ+ƒ"ƒ");
prints .

a. 0 0 0 0 0

b. 0 1 2 3 4

c. 0 1 2 3 4 5

d. nothing

15. The statement for(bƒ=ƒ1;ƒbƒ>ƒ3;ƒ++b)ƒSystem.out.print(bƒ+ƒ"ƒ");
prints .

a. 1 1 1

b. 1 2 3

c. 1 2 3 4

d. nothing

16. What does the following statement print?

for(fƒ=ƒ1,ƒgƒ=ƒ4;ƒfƒ<ƒg;ƒ++f,ƒ—g)
ƒSystem.out.print(fƒ+ƒ"ƒ"ƒ+ƒgƒ+ƒ"ƒ");ƒ

a. 1 4 2 5 3 6 4 7...

b. 1 4 2 3 3 2

c. 1 4 2 3

d. nothing

17. The loop that performs its conditional check at the bottom of the loop is a
loop.

a. while

b. do...while

c. for

d. for...while

202 Chapter 6 Looping

Exercises 203

18. What does this program segment print?

dƒ=ƒ0;
do
{
ƒSystem.out.print(dƒ+ƒ"ƒ");
ƒd++;
}ƒwhileƒ(dƒ<ƒ2);

a. 0

b. 0 1

c. 0 1 2

d. nothing

19. What does this program segment print?

for(fƒ=ƒ0;ƒfƒ<ƒ3;ƒ++f)
ƒfor(gƒ=ƒ0;ƒgƒ<ƒ2;ƒ++g)
ƒSystem.out.print(fƒ+ƒ"ƒ"ƒ+ƒgƒ+ƒ"ƒ");

a. 0 0 0 1 1 0 1 1 2 0 2 1

b. 0 1 0 2 0 3 1 1 1 2 1 3

c. 0 1 0 2 1 1 1 2

d. 0 0 0 1 0 2 1 0 1 1 1 2 2 0 2 1 2 2

20. What does this program segment print?

for(mƒ=ƒ0;ƒmƒ<ƒ4;ƒ++m);
ƒfor(nƒ=ƒ0;ƒnƒ<ƒ2;ƒ++n);
ƒSystem.out.print(mƒ+ƒ"ƒ"ƒ+ƒnƒ+ƒ"ƒ");

a. 0 0 0 1 1 0 1 1 2 0 2 1 3 0 3 1

b. 0 1 0 2 1 1 1 2 2 1 2 2

c. 4 2

d. 3 1

EXERCISES
1. Write a program that prints all even numbers from 2 to 100 inclusive. Save the pro-

gram as EvenNums.java in the Chapter.06 folder on your Student Disk.

2. Write a program that asks a user to type A, B, C, or Q.When the user types Q,
the program ends.When the user types A, B, or C, the program displays the mes-
sage “Good job!” and then asks for another input.When the user types anything
else, issue an error message and then ask for another input. Save the program as
ABCInput.java in the Chapter.06 folder on your Student Disk.

3. Write a program that prints every integer value from 1 to 20 along with its
squared value. Save the program as TableOfSquares.java in the Chapter.06
folder on your Student Disk.

6

4. Write a program that sums the integers from 1 to 50 (that is, 1 + 2 + 3... + 50).
Save the program as Sum50.java in the Chapter.06 folder on your Student Disk.

5. Write a program that shows the sum of 1 to n for every n from 1 to 50.That is,
the program prints 1, 3 (the sum of 1 and 2), 6 (the sum of 1, 2, and 3), and so
on. Save the program as EverySum.java in the Chapter.06 folder on your
Student Disk.

6. Write a program that prints every perfect number from 1 through 1000.A perfect
number is one that equals the sum of all the numbers that divide evenly into it. For
example, 6 is perfect because 1, 2, and 3 divide evenly into it, and their sum is 6.
Save the program as Perfect.java in the Chapter.06 folder on your Student Disk.

7. Write a program that calculates the amount of money earned on an investment;
that amount should include 12 percent interest. Prompt the user to choose the
investment amount from one menu and the number of years for the investment
from a second menu. Display the total amount (balance) for each year of the
investment. Use a loop instruction to calculate the balance for each year. Use the
formula amount = investment * (1 + interest) raised to a power equal to the
year to calculate the balance. Use the Math power function from Chapter 4,
Math.pow(x,y) where x = (1 + interest) and y is the year. Save the program as
Investment.java in the Chapter.06 folder on your Student Disk.

8. Write a program that creates a quiz that contains questions about a hobby, popular
music, astronomy, or any other personal interest.After the user selects a topic, display
a series of questions.The user should answer the questions with one character for
multiple choice, true/false, or yes/no. If the user responds to a question correctly,
display an appropriate message. If the user responds to a question incorrectly, display
an appropriate response and the correct answer.At the end of the quiz, display the
number of correct answers. Save the program as Quiz.java file in the Chapter.06
folder on your Student Disk.

9. Write a program that displays a series of survey questions, with one-character
answers. At the end of the survey, ask the user if he or she wants to enter another
set of responses. If the user responds no, then display the results of the survey for
each question. Enter several sets of responses to test the program. Save the pro-
gram as Survey.java in the Chapter.06 folder on your Student Disk.

10. Write a program that displays the results of a coin toss.The user is prompted to
enter a for heads and b for tails. Use the Math.random() function from Chapter 4
to generate a number between 0 and 1. Use the probabilities of .5 for either a head
or tail. Make sure that the user enters an a or b by continuing to loop until a or b
is entered. Print either “You win” or “You lose” as the output. Save the program as
FlipCoin.java in the Chapter.06 folder on your Student Disk.

11. Write a program that will count and display the number of heads and tails for a
coin flipped from 1 to 9 times.The user is prompted for an integer from 1 to 9.
Use the Math.random() function from Chapter 4 to generate a number between 0
and 1. Use the probabilities of .5 for either a head or a tail. Make use of the fact
that the ASCII code for the numerals 0 to 9 is decimal 48 through 57. Save the
program as CountFlips.java in the Chapter.06 folder on your Student Disk.

204 Chapter 6 Looping

Case Project 205

12. Each of the following files in the Chapter.06 folder on your Student Disk has syn-
tax and/or logical errors. In each case, determine the problem and fix the program.
After you correct the errors, save each file using the same filename preceded with
Fix. For example, save DebugSix1.java as FixDebugSix1.java.

a. DebugSix1.java

b. DebugSix2.java

c. DebugSix3.java

d. DebugSix4.java

CASE PROJECT
Local Caterer’s Company operates a small Mom and Pop catering service.They want you
to write an object-oriented program for them to schedule their catering events. They
mostly cater special events, but they occasionally cater corporate, private and nonprofit
events as well. Mom and Pop are both managers; Mom manages nonprofit and special
events, and Pop manages the corporate and private events.All catered events have an event
minimum rate shown in the table below:

Write a program for Local Caterer’s Company that contains a class that has methods for
the event minimum rate and event type.Write a test program that accepts keyboard input
and checks the event type input for errors until a valid event type is entered.After a valid
input type is entered, print the manager’s name for that event, the type of event chosen,
and the minimum rate to be charged.

Event Minimum Rate Manager

Corporate $500.00 Pop

Private $300.00 Pop

Nonprofit $150.00 Mom

Special $200.00 Mom

Local Caterer’s Company fee schedule

Case
Project

6

207

CHAPTER

7
CHARACTERS, STRINGS, AND THE

STRINGBUFFER
In this section, you will:

� Manipulate characters
� Declare a String object
� Compare String values
� Use other String methods
� Convert Strings to numbers
� Learn about the StringBuffer class

Ican write an interactive program that accepts a character, but I really want
to be able to manipulate characters and let users enter words or numbers

into programs,” you announce to Lynn Greenbrier, your Java mentor.

“You need to learn about the String,” Lynn says. “The wide variety of String
methods provided with the Java programming language will help you use words
and phrases efficiently.You’ll even be able to let your users input numbers.”

PREVIEWING A GUESSING GAME PROGRAM

To demonstrate the use of the String methods, you will test a simple guessing game, sim-
ilar to Hangman. The user first will guess letters, and then guess the motto of Event
Handlers Incorporated.

To preview the guessing game:

1. Open the Chap7SecretPhrase.java file in the Chapter.07 folder on your
Student disk.

2. At the command prompt, compile the class with the command javac
Chap7SecretPhrase.java.

3. Run the program with the command java Chap7SecretPhrase. Enter
keyboard characters one at a time and guess Event Handlers’ motto.

MANIPULATING CHARACTERS

You learned in Chapter 2 that the char data type is used to hold any single character. In
addition to the primitive data type char, Java offers a Character class.The Character class
contains standard methods for testing the values of characters, such as letters or digits.

Method Description

isUpperCase() Tests if character is uppercase

toUpperCase() Changes a lowercase character to uppercase

isLowerCase() Tests if character is lowercase

toLowerCase() Changes an uppercase character to lowercase

isDigit() Returns true if the argument is a digit (0-9) and false otherwise

isLetter() Returns true if the argument is a letter and false otherwise

isLetterOrDigit() Returns true if the argument is a letter or digit and false otherwise

isWhitespace() Returns true if the argument is whitespace and false otherwise. (This
includes the space, tab, newline, carriage return, and form feed.)

Table 7-1 Common methods of the Character class

Figure 7-1 Structure of the Character class

Java.lang.Object

+--java.lang.Character

208 Chapter 7 Characters, Strings, and the StringBuffer

Manipulating Characters 209

Figure 7-1 shows the Character class is defined in java.lang.Object and is automatically
imported into every program you write. Commonly used methods available in the
Character class are shown in Table 7-1.

Figure 7-2 contains a program that uses many of the methods shown in Table 7-1.The
program declares a character variable named aChar and allows the user to supply a value
for aChar by entering a single character from the keyboard.The program tests aChar using
a series of if and if…else statements to determine whether the entered character is a
digit, letter, or whitespace, and if it is a letter, whether it is lowercase or not.

Figure 7-2 The TestCharacter program

public class TestCharacter
{

public static void main(String[] args)throws Exception
{

char aChar;
System.out.println("Please enter a character");
aChar = (char)System.in.read();
System.in.read();System.in.read();
if(Character.isDigit(aChar))

System.out.println(aChar+"is a number");
else System.out.println(aChar+"is not a number");
if(Character.isWhitespace(aChar))

System.out.println(aChar+ "is a letter");
else System.out.println(aChar+ "is not a letter");
if(Character.isWhitespace(aChar))

System.out.println
("Character is a whitespace character");

else System.out.println
("Character is not a whitespace character");

if(Character.isLetter(aChar))
if(Character.isLowerCase(aChar))

System.out.println(aChar+
" is lowercase character");

else
System.out.println(aChar+
" is not a lowercase character");

}
}

7

The output of the TestCharacter program for sample keyboard input of an uppercase
character “C” is shown in Figure 7-3.

DECLARING A STRING OBJECT

You learned in Chapter 1 that a sequence of characters enclosed within double quota-
tion marks is a literal string.You have used many literal strings, such as “First Java pro-
gram,” within println() statements.

You also use String in main() method headers.

A String variable is simply an object of the class String. The class String is defined in
java.lang.String, which is automatically imported into every program you write. Figure 7-4
shows that the String class descends directly from the Object class.The String itself is dis-
tinct from the variable you use to refer to it.You create a String object by using the key-
word new and the String constructor method, just as you would create an object of any
other type. For example, String aGreeting = new String("Hello"); is a state-
ment that defines an object named aGreeting, declares it to be of type String, and assigns
an initial value of “Hello” to the String. The variable aGreeting stores a reference to a
String object—it keeps track of where the String object is stored in memory.When you
declare and initialize aGreeting, it links to the initializing String value. Alternately, you
can declare a String containing “Hello” with String aGreeting = "Hello";.
Unlike other classes, the String class is special because you can create a String object with-
out using the keyword new or calling the class constructor.

Tip

Figure 7-3 Sample output of the TestCharacter program

210 Chapter 7 Characters, Strings, and the StringBuffer

Comparing String Values 211

After declaring a String, you can display it in a print() or println() statement, just as you
would for any other variable—for example, System.out.println("The greeting
is " + aGreeting);.

COMPARING STRING VALUES

In the Java programming language, String is a class, and each created String is a class
object. A String variable name is a reference; that is, a String variable name refers to a
location in memory, rather than to a particular value.

The distinction is subtle, but when you declare a variable of a basic, primitive type, such
as int x = 10;, the memory address where x is located holds the value 10. If you later
assign a new value to x, for example, x = 45;, then 45 replaces 10 at the assigned mem-
ory address. When you declare a String, such as String aGreeting = "Hello";,
aGreeting holds a memory address where the characters “Hello” are stored. If you subse-
quently assign a new value to aGreeting, such as aGreeting = "Bonjour";, then the
address held by aGreeting is altered; now aGreeting holds a new address where the char-
acters “Bonjour” are stored.“Bonjour” is an entirely new object created with its own loca-
tion. The “Hello” String is still in memory; it’s just that aGreeting no longer holds its
address. Eventually, a part of the Java system called the garbage collector will discard the
“Hello” characters. Strings, therefore, are never actually changed; instead, new Strings are
created and String variables hold the new addresses. Strings and other objects that can’t
be changed are known as immutable.

Because String variables hold memory addresses, you cannot make a simple comparison
to determine whether two String objects are equivalent. For example, if you declare two
Strings as String aGreeting = "Hello"; and String anotherGreeting =
"Hello";, Java will evaluate a comparison, such as if(aGreeting ==
anotherGreeting) as false. This is because when you compare aGreeting to
anotherGreeting with the == operator, you are comparing their memory addresses, not
their values.

Fortunately, the String class provides you with a number of useful methods.The equals()
method evaluates the contents of two String objects to determine if they are equivalent.
The method returns true if the objects have identical contents. For example, Figure 7-5
shows two String objects and several comparisons. Each comparison in Figure 7-5 is true;
each results in printing the line “Name’s the same.”

Figure 7-4 Structure of the String class

Java.lang.Object

+--java.lang.String

7

The String class equals() method returns true only if two Strings are identi-
cal in content. Thus, a String holding “Roger ” (with a space after the r) is not
equivalent to a String holding “Roger” (with no space after the r).

Each String shown in Figure 7-5 (aName and anotherName) is an object of type String,
so each String has access to the String class equals() method.The aName object can call
equals() with aName.equals(), or the anotherName object can call equals() with
anotherName.equals().The equals() method can take either a variable String object
or a literal string as its argument.

The equalsIgnoreCase() method is similar to the equals() method.As its name implies,
it ignores case when determining if two Strings are equivalent. Thus,
aName.equals("roGER") is false, but aName.equalsIgnoreCase("roGER")
is true.This method is useful when users type responses to prompts in your programs.
You cannot predict when a user might use the Shift key or the Caps Lock key during
data entry.The equalsIgnoreCase() method allows you to test entered data without regard
to capitalization.

When the compareTo() method is used to compare two Strings, it provides additional
information to the user in the form of an integer value.When you use compareTo() to
compare two String objects, the method returns zero only if the two Strings hold the
same value. If there is any difference between the Strings, a negative number is returned
if the calling object is “less than” the argument, and a positive number is returned if the
calling object is “more than” the argument. Strings are considered “less than” or “more
than” each other based on their Unicode values; thus, “a” is less than “b,” and “b” is less
than “c.”

For example, if aName holds “Roger,” then aName.compareTo("Robert"); returns
a 5. The number is positive, indicating that “Roger” is more than “Robert.” This does
not mean that “Roger” has more characters than “Robert”; it means that “Roger” is
alphabetically “more” than “Robert.”The comparison proceeds as follows:

� The R in “Roger” and the R in “Robert” are compared, and found to be equal.

� The o in “Roger” and the o in “Robert” are compared, and found to be equal.

Tip

Figure 7-5 String comparisons using the equals() method

String aName = "Roger";
String anotherName = "Roger";
if(aName.equals(anotherName))

System.out.println("Name's the same");
if(anotherName.equals(aName))

System.out.println("Name's the same");
if(aName.equals("Roger");

System.out.println("Name's the same");

212 Chapter 7 Characters, Strings, and the StringBuffer

Using Other String Methods 213

� The g in “Roger” and the b in “Robert” are compared; they are different.The
numeric value of g minus the numeric value of b is 5 (because g is five letters
after b in the alphabet), so the compareTo() method returns the value 5.

Often you won’t care what the specific return value of compareTo() is; you simply will
want to determine if it is positive or negative. For example, you can use a test, such as
if(aWord.compareTo(anotherWord)<0)... to determine whether aWord is
alphabetically less than anotherWord. If aWord is a String variable that holds the value
“hamster,” and anotherWord is a String variable that holds the value “iguana,” then the
comparison if(aWord.compareTo(anotherWord)<0) yields true.

USING OTHER STRING METHODS

A wide variety of additional String methods are available with the String class.The meth-
ods toUpperCase() and toLowerCase() convert any String to its uppercase or lowercase
equivalent. For example, if you declare a String as String aWord = "something";,
then aWord = aWord.toUpperCase assigns “SOMETHING” to aWord. Because
aWord now is assigned “SOMETHING,” aWord = aWord.toLowerCase() assigns
“something” to aWord.The indexOf() method determines whether a specific character
occurs within a String. If it does, the method returns the position of the character.The
first position of a String begins with zero rather than 1.The return value is -1 if the char-
acter does not exist in the String. For example, in String myName = "Stacy";, the
value of myName.indexOf('a') is 2, and the value of myName.indexOf('q') is -1.

The charAt() method requires an integer argument which indicates the position of
the character that the method returns. For example, if myName is a String holding
“Stacy,” then the value of myName.charAt(0) is ‘S’ and myName.charAt(1) is ‘t’.

The endsWith() method and the startsWith() method each take a String argument
and return true or false if a String object does or does not end or start with the
specified argument. For example, if String myName = "Stacy";, then
myName.startsWith("Sta") is true, and myName.endsWith("z") is false.

The replace() method allows you to replace all occurrences of some character within
a String. For example, if String yourName = "Annette";, then String
goofyName = yourName.replace('n', 'X'); assigns “AXXette” to goofyName.

The toString() method converts any primitive type to a String. So, if you declare a
String as theString and an integer as int someInt = 4;, then theString =
Integer.toString(someInt); results in the String “4” being assigned to theString.
If you declare another String as aString and a double as double someDouble =
8.25, then aString = Double.toString(someDouble); assigns the String
“8.25” to aString.

7

Another method is available to convert any primitive type to a String. If you declare a
String as anotherString and a float as float someFloat = 12.34f, then
anotherString = "" + someFloat, assigns the String “12.34” to anotherString.
The Java interpreter first converts the float 12.34f to a String “12.34,” and adds it to the
null String “”. Joining Strings is called concatenation. The resulting string “12.34” is
then assigned to anotherString.

The toString() method is not part of the String class; it is a method included
in Java that you can use with any type of object. You have been using
toString() throughout this book without knowing it. When you use print() and
println(), their arguments are automatically converted to Strings if necessary.
You don’t need import statements to use toString() because it is part of
java.lang, which is imported automatically.

Because the toString() method takes arguments of any primitive type, includ-
ing int, char, double, and so on, it is an overloaded method.

You already know that you can join Strings with other Strings or values by using a
plus sign (+); you have used this approach in println() statements since Chapter 1.
For example, you can print a firstName, a space, and a lastName with
System.out.println(firstName + " " + lastName);. Additionally, you can
extract part of a String with the substring() method, and use it alone or concatenate it
with another String.The substring() method takes two arguments—a start position and
an end position—that are both based on the fact that a String’s first position is position
zero. For example, the program segment in Figure 7-6 shows the names Monday
through Friday as Strings representing the days of the week. An abbreviation of a
weekday, Monday for example, can be printed after using the substring
method System.out.println("The abbreviation for Monday is " +
monday.substring(0,3));. Here monday.substring(0,3) starts at the first
character (index of 0), and extracts the first three letters from the string stored as
“Monday.” The output of the weekday abbreviations program is shown in Figure 7-7.

Tip

Tip

214 Chapter 7 Characters, Strings, and the StringBuffer

Using Other String Methods 215

Figure 7-7 Output of the substring method and String concatenation code segment

Figure 7-6 Program segment demonstrating the substring method and String concatenation

public class Weekdays
{

public static void main(String() args)throws Exception
{

char weekday;

String monday = "Monday";
String tuesday = "Tuesday";
String wednesday = "Wednesday";
String thursday = "Thursday";
String friday = "Friday";

System.out.println("Enter weekday 1 - Monday, 2 - Tuesday");
System.out.println("3 - Wednesday, 4 - Thursday, 5 - Friday");
weekday = (char)System.in.read();
System.in.read();System.in.read();

if(weekday == '1')
System.out.println("The abbreviation for Monday is " +
monday.substring(0,3));

else if(weekday == '2')
System.out.println("The abbreviation for Tuesday is " +
tuesday.substring(0,3));

else if(weekday == '3')
System.out.println("The abbreviation for Wednesday is " +
wednesday.substring(0,3));

else if(weekday == '4')
System.out.println("The abbreviation for Thursday is " +
thursday.substring(0,3));

else
System.out.println("The abbreviation for Friday is " +
friday.substring(0,3));

}
}

7

To demonstrate the use of the String methods, you will create a simple guessing game,
similar to Hangman.The user first will guess letters, and then attempt to guess the motto
of Event Handlers Incorporated.

To create the guessing game:

1. Open a new text file in your text editor. Enter the following first few lines of
a SecretPhrase program.The program will contain the target phrase that the
user will try to guess (“Plan With Us”), as well as a display phrase that is
mostly asterisks (with a few hints).

publicƒclassƒSecretPhrase
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒƒ{
ƒƒƒƒStringƒtargetPhraseƒ=ƒ"PlanƒWithƒUs";
ƒƒƒƒStringƒdisplayPhraseƒ=ƒ"P***ƒW***ƒU*";

2. Add the following variables that will hold the user’s guess and the position of
a guess that is found within the phrase:

charƒguess;
intƒposition;

3. Next, add the following brief instruction:

System.out.println("Playƒourƒgameƒ-ƒguessƒourƒmotto");ƒ

4. Enter the statement to display the hint phrase:

System.out.println(displayPhrase);

5. Add the following loop that continues while asterisks remain in the
displayPhrase.The user will enter a letter.You will use the indexOf() method
to determine whether the guessed letter appears in the targetPhrase. If it does
not, then ask the user to guess again. If the guessed letter appears in the
phrase, you reconstruct the display phrase with the following:

� The substring of characters in the display phrase that comes before the
correct guess

� The correct guess

� The substring of characters in the display phrase that appears after the correct
guess; in other words, the correct letter replaces the appropriate asterisk

Add the following code:

while(displayPhrase.indexOf('*')ƒ!=ƒ-1)
{
ƒƒSystem.out.println("Enterƒaƒletter");
ƒƒguessƒ=ƒ(char)System.in.read();ƒ

216 Chapter 7 Characters, Strings, and the StringBuffer

Converting Strings to Numbers 217

ƒƒSystem.in.read();ƒSystem.in.read();
ƒƒƒƒ//ƒAbsorbsƒEnterƒkey
ƒƒpositionƒ=ƒtargetPhrase.indexOf(guess);
ƒƒƒƒ//ƒDeterminesƒpositionƒofƒguess
ƒƒif(positionƒ==ƒ-1)ƒ//ƒIfƒguessƒisƒnotƒinƒtargetƒphrase
ƒƒƒƒSystem.out.println("Sorry,ƒguessƒagain");
ƒƒelseƒ//ƒIfƒguessƒisƒinƒtargetƒphrase
ƒƒ{
ƒƒƒƒdisplayPhraseƒ=ƒdisplayPhrase.substring(0,position)ƒ+
ƒƒƒƒƒƒguessƒ+ƒdisplayPhrase.substring
ƒƒƒƒƒƒƒƒ(position+1,displayPhrase.length());
ƒƒƒƒSystem.out.println(displayPhrase);
ƒƒ}
}

6. The while loop will continue until all the asterisks in the targetPhrase are
replaced by correct letters.Therefore, after the closing curly brace for the
while loop, enter:

System.out.println("Congratulations!");.

7. Type the closing curly braces for the main() method and for the
SecretPhrase class.

8. Save the program as SecretPhrase.java in the Chapter.07 folder on your
Student Disk, then compile and run the program. Make sure you understand
how all the String methods contribute to the success of this program.

CONVERTING STRINGS TO NUMBERS

If a String contains all numbers, as in “649,” you can convert it from a String to a num-
ber so you can use it for arithmetic, or use it like any other number.To convert a String
to an integer, you use the Integer class, which is part of java.lang and automatically
imported into programs you write.The parseInt() method is part of the Integer class,
and takes a String argument and returns its integer value. For example, int anInt =
Integer.parseInt("649"); stores the numeric value 649 in the variable anInt.You
can then use the integer value just as you would any other integer.

The word parse in English means “to resolve into component parts,” as when
you “parse a sentence.” In Java, to parse a String means to break down its
separate characters into a numeric format.

It is also easy to convert a String object to a double value.You must use the Double class,
which, like the Integer class, is also imported into your programs automatically.A method
of the Double class is parseDouble(), which takes a String argument and returns its double
value. For example, double doubleValue = Double.parseDouble("147.82");
stores the numeric value 147.82 in the variable doubleValue.

Tip

7

To convert a String containing “147.82” to a double, you can use the following code:

StringƒstringValueƒ=ƒnewƒString("147.82");
DoubleƒtempValueƒ=ƒDouble.valueOf(stringValue);
doubleƒvalueƒ=ƒtempValue.doubleValue();

The stringValue is passed to the Double.valueOf() method, which returns a Double
object. The doubleValue() method, is used with the tempValue object. This method
returns a double that is stored in value.

The Double and Integer classes are examples of wrappers. A wrapper is a
class or object that is “wrapped around” a simpler thing. You use the Double
(uppercase D) class to make it convenient to work with primitive double
(lowercase d) variables.

When planning an event, Event Handlers Incorporated must know how many guests to
expect. Next you will prompt the user for the number of guests, read characters from the
keyboard, store the characters in a String, and then convert the String to an integer.

To create a program that accepts integer input:

1. Open a new text file in your text editor. Type the statement import
javax.swing.*;, press [Enter], and then enter the following first few
lines of a DialogInput class that will accept string input:

publicƒclassƒNumInput
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒƒ{

2. Declare the following variables to hold the input String and the resulting
integer:

StringƒinputString;
intƒinputNumber;

3. Enter the following input dialog box statement that stores the user keyboard
input in the String variable inputString:

inputStringƒ=ƒJOptionPane.showInputDialog(null,
ƒƒ"Enterƒtheƒnumberƒofƒguestsƒatƒyourƒevent");

4. Use the following Integer.parseInt() method to convert the input String to an
integer.Then use the integer in a numeric decision that displays a message
dialog box when the number of guests entered is greater than 100:

inputNumberƒ=ƒInteger.parseInt(inputString);
if(inputNumberƒ>ƒ100)
ƒƒJOptionPane.showMessageDialog(null,ƒ
ƒƒƒƒ"Aƒsurchargeƒwillƒ apply!);

Tip

218 Chapter 7 Characters, Strings, and the StringBuffer

Learning About the StringBuffer Class 219

5. Enter the closing statement System.exit(0); press [Enter], and then
enter the final two closing curly braces for the program.

6. Save the program as NumInput.java in the Chapter.07 folder on your
Student Disk, then compile and test the program.

LEARNING ABOUT THE STRINGBUFFER CLASS

A String class limitation is that the value of a String is fixed after the String is created;
Strings are immutable.When you write someString = "Hello"; and follow it with
someString = "Goodbye";, you have neither changed the contents of computer
memory at someString, nor have you eliminated the characters “Hello.” Instead, you
have stored “Goodbye” at a new computer memory location and stored the new address
in the someString variable. If you want to modify someString from “Goodbye” to
“Goodbye Everybody,” you cannot add a space and “Everybody” to the someString that
contains “Goodbye.” Instead, you must create an entirely new String, “Goodbye
Everybody,” and assign it to the someString address.

To circumvent these limitations, you can use the StringBuffer class. StringBuffer is an
alternative to the String class, and can usually be used anywhere you would use a String.
The structure of the StringBuffer class is shown in Figure 7-8. Like the String class, the
StringBuffer class is part of the java.lang package and is automatically imported into
every program.

You can create a StringBuffer object that contains a given String with the statement
StringBuffer eventString = new StringBuffer("Event Handlers
Incorporated");. When you initialize a StringBuffer object you must use the
keyword new and provide an initializing value between parentheses.You can create the
StringBuffer variable using syntax similar to the syntax for creating a String variable,
such as StringBuffer philosophyString = null;.The variable does not refer
to anything until you initialize it with a defined StringBuffer object. For example,
you could write philosophyString = new StringBuffer("Dedicated to
making your event a most memorable one");.You can also initialize the
StringBuffer variable philosophyString with an existing StringBuffer object using
philosophyString = eventString;.

Generally when you create a String object, sufficient memory is allocated to accom-
modate the number of Unicode characters in the string.A StringBuffer object, however,
contains a memory block called a buffer which might not contain a string. Even if it

Figure 7-8 Structure of the StringBuffer class

Java.lang.Object

+--java.lang.StringBuffer

7

does contain a String, the String might not occupy all of the buffer. In other words, the
length of a String can be different from the length of the buffer. The actual length of
the buffer is referred to as the capacity of the StringBuffer object. It is generally more
efficient to make the StringBuffer capacity sufficient for the needs of your program,
rather than modify a String that has been originally stored with a small capacity.

You can change the length of a String in a StringBuffer object with the setLength()
method. The length is a property of the String held by the StringBuffer. When you
increase a StringBuffer object’s length to be longer than the String it holds, the extra
characters contain ‘\u0000.’ If you use the setLength() method to specify a length
shorter than its String, the string is truncated.

To find the capacity of a StringBuffer object, you use the capacity() method. For exam-
ple, the EventStringBuffer program in Figure 7-9 shows the creation of the eventString
object as StringBuffer eventString = new StringBuffer("Event
Handlers Incorporated");.The capacity of the StringBuffer object is obtained as
int aCapacity = eventString.capacity(); and printed using
System.out.println("The capacity is " + aCapacity);. Figure 7-10
shows the StringBuffer capacity is 43. Note that the capacity of 43 is 16 characters larger
than the length of the string “Event Handlers Incorporated,” which contains 27.

In general, when a StringBuffer object is created from a String, the capacity
will be the length of the string plus 16.

In Figure 7-9 the philosophyString variable is created as StringBuffer
philosophyString = null;.The variable does not refer to anything until it is ini-
tialized with the defined StringBuffer object philosophyString = new
StringBuffer("Dedicated to making your event a most memorable
one");.The capacity of philosophyString is shown in Figure 7-10 as the length of the
string plus 16 or 67.

In the program shown in Figure 7-9, the length of the eventString is changed with the
statement eventString.setLength(40);. When the value of the length prints, as
shown in Figure 7-10, the extra characters show as blanks before the String “end” is
printed. Also in Figure 7-10, the philosophyString length is shortened to a length of 30
in the statement philosophyString.setLength(30);.The shortened 30-character
output string is shown as “Dedicated to making your event” in Figure 7-10.

Tip

220 Chapter 7 Characters, Strings, and the StringBuffer

Learning About the StringBuffer Class 221

Using StringBuffer objects provides more flexibility than String objects because you can
insert or append new contents into a StringBuffer.The StringBuffer class provides you
with three constructors:

� public StringBuffer() constructs a StringBuffer with no characters
and a default size of 16 characters

� public StringBuffer(int length) constructs a StringBuffer with no
characters, and a capacity specified by length

Figure 7-10 Output of the EventStringBuffer program

Figure 7-9 EventStringBuffer program

public class EventStringBuffer
{
public static void main(String[] args)
{
StringBuffer eventString =

 new StringBuffer("Event Handlers Incorporated");
int aCapacity = eventString.capacity();
System.out.println("The capacity is " + aCapacity);

StringBuffer philosophyString = null;
philosophyString =

new StringBuffer("Dedicated to making your event a most memorable one");
int bCapacity = philosophyString.capacity();
System.out.println("The capacity is " + bCapacity);

eventString.setLength(50);
System.out.println("The eventString is " + eventString + "end");

philosophyString.setLength(30)
System.out.println("The philosophyString is " + philosophyString);

}
}

7

� public StringBuffer(String s) contains the same characters as those
stored in the String object s (The capacity of the StringBuffer is the length
of the String argument you provide, plus 16 additional characters.)

The append() method lets you add characters to the end of a StringBuffer object.
For example, if a StringBuffer object is declared as StringBuffer someBuffer =
new StringBuffer("Happy");, then the statement someBuffer.append
(" birthday") alters someBuffer to hold “Happy birthday.”

The insert() method lets you add characters at a specific location within a StringBuffer
object. For example, if someBuffer holds “Happy birthday,” then someBuffer.insert(6,
"30th "); alters the StringBuffer to contain “Happy 30th birthday.”The first character in
the StringBuffer object occupies position zero.To alter just one character in a StringBuffer,
you can use the setCharAt() method. This method requires two arguments, an integer
position, and a character. If someBuffer holds “Happy 30th birthday,” then
someBuffer.setCharAt(6,'4'); changes the someBuffer value into a 40th birthday
greeting.

Next you will use StringBuffer methods.

To use StringBuffer methods:

1. Open a new text editor file, and type the following first lines of a
DemoStringBuffer class:

publicƒclassƒDemoStringBuffer
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{

2. Use the following code to create a StringBuffer variable, and then call a
print() method (that you will create in Step 7) to print the StringBuffer:

StringBufferƒstrƒ=ƒnewƒStringBuffer("singing");
print(str);

3. Enter the following append() method to add characters to the existing
StringBuffer and print it again:

str.append("ƒinƒtheƒdeadƒofƒ");
print(str);

4. Enter the following insert() method to insert characters, print, insert addi-
tional characters, and print the StringBuffer again:

str.insert(0,ƒ"Black");
print(str);
str.insert(5,ƒ"birdƒ");
print(str);

5. Add one more append() and print() combination:

str.append("night");
print(str);

222 Chapter 7 Characters, Strings, and the StringBuffer

Learning About the StringBuffer Class 223

6. Add a closing curly brace for the main() method.

7. Enter the following print() method that prints StringBuffer objects:
publicƒstaticƒvoidƒprint(StringBufferƒs)
{
ƒƒSystem.out.println(s);
}

8. Type the closing curly brace for the class, and then save the file as
DemoStringBuffer.java in the Chapter.07 folder on your Student Disk.
Compile and execute, and then compare your output to Figure 7-11.

You can extract characters from a StringBuffer object using the charAt()and getChars()
methods.The charAt() method accepts an argument that is the offset of the character
position from the beginning of a String. If you declare StringBuffer text = new
StringBuffer("Java Programming");, then text.charAt(5) refers to the
character ‘P.’

If you try to use an index less than 0 or greater than the index of the last posi-
tion in the StringBuffer object, you will cause an exception to be thrown and
your program will terminate.

Finally, you can change a single character in a StringBuffer object using the setCharAt()
method with two arguments.The first argument indicates the index position of the char-
acter to be changed; the second argument specifies the replacement character. If you
declare StringBuffer text = "java";, the statement text.setCharAt(0,'J')
sets the first character to ‘J’.

Tip

Figure 7-11 Output of the DemoStringBuffer program

7

CHAPTER SUMMARY
❒ A sequence of characters enclosed within double quotation marks is a literal string.

❒ You create a String object by using the keyword new and the String construc-
tor method.

❒ Each String is a class object, and a String variable name is actually a reference.
Strings, therefore, are never changed; they are immutable.

❒ The equals() method evaluates the contents of two String objects to determine
whether they are equivalent, and then returns a Boolean value.

❒ The equalsIgnoreCase() method determines if two Strings are equivalent without
considering case.

❒ The compareTo() method returns zero if two String objects hold the same value. A
negative number is returned if the calling object is “less than” the argument, and a
positive number is returned if the calling object is “greater than” the argument.

❒ The methods toUpperCase() and toLowerCase() convert any String to its uppercase
or lowercase equivalent.

❒ The indexOf() method determines whether a specific character occurs within a
String. If it does, the method returns the position of the character.The return value
is -1 if the character does not exist in the String.

❒ The endsWith() and startsWith() methods each take a String argument and return
true or false, depending on whether or not a String object ends with or starts
with the specified argument.

❒ The replace() method allows you to replace all occurrences of some character
within a String.

❒ The toString() method converts any primitive type to a String.

❒ You can join Strings with other Strings or values by using a plus sign (+); this
process is called concatenation.

❒ You can extract part of a String with the substring() method, which takes two argu-
ments, and a start and end position, both of which are based on the fact that a
String’s first position is position zero.

❒ If a String contains all numbers, you can convert it to a number.

❒ The parseInt() method takes a String argument and returns its integer value.

❒ The Double.valueOf() method converts a String to a Double object; the
doubleValue() method converts a Double object to a double variable.

❒ To circumvent some limitations of the String class, you can use the StringBuffer
class.You can insert or append new contents into a StringBuffer.

224 Chapter 7 Characters, Strings, and the StringBuffer

Review Questions 225

REVIEW QUESTIONS
1. A sequence of characters enclosed within double quotation marks is a

.
a. symbolic string
b. literal string
c. prompt
d. command

2. To create a String object, you can use the keyword .
a. object
b. create
c. char
d. new

3. A String variable name is a .
a. reference
b. value
c. constant
d. literal

4. Objects that cannot be changed are .
a. irrevocable
b. nonvolatile
c. immutable

d. stable
5. If you declare two String objects as String word1 = new

String("happy"); and String word2 = new String("happy");, then
the value of word1 == word2 is .

a. true

b. false

c. illegal

d. unknown
6. If you declare two String objects as String word1 = new

String("happy"); and String word2 = new String("happy");, then
the value of word1.equals(word2) is .

a. true

b. false

c. illegal

d. unknown

7

7. The method that determines whether two String objects are equivalent, regardless
of case, is .

a. equalsNoCase()

b. toUpperCase()

c. equalsIgnoreCase()

d. equals()

8. If a String is declared as String aStr = new String("lima bean");,
then aStr.equals("Lima Bean"); is .

a. true

b. false

c. illegal

d. unknown

9. If you create two String objects using String name1 = new
String("Jordan"); and String name2 = new String("Jore");, then
name1.compareTo(name2) has a value of .

a. true

b. false

c. -1

d. 1

10. If String myFriend = new String("Ginny");, then which of the following
has the value 1?

a. myFriend.compareTo("Gabby");

b. myFriend.compareTo("Gabriella");

c. myFriend.compareTo("Ghazala");

d. myFriend.compareTo("Hammie");

11. If String movie = new String("West Side Story");, then the value of
movie.indexOf('s') is .

a. true

b. false

c. 2

d. 3

12. The String class replace() method replaces .

a. a String with a character

b. one String with another String

c. one character in a String with another character

d. every occurrence of a character in a String with another character

226 Chapter 7 Characters, Strings, and the StringBuffer

Review Questions 227

13. The toString() method converts any to a String.
a. character
b. integer
c. float
d. all of the above

14. Joining Strings is called .
a. chaining
b. joining
c. linking
d. concatenation

15. The first position in a String .
a. must be alphabetic
b. must be uppercase
c. is position zero
d. is ignored by the compareTo() method

16. The substring() method requires arguments.
a. no
b. one
c. two
d. three

17. The method parseInt() converts a(n) .
a. integer to a String
b. integer to a Double
c. Double to a String
d. String to an integer

18. The difference between int and Integer is .
a. int is a primitive type; Integer is a class
b. int is a class; Integer is a primitive type
c. nonexistent; they both are primitive types
d. nonexistent; both are classes

19. For an alternative to the String class, you can use .
a. char
b. StringHolder
c. StringBuffer
d. StringMerger

7

20. The default capacity for a StringBuffer object is characters.

a. zero

b. two

c. 16

d. 32

EXERCISES
1. Write a program that concatenates the three Strings:“Event Handlers is dedicated”,

“to making your event”, and “a most memorable one.” Print each String and the
concatenated String. Save the program as JoinStrings.java in your Chapter.07
folder on your Student Disk.

2. Write a program that calculates the total number of vowels contained in the
String “Event Handlers is dedicated to making your event a most memorable
one.” Save the program name StringVowels.java in your Chapter.07 folder on
your Student Disk.

3. Write a program that calculates the total number of letters contained in the
String “Event Handlers Incorporated, 8900 U.S. Highway 14, Crystal Lake, IL
60014”. Save the program name as StringLetters.java in your Chapter.07 folder
on your Student Disk.

4. Write a program that calculates the total number of whitespaces contained in the
String “[TAB][TAB] ”, which represents two tabs and three spaces. Save the pro-
gram as StringWhite.java in your Chapter.07 folder on your Student Disk.

5. Write a program that converts the variables someInt and someDouble in the
statements int someInt = 21; and someDouble = 128.04; to strings
using the classes Integer and Double. Save the program as ToString.java in your
Chapter.07 folder on your Student Disk.

6. Write a program that converts the variables someInt, someDouble, and someFloat in
the statements int someInt = 567;, double someDouble = 48.25;, and
float someFloat = 443.21f; to strings. Do not use the Integer, Double, and
Float classes to make the conversions. Save the program as ToString2.java in your
Chapter.07 folder on your Student Disk.

7. a. Write a program that demonstrates that when two identical names are compared
and the case differs, the equals method will return false when making a com-
parison. Save the program as Comparison.java in your Chapter.07 folder on
your Student Disk.

b. Demonstrate that the equalIgnoreCase() method will change the comparison in
question 7a. from false to true.

228 Chapter 7 Characters, Strings, and the StringBuffer

Exercises 229

8. Write a program to demonstrate that the compareTo() method returns either a
positive number, a negative number, or a zero when used to compare two
Strings. Save the program as Compare.java in your Chapter.07 folder on your
Student Disk.

9. Write a program to demonstrate the following, based on the statement
String dedicate = "Dedicated to making your event a most
memorable one":

a. index of ‘D’

b. char at (15)

c. endsWith(one)

d. eplace(‘a’, ‘A’).

Save the program as Demonstrate.java in your Chapter.07 folder on your
Student Disk.

10. Create a class that holds three initialized StringBuffer objects: your first name,
middle name, and last name. Create three new StringBuffer objects as follows:

� An object named EntireName that holds your three names, separated by spaces

� An object named LastFirst that holds your last name, a comma, a space, and
your first name, in that order

� An object named Signature that holds your first name, a space, your middle
initial (not the entire name), a period, a space, and your last name

Display all three objects. Save the program as Buffer.java in the Chapter.07 folder
on your Student Disk.

11. Each of the following files in the Chapter.07 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugSeven1.java will become FixDebugSeven1.java.

a. DebugSeven1.java

b. DebugSeven2.java

c. DebugSeven3.java

d. DebugSeven4.java

7

CASE PROJECT

The Tax Advantage Company provides free tax services to residents who cannot calcu-
late their personal taxes or pay for calculation by a public tax service.You have been
asked to write a Java program that will calculate an estimated tax for either a single or
married taxpayer, given a keyboard income entry. After the income is entered, a code
status “S” for single or “M” for married is entered.

The necessary classes are a Tax class with a main() method for keyboard entry of income
and code status values, and a TaxReturn class to calculate the tax based on the input.
The input values should be passed from the Tax class to the TaxReturn class through the
instantiation of a TaxReturn object. The instantiation could take a form such as
TaxReturn aTaxReturn = new TaxReturn(income, status);.

For taxpayers, two tax rates are needed, 15 percent and 30 percent. For single taxpayers,
the cutoff rate of 15 percent is $10,000, and 30 percent above $10,000. For married tax-
payers, the cutoff rate is 15 percent for amounts below $20,000, and 30 percent for
amounts of $20,000 and above.

Program output should show the code status, income, and the amount of tax. Save the
program files as Tax.java and TaxReturn.java in the Chapter.07 folder on your
Student Disk.

Case
Project

230 Chapter 7 Characters, Strings, and the StringBuffer

231

CHAPTER

8
ARRAYS

In this section, you will:
� Declare and initialize an array
� Use subscripts with an array
� Declare an array of objects
� Search an array for an exact match or a range match
� Pass arrays to methods
� Use the length field
� Create arrays of Strings
� Sort primitive, object, and String array elements
� Use two-dimensional and multidimensional arrays

I’ve learned how to create objects and how to use decisions and loops to
perform a variety of tasks with those objects,” you say as you meet with

Lynn Greenbrier at Event Handlers Incorporated. “Still, it seems as though
I’m doing a lot of work. If I need to check a variable’s value against 20 pos-
sibilities, it takes me 20 if statements or a long switch statement to get the
job done. I thought computers were supposed to make things easier!”

“I think what you’re looking for,”Lynn says,“is how to use the power of arrays.”

PREVIEWING A PROGRAM THAT USES ARRAYS AND STRINGS

The Chap8Events program demonstrates a variety of procedures that rely on arrays or
Strings for efficient execution.You will answer questions when prompted.

To preview the Chap8Events program:

1. Start your text editor, open the Chap8Event.java file in the Chapter.08
folder on your Student Disk, and then examine the code.This program is a
simple Event class similar to one you created in Chapter 5.

2. At the command prompt, compile the class by typing the command javac
Chap8Event.java.

3. In the text editor, open the Chap8Events.java file and examine the code.
This program is divided into two parts to demonstrate two of the major con-
cepts you will learn about in this chapter. In the first part of the program, you
enter codes for five upcoming events to be handled by Event Handlers
Incorporated.The program stores all five events and displays them for you.The
program prompts you to specify an Event type by entering a C, P, or N.You
can enter any other character, but you must enter a valid character (C, P, or N)
for each of the five events before the program will proceed. After you enter
five valid characters, you will see a summary of the five events.The second
part of the program will prompt you for the number of guests at your event.
If you enter a value over 100, you will see a message regarding a surcharge.

4. At the command prompt, compile this file by typing the command:

javacƒChap8Events.java.Then run the program by typing the com-
mand javaƒChap8Events.Test the program by following the on-screen
directions; you can press [Ctrl] and C to stop the program at any time.

In this chapter, you will write programs that are similar to the two parts of this program.

DECLARING AND INITIALIZING AN ARRAY

While completing the first five chapters in this book, you stored values in variables. In
the early sections, you simply stored a value and used it. In Chapter 6, you created loops
that allow you to “recycle” variables; that is, after creating a variable, you can assign a
value, use the value, and then, in successive cycles through the loop, reuse the variable
as it holds different values.

There are times, however, when storing just one value at a time in memory does not meet
your needs.For example, a sales manager who supervises 20 employees might want to deter-
mine whether each employee has produced sales above or below the average amount.When
you enter the first employee’s sales figure into a program, you can’t determine whether it is
above or below average, because you don’t know what the average is until you have all 20
figures. Unfortunately, if you assign 20 sales figures to the same variable, when you assign
the figure for the second employee, it replaces the figure for the first employee.

232 Chapter 8 Arrays

Declaring and Initalizing an Array 233

A possible solution is to create 20 separate employee sales variables, each with a
unique name, so you can store all the sales until you can determine an average. A
drawback to this method is that if you have 20 different variable names to be
assigned values, then you need 20 separate assignment statements. For 20 different
variable names, the statement that calculates total sales will be unwieldy, such as
totalƒ=ƒfirstAmtƒ+ƒsecondAmtƒ+ƒthirdAmtƒ+ƒ.... This method might
work for 20 salespeople, but what if you have 10,000 salespeople?

The best solution is to create an array.An array is a named list of data items that all have
the same type.You declare an array variable in the same way as you declare any scalar
variable, but you insert a pair of square brackets after the type. For example, to declare
an array of double values to hold sales figures for salespeople, you write
double[]ƒsalesFigure;.

You can also declare an array variable by placing the square brackets after the
array name, as in doubleƒsalesFigure[];. This format is familiar to
C and C++ programmers, but the preferred format among Java programmers
is to place the brackets following the variable type and before the variable
name, as in double[]ƒsalesFigure;.

After you create an array variable, you still need to reserve memory space.You use the same
procedure to create an array that you use to create an object. Recall that when you create
a class named Employee, you can declare an Employee object with a declaration such as
EmployeeƒoneWorker;, but that declaration does not actually create the oneWorker
object.You create the oneWorker object when you use the keyword new and the con-
structor method, as in oneWorkerƒ=ƒnewƒEmployee();. Similarly, declaring an array
and reserving memory space for it are two distinct processes.To reserve memory locations
for 20 salesFigure objects, you declare the array variable with double[]ƒsalesFigure;,
and then you create the array with salesFigureƒ=ƒnewƒdouble[20];. Just as with
objects, you can declare and create an array in one statement with
double[]ƒsalesFigureƒ=ƒnewƒdouble[20];.

Other languages, such as COBOL, BASIC, and Visual Basic, use parentheses
rather than brackets to refer to individual array elements. By using brackets,
the creators of Java made it easier for you to distinguish arrays from methods.

The statement double[]ƒsalesFigureƒ=ƒnewƒdouble[20]; reserves 20 mem-
ory locations for 20 salesFigures.You can distinguish each salesFigure from the others
with a subscript. A subscript is an integer contained within square brackets that indi-
cates one of an array’s variables, or elements. In the Java programming language, any
array’s elements are numbered beginning with zero, so you can legally use any subscript
from zero through 19 when working with an array that has 20 elements. In other words,
the first salesFigure array element is salesFigure[0] and the last salesFigure element
is salesFigure[19].

Tip

Tip
8

It is common to forget that the first element in an array is element zero, especially if you
know another programming language in which the first array element is element one.
Making this mistake means you will be “off by one” in your use of any array.

To remember that array elements begin with element zero, it might help if
you think of the first array element as being “zero elements away from” the
beginning of the array, the second element as being “one element away
from” the beginning of the array, and so on.

When you work with any individual array element, you treat it no differently than you
would treat a single variable of the same type. For example, to assign a value to the first
salesFigure in an array, you use a simple assignment statement, such as
salesFigure[0]ƒ=ƒ2100.00;. To print the last salesFigure in an array of 20, you
write System.out.println(salesFigure[19]);.

Next you will create a small array to see how arrays are used.The array will hold salaries
for four categories of employees.

To create a program that uses an array:

1. Open a new text file in your text editor.

2. Begin the class that will demonstrate array use by typing the following class
and main() headers and their corresponding opening curly braces:

publicƒclassƒDemoArray
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{

3. On a new line, declare and create an array that can hold four double values
by typing double[]ƒsalaryƒ=ƒnewƒdouble[4];.

4. One by one, assign four values to the four salary array elements by typing the
following:

salary[0]ƒ=ƒ5.25;
salary[1]ƒ=ƒ6.55;
salary[2]ƒ=ƒ10.25;
salary[3]ƒ=ƒ16.85;

5. To confirm that the four values have been assigned, print the salaries, one by
one, using the following code:

System.out.println("Salariesƒoneƒbyƒoneƒare:");
System.out.println(salary[0]);
System.out.println(salary[1]);
System.out.println(salary[2]);
System.out.println(salary[3]);

Tip

234 Chapter 8 Arrays

Declaring and Initalizing an Array 235

6. Add the two closing curly braces that end the main() method and the
DemoArray class.

7. Save the program as DemoArray.java in the Chapter.08 folder on your
Student Disk.

8. Compile and run the program.The program’s output appears in Figure 8-1.

Initializing an Array
A variable that has a primitive type, such as int, holds a value. A variable with a refer-
ence type, such as an array, holds a memory address where a value is stored.

Array names represent computer memory addresses; that is, array names are references,
as are all Java objects.When you declare an array name, no computer memory address
is assigned to it. Instead, the array variable name has the special value null, or Unicode
value '\u0000'. When you declare int[]ƒsomeNums;, the variable someNums has a
value of null.

When you define someNums as int[]ƒsomeNumsƒ=ƒnewƒint[10];, then
someNums has an actual memory address value. Each element of someNums has a value
of zero because someNums is a numeric array. By default, character array elements are
assigned '\u0000'. Boolean array elements are automatically assigned false.

You already know how to assign a different value to a single element of an array, as in
someNums[0]ƒ=ƒ46;.You also can assign nondefault values to array elements upon
creation. To initialize an array, you use a list of values separated by commas and
enclosed within curly braces. For example, if you want to create an array named
tenMult and store the first six multiples of 10 within the array, you can declare

Figure 8-1 Output of the DemoArray program

8

int[]ƒtenMultƒ=ƒ{10, 20,ƒ30,ƒ40,ƒ50,ƒ60};.When you initialize an array
by giving it values upon creation, you do not give the array a size—the size will be
assigned based on the number of values you place in the initializing list. Also, when
you initialize an array, you do not need to use the keyword new; instead, new mem-
ory is assigned based on the length of the list of provided values.

In Java, you do not usually use a semicolon after a closing curly brace, for
example, at the end of a method body. However, every statement in Java
requires a semicolon, and an array initialization is a statement. Remember
to type the semicolon after the closing brace at the end of an array’s
initialization list.

Next you will alter your DemoArray program to initialize the array of doubles, rather
than declaring the array and assigning values later.

To initialize an array of doubles:

1. Open the DemoArray.java file in your text editor. Change the class name
to DemoArray2. Delete the statement that declares the array of four doubles
named salary, (double[]ƒsalaryƒ=ƒnewƒdouble[4];), and then replace
it with the following initialization statement:

double[]ƒsalaryƒ=ƒ{5.25,ƒ6.55,ƒ10.25,ƒ16.85};

2. Delete the following four statements that individually assign the values to
the array:

(salary[0]ƒ=ƒ5.25;ƒsalary[1]ƒ=ƒ6.55;ƒsalary[2]ƒ=ƒ10.25;ƒ
ƒƒƒsalary[3]ƒ=ƒ16.85;)

3. Save the file as DemoArray2.java, compile, and test the program.The out-
put is the same as that shown in Figure 8-1, except the program name dis-
played would be DemoArray2.

USING SUBSCRIPTS WITH AN ARRAY

If you treat each array element as an individual entity, then there isn’t much of an advan-
tage to declaring an array over declaring individual scalar (primitive) variables, such as
int, double, or char.The power of arrays becomes apparent when you begin to use sub-
scripts that are variables, rather than subscripts that are constant values.

For example, when you declare a price array of five integers, such as int[]ƒ
priceArrayƒ=ƒ{2,ƒ14,ƒ35,ƒ67,ƒ85};, you often want to perform the same opera-
tion on each array element, such as increasing the price a constant amount.To increase each
price array element by three dollars, for example, you can write the following:

priceArray[0]ƒ+=ƒ3;
priceArray[1]ƒ+=ƒ3;

Tip

236 Chapter 8 Arrays

Declaring an Array of Objects 237

priceArray[2]ƒ+=ƒ3;
priceArray[3]ƒ+=ƒ3;
priceArray[4]ƒ+=ƒ3;

With five price array elements, this task is manageable. However, you can shorten the
task by using a variable as the subscript.Then you can use a loop to perform arithmetic
on each array element in the array, as in the following example:

for(subƒ=ƒ0;ƒsubƒ<ƒ5;ƒ++sub)
ƒƒpriceArray[sub]ƒ+=ƒ3;

The variable sub is set to zero, and then it is compared to five. Because the value of
sub is less than five, the loop executes and three is added to priceArray[0]. Then the
variable sub is incremented and it becomes one, which is still less than five, so when
the loop executes again, priceArray[1] is increased by three, and so on. A process that
took five statements now takes only one. Additionally, if the array had 100 elements,
the first method of increasing the array values by three would result in 95 additional
statements. The only change required in the for loop would be to compare sub to
100 instead of to five.

Next you will modify the DemoArray program to use a for loop with the array.

To use a for loop with the array:

1. Open the DemoArray2.java file in your text editor. Change the class name
to DemoArray3. Delete the four println() statements that print the four array
values, and then replace them with the following for loop:

for(intƒxƒ=ƒ0;ƒxƒ<ƒ4;ƒ++x)
ƒƒSystem.out.println(salary[x]);

2. Save the program as DemoArray3.java, compile, and run the program.
Again, the output is the same as that shown in Figure 8-1, except the pro-
gram name displayed would be DemoArray3.

DECLARING AN ARRAY OF OBJECTS

Just as you can declare arrays of integers or doubles, you can declare arrays that hold ele-
ments of any type, including objects. For example, assume you created the Employee
class shown in Figure 8-2. This class has two data fields (empNum and empSalary), a
constructor, and a get method for each field.

8

You can create separate Employee objects with unique names, such as Employee painter,
electrician, or plumber, but for many programs it is far more convenient to create an
array of Employees. An array named emp that holds seven Employees is defined as
Employee[]ƒempƒ=ƒnewƒEmployee[7];.This statement reserves enough computer
memory for seven Employee objects named emp[0] through emp[6]. However, the state-
ment does not actually construct those Employee objects; instead, you must call the seven
individual constructors. According to the class definition shown in Figure 8-2, the
Employee constructor requires two arguments: an employee number and a salary. If you
want to number your Employees 101, 102, 103, and so on, and start each Employee at
a salary of $5.35, then the loop that constructs seven Employee objects is as follows:

for(intƒxƒ=ƒ0;ƒxƒ<ƒ7;ƒ++x)
ƒemp[x]ƒ=ƒnewƒEmployee(101ƒ+ƒx,ƒ5.35);

As x varies from 0 through 6, each of the seven emp objects is constructed with an
employee number that is 101 more than x, and each of the seven emp objects holds the
same salary of 5.35.

To use a method that belongs to an object that is part of an array, you insert the appro-
priate subscript notation after the array name and before the dot that precedes the
method name. For example, to print data for seven Employees stored in the emp array,
you can write the following:

for(intƒxƒ=ƒ0;ƒxƒ<ƒ7;ƒ++x)
ƒSystem.out.println
ƒƒ(emp[x].getEmpNum()+ƒ"ƒ"ƒ+ƒemp[x].getEmpSal());

public class Employee
{

private int empNum;
private double empSal;
Employee(int e, double s)
{

empNum = e;
empSal=s;

}
public int getEmpNum()
{

return empNum;
}

public double getEmpSal()
{

return empSal;
}

}

Figure 8-2 A simple Employee class

238 Chapter 8 Arrays

Declaring an Array of Objects 239

Pay attention to the syntax of the Employee objects’ method calls, such as
emp[x].getEmpNum(). Although you might be tempted to place the subscript at the
end of the expression after the method name, as in emp.getEmpNum[x], you cannot—
the values in x (0 through 6) refer to a particular emp, each of which has access to a sin-
gle getEmpNum() method. Placement of the bracketed subscript so it follows emp
means the method “belongs” to a particular emp.

Next you will create an array of Event2 objects for Event Handlers Incorporated.

To create an array of Event2 objects:

1. Open the Event.java file from the Chapter.08 folder on your Student Disk
and change the class name to Event2.This program is the same one that
you created in Chapter 5. As you examine the code, recall that the class con-
tains two data fields: a character representing the type of event, and a double
representing the minimum that is charged for the event.The constructor
requires values for the two data fields.The class also contains methods to get
the field values. Save the file as Event2.java in the Chapter.08 folder on
your Student Disk.

2. Open a new text file in your text editor to create an EventArray program.
Type the following class header, the main() method header, and their opening
curly braces:

publicƒclassƒEventArray
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{

3. Declare an array of five Event2 objects using the following code.You will also
declare an integer that can be used as a subscript.

Event2[]ƒsomeEventsƒ=ƒnewƒEvent2[5];
intƒx;

4. Enter the following for loop that calls the Event2 constructor five times,
making each Event type ‘X’ with a minimum charge of 0.0:

for(xƒ=ƒ0;ƒxƒ<ƒ5;ƒ++x)
ƒsomeEvents[x]ƒ=ƒnewƒEvent2('X',0.0);

5. To confirm that the Event2 objects have been created, print their values by
typing the following:

for(xƒ=ƒ0;ƒxƒ<ƒ5;ƒ++x)
System.out.println(someEvents[x].getEventType()ƒ+ƒ
ƒ"ƒƒ"ƒ+ƒsomeEvents[x].getEventMinRate());

6. Add the two curly braces that end the main() method and the class definition.

7. Save the program as EventArray.java in the Chapter.08 folder. Compile and
run the program. Figure 8-3 shows the program’s output.

8

An array of five Event objects—each of which has the same event type and fee—is not
very interesting or useful. Next you will modify the EventArray program so that it cre-
ates the events interactively and so each event possesses unique properties.

To create an interactive EventArray2 program:

1. Open the EventArray.java file in your text editor. Change the class name to
EventArray2. Position the insertion point to the right of the opening curly
brace of the EventArray2 class, press [Enter], and then type the following
statements to declare three constants for the corporate, private, and nonprofit
event rates.

staticƒfinalƒdoubleƒCORP_RATEƒ=ƒ75.99;
staticƒfinalƒdoubleƒPRI_RATEƒ=ƒ47.99;
staticƒfinalƒdoubleƒNON_PROF_RATEƒ=ƒ40.99;

2. The program will accept keyboard input, so position the insertion point to
the right of the main() method header, and then type throwsƒException.

3. Just before the for statement that constructs five events, add the following
two new variables that will hold an event type and rate, and initialize them
with dummy values:

charƒeventƒ=ƒ'Z';
doubleƒrateƒ=ƒ0;

4. Within the for loop, remove the line that constructs events with type ‘X’ and
fee 0.0, (someEvents[x]ƒ=ƒnewƒEvent('X',0.0);), and then replace
the line with the following block that prompts the user for one of three event
types and constructs an appropriate event based on the value entered:

{
ƒSystem.out.println("Enterƒeventƒtype");
ƒSystem.out.println("Cƒforƒcorporate");
ƒSystem.out.println("Pƒforƒprivate");
ƒSystem.out.println("Nƒforƒnon-profit");

Figure 8-3 Output of the EventArray program

240 Chapter 8 Arrays

Searching an Array for an Exact Match or a Range Match 241

ƒeventƒ=ƒ(char)System.in.read();
ƒSystem.in.read();ƒSystem.in.read();
ƒƒ//ƒAbsorbsƒEnterƒkey
ƒif(eventƒ==ƒ'C')
ƒƒrateƒ=ƒCORP_RATE;
ƒelseƒif(eventƒ==ƒ'P')
ƒƒrateƒ=ƒPRI_RATE;
ƒelseƒrateƒ=ƒNON_PROF_RATE;
ƒsomeEvents[x]ƒ=ƒnewƒEvent2(event,ƒrate);
}

5. Change the body of the last for loop as follows so it prints an event number
along with the event information:

System.out.println("Eventƒ"ƒ+ƒ(xƒ+ƒ1)ƒ+ƒ"ƒƒ"ƒ+ƒ
ƒsomeEvents[x].getEventType()+ƒ"ƒƒ"ƒ+ƒ
ƒsomeEvents[x].getEventMinRate());

At this point, when you run the program, if you enter an event type that is
not C or P, the program assumes that the rate is nonprofit by default.

6. Save the program as EventArray2.java, compile, and run the program sev-
eral times. Confirm that no matter what combination of C, P, and N you use
for data entry, the list of events is stored and displayed correctly.

SEARCHING AN ARRAY FOR AN EXACT MATCH OR A RANGE MATCH

When you want to determine whether some variable holds one of many valid values, one
option is to use a series of if statements to compare the variable to a series of valid val-
ues. Suppose that a company manufactures 10 items.When a customer places an order for
an item, you need to determine whether the item number on the order form is valid. If
valid item numbers are sequential, such as 101 through 110, then the following simple if
statement that uses a logical AND can verify the order number and set a Boolean field to
true:ƒif(itemOrderedƒ>=ƒ101ƒ&&ƒitemOrderedƒ<=ƒ110)ƒvalidItemƒ=
true;. If the valid item numbers are nonsequential, for example, 101, 108, 201, 213, 266,
304, and so on, you must code the following deeply nested if statement or a lengthy OR
comparison to determine the validity of an item number:

if(itemOrderedƒ==ƒ101)
ƒƒvalidItemƒ=ƒtrue;
elseƒif(itemOrderedƒ==ƒ108)
ƒƒvalidItemƒ=ƒtrue;
elseƒif(itemOrderedƒ==ƒ201)
ƒƒvalidItemƒ=ƒtrue;
//ƒandƒsoƒon

Tip

8

Instead of a long series of if statements, a more elegant solution is to compare the
itemOrdered variable to a list of values in an array.You can initialize the array with the
valid values with the following statement:

int[]ƒvalidValuesƒ=ƒ{101,ƒ108,ƒ201,ƒ213,ƒ266,ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒ304,ƒ311,ƒ409,ƒ411,ƒ412};

Then you can use a for statement to loop through the array, and set a Boolean variable
to true when a match is found:

for(intƒxƒ=ƒ0;ƒxƒ<ƒ10;ƒ++x)
{
ƒif(itemOrderedƒ==ƒvalidValues[x])
ƒƒvalidItemƒ=ƒtrue;
}

This simple for loop replaces the long series of if statements. Also, if a company carries
1,000 items instead of 10, then the only part of the for statement that changes is the com-
parison in the middle.As an added bonus, if you set up another parallel array with the same
number of elements and corresponding data, you can use the same subscript to access addi-
tional information. For example, if the 10 items your company carries have
10 different prices, then you can set up an array to hold those prices:
double[]ƒpricesƒ=ƒ{0.89,ƒ1.23,ƒ3.50,ƒ0.69...};.The prices must appear in
the same order as their corresponding item numbers in the validValues array. Now the same
for loop that finds the valid item number also finds the price, as shown in Figure 8-4. In
other words, if the item number is found in the second position in the validValues array,
then you can find the correct price in the second position in the prices array.

If you initialize parallel arrays, it is convenient to use spacing so that the val-
ues that correspond to each other visually align on the screen or printed page.

int[] validValues = {101, 108, 201, 213, 266,
304, 311, 409, 411, 412};

double[] prices = {0.89, 1.23, 3.50, 0.69, 5.79,
3.19, 0.99, 0.89, 1.26, 8.00};

for(int x = 0; x <10; ++x)
{

if(itemOrdered == validValues[x])
{

validItem = true;
itemPrice = prices[x];

}
}

Figure 8-4 Accessing information in parallel arrays

Tip

242 Chapter 8 Arrays

Searching an Array for an Exact Match or a Range Match 243

In an array with many possible matches, it is most efficient to place the more
common items first, so they are matched right away. For example, if item 311
is ordered most often, place 311 first in the validValues array, and its price
($0.99) first in the prices array.

Within the code shown in Figure 8-4, you compare every itemOrdered with each of
the 10 validValues. Even when an itemOrdered is equivalent to the first value in the
validValues array (101), you always make nine additional cycles through the array. On
each of these nine additional cycles, the comparison between itemOrdered and
validValues[x] is always false. As soon as a match for an itemOrdered is found, it is
most efficient to break out of the for loop early. An easy way to accomplish this is to
set x to a high value within the block of statements executed when there is a match.
Then, after a match, the for loop will not execute again because the limiting compar-
ison (x< 10) will have been surpassed. Figure 8-5 shows this program.

Instead of the statement that sets x to 10 when a match is found, in its place
you could place a break statement within the loop.

Breaking out of a for loop early, whether you do it by setting a variable’s
value or by using a break statement, disrupts the loop flow and makes the
code harder to understand. If you (or your instructor) agree with this philos-
ophy, then consider using a method that employs a while statement, as
described next.

You can choose to forgo the for loop entirely and, as an alternative use, a while loop
to search for a match. Using this approach, you set a subscript to zero and while the
itemOrdered is not equal to a value in the array, you increase the subscript and keep
looking.You search only while the subscript remains lower than the number of ele-
ments in the array. If the subscript increases to 10, then you never found a match in the
10-element array. If the loop ends before the subscript reaches 10, then you found a
match and the correct price can be assigned to the itemPrice variable. Figure 8-6 shows
this programming approach.

Tip

Tip

for(x = 0; x < 10; ++x)
{

if(itemOrdered == validValues[x])
{

validItem = true;
itemPrice = prices[x];
x = 10; // Break out of loop when you find a match

}
}

Figure 8-5 Breaking out of a for loop early

Tip

8

Next you will delete the if statements that determine a price for each event at Event
Handlers Incorporated and replace them with an array search.

To determine event pricing using parallel arrays:

1. Open the EventArray2.java file in your text editor. Change the class name
to EventArray3. Position the insertion point to the right of the statement
that declares the rate variable (doubleƒrate=0;), press [Enter] to start a
new line of text, and then type the following character array to hold the
codes for the three allowed event types:

char[]ƒeventCodeƒ=ƒ{'C',ƒ'P',ƒ'N'};

2. Press [Enter], and then add the following code to create a double array to
hold the rates charged for the three event types:

double[]ƒeventRateƒ=ƒ{CORP_RATE,ƒPRI_RATE,ƒNON_PROF_RATE};

Notice that you can use symbolic constants as well as literal constants as array
elements. You can even combine the two types of constants within the same
array and use variable names as array elements. Don’t forget, however, that
all elements within a single array must have the same type.

3. Remove the five lines of code (beginning with if(eventƒ==ƒ'C')...))
that constitute the if...else structure that determines the event rate.This
if structure is no longer needed. Replace it with the following for loop
that searches through the eventCode array, and, upon finding a match, selects
a price from the eventRate3 array:

for(intƒiƒ=ƒ0;ƒiƒ<ƒ3;ƒ++i)
{
ƒif(eventƒ==ƒeventCode[i])
ƒƒƒrateƒ=ƒeventRate[i];
}

4. Save the program as EventArray3.java, compile, and run the program.
Confirm that, just as before, no matter what combination of C, P, and N you
use for data entry, the list of events is stored and displayed correctly.

Tip

int x = 0;
while(x < 10 && itemOrdered != validValues[x])

++x;
if(x != 10)
{

validItem = true;
itemPrice = prices[x];

}

Figure 8-6 Searching with a while loop

244 Chapter 8 Arrays

Searching an Array for an Exact Match or a Range Match 245

When you run the program, if you enter an invalid event code, an Event object is created
and an incorrect rate is assigned to the Event object. Now that you have an array of valid
event codes, it is simple to disallow any invalid event codes (those other than C, P, or N).

To force all five Event objects to contain valid codes and rates:

1. Open the EventArray3 file, if necessary, and change the class name to
EventArray4.Within the EventArray4.java program, position the insertion
point to the right of the doubleƒrateƒ=ƒ0; variable declaration, press
[Enter], and then enter the following code to create a Boolean variable
named codeIsValid: booleanƒcodeIsValid;.

2. Position the insertion point at the beginning of the for statement that
begins the search through the eventCode array (for(intƒiƒ=ƒ0;ƒ...)),
and then press [Enter] to start a new line. Just before the for loop, you must
ensure that the codeIsValid variable is set to false by typing
codeIsValidƒ=ƒfalse;.

3. Within the for loop, change the if statement that checks the eventCode
array as follows, so that if the event variable is equivalent to one of the
eventCodes, then a block of two statements will execute—besides setting the
rate, the block sets the codeIsValid variable to true:

if(eventƒ==ƒeventCode[i])
{
ƒrateƒ=ƒeventRate[i];
ƒcodeIsValidƒ=ƒtrue;
}

You can make the program more efficient by breaking out of the for loop early when
an event matches an eventCode array element. Set the loop control variable i to a high
value when a match is found.

4. Place the insertion point to the right of codeIsValidƒ=ƒtrue;, press
[Enter] to start a new line, and then type iƒ=ƒ3;.

5. Position the insertion point at the beginning of the statement that constructs
one of the five someEvents objects (someEvents[x]ƒ=ƒnewƒEvent2
(event,ƒrate);). Press [Enter] to start a new line, and then insert the fol-
lowing condition so the object is created only if the code is valid:
if(codeIsValid).To show clearly that the assignment statement depends on
the if statement, insert two spaces at the beginning of the line containing
someEvents[x]ƒ=ƒnewƒEvent2(event,ƒrate);.

6. Position the insertion point just after someEvents[x]ƒ=ƒnewƒEvent2
(event,ƒrate);, and press [Enter] to start a new line. Enter the following
else clause that reduces x:

else
ƒƒ--x;

8

Now, for example, if a code is not valid on the third pass through the loop when x is 2,
x will be decremented to 1.At the top of the for loop (in the third section within the
parentheses), x is increased to 2 again for the next pass through the for loop. So if the
user enters a valid code during this fourth execution of the loop, x still will be 2, and
an object will correctly be created at someEvent[2].

7. Save the program as EventArray4.java, compile, and run the program. Enter
as many valid and invalid codes as you like. After five of the codes you enter
are identified as valid, the five constructed objects will display.

Searching an Array for a Range Match
Searching an array for an exact match is not always practical. Suppose your company
gives customer discounts based on the quantity of items ordered. Perhaps no discount is
given for any order of fewer than a dozen items, but there are increasing discounts avail-
able for orders of increasing quantities, as shown in Table 8-1.

One awkward option is to create a single array to store the discount rates.You could use
a variable named numOfItems as a subscript to the array, but the array would need hun-
dreds of entries, for example, double[]ƒdiscountƒ=ƒ{0,ƒ0,ƒ0,ƒ0,ƒ0,ƒ0,ƒ
0,ƒ0,ƒ0,ƒ0,ƒ0,ƒ0,ƒ0,ƒ.10,ƒ.10,ƒ.10ƒ...};. When numOfItems is 3, for
example, then discount[numOfItems] or discount[3] is 0.When numOfItems is 14, then
discount[numOfItems] or discount[14] is .10. Because a customer might order thousands
of items, the array would need to be ridiculously large.

Notice that there are 13 zeroes listed in the discount array in the preceding
example. The first array element has a zero subscript (and a zero discount
for zero items). The next 12 discounts (1 through 12 items) are also dis-
counts of zero.

A better option is to create parallel arrays. One array will hold the five discount rates, and
the other array will hold five discount range limits.The Total Quantity Ordered column in
Table 8-1 shows five ranges. If you use only the first figure in each range, you can create an
array that holds five low limits: int[]ƒdiscountRangeLimit=ƒ{1,
13,ƒ50,ƒ100,ƒ200};. A parallel array will hold the five discount rates:
double[]ƒdiscountƒ=ƒ{0,ƒ.10,ƒ.14,ƒ.18,ƒ.20};. Then, starting at the last

Tip

Total Quantity Ordered Discount

1 to 12 none

13 to 49 10%

50 to 99 14%

100 to 199 18%

200 or more 20%

Table 8-1 Discount table

246 Chapter 8 Arrays

Passing Arrays to Methods 247

discountRangeLimit array element, for any numOfItems greater than or equal to
discountRangeLimit[4], the appropriate discount is discount[4]. In other words, for any
numOf Items less than discountRangeLimit[4], you should decrement the subscript and
look in a lower range. Figure 8-7 shows the code.

It is a good programming practice to make sure that the subscript does not fall
below zero in the statement while(subƒ>=ƒ0ƒ&&ƒnumOfItemsƒ
<ƒdiscountRangeLimit[sub]). Although this would happen only if a
numOfItems held a negative value, such a check will prevent a program error.

PASSING ARRAYS TO METHODS

You have already seen that you can use any individual array element in the same man-
ner as you would use any single variable of the same type.That is, if you declare an inte-
ger array as int[]ƒsomeNumsƒ=ƒnewƒint[12];, then you can subsequently print
someNums[0] or add one to someNums[1], just as you would for any integer. Similarly,
you can pass a single array element to a method in exactly the same manner as you would
pass a variable.

Examine the program shown in Figure 8-8.The program creates an array of four inte-
gers and prints them. Then the program calls the methodGetsOneInt() method four
times, passing each element in turn.The method prints the number, changes the num-
ber to 999, and then prints the number again. Finally, back in main() method, the four
numbers are printed again.

As you can see in Figure 8-9, the four numbers that were changed in the
methodGetsOneInt() method remain unchanged back in main(). The variable named
one is local to the methodGetsOneInt() method, and any changes to variables passed
into the method are not permanent and are not reflected in the array in the main() pro-
gram. Each variable named one in the methodGetsOneInt() method holds only a copy
of the array element passed into the method.

Tip

int[] discountRangeLimit = {1, 13, 50, 100, 200};
double[] discount = {0, .10, .14, .18, .20};
double customerDiscount;
int sub = 4;
while(sub >= 0 && numOfItems < discountRangeLimit[sub])
 --sub;
customerDiscount = discount[sub];

Figure 8-7 Searching an array of ranges

8

The outcome is quite different when you pass an entire array to a method. Arrays, like
all objects, are passed by reference, which, as you will recall from Chapter 4, means that
the method receives the actual memory address of the array and has access to the actual
values in the array elements.The program shown in Figure 8-10 creates an array of four
integers. After the integers print, the entire array is passed to a method named
methodGetsArray().Within the method, the numbers print, which shows that they retain
their values from main(), but then the value 888 is assigned to each number. Even though
the methodGetsArray() method is a void method (meaning nothing is returned to the
main() method), when the program prints the array for the second time within main(),

Figure 8-9 Output of the PassArrayElement program

public class PassArrayElement
{

public static void main(String[] args)
{

int[] someNums = {5, 10, 15, 20};
int x;
for(x = 0; x < 4; ++x)

System.out.println("In main " + someNums[x]);
for(x = 0; x < 4; ++x)

methodGetsOneInt(someNums[x]);
for(x = 0; x < 4; ++x)

System.out.println("At end of main " + someNums[x]);
}

public static void methodGetsOneInt(int one)
{

System.out.println("In methodGetsOneInt " + one);
one = 999;
System.out.println("After change " + one);

}
}

Figure 8-8 PassArrayElement program

248 Chapter 8 Arrays

Passing Arrays to Methods 249

all of the values have been changed to 888, as you can see in Figure 8-10. Because arrays
are passed by reference, the methodGetsArray() method “knows” the address of the array
declared in main() and makes its changes directly to the original array that was declared
in the main() method. Figure 8-11 shows the output of the PassArray program.

Next you will add a new method to the Event object class type.Then you will add steps
to the EventArray program so you can pass an array of Event objects to a method.This
program will demonstrate that changes made within the method permanently affect val-
ues in the array.

Figure 8-11 Output of the PassArray program

public class PassArray
{

public static void main(String[] args) throws Exception
{

int[] someNums = {5, 10, 15, 20};
int x;
for(x = 0; x < 4; ++x)

System.out.println("In main " + someNums[x]);
methodGetsArray(someNums);
for(x = 0; x < 4; ++x)

System.out.println("At end of main " + someNums[x]);
}

public static void methodGetsArray(int[] arr)
{

for(int y=0; y<4; ++y)
{

System.out.println("In methodGetsArray " + arr[y]);
arr[y] = 888;

}
}

}

Figure 8-10 PassArray program

8

To add a new method to the Event class:

1. In your text editor, open the Event2.java file from the Chapter.08 folder
on your Student Disk.This text file contains the class definition for Event2
objects. Rename the class Event3 and change the Constructor name
to Event3.

2. Add a new setEventMinRate() method that you can use to alter an Event
object’s eventMinRate. Position the insertion point to the left of the final
closing curly brace for the Event2 class, press [Enter] to start a new line
above the closing brace, and then enter the following setEventMinRate()
method:

publicƒvoidƒsetEventMinRate(doubleƒrate)
{
ƒeventMinRateƒ=ƒrate;
}

3. Save the file as Event3.java and compile the program.

Next you will add a method call and a method to the EventArray4 program.The method
will receive an array of Event3 objects and increase the rate for each event by $5.00.

To add a method call and a method to the EventArray4 program:

1. Open the EventArray4.java file in your text editor. Change the class name
to EventArray5. Find the statement Event2ƒ[]ƒsomeEventsƒ=ƒnewƒ
Event2ƒ[5];, and change the statement to Event3[]ƒsomeEventsƒ=ƒ
newƒEvent3[5];. Position the insertion point to the left of the closing
curly brace for the main() method in this EventArray5 class, and then press
[Enter] to insert a new blank line above the closing curly brace. Locate the
statement that creates the someEvents array someEvents[x]ƒ=ƒnew
Event2(event,rate) and change Event2 to Event3.

2. Enter the following method call to a raiseRates() method, which will receive
the someEvents array and raise each Event’s rate by $5.00:

raiseRates(someEvents);

3. Press [Enter].To demonstrate that the rates changed as a result of the
raiseRates() method, add the following print loop on the new line:

for(xƒ=ƒ0;ƒxƒ<ƒ5;ƒ++x)
ƒSystem.out.println("Eventƒ"ƒ+ƒ(xƒ+ƒ1)ƒ+ƒ"ƒƒ"ƒ+ƒ
ƒƒsomeEvents[x].getEventType()+ƒ"ƒƒ"ƒ+ƒ
ƒƒsomeEvents[x].getEventMinRate());

If you do not want to type this statement, you can simply use your text edi-
tor’s copy function to copy the identical statement that already exists within
the program.Tip

250 Chapter 8 Arrays

Passing Arrays to Methods 251

4. Place the insertion point to the right of the main() method’s closing curly
brace, and then press [Enter] to start a new blank line before the closing
brace for the EventArray5 program.Then enter the following raiseRates()
method.The method loops through the array five times.With each iteration,
the method gets the array element’s current rate, stores it in a temporary
double variable, and adds $5.00 to the temporary variable.Then the tempo-
rary variable value is assigned back into the array object’s rate with the
setEventMinRate() method.

privateƒstaticƒvoidƒraiseRates(Event3[]ƒevent)
{
ƒdoubleƒtemp;
ƒfor(intƒqƒ=ƒ0;ƒqƒ<ƒ5;ƒ++q)
ƒ{
ƒƒtempƒ=ƒevent[q].getEventMinRate();
ƒƒtempƒ+=ƒ5;
ƒƒevent[q].setEventMinRate(temp);
ƒ}
}

You can replace the three statements
tempƒ=ƒevent[q].getEventMinRate();,ƒtempƒ+=ƒ5;, and
event[q].setEventMinRate(temp); with one statement:
event[q].setEventMinRate(event[q].getEventMinRate
()ƒ+ƒ5);. If this method call within a method call is clear to you, feel free
to use it.

5. Save the program as EventArray5.java, then compile and run it. After you
answer the prompts to create five events, the old rates and the new increased
rates should display on the screen. Figure 8-12 shows a sample run.

Figure 8-12 Sample output of the EventArray5 program using the raiseRates() method

Tip

8

USING THE length FIELD

Every array object that you create is automatically assigned a data field named length.The
length field contains the number of elements in the array. For example, when you
declare double[]ƒsalariesƒ=ƒnewƒdouble[8];, the field salaries.length is
assigned the value 8.

When you work with array elements, you must ensure that the subscript you use remains
in the range zero through one less than the length.To access all eight elements of a salaries
array, for example, you can code the number 8 explicitly, as in
for(xƒ=ƒ0;ƒxƒ<ƒ8;ƒ++x).... If you modify your program to hold more or fewer
array elements, you must remember to change every appropriate reference to the array size
within the program. Many text editors have a “find and replace” feature that lets you
change every 8, but you must be careful not to change an 8 that has nothing to do with
the array. A better technique is to use salaries.length, as in
for(xƒ=ƒ0;ƒxƒ<ƒsalaries.length;ƒ++x)....That way, if you change the size of
the salaries array, the array will always use the correct maximum length.

Next you will remove the explicit 5 you have used in each for loop within the
EventArray5 program, and replace each 5 with a reference to the length field.

To use the array length field:

1. Open the EventArray5.java program, if necessary change the class name to
EventArray6, and locate the first for statement in the main() method of
your EventArray6 program.This loop constructs five Event6 objects. Delete
the 5 in the for expression and then replace that number with
someEvents.length.

2. Locate the next for loop in this EventArray6 program, which checks the
event codes entered by a user. Delete the 3 from the for loop and replace
that number with eventCode.length.

3. Locate the next for loop, which prints array values. Delete the 5 in the for
loop and replace that number with someEvents.length.

4. The last for loop in the main() method of this EventArray6 program prints
the objects. Delete the 5 in this loop and replace it with
someEvents.length.

5. Within the raiseRates() method, locate the for loop that raises the rate of
each array element.Within the raiseRates() method, the array name is
event. Delete the 5 in this for loop and replace it with event.length.

6. Save the program as EventArray6.java, compile, and run the program.The
execution of the program should be the same as before—five objects are cre-
ated and three valid event codes are checked.

252 Chapter 8 Arrays

Creating Arrays of Strings 253

CREATING ARRAYS OF STRINGS

As with any other object, you can create an array of Strings. For example, you can store
three company department names as String[]ƒdeptNameƒ=ƒ{"Accounting",ƒ
"HumanƒResources",ƒ"Sales"};.You can access these department names like any
other array object. For example, to print them, you can use the following code:

for(intƒaƒ=ƒ0;ƒaƒ<ƒdeptName.length;ƒ++a)
ƒSystem.out.println(deptName[a]);

Notice that deptName.length; refers to the length of the array
deptName (three elements), and not to the length of any of the String objects
stored in the deptName array. Each String object has access to a length()
method that returns the length of a String. For example, if deptName[0] is
“Accounting”, then deptName[0].length() is 10 because
“Accounting” contains ten characters.

Next you will create two arrays to hold event types and manager names for Event
Handlers Incorporated. Then when a user enters an event type, the appropriate event
type and manager name will display on the screen.

To add event types and manager names to the EventArray6 program:

1. Open the EventArray6.java file in your text editor and change the class
name to EventArray7. Position the insertion point after the opening curly
brace of the main() method, and then press [Enter] to start a new line.

2. Add the array of event types by entering the following:

String[]ƒeventTypeƒ=
ƒ{ƒ"Corporate",ƒ"Private",ƒ"Non-Profit"};

3. Press [Enter] to start a new line, and then add the following array of
manager names:

String[]ƒmanagerNameƒ=ƒ
ƒ{"DustinƒBritt",ƒ"CarmenƒLindsey",ƒ"RobinƒArmenetti"};

4. Locate the for loop that determines if the user entered a valid code. Place
the insertion point after the statement codeIsValidƒ=ƒtrue; that appears
within the for statement, and then press [Enter] to start a new line. At this
point in the program, the variable i indicates the position of a correct event
type in the eventCode array.The correct event type is in the same relative
position in the eventType array as the correct manager’s name is within the
managerName array. In other words, managerName[i] “goes with”
eventCode[i].

Tip

8

5. Type the following statement that prints the event type and manager’s name
on the new line:
System.out.println("Theƒmanagerƒforƒ"ƒ+ƒeventType[i]
ƒ+ƒ"ƒeventsƒisƒ"ƒ+ƒmanagerName[i]);

6. To simplify screen output, comment out the call to raiseRates() as well as the
lines that print the raised rates.Type // at the beginning of each of these lines.

7. Save the program as EventArray7.java, compile, and test the program.Your
output should look like Figure 8-13.

In Chapter 7 you learned about methods for comparing characters and comparing
strings.You determined whether they were the same, or if different, which one was con-
sidered larger.With arrays, you often want to know whether a certain character or string
can be found within the elements of the array. For example, does the letter z appear in
an array of characters, or does the name John appear in the array of first names? The
idea is to search the array to see if you can find an exact match. Next you will search
an array of states, compare each state name to every element in the array, and determine
whether either or both state names can be matched.

To compare a String to each element in an array:

1. Open a new text file in your text editor, and then enter the following open-
ing lines for a FindState class:
publicƒclassƒFindState
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{

2. Enter the following array of String objects that holds the state names where
Event Handlers Incorporated has offices:
String[]ƒstatesƒ=ƒ{"Alaska",ƒ"California",ƒ"Illinois",ƒ
ƒ"Oregon",ƒ"Texas",ƒ"Wisconsin",ƒ"Wyoming"};

Figure 8-13 Output of the EventArray7 program showing event types and
manager names

254 Chapter 8 Arrays

Creating Arrays of Strings 255

3. For testing purposes, assign the following two state names to two String
objects named firstState and secondState:

StringƒfirstStateƒ=ƒ"Illinois";ƒ
ƒ//ƒThisƒstateƒwillƒbeƒfoundƒinƒtheƒlist
StringƒsecondStateƒ=ƒ"Ohio";ƒ
ƒ//ƒThisƒstateƒwillƒnotƒbeƒfoundƒinƒtheƒlist

4. Next declare the following integer variable that you will use as a subscript,
and a Boolean variable that you will set to true when a state name is found
in the array:

intƒx;
booleanƒfoundƒ=ƒfalse;

5. Enter the following for loop that compares the firstState to each state in the
array.When a match is found, set the Boolean found variable to true.

for(xƒ=ƒ0;ƒxƒ<ƒstates.length;ƒ++x)
ƒif(firstState.equals(states[x]))
ƒƒfoundƒ=ƒtrue;

6. At the end of the loop, enter the following statements to print a statement
indicating whether the firstState was found:

if(found)
ƒSystem.out.println(firstStateƒ+ƒ"ƒisƒinƒtheƒlist");
else
ƒSystem.out.println(firstStateƒ+ƒ"ƒisƒnotƒinƒtheƒlist");

7. Now enter the following statements to reset the variable found to false,
and then repeat the search process for the secondState variable:

foundƒ=ƒfalse;
for(xƒ=ƒ0;ƒxƒ<ƒstates.length;ƒ++x)
ƒif(secondState.equals(states[x]))
ƒƒƒfoundƒ=ƒtrue;
ƒif(found)
ƒƒƒSystem.out.println(secondStateƒ+ƒ"ƒisƒinƒtheƒlist");
ƒelse
ƒƒƒSystem.out.println(secondStateƒ+ƒ"ƒisƒnotƒinƒtheƒlist");

8. Enter the two closing curly braces that end the main() method and the
FindState class.

9. Save the program as FindState.java in the Chapter.08 folder on your
Student Disk. Compile and test the program.The program’s output appears in
Figure 8-14.

8

SORTING PRIMITIVE, OBJECT, AND STRING ARRAY ELEMENTS

Sorting is the process of arranging a series of objects in some logical order.When you
place objects in order, beginning with the object with the lowest value, you are sorting
in ascending order; conversely, when you start with the object that has the largest value,
you are sorting in descending order.

The simplest possible sort involves two values that are out of order.To place the values
in order, you must swap the two values. Suppose that you have two variables—valA and
valB—and further suppose that valAƒ=ƒ16 and valBƒ=ƒ2.To exchange the values of
the two variables, you cannot simply use the following code:

valAƒ=ƒvalB;ƒ//ƒ2ƒgoesƒtoƒvalA
valBƒ=ƒvalA;ƒ//ƒ2ƒgoesƒtoƒvalB

If valB is 2, then after you execute valAƒ=ƒvalB;, both variables hold the value 2.The
value 16 that was held in valA is lost.When you execute the second assignment state-
ment, valBƒ=ƒvalA;, each variable still holds the value 2.

The solution that allows you to retain both values is to employ a variable to hold valA’s
value temporarily during the swap:

tempƒ=ƒvalA;ƒ//ƒ16ƒgoesƒtoƒtemp
valAƒ=ƒvalB;ƒ//ƒ2ƒgoesƒtoƒvalA
valBƒ=ƒtemp;ƒ//ƒ16ƒgoesƒtoƒvalB

Using this technique, valA’s value (16) is assigned to the temp variable.The value of valB
(2) is then assigned to valA, so valA and valB are equivalent.Then the temp value (16)
is assigned to valB, so the values of the two variables finally are swapped.

If you want to sort any two values, valA and valB, in ascending order so that valA is
always the lower value, then you use the following if statement to make the decision
whether to swap. If valA is more than valB, you want to switch the values. If valA is not
more than valB, you do not want the values to switch.

Figure 8-14 Output of the FindState program

256 Chapter 8 Arrays

Sorting Primitive, Object, and String Array Elements 257

if(valAƒ>ƒvalB)
{
ƒtempƒ=ƒvalA;
ƒvalAƒ=ƒvalB;
ƒvalBƒ=ƒtemp;
}

Sorting two values is a fairly simple task; sorting more values (valC, valD, valE, and so
on) is more complicated. Without the use of an array, sorting a series of numbers is a
daunting task; the task becomes manageable when you know how to use an array.

As an example, you might have a list of five numbers that you want to place in ascend-
ing numeric order. One approach is to use a method popularly known as a bubble sort.
To use a bubble sort, you place the original, unsorted values in an array, such as
int[]ƒsomeNumsƒ=ƒ{88,ƒ33,ƒ99,ƒ22,ƒ54};. After a series of comparisons and
swaps, the numbers eventually will be placed in order within the array.You compare the
first two numbers; if they are not in ascending order, you swap them.You compare the
second and third numbers; if they are not in ascending order, you swap them.You con-
tinue down the list. Generically, for any someNums[x], if the value of someNums[x] is
larger than someNums[x + 1], then you want to swap the two values.

With the numbers 88, 33, 99, 22, and 54, the process proceeds as follows:

1. Compare 88 and 33.They are out of order. Swap them.The list becomes 33,
88, 99, 22, 54.

2. Compare the second and third numbers in the list—88 and 99.They are in
order. Do nothing.

3. Compare the third and fourth numbers in the list—99 and 22.They are out
of order. Swap them.The list becomes 33, 88, 22, 99, 54.

4. Compare the fourth and fifth numbers—99 and 54.They are out of order.
Swap them.The list becomes 33, 88, 22, 54, 99.

When you reach the bottom of the list, the numbers are not in ascending order, but the
largest number, 99, has moved to the bottom of the list. This feature gives the bubble
sort its name—the “heaviest” value has sunk to the bottom of the list as the “lighter”
values have bubbled to the top.

Assuming b and temp both have been declared as integer variables, the code so far is
as follows:

for(bƒ=ƒ0;ƒbƒ<ƒ4;ƒ++b)
ƒif(someNums[b]ƒ>ƒsomeNums[bƒ+ƒ1])
ƒ{
ƒƒƒtempƒ=ƒsomeNums[b];
ƒƒƒsomeNums[b]ƒ=ƒsomeNums[bƒ+ƒ1];
ƒƒƒsomeNums[bƒ+ƒ1]ƒ=ƒtemp;
ƒ}

8

Notice that the for statement tests every value of b from zero through three.The array
someNums contains five integers. The subscripts in the array range in value from zero
through four.Within the for loop, each someNums[b] is compared to someNums[b + 1],
so the highest legal value for b is three when array element b (3) is compared to array ele-
ment b + 1 (4). For a sort on any size array, the value of b must remain less than the array’s
length minus one.

The list of numbers that began as 88, 33, 99, 22, 54 is currently 33, 88, 22, 54, 99.You
must perform the entire comparison-swap procedure again.

1. Compare the first two values—33 and 88.They are in order; do nothing.

2. Compare the second and third values—88 and 22.They are out of order.
Swap them so the list becomes 33, 22, 88, 54, 99.

3. Compare the third and fourth values—88 and 54.They are out of order.
Swap them so the list becomes 33, 22, 54, 88, 99.

4. Compare the fourth and fifth values—88 and 99.They are in order; do nothing.

After this second pass through the list, the numbers are 33, 22, 54, 88, and 99—close to
ascending order, but not quite.You can see that with one more pass through the list, the
values 22 and 33 would swap, and the list would finally be placed in order.With the worst-
case list, one in which the original numbers were descending (as out-of-ascending order
as they could possibly be), you would need to go through the list four times making com-
parisons and swaps.You always, at most, need to pass through the list as many times as its
length minus one. Figure 8-15 shows the entire procedure.

To place the list in descending order, you need to make only one change in
the method in Figure 8-15: You change the greater than sign (>) in
if(someNums[b]ƒ>ƒsomeNums[bƒ+ƒ1]) to a less than sign (<).

Next you will begin to write a program that includes a method that sorts characters that
you enter from the keyboard.

Tip

for(a = 0; a < (someNums.length - 1); ++a)
for(b = 0; b < (someNums.length - 1); ++b)

if(someNums[b] > someNums[b + 1])
{

temp = someNums[b];
someNums[b] = someNums[b + 1];
someNums[b + 1] = temp;

}

Figure 8-15 Ascending sort of the someNums array

258 Chapter 8 Arrays

Sorting Primitive, Object, and String Array Elements 259

To write a program that sorts characters:

1. Open a new file in your text editor, and then type the following class header
and main() method header for a SortCharArray program:

publicƒclassƒSortCharArray
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{

2. Enter the following code to declare a character array that can hold 10 charac-
ters, and an integer x to use as a subscript with the array:

char[]ƒsomeCharsƒ=ƒnewƒchar[10];
intƒx;

3. Enter the following for loop that allows the user to enter 10 characters from
the keyboard:

for(xƒ=ƒ0;ƒxƒ<ƒsomeChars.length;ƒ++x)
{
ƒSystem.out.print("Enterƒaƒcharacterƒ");
ƒsomeChars[x]ƒ=ƒ(char)System.in.read();
ƒSystem.in.read();ƒSystem.in.read();ƒ
}

4. Enter the following for loop that displays the characters as originally entered:

System.out.println("Beforeƒsort");
for(xƒ=ƒ0;ƒxƒ<ƒsomeChars.length;ƒ++x)
ƒSystem.out.print(someChars[x]ƒ+ƒ"ƒ");

5. Call a method named bubbleSort().You will pass two arguments to
bubbleSort()—the array and the length of the array.

bubbleSort(someChars,ƒsomeChars.length);

6. Add a loop that prints the characters after the sort has executed:

System.out.println("\nAfterƒsort");
for(xƒ=ƒ0;ƒxƒ<ƒsomeChars.length;ƒ++x)
ƒSystem.out.print(someChars[x]ƒ+ƒ"ƒ");

When you sort a series of numbers, you place them in arithmetic order.
Characters are sorted by their numeric Unicode value.

7. Add a final println() statement to the program, as well as a closing curly brace
for the main() method:

ƒSystem.out.println();
}

Tip

8

8. Save the file as SortCharArray.java in the Chapter.08 folder on your
Student Disk.You cannot compile the file yet because you have not written
the bubbleSort() method.

Next you will add the bubbleSort() method to the SortCharArray program. An advan-
tage of creating the sort as a method which is separate from the main() method is that
you can then use this method with other programs.The bubbleSort() method will sort
any size array of characters; you might be able to use it in an application in which you
have a number of characters to sort.

To write the bubbleSort() method:

1. Below the main() method in the existing SortCharArray program, write the
header for a bubbleSort() method that takes a character array and an integer
length as arguments, press [Enter], and then type the method’s opening
curly brace:

publicƒstaticƒvoidƒbubbleSort(char[]ƒarray,ƒintƒlen)
{

In Step 1 in the header method of bubbleSort, the parameters char[] array
and int len are used to match the type of array and the length, or number of
array elements contained in the array, that are to be passed.

2. Type the following code to declare two integers, a and b, to use in the
method’s for loops. Additionally, declare a temporary character variable.

intƒa,ƒb;
charƒtemp;

3. The two for loops you need to sort the array each must execute lenƒ-ƒ1
times. If you place the subtraction calculation within each for statement, as in
for(aƒ=ƒ0;ƒaƒ<ƒ(lenƒ-ƒ1);ƒ++a), the subtraction is performed on each
cycle through the loop. It is more efficient to calculate lenƒ-ƒ1 once, store the
value in a variable, and use the new variable in the for loops. Figure 8-16 shows
this process.Add the code displayed in Figure 8-16 to your program.

4. Add the closing curly brace for the bubbleSort() method and the closing
curly brace for the SortCharArray class.

5. Save, compile, and execute the program. Figure 8-17 shows a typical pro-
gram run.

When you use a bubble sort to sort any array into ascending order, the largest value
“falls” to the bottom of the array after you have compared each pair of values in the
array one time.The second time you go through the array making comparisons, there
is no need to check the last pair of values.The largest value is guaranteed to already be
at the bottom of the array.You can make the sort process even more efficient by using
a new variable for the inner for loop and reducing the value by one on each cycle
through the array.

Tip

260 Chapter 8 Arrays

Sorting Primitive, Object, and String Array Elements 261

To make the array more efficient:

1. Open the SortCharArray program, if necessary, and change the class name to
SortCharArray2.Within the bubbleSort() method in the SortCharArray.java
file, position your insertion point after the statement intƒhighSubscriptƒ=ƒ
lenƒ-1;, and then press [Enter] to start a new line.

2. Declare a variable that holds the number of comparisons to make by typing
the following:

intƒcompsToMakeƒ=ƒlenƒ-ƒ1;

3. Replace the inner, b-loop statement,
for(bƒ=ƒ0;ƒbƒ<ƒhighSubscript;ƒ++b), with
for(bƒ=ƒ0;ƒbƒ<ƒcompsToMake;ƒ++b).

4. Position the insertion point after the closing curly brace for the if, and then
press [Enter] to start a new line.

Figure 8-17 Output of the SortCharArray program

int highSubscript = len - 1;
for(a = 0; a < highSubscript; ++a)
{

for(b = 0; b < highSubscript; ++b)
if(array[b] > array[b + 1])
{

temp = array[b];
array[b] = array[b + 1];
array[b + 1] = temp;

}
}

Figure 8-16 Portion of the sort process

8

5. Type the statement that reduces compsToMake by one on each cycle through
the array by typing --compsToMake;. Make sure that this statement is
between the closing curly brace of the inner for loop and the closing curly
brace of the outer for loop.

6. Save the program as SortCharArray2.java, compile, and run the program.
The program executes exactly as before; however, it is more efficient.When
you sort an array with 10 or 20 elements, you will not notice any improved
efficiency. However, if you need to sort an array with thousands of elements,
the program will run much faster if you employ this technique to reduce
unnecessary comparisons.

Sorting Arrays of Objects
You can sort arrays of objects in much the same way that you sort arrays of primitive
types. The major difference occurs when you make the comparison that determines
whether you want to swap two array elements. When you construct an array of the
primitive element type, you compare the two array elements to determine whether they
are out of order.When array elements are objects, you usually want to sort based on a
particular object field.

Assume you have created a simple Employee class similar to the Employee class of
Chapter 3, and as shown in Figure 8-18.The class holds two data fields, a constructor,
and get and set methods for the fields.

You can write a program that contains an array of Employee objects using the statement
Employee[]ƒsomeEmpsƒ=ƒnewƒEmployee[5];. After you assign employee num-
bers and salaries to the Employee objects, you want to sort the Employees in empSal
order.You can pass the array and its length to a bubbleSort() method that is prepared to
receive Employee objects. Figure 8-19 shows the method.

Examine Figure 8-19 carefully and notice that the bubbleSort() method is very similar
to the bubbleSort() method you use for an array of any primitive type, but there are
three major differences:

� The bubbleSort() method header shows it receives an array of type
Employee.

� The temp variable created for swapping is type Employee.

� The comparison for swapping uses the method call getEmpSal() to compare
the salary for each Employee object in the array with the salary of the adja-
cent Employee object.

262 Chapter 8 Arrays

Sorting Primitive, Object, and String Array Elements 263

It is important to note that even though only Employee salaries are compared,
you do not swap Employee salaries. You do not want to substitute one
Employee’s salary for another’s. Instead, you swap the entire Employee object
so that each Employee object’s empNum and empSal are swapped as a unit.

Tip

public static void bubbleSort(Employee[] array, int len)
{

int a,b;
Employee temp;
int highSubscript = len - 1;
for(a = 0; a < highSubscript; ++a)

for(b = 0; b < highSubscript; ++b)
if(array[b].getEmpSal() > array[b + 1].getEmpSal())
{

temp = array[b];
array[b] = array[b + 1];
array[b + 1] = temp;

}
}

Figure 8-19 The SortObjects program with a bubbleSort() method for Employee objects

public class Employee
{

private int empNum;
private double empSal;
public Employee(int e, double s)
{

empNum = e;
empSal = s;

}
public int getEmpNum()
{

return empNum;
}
public void setEmpNum(int id)
{

empNum = id;
}
public double getEmpSal()
{

return empSal;
}
public void setEmpSal(double r)
{

empSal = r;
}

}

Figure 8-18 Employee class

8

Sorting String Array Elements
When you sort an array of Strings, you must remember that String names are addresses.
Therefore, you cannot determine whether two String objects require swapping by com-
paring their names. Instead, you must use the compareTo() method. Next you will sort
a list of Strings.

To sort an array of String objects:

1. Open a new file in your text editor, and then enter the first few lines of a
program that will sort String objects:

publicƒclassƒSortStrings
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{

2. Use the following code to declare an array of student names and an integer
variable to use as a subscript:

String[]ƒstudentsƒ=ƒ
ƒ{"Kim",ƒ"Ken",ƒ"Tom",ƒ"Kathy",ƒ"Brad"};
intƒx;

3. Write the code that prints the list of Strings, passes the list to a sortStrings()
method, and prints the list again:

System.out.println("Beforeƒsort");
for(xƒ=ƒ0;ƒxƒ<ƒ5;ƒ++x)
ƒSystem.out.println(students[x]);
sortStrings(students,ƒstudents.length);
System.out.println("\nAfterƒsort");
for(xƒ=ƒ0;ƒxƒ<ƒ5;ƒ++x)
ƒSystem.out.println(students[x]);

4. Add the closing curly brace for the main() method.

5. Enter the sortStrings() method shown in Figure 8-20.The method uses the
compareTo() method to determine whether two Strings should be swapped.
Recall that when the compareTo() method returns a value greater than zero,
then the first String is larger than (that is, out of order with) the second String.

6. Save the program as SortStrings.java in the Chapter.08 folder on your
Student Disk and compile.When you run the program, the output is similar
to Figure 8-21.

264 Chapter 8 Arrays

Using Two-Dimensional and Multidimensional Arrays 265

USING TWO-DIMENSIONAL AND MULTIDIMENSIONAL ARRAYS

When you declare an array such as int[]ƒsomeNumbersƒ=ƒnewƒint[3];, you can
envision the three declared integers as a column of numbers in memory, as shown in
Figure 8-22. In other words, you can picture the three declared numbers stacked one on
top of the next.An array that you can picture as a column of values is a one-dimensional
or single-dimensional array.

You can think of the single dimension of a single-dimensional array as the
height of the array.

Tip

Figure 8-21 Output of the SortStrings program

public static void sortStrings(String[] array, int len)
{

int a,b;
String temp;
int highSubscript = len - 1;
for(a = 0; a < highSubscript; ++a)

for(b = 0; b < highSubscript; ++b)
if(array[b].compareTo(array[b + 1]) > 0)
{

temp = array[b];
array[b] = array[b + 1];
array[b + 1] = temp;

}
}

Figure 8-20 The sortStrings() method

8

The Java programming language also supports two-dimensional arrays.Two-dimensional
arrays have more than one column of values, as shown in Figure 8-23. It is easiest to pic-
ture two-dimensional arrays as having both rows and columns.When mathematicians use
a two-dimensional array, they often call it a matrix; you might have used a two-dimen-
sional array called a spreadsheet.

You can think of the two dimensions of a two-dimensional array as height
and width.

When you declare a one-dimensional array, you type a set of square brackets after the array
type.To declare a two-dimensional array, you type two sets of brackets after the array type.
For example, int[][]ƒsomeNumbersƒ=ƒnewƒint[3][4]; declares an array named
someNumbers that holds three rows and four columns.

Just as with a one-dimensional array, if you do not provide values for the elements in a
two-dimensional numeric array, the values default to zero.You can assign values to the
array elements later. For example, someNumbers[0][0]ƒ=ƒ14; assigns the value 14
to the element of the someNumbers array that is in the first column of the first row.
Alternately, you can initialize a two-dimensional array with values when it is created.
For example, the following code assigns values to someNumbers when it is created:

int[][]ƒsomeNumbersƒ=
{ƒƒƒƒƒƒƒ{8,ƒ9,ƒ10,ƒ11},
ƒƒƒƒƒƒƒƒ{1,ƒ3,ƒ12,ƒ15},
ƒƒƒƒƒƒƒƒ{5,ƒ9,ƒ44,ƒ99}ƒƒ};

The someNumbers array contains three rows and four columns.You contain the entire
set of values within a pair of curly braces.The first row of the array holds the four inte-
gers 8, 9, 10, and 11. Notice that these four integers are placed within their own set of
curly braces to indicate that they constitute one row, or the first row, which is row zero.
Similarly, 1, 3, 12, and 15 make up the second row, which you reference with the sub-
script 1; 5, 9, 44, and 99 are the values in the third row, which you reference with the

Tip

SomeNumbers[0][0]
SomeNumbers[1][0]
SomeNumbers[2][0]

SomeNumbers[0][1]
SomeNumbers[1][1]
SomeNumbers[2][1]

SomeNumbers[0][2]
SomeNumbers[1][2]
SomeNumbers[2][2]

SomeNumbers[0][3]
SomeNumbers[1][3]
SomeNumbers[2][3]

Figure 8-23 Two-dimensional array

SomeNumbers[0]
SomeNumbers[1]
SomeNumbers[2]

Figure 8-22 Single-dimensional array

266 Chapter 8 Arrays

Using Two-Dimensional and Multidimensional Arrays 267

subscript 2.The value of someNumbers[0][0] is 8.The value of someNumbers[0][1] is
9.The value of someNumbers[2][3] is 99.The value within the first bracket following
the array name always refers to the row; the value within the second bracket refers to
the column.

Assume you own an apartment building with four floors—a basement, which you refer
to as floor zero, and three other floors numbered one, two, and three.Additionally, each
of the floors has studio (with no bedroom) and one- and two-bedroom apartments.The
monthly rent for each type of apartment is different—the higher the floor, the higher
the rent (the view is better), and the rent is higher for apartments with more bedrooms.
Table 8-2 shows the rental amounts.

To determine a tenant’s rent, you need to know two pieces of information: the floor on
which the tenant rents an apartment, and the number of bedrooms in the apartment.
Within a Java program, you can declare an array of rents using the following code:

int[][]ƒrentsƒ=
{ƒƒƒƒƒƒƒ{400,ƒ450,ƒ510},
ƒƒƒƒƒƒƒƒ{500,ƒ560,ƒ630},
ƒƒƒƒƒƒƒƒ{625,ƒ676,ƒ740},
ƒƒƒƒƒƒƒƒ{1000,ƒ1250,ƒ1600}ƒƒ};

Assuming you declare two integers to hold the floor number and bedroom count as
intƒfloor,ƒbedrooms;, then any tenant’s rent is rents[floor]ƒ[bedrooms].

To demonstrate the use of a two-dimensional array, you can create a short demonstra-
tion program.You will create a teacher’s classroom seating chart that holds four rows and
three columns.Then you will search for a particular student’s location.

To write a program that uses a two-dimensional array to create a student
seating chart:

1. Open a new text file in your text editor.

2. Enter the following class header and main() method header for a
FindStudent class:

publicƒclassƒFindStudent
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{

Floor Zero Bedrooms One Bedroom Two Bedrooms

0 400 450 510

1 500 560 630

2 625 676 740

3 1000 1250 1600

Table 8-2 Rents charged

8

3. Create a two-dimensional String array that holds the names of 12 students
who sit in four rows. For convenience, assign each student a name with a
unique initial.That way, you can search for a student’s position using an initial.
String[][]ƒstudentsƒ=ƒ
{ƒƒƒƒ{"Dave",ƒ"Bonnie",ƒ"Hannah"},
ƒƒƒƒƒ{"Iris",ƒƒ"Keith",ƒ"Carl"},
ƒƒƒƒƒ{"Amy",ƒ"Jessica",ƒ"Francis"},
ƒƒƒƒƒ{"Ellen",ƒ"George",ƒ"Lydia"}ƒƒ};

4. You will use a character variable to hold an initial that is input from the key-
board, and two integer variables to hold the row and column position of the
student whose initial matches the input initial:
charƒstu;
intƒr,ƒc;

5. Add the following statements to prompt the user for an initial and read the
character from the keyboard:
System.out.print("Enterƒstudentƒinitialƒ");
stuƒ=ƒCharacter.toUpperCase((char)System.in.read());

6. You will use two nested for loops to test each combination of row and col-
umn positions.When the character input at the keyboard matches the charac-
ter in the first position of any of the Strings in the two-dimensional array,
print the row and column position. Enter the following for loops:
for(rƒ=ƒ0;ƒrƒ<ƒ4;ƒ++r)
ƒfor(cƒ=ƒ0;ƒcƒ<ƒ3;ƒ++c)
ƒƒif(stuƒ==ƒstudents[r][c].charAt(0))
ƒƒƒSystem.out.println("Studentƒisƒinƒrowƒ"ƒ+ƒrƒ+ƒ
ƒƒƒƒ"ƒandƒcolumnƒ"ƒ+ƒc);

7. Add the closing curly brace for the main() method and the closing curly
brace for the class.

8. Save the program as FindStudent.java in the Chapter.08 folder on your
Student Disk. Compile the program, and then execute it several times.
Confirm that with each initial you type, the correct row and column posi-
tions are located. Figure 8-24 shows a sample program run.

Understanding Multidimensional Arrays
The Java programming language supports multidimensional arrays, or arrays of more
than two dimensions. For example, if you own an apartment building with a number of
floors and different numbers of bedrooms available in apartments on each floor, you can
use a two-dimensional array to store the rental fees. If you own several apartment build-
ings, you might want to employ a third dimension to store the building number. An
expression such as rents[building][floor][bedrooms] refers to a specific rent
figure for a building whose building number is stored in the building variable, and whose
floor and bedroom numbers are stored in the floor and bedrooms variables. Specifically,
rents[5][1][2] refers to a two-bedroom apartment on the first floor of building 5.

268 Chapter 8 Arrays

Chapter Summary 269

When you are programming in Java, you can use four, five, or more dimensions in an
array. As long as you can keep track of the order of the variables needed as subscripts,
and as long as you don’t exhaust your computer’s memory, Java will let you create arrays
of any size.

CHAPTER SUMMARY
❐ An array is a named list of data items that all have the same type.You declare an

array variable by inserting a pair of square brackets after the type. Declaring an
array and actually reserving memory space for it are two distinct processes.You
use the keyword new to reserve memory locations for the array elements.

❐ A subscript is an integer contained within square brackets that indicates one of
an array’s variables, or elements. An array’s elements are numbered beginning
with zero.When you work with any individual array element, you treat it no
differently than you would a single variable. Array names actually represent
computer memory addresses—they are references, as are all Java objects.

❐ Each element of a numeric array is automatically set to zero, character array
elements are assigned '\u0000', and Boolean array elements are automatically
assigned the value false.

❐ To initialize an array, you can use a list of values that are separated by commas
and enclosed within curly braces.When you initialize an array by giving it val-
ues upon creation, you do not give the array a size; the size will be assigned
based on the number of values you place in the initializing list.

❐ Just as you can declare arrays of integers or doubles, you can declare arrays of
any type, including objects.You must explicitly call individual constructors for
array objects.

Figure 8-24 Output of the FindStudent program

8

❐ You can pass a single array element to a method in exactly the same manner
you would pass a variable.The array element is passed by value; that is, a copy is
made.You can pass an array to a method. Arrays, like all objects, are passed by
reference; the method has access to the actual values in the array elements.

❐ You can use an array’s length field to determine the number of elements.

❐ Sorting is the process of arranging a series of objects in some logical order.
When you place objects in order beginning with the object with the lowest
value, you are sorting in ascending order; when you start with the object that
has the largest value, you are sorting in descending order.

❐ To sort any two values in ascending order, you use an if statement to make
the decision whether to swap the positions of the two values.You must use the
compareTo() method when sorting Strings.

❐ You usually want to sort based on a particular field contained in each object.To
use a bubble sort, you place the original, unsorted values in an array, compare
pairs of values, and then, if they are not in ascending order, swap them.To use a
bubble sort, you always, at most, need to pass through a list as many times as its
length minus one.

❐ An array that you can picture as a column of values is a one-dimensional or
single-dimensional array.The Java programming language supports multidimen-
sional arrays, or arrays of more than two dimensions.

REVIEW QUESTIONS
1. An array is a list of data items that .

a. all have the same type

b. all have different names

c. all are integers

d. all are null

2. Declaring an array and reserving memory for an array .

a. are always done in the same statement

b. are two distinct processes

c. depends on the type of array

d. must not use the keyword new

3. You reserve memory locations for an array when you .

a. declare the array name

b. use the keyword new

c. use the keyword mem

d. explicitly store values within the array elements

270 Chapter 8 Arrays

Review Questions 271

4. The statement int[]ƒvalueƒ=ƒnewƒint[34]; reserves memory for
integers.

a. 0

b. 33

c. 34

d. 35

5. A(n) contained within square brackets is used to indicate one
of an array’s elements.

a. character

b. double

c. integer

d. string

6. If you declare an array as int[]ƒnumƒ=ƒnewƒint[6];, the last element of the
array is .

a. num[0]

b. num[1]

c. num[5]

d. impossible to tell

7. If you declare an integer array as int[]ƒnumƒ=ƒ{101,202,303,404,505,
606};, then the array element num[2] contains the number .

a. 101

b. 202

c. 303

d. impossible to tell

8. Array names are .

a. values

b. functions

c. references

d. allusions

9. Unicode value '\u0000' also is known as .

a. nill

b. void

c. nada

d. null

8

10. When you initialize an array by giving it values upon creation, you
.

a. do not give the array a size

b. also must give the array a size

c. must make all the values zero, blank, or false

d. must make sure each value is different from the others

11. Assume an array is declared as int[]ƒnumƒ=ƒnewƒint[4];.Which of the fol-
lowing statements correctly assigns the value 100 to each of the four array elements?

a. for(xƒ=ƒ0;ƒxƒ<ƒ3;ƒ++x)ƒnum[x]ƒ=ƒ100;

b. for(xƒ=ƒ0;ƒxƒ<ƒ4;ƒ++x)ƒnum[x]ƒ=ƒ100;

c. for(xƒ=ƒ1;ƒxƒ<ƒ4;ƒ++x)ƒnum[x]ƒ=ƒ100;

d. for(xƒ=ƒ1;ƒxƒ<ƒ5;ƒ++x)ƒnum[x]ƒ=ƒ100;

12. If a class named Student contains a method setID() that takes an integer argument,
and you create an array of 20 Student objects named scholar, which of the follow-
ing statements correctly assigns an ID number to the first Student scholar?

a. Student[0].setID(1234);

b. scholar[0].setID(1234);

c. Student.setID[0](1234);

d. scholar.setID[0](1234);

13. Searching through an array for an exact match to some variable is a good idea
when .

a. no variable values are invalid

b. the variable values to be matched are sequential

c. there are relatively few possibilities for the value in the variable

d. you need to match a variable based on a range of values

14. When you pass an array element to a method, the method receives
.

a. a copy of the array

b. the address of the array

c. a copy of the value in the element

d. the address of the element

15. When you pass an array to a method, the method receives .

a. a copy of the array

b. a copy of the first element in the array

c. the address of the array

d. nothing

272 Chapter 8 Arrays

Exercises 273

16. When you place objects in order beginning with the object with the highest
value, you are sorting in order.

a. acquiescing

b. ascending

c. demeaning

d. descending

17. Using a bubble sort involves .

a. comparing parallel arrays

b. comparing each array element to the average

c. comparing each array element to the adjacent array element

d. swapping every array element with its adjacent element

18. Which array types cannot be sorted?

a. arrays of characters

b. arrays of Strings

c. arrays of objects

d. You can sort all of the above array types.

19. When array elements are objects, you usually want to sort based on a particular
of the object.

a. field

b. method

c. name

d. type

20. The array int[][]nums={{1,2},{3,4},{5,6}}; is a array.

a. one-dimensional

b. two-dimensional

c. multidimensional

d. nondimensional

EXERCISES
1. Write a program that can hold five integers in an array. Display the integers from

first to last, and then display the integers from last to first. Save the program as
IntArray.java in the Chapter.08 folder on your Student Disk.

2. Write a program using dialog boxes that prompts the user to make a choice for a
pizza size—S, M, L, or X—and then displays the price as $6.99, $8.99, $12.50, or
$15.00 accordingly. Save the program as PizzaChoice.java in the Chapter.08
folder on your Student Disk.

8

3. a. Create a class named Taxpayer. Data fields for Taxpayer include Social Security
number (use an int for the type, and do not use dashes within the Social Security
number) and yearly gross income. Methods include a constructor that requires
values for both data fields, and two get methods that return each of the data field
values.Write a program named UseTaxpayer that declares an array of 10 Taxpayer
objects. Set each Social Security number to 999999999 and each gross income to
zero. Display the 10 Taxpayer objects. Save the programs as Taxpayer.java and
UseTaxpayer.java in the Chapter.08 folder on your Student Disk.

b. Modify your program so each Taxpayer has a successive Social Security number
from 1 through 10, and gross incomes that range from $10,000 to $100,000,
increasing by $10,000 for each successive Taxpayer. Save the program as
UseTaxpayer2.java in the Chapter.08 folder on your Student Disk.

4. Create an array that stores 20 prices, such as $2.34, $7.89, $1.34, and so on.
Display the sum of all the prices. Display all values less than $5.00. Calculate the
average of the prices, and display all values that are higher than the calculated
average value. Save the program as Prices.java in the Chapter.08 folder on your
Student Disk.

5. a. Write a program that prompts a professor to input grades for five different courses
for 10 students. Prompt the professor to enter one grade at a time using the
prompt “Enter name for student #1” and “Enter grade #1.”Verify that the profes-
sor enters only A, B, C, D, or F. Use variables for the student numbers (1 through
10) and grade numbers (1 through 5). Save the programs as Student.java and
GradePoint.java in the Chapter.08 folder on your Student Disk.

b. Modify the GradePoint program so that it calculates the grade point average
(GPA) for each student. A student receives four grade points for an A, three
grade points for a B, two grade points for a C, one grade point for a D, and zero
grade points for an F. Store the grades and points in parallel arrays. Search the
arrays to determine the points for the grade. Store the GPA for each student in
another array. (Hint: Copy the GPA for each student to a different array by ini-
tializing the new array with GPAs from the other array.)

c. Display the GPA scores from each of the two GPA arrays to verify that the GPAs
were copied correctly. Identify which array the scores are from. Save the final
program as GradePoint.java in the Chapter.08 folder on your Student Disk.

6. a. Write a program that displays a multiple choice quiz of 10 questions with top-
ics related to your favorite hobby. Each question has one correct answer and
three possible answers.Verify that the user enters only A, B, or C as the answer.
Store the correct answers in an array. Store the user’s answers in a second array.
If the user responds to a question correctly, display “Correct!”; otherwise dis-
play “The correct answer is” and the letter of the correct answer. Determine
what to display by comparing the response to the array of correct answers. Save
the program as Quiz.java in the Chapter.08 folder on your Student Disk.

b. Modify your Quiz class so that it displays the number of correct answers after
the user answers 10 questions. Determine the score by comparing the two arrays.

274 Chapter 8 Arrays

Exercises 275

7. a. Write a program that lets the user enter numbers (1 through 9) one at a time,
and then prints the numbers that the user entered. Allow the user to enter up
to 10 numbers. If the user tries to enter an 11th number, display a message that
no more numbers can be entered. Store the numbers in an array.Verify that
invalid characters are not entered. Save the program as EnterNumbers.java in
the Chapter.08 folder on your Student Disk.

b. Change the EnterNumbers program to EnterNumbers2, so that it lets the
user delete or modify a number. Include a menu that shows the options to
enter, remove, modify, or display a number, or quit the program.Verify that a
correct option is entered.When the user chooses the remove option, prompt
the user to specify which number to remove.Verify that the user enters a
valid number (1 through 9), and then change that number in the array to 0.

c. Change the program so that when the user chooses the modify option, the pro-
gram prompts the user to specify which number to modify.Verify that the user
enters a valid number (1 through 9), ask for the new number, verify that the user
enters a valid number, and then change the number in the array. Save the final pro-
gram as EnterNumbers2.java in the Chapter.08 folder on your Student Disk.

8. Write a program that stores vowels (a, e, i, o, and u) in an array. Ask the user to
enter a character.Then the program should indicate whether the entered character
is a vowel. Save the program as VowelArray.java in the Chapter.08 folder on
your Student Disk.

9. Store 40 characters in an array, such as 1234%$#@UHGF....Write a program that
produces a count of how many of the characters are letters in the English alpha-
bet, and how many of the characters are not letters. Save the program as
EnglishArray.java in the Chapter.08 folder on your Student Disk.

10. Write a program that prompts the user for a first name. Print a greeting to the
person using the name, such as “Hello Kimberly!” Save the program as
HelloArray.java in the Chapter.08 folder on your Student Disk.

11. Store 20 integer employee ID numbers in an integer array, and 20 corresponding
employee last names in a String array. Use dialog boxes to accept an ID number,
and display the appropriate last name. Save the program as EmployeeIdArray.java
in the Chapter.08 folder on your Student Disk.

12. Create an array of Strings containing the days of the week (“Sunday” through
“Saturday”). Review the use of the GregorianCalendar class in Chapter 4.The
GregorianCalendar class contains a method get(Object.DAY_OF_WEEK) that
returns an integer value one through seven that represents Sunday through
Saturday.Write a program in which you create a GregorianCalendar object, assign
it a value, and then print a day that corresponds to the GregorianCalendar. Save
the program as DayArray.java in the Chapter.08 folder on your Student Disk.

13. Create an array of Strings, each containing one of the top 10 reasons that you like
Java. Prompt a user to enter a number, convert the number to an integer, and then
use the integer to print one of the reasons for the user. Save the program as
JavaArray.java in the Chapter.08 folder on your Student Disk.

8

14. Create an array of five Strings containing the first names of people in your family.
Write a program that counts and displays the number of vowels in the Strings that
you entered, without regard to case (uppercase versus lowercase letters). Save the
program as Vowels.java in the Chapter.08 folder on your Student Disk.

15. Write a program that contains three parallel arrays. The first array holds student
ID numbers, the second holds first names, and the third holds the students’ grade
point averages. Use dialog boxes to accept a student ID number with nine digits,
and then display the student’s first name and grade point average. If a match is not
found display “No Match... ”. Save the program as StudentIDArray.java in the
Chapter.08 folder on your Student Disk.

16. A phone directory contains ID numbers, names, and phone numbers for 10 peo-
ple.Write a program that uses dialog boxes to search for a phone number for a
person based on the ID number. If the ID number is found, the persons name, ID
number, and phone number are displayed and the program ends. If the ID is not
found the user is prompted to enter a name, ID, and phone number, and the new
information is displayed using a single dialog message box. Save the program as
PhoneNumberArray.java in the Chapter.08 folder on your Student Disk.

17. a. Write a program containing an array of 15 double values. Include a method to
sort the values in ascending order. Compile, run, and check the results.

b. Change the sort to sort in descending order. Save the program as
SortDouble.java in the Chapter.08 folder on your Student Disk.

18. Write an Employee program containing methods for setting and getting Employee
numbers and Employee salaries.Write a program that instantiates five Employee
objects, sorts the Employee objects, and prints the Employee objects in descending
order by Employee number. Save the program as EmployeeSort.java in the
Chapter.08 folder on your Student Disk.

19. Write a program that allows the user to enter a course ID number and then dis-
plays the course name (such as “CIS 110”) and the day of the week and time that
the course is held (such as “Th 3:30”). Store the course name and day/time in a
two-dimensional array. Save the program as Schedule.java in the Chapter.08
folder on your Student Disk.

20. Write a program that stores an array of video titles (such as “True Grit”) and their
corresponding ID numbers in inventory (such as “145”). Display the list before it
is sorted, and then display a list sorted by inventory ID number. Use two single-
dimensional arrays—one for the titles and one for the inventory ID numbers. Save
the program as Video.java in the Chapter.08 folder on your Student Disk.

21. Write a program that stores the name, title, and hourly wage of people employed
by a grocery store.The data are: Ollie Regan, manager, $18/hour;William
Sherman, assistant manager, $16/hour; Maureen Mooney, produce manager,
$15/hour; Marty Sharik, bakery manager, $15.25/hour; and Marcella Riley, cashier
manager, $13/hour. List the employee name and job title for employees who earn
more than $15 per hour. Store the names and titles for each employee in a two-
dimensional array, and store the rate in a single-dimensional array. Save the pro-
gram as Rate.java in the Chapter.08 folder on your Student Disk.

276 Chapter 8 Arrays

Case Project 277

22. Each of the following files in the Chapter.08 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugEight1.java will become FixDebugEight1.java.

a. DebugEight1.java

b. DebugEight2.java

c. DebugEight3.java

d. DebugEight4.java

CASE PROJECT
The We Cut Salon offers a variety of salon services for its customers. Jane Fields, the
owner, has contracted to have you write a program that will allow reports to be out-
put sorted by each type of service offered. Create a class for services offered by a hair
styling salon. Data fields include a String to hold the service description (for exam-
ple, “Cut”, “Shampoo”, or “Manicure”), a double to hold the price, and an integer to
hold the average minutes it takes to perform the service.The class name is
HairSalon. Include a constructor that requires arguments for all three data fields and
three get methods that each return one of the data field’s values.

Write a program named SortSalon that contains an array to hold six HairSalon objects
and fill it with data. Include a method to sort the array in ascending order by price of
service. Call the method and display the results. Add a second method to the SortSalon
program that sorts the HairSalon objects in descending order by the time it takes to per-
form the service. Call the method and display the results. Add a third method to the
SortSalon program that sorts the HairSalon objects in alphabetical order by service
description. Call the method and display the results. Finally, add a prompt to the
SortSalon program giving the user three choices: sort by description, price, or time.
Depending on the user’s input, call one of the three sort methods and display the results.

Table 8-3 shows the various services, service prices, and service times:

Service Price ($) Time (minutes)

Cut 8.00 15

Shampoo 4.00 10

Manicure 18.00 30

Style 48.00 55

Permanent 18.00 35

Trim 6.00 5

Table 8-3 Salon services, prices, and times

Case
Project

8

279

CHAPTER

9
APPLETS

In this chapter, you will:
� Write an HTML document to host an applet
� Understand simple applets
� Use Labels with simple AWT applets
� Write a simple Swing applet and use a JLabel
� Add JTextField and JButton Components to Swing applets
� Learn about event-driven programming
� Add output to a Swing applet
� Understand the Swing applet life cycle
� Create a more-sophisticated interactive Swing applet
� Use the setLocation() and setEnabled() methods

It seems like I’ve learned a lot,” you tell Lynn Greenbrier during a coffee
break at Event Handlers Incorporated.“I can use variables, make decisions,

write loops, and use arrays.”

“You’ve come a long way,” Lynn agrees.

“But at the same time,” you continue, “I feel like I know nothing! When I
visit the simplest Web site, it looks far more sophisticated than my most
advanced application. There is color and movement. There are buttons to
click and boxes into which I can type responses to questions. Nothing I’ve
done even approaches that.”

“But you have a good foundation in Java programming,” Lynn says. “Now
you can put all that knowledge to work. By adding a few new objects to
your repertoire, and by learning a little about applets, you can comfortably
enter the world of interactive Web programming.”

PREVIEWING THE AWT AND SWING GREET APPLETS

The Chap9Greet and Chap9JGreet classes preview two basic applets. Chap9Greet is
an applet created using the Abstract Windows Toolkit (AWT) and the Applet class.
Chap9JGreet is also an applet created using the AWT, but is different because
Chap9JGreet uses the JApplet class.

You can now use a completed version of each applet, which you will find saved in the
Chapter.09 folder on your Student Disk. Also saved in the Chapter.09 folder are copies
of Chap9Greet and Chap9JGreet.

To run the Chap9Greet and Chap9JGreet applets:

1. At the command prompt for the Chapter.09 folder on your Student Disk, type
appletviewer TestChap9Greet.html, and then press [Enter]. It might
take a few minutes for the Applet Viewer window to open. See Figure 9-1.

2. Click the Close button in the upper-right corner of the Applet Viewer win-
dow to close the Applet Viewer.

3. At the command prompt for the Chapter.09 folder on your Student Disk,
type appletviewerƒTestChap9JGreet.html, and then press [Enter].
View the applet shown in Figure 9-2.

4. Close the Applet Viewer.

Figure 9-1 Chap9Greet applet

280 Chapter 9 Applets

Writing an HTML Document to Host an Applet 281

WRITING AN HTML DOCUMENT TO HOST AN APPLET

You have written many Java applications.When you write a Java application, you do the
following:

� Write the application in the Java programming language, and then save it
with a .java file extension.

� Compile the application into bytecode using the javac command.The
bytecode is stored in a file with a .class file extension.

� Use the java command to interpret and execute the .class file.

As you know, applications are stand-alone programs. In contrast, applets are programs that
are called from within another application.You run applets within a page on the Internet,
an intranet, or a local computer from within another program called Applet Viewer,
which comes with the Java Developer’s Kit. To view an applet, it must be called from
within another document written in HTML. HTML, Hypertext Markup Language,
is a simple language used to create Web pages for the Internet.HTML contains many com-
mands that allow you to format text on a Web page, import graphic images, and link your
page to other Web pages.When you create an applet, you do the following:

� Write the applet in the Java programming language, and save it with a .java
file extension, just as when you write a Java application.

� Compile the applet into bytecode using the javac command, just as when
you write a Java application.

� Write an HTML document that includes a statement to call your compiled
Java class.

Figure 9-2 Chap9JGreet applet

9

� Load the HTML document into a Web browser (such as Netscape Navigator
or Microsoft Internet Explorer), or run the Applet Viewer program, which, in
turn, uses the HTML document.

Java, in general, and applets, in particular, are popular topics among programmers, mostly
because users can execute applets using a Web browser on the Internet.A Web browser
is a program that allows you to display HTML documents on your computer screen.
Web documents often contain Java applets.

Fortunately, to run a Java applet, you don’t need to learn the entire HTML language;
you need to learn only two pairs of HTML commands, called tags.The tag that begins
every HTML document is <HTML>. Like all tags, this tag is surrounded by angle brack-
ets. HTML is an HTML keyword which specifies that an HTML document follows the
keyword. The tag that ends every HTML document is </HTML>. Placing a backslash
before any tag indicates the tag is the ending half of a pair of tags.The following is the
simplest HTML document you can write:

<HTML>
</HTML>

Unlike the Java programming language, HTML is not case sensitive so you
can use <html> in place of <HTML>. However, this book uses the all upper-
case convention when typing HTML code. With the growing importance of
XML and XHTML, many programmers recommend putting all tags in lower-
case since XML and XHTML are case sensitive.

The simple HTML document begins and ends and does nothing in the process; you can
create an analogous situation in a Java method by typing an opening curly brace and fol-
lowing it immediately with the closing curly brace. HTML documents generally con-
tain more statements. For example, to run an applet from within an HTML document,
you add an <APPLET> and </APPLET> tag pair. Usually, you place three attributes
within the <APPLET> tag: CODE, WIDTH, and HEIGHT. Attributes, sometimes referred
to as arguments, promote activity—with them the HTML tag can do something in a
certain way. Note the following example:

<APPLETƒCODEƒ=ƒ"AClass.class"ƒWIDTHƒ=ƒ300ƒHEIGHTƒ=ƒ200
</APPLET>

The following are three APPLET tag attributes and a description of their corresponding
arguments:

� CODEƒ= is followed by the name of the compiled applet you are calling

� WIDTHƒ= is followed by the width of the applet on the screen

� HEIGHTƒ= is followed by the height of the applet on the screen

The name of the applet you call must be a compiled Java applet (with a .class file exten-
sion).The width and height of an applet are measured in pixels. Pixels are the picture

Tip

282 Chapter 9 Applets

Understanding Simple Applets 283

elements, or tiny dots of light that make up the image on your video monitor. For mon-
itors that display 800 pixels horizontally and 600 pixels vertically, a statement such as
WIDTHƒ=ƒ400ƒHEIGHTƒ=ƒ300 will create an applet that occupies approximately one-
fourth of most screens (half the height and half the width).

SVGA monitors commonly display 800 x 600 pixels, 1024 x 768 pixels, or
higher. If you want most users to see larger applets without scrolling, the max-
imum size of your applets should be 760 x 520 pixels. The standard 600 x 400
pixels was used to support the older 640 x 480 VGA monitors and is currently
considered out-of-date. Keep in mind that the browser’s menu bar and screen
elements (such as the toolbar and the scrollbars) will take up some of the
screen viewing area for an applet.

Next you will create a simple HTML document that you will use to display the applet
that you create in the next section.You will name the applet Greet, and it will occupy a
screen area of 450 × 200 pixels.

To create a simple HTML document:

1. Open a new file in your text editor.

2. Type the opening HTML tag, <HTML>.

3. On the next line, type the opening APPLET tag that contains the applet’s
name and dimensions: <APPLETƒCODEƒ=ƒ"Greet.class"ƒWIDTHƒ=ƒ450
HEIGHTƒ=ƒ200>.

4. On the next line, type the applet’s closing tag: </APPLET>.

5. On the next line, type the closing HTML tag: </HTML>.

6. Save the file as TestGreet.html in the Chapter.09 folder on your Student
Disk. Just as when you create a Java application, make sure that you save the
file as text only using an .html extension.The .html file extension is required
and makes the file easy to identify as an HTML file. If you are using Notepad
or another text editor, you can enclose the filename in quotation marks to
save the .html file extension, as in “A:\Chapter.09\TestGreet.html”.

UNDERSTANDING SIMPLE APPLETS

To write an applet you must learn only a few additions and changes to writing a Java appli-
cation. In addition to what you learned about creating applets in the beginning of this chap-
ter, you must also do the following to write an applet:

� Include import statements to ensure that necessary classes are available.

� Learn to use some Windows components and applet methods.

� Learn to use the keyword extends.

Tip

9

In Chapter 3, you used an import statement to access classes such as java.util.Date and
java.util.GregorianCalendar within your application.You imported these classes to avoid
having to write common date-handling routines that already exist in Java. Similarly, Java’s
creators fashioned a variety of classes to handle common applet needs. Programmers use
core classes of the Java platform that include the java.applet.Applet and javax.swing.JApplet.
The structure for these core classes is shown in Figure 9-3.

The class structure in Figure 9-3 shows that the Applet class is used to create an AWT
applet and the JApplet class is used to create a Swing applet.You can use methods from
the Component and Container classes for both types. A Component is a class that
defines any object that you want to display. In the pages that follow, you will display
frames, panels, buttons, labels, and text fields in the applets you create.A Container is a
class that is used to define a component that can contain other components.

Most AWT applets contain at least two import statements: importƒjava.applet.*;
and importƒjava.awt.*;.The java.applet package contains a class named Applet—
every applet you create is based on this class. The java.awt package is the Abstract
Windows Toolkit, or AWT. (In Java 1.1, the java.awt package contained the primary
classes you would use to create a Graphical User Interface, or GUI.)

Most Swing applets contain at least two import statements: importƒjavax.swing.*;
and importƒjava.awt.*;. Many of the AWT classes have been superceded in Java 2
by Swing classes. The classes in the javax.swing package define GUI elements, referred
to as Swing components, and provide much-improved alternatives to components
defined by classes in java.awt.The Swing classes are part of a more general set of GUI
programming capabilities that are collectively referred to as the Java Foundation
Classes, or JFC. JFC includes Swing component classes and selected classes from the
java.awt package.

When you create an application, you follow any needed import statements with a class
header such as publicƒclassƒAClass. AWT applets and Swing applets begin the
same way as Java applications, but they must also include the words extendsƒApplet

Figure 9-3 Structure of Applet and JApplet classes

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--java.awt.Panel
 |
 +--java.applet.Applet
 |
 +--javax.swing.JApplet

284 Chapter 9 Applets

Using Labels with Simple AWT Applets 285

and extendsƒJApplet. The keyword extends indicates that your applet will build
on, or inherit, the traits of the Applet or JApplet classes.

Both the Applet and JApplet classes provide a general outline used by any Web browser
when it runs an applet. In an application, the main() method calls other methods that
you write.With an applet, the browser calls many methods automatically.The following
four methods are included in every applet:

� publicƒvoidƒinit()

� publicƒvoidƒstart()

� publicƒvoidƒstop()

� public void destroy()

If you fail to write one or more of these methods, Java creates them for you.The meth-
ods Java creates have opening and closing curly braces only—in other words, they are
empty.To create a Java program that does anything useful, you must code at least one of
these methods.

The init() method is the first method called in any applet.You use it to perform initial-
ization tasks, such as setting variables to initial values or placing applet components on
the screen.You must code the init() method’s header as publicƒvoidƒinit().

In the text which follows, you will need to distinguish between applets cre-
ated by the Applet and JApplet classes. The term Applet is used for the AWT
applet; JApplet is the term used for the Swing applet. When the term applet
is used alone, it refers to material that can apply to both applet types.

USING LABELS WITH SIMPLE AWT APPLETS

The java.awt package contains commonly used Windows components such as Labels,
Menus, and Buttons.You import java.awt so you don’t have to “reinvent the wheel” by
creating these components yourself.AWT Applets are not required to contain Windows
components, but they almost always do.

One of the simplest Window components is a Label. Label is a built-in class that holds
text that you can display within an applet.The Label class also contains fields that indi-
cate appearance information, such as font and alignment.As with other objects, you can
declare a Label without allocating memory, as in Labelƒgreeting;, or you can call
the Label constructor without any arguments, as in Labelƒgreetingƒ=ƒnew
Label();.You can assign some text to the Label with the setText() method, as in
greeting.setText("Hiƒthere");. Alternately, you can call the Label constructor
and pass it a String argument so the Label is initialized upon construction, as in Label
greetingƒ=ƒnewƒLabel("Hello.ƒWhoƒareƒyou?");.

Tip

9

You use the add() method to add a component to an applet window. For example, if a
Label is defined as Labelƒgreetingƒ=ƒnewƒLabel("Hello.ƒWhoƒare you?");,
then you can place a greeting within an applet using the command add(greeting);.

The object of the add() method is the applet itself, so when you add a
component to a window, you could write this.add(); in place of add();.
You learned about the this reference in Chapter 4.

Figure 9-4 shows the program to create an applet that displays “Hello. Who are you?”
on the screen.

Next you will create and compile the Greet applet.

To create and run the Greet applet:

1. Open a new text file in your text editor.

2. Enter the code shown in Figure 9-4.

3. Save the file as Greet.java in the Chapter.09 folder on your Student Disk.

4. Compile the program with the command javacƒGreet.java.

5. If necessary, correct any errors, and then compile again.

To run the Greet applet, you can use your Web browser or the appletviewer com-
mand. In the following steps, you will do both.

To run the applet using your Web browser:

1. Open any Web browser, such as Microsoft Internet Explorer or Netscape.You
do not have to connect to the Internet; you will use the browser locally.

If you do not have a Web browser installed on your computer, skip to the end
of Step 3.

Tip

import java.applet.*;
import java.awt.*;

public class Greet extends Applet
{

Label greeting = new Label("Hello. Who are you?");
public void init()
{

add(greeting);
}

}

Figure 9-4 AWT Greet applet

Tip

286 Chapter 9 Applets

Using Labels with Simple AWT Applets 287

2. Click File on the menu bar, click Open or Open Page, type
A:\Chapter.09\TestGreet.html, which is the complete path for the HTML
document that you created to access Greet.class, and then press [Enter].The
applet should appear on your screen, as shown in Figure 9-5. If you receive an
error message, verify that the path and spelling of the HTML file are correct.

3. Click the Close button in the upper right-hand corner of the browser’s pro-
gram window to close your Web browser.

You can also view your applet using the appletviewer command. In this book, you
will test your applets using this command.

Some applets may not work correctly using your browser. Java was designed with a num-
ber of security features so that when an applet displays on the Internet, the applet can-
not perform malicious tasks, such as deleting a file from your hard drive. If an applet does
nothing to compromise security, then testing it using the Web browser or the
appletviewer command achieves the same results. For now, you can get your applets
to perform better by using the Applet Viewer window because the output will not
depend on browser type or version.

To run the applet using the appletviewer command:

1. At the command line, type appletviewerƒTestGreet.html, and then
press [Enter]. After a few moments, the Applet Viewer window opens and
displays the applet, as shown in Figure 9-6.

Figure 9-5 TestGreet.html displayed in Internet Explorer

9

2. Use the mouse pointer to drag any corner of the Applet Viewer window to
resize it. Notice that if you widen the window by dragging its right border to
the right, the window is redrawn on the screen and the Label is automatically
repositioned to remain centered within the window. If you narrow the win-
dow by dragging its left border to the left, the Label eventually is partially
obscured when the window becomes too narrow for the display.

3. Close the Applet Viewer.

WRITING A SIMPLE SWING APPLET AND USING A JLABEL

The Swing component classes offer more flexibility than classes defined in the java.awt
package because they are implemented entirely in Java. Older java.awt components
greatly relied on the native code of the operating system on which Java was then imple-
mented.This chapter makes primary use of the GUI built on the Java Foundation classes.
You will import java.awt and javax.swing classes so you don’t have to create these com-
ponents yourself.

The counterpart to the AWT Label is a JLabel. JLabel is a built-in class that holds text that
you can display within an applet.The structure of the JLabel class is shown in Figure 9-7.

Available constructors for the JLabel class include:

� JLabel() creates a JLabel instance with no image and with an empty string
for the title.

� JLabel(Icon image) creates a JLabel instance with the specified image.

� JLabel(Icon image, int horizontalAlignment) creates a JLabel
instance with the specified image and horizontal alignment.

� JLabel(String text) creates a JLabel instance with the specified text.

Figure 9-6 Output of TestGreet.html page in an Applet Viewer window

288 Chapter 9 Applets

Writing a Simple Swing Applet and Using a JLabel 289

� JLabel(String text, Icon icon, inthorizontalAlignment)
creates a JLabel instance with the specified text, image, and horizontal alignment.

� JLabel(String text, int horizontalAlignment) creates a JLabel
instance with the specified text and horizontal alignment.

Using the JLabel class, you allocate memory, create objects, and assign text
using class constructors and methods that are virtually identical to those
found in the Label class. The primary difference is that more constructors and
methods are available in the JLabel class.

A major difference between AWT and Swing classes is the method used to add a com-
ponent to a Swing window. AWT components are added directly to the Applet; Swing
components must use a content pane. GUI components, such as JLabels, are attached to
a separate content pane so they can be displayed at execution time. This is true for a
Swing application as well as a Swing applet.

Referring back to Figure 9-3, the content pane is an object of the Container class from
the java.awt package. A Container object can be created using the getContentPane()
method. To create a Container object named con, the syntax is Containerƒconƒ=
getContentPane();. Then the statement JLabelƒgreetingƒ=ƒnewƒJLabel();
adds the greeting object to the content pane with the statement con.add(greeting);.

Figure 9-8 shows the program to create a Swing applet that displays “Hello. Who are
you?” on the screen. Next you will create a Swing applet.

To create and run the JGreet applet:

1. Open a new text file in your text editor.

2. Enter the code shown in Figure 9-8.

3. Save the file as JGreet.java in the Chapter.09 folder on your Student Disk.

4. Compile the program and, if necessary, correct any errors, and then
compile again.

Tip

Figure 9-7 Structure of the JLabel class

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--javax.swing.JComponent
 |
 +--javax.swing.JLabel

9

5. Open a new file in your text editor, and then type the HTML document that
will run the JApplet as follows:

<HTML>
<APPLETƒCODEƒ=ƒ"Greet.class"ƒWIDTHƒ=ƒ450ƒHEIGHTƒ=ƒ200>
</APPLET>
</HTML>

Save the file as TestJGreet.html in the Chapter.09 folder of your
Student Disk.

6. At the command line, type appletviewer TestJGreet.html, and then
press [Enter].The applet appears on your screen, as shown in Figure 9-9.

7. Close the Applet Viewer window.

Figure 9-9 Output of TestJGreet.html page in Applet Viewer window

Figure 9-8 Swing Greet applet

import javax.swing.*;
import java.awt.*;
public class JGreet extends JApplet
{

JLabel greeting = new JLabel("Hello. Who are you?");

public void init()
{
Container con = getContentPane();
con.add(greeting);

}
}

290 Chapter 9 Applets

Writing a Simple Swing Applet and Using a JLabel 291

Changing a JLabel’s Font
If you use the Internet and a Web browser to visit Web sites, you probably are not very
impressed with either of your simple java applets.You might think that the string,“Hello.
Who are you?” is pretty plain and lackluster. Fortunately, Java provides you with a Font
object that holds typeface and size information.The setFont() method requires a Font
object argument.To construct a Font object, you need three arguments: typeface, style,
and point size.

The typeface is a String representing a font. Common fonts are Arial, Helvetica,
Courier, and Times New Roman.The typeface is only a request; the system on which
your applet runs might not have access to the requested font and substitute a default
font. The style applies an attribute to displayed text and is one of three arguments,
Font.PLAIN, Font.BOLD, or Font.ITALIC.The point size is an integer that represents
1⁄72 of an inch. Printed text is usually about 12 points; a headline might be 30 points.

To give a Label object a new font, you create the Font object, as in Font
headlineFontƒ=ƒnewƒFont("Helvetica",ƒFont.BOLD, 36);, and then you
use the setFont() method to assign the font to a Label with the statement
greeting.setFont(headlineFont);.

The typeface name is a String, so you must enclose it in double quotation marks when
you use it to declare the Font object.

Next you will change the font of the text in your JGreet applet.

To change the appearance of the greeting in the JGreet applet:

1. Open the JGreet.java file in your text editor and change the class name
to JGreet2.

2. Position the insertion point at the end of the line that declares the greeting
Label, and then press [Enter] to start a new line of text.

3. Declare a Font object named bigFont by typing the following:

FontƒbigFontƒ=ƒnewƒFont("TimesRoman",ƒFont.ITALIC,ƒ24);

4. Place the insertion point to the right of the opening curly brace of the init()
method, and then press [Enter] to start a new line.

5. Set the greeting font to bigFont by typing greeting.setFont(bigFont);.

6. Save the file using the filename JGreet2.java.

7. At the command line, compile the program, and if necessary, correct any errors.

8. Run the applet, changing the TestJGreet.html document created earlier to
TestJGreet2.html.Within the TestJGreet2.html document, change the class
internally to JGreet2.class and then execute the appletviewer
TestJGreet2.html command. Figure 9-10 shows the output.

9. Close the Applet Viewer window.

9

ADDING JTEXTFIELD AND JBUTTON COMPONENTS TO SWING APPLETS

In addition to including JLabels, Swing applets often contain other window features such
as JTextFields and JButtons.A JTextField is a component into which a user can type a
single line of text data. (Text data comprises any characters you can enter from the key-
board, including numbers and punctuation.) The structure of the JTextField class is
shown in Figure 9-11.

Typically, a user types a line into a JTextField and then presses [Enter] on the keyboard
or clicks a button with the mouse to enter the data.You can construct a JTextField object
using one of several constructors:

� publicƒJTextField() constructs a new JTextField.

� publicƒJTextField(intƒnumColumns) constructs a new empty
JTextField with a specified number of columns.

Figure 9-11 Structure of the JTextField class

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--javax.swing.JComponent
 |
 +--javax.swing.text.JTextComponent
 |
 +--javax.swing.JTextField

Figure 9-10 Output of the JGreet2.java program using bigFont

292 Chapter 9 Applets

Adding JTextField and JButton Components to Swing Applets 293

� public JTextField(String text) constructs a new JTextField initial-
ized with the specified text.

� publicƒJTextField(Stringƒtext,ƒintƒcolumns) constructs a new
JTextField initialized with the specified text and columns.

For example, to provide a JTextField for a user to answer the “Who are you?” question,
you can code JTextFieldƒanswerƒ=ƒnewƒTextField(10); to provide a JTextField
that is empty and displays approximately 10 characters.To add the JTextField named answer
to an applet, you write con.add(answer);, where con is a Container object declared
as Containerƒconƒ=ƒgetContentPane();.

The number of characters a JTextField can display depends on the font being
used and the actual characters typed. For example, in most fonts, w is wider
than i, so a JTextField of size 10 using Arial font can display 24 i characters,
but only eight w characters.

Try to anticipate how many characters your users will enter when you create
a JTextField. The user can enter more characters than those that display, but
the extra characters scroll out of view. It can be disconcerting to try to enter
data into a field that is not large enough. It is usually better to err on the high
side when estimating the size of a user text field.

Several other methods are available for use with JTextFields. The setText() method
allows you to change the text in a JTextField that has already been created, as in
answer.setText("Thankƒyou");.The getText() method allows you to retrieve the
String of text in a JTextField, as in StringƒwhatDidTheySayƒ=ƒanswer.getText();.

When a user encounters a JTextField you have placed within an applet, the user must
position the mouse pointer in the JTextField and click to get an insertion point.When
the user clicks within the JTextField, the JTextField has keyboard focus, which means
that the next entries from the keyboard will be entered at that location.When you want
the insertion point to appear automatically within the TextField without requiring the
user to click in it first, you can use the requestFocus() method. For example, if you
have added a JTextField named answer to an applet, then answer.requestFocus()
causes the insertion point to appear within the JTextField, and the user can begin typ-
ing immediately without moving the mouse. In addition to saving the user some time
and effort, requestFocus() is useful when you have several JTextFields and you want to
direct the user’s attention to a specific one. However, at any time, only one component
within a window can have the keyboard focus.

When a JTextField has the capability of accepting keystrokes, the JTextField is editable.
If you do not want the user to be able to enter data in a JTextField, you can use the
setEditable() method to change the editable status of a JTextField. For example, if you
want to give a user only one chance to answer a question correctly, then you can pre-
vent the user from replacing or editing the characters in the JTextField by using the code

Tip

Tip

9

answer.setEditable(false);. If conditions change, and you want the user to be
able to edit the JTextField, use the code answer.setEditable(true);.

A JButton is even easier to create than a JTextField.There are five JButton constructors:

� publicƒJButton() creates a button with no set text.

� publicƒJButton(Iconƒicon) creates a button with an icon of type Icon
or ImageIcon.

� publicƒJButton(Stringƒtext) creates a button with text.

� publicƒJButton(Stringƒtext,ƒIconƒicon) creates a button with
initial text and an icon of type Icon or ImageIcon.

The structure of the JButton class is shown in Figure 9-12.

To create a JButton with the label “Press when ready”, you write JButton
readyButtonƒ=ƒnewƒJButton("Pressƒwhenƒready");. To add the JButton to
an applet, you write con.add(readyButton);, where Container con has been cre-
ated using Containerƒconƒ=ƒgetContentPane();. You can change a JButton’s
Label with the setLabel() method, as in readyJButton.setLabel("Don'tƒpress
meƒagain!");, or get the JLabel and assign it to a String object with the getLabel()
method, as in StringƒwhatsOnJButtonƒ=ƒreadyButton.getLabel();.

Make sure that the label on your JButton describes its function for the user.

As with JTextField components, you can use the requestFocus() method
with JButton components. The surface of the button that has the keyboard
focus appears with an outline so it stands out from the other JButtons.Tip

Tip

Figure 9-12 JButton class structure

java.lang.Object
 |
 +--java.awt.Component
 |
 +--java.awt.Container
 |
 +--javax.swing.JComponent
 |
 +--javax.swing.AbstractButton
 |
 +--javax.swing.JButton

294 Chapter 9 Applets

Adding JTextField and JButton Components to Swing Applets 295

Adding Multiple Components to a JApplet
Previously you have added only a single component to the Swing applet. In the following
example you will add three components.To place multiple components at some given posi-
tion in a container, you must use a layout manager to control component positioning.
The normal default behavior of a Swing applet is to use a border layout if no layout man-
ager is specified. Border layouts, created by using the BorderLayout class, divide a con-
tainer into five sections: north, south, east, west, and center.A border layout is created with
the BorderLayout() or BorderLayout(int, int) constructor methods.The statement
BorderLayoutƒborderƒ=ƒnewƒBorderLayout(); creates a BorderLayout object
named border. The statement BorderLayoutƒgapƒ=ƒnewƒBorderLayout(5,ƒ10);
creates a BorderLayout object named gap with a horizontal gap of five pixels and a vertical
gap of 10 pixels between components.The components in the north, south, east, and west
areas will take up as much space as needed; the center will use whatever space is left over.

When a component uses BorderLayout, components are placed in the center region.This
means when you add multiple components to a JApplet, the components all lie in the
center and appear to be on top of each other, so you can only see the last component
you have added.

You will learn more about layout managers in Chapter 14.

When you use a flow layout, components do not lie on top of each other, instead the
flow layout manager places components in a row, and when a row is filled, it automat-
ically spills components onto the next row.The default positioning of the row of compo-
nents is centered in the container. In the FlowLayout class there are three row positioning
options specified by constants defined in the class. These options are FlowLayout.LEFT,
FlowLayout.RIGHT, and FlowLayout.CENTER.To create a layout manager named flow
that positions the components to the right, use the statement FlowLayoutƒflow
=ƒnewƒFlowLayout(FlowLayout.RIGHT);. The layout of a container named con
can be set to FlowLayout with row components positioned to the right using
con.setLayout(flow);. A more compact syntax that combines the two statements
into one is con.setLayout(newƒFlowLayout(FlowLayout.RIGHT);.You can use
whichever syntax you prefer.

Next you will add a JTextField and a JButton to your Swing applet.

To add a JTextField and a JButton to the JGreet2 JApplet:

1. Open the JGreet2.java file in your text editor and change the class name
to JGreet3.

2. Position the insertion point at the end of the line that defines the bigFont
Font object, and then press [Enter] to start a new line of text.

Tip

9

3. Declare a JButton with the label “Press Me” and an empty JTextField by typ-
ing the following:

JButtonƒpressMeƒ=ƒnewƒJButton("PressƒMe");
JTextFieldƒanswerƒ=ƒnewƒJTextField("",10);

4. Set the new layout manager to a flow layout with the statement: FlowLayout
flowƒ=ƒnewƒFlowLayout();.

5. Position the insertion point at the end of the statement con.add(greeting);,
press [Enter] to start a new line, and type con.setLayout(flow);.

6. Add the JTextField and the JButton to the Swing applet by typing the following:

con.add(answer);
con.add(pressMe);

7. On the next line, request focus for the answer by typing:
answer.requestFocus();

8. Save the file as JGreet3.java and compile. Run the applet, changing the
TestJGreet2.html document created earlier to TestJGreet3.html. Change the
class name internally to JGreet3, and then execute the appletviewer
TestJGreet3.html command. Output is shown in Figure 9-13. Confirm
that you can type characters into the JTextField and that you can click the
JButton using the mouse.You haven’t coded any action to take place as a
result of a JButton click yet, but the components should function. Also con-
firm that the objects in each row are positioned to the right.

9. Close the Applet Viewer window.

LEARNING ABOUT EVENT-DRIVEN PROGRAMMING

An event occurs when someone using your applet takes action on a component, such
as clicking the mouse on a JButton object.The programs you have written so far in this
book have been procedural—you dictated the order in which events occurred. You
retrieved user input, wrote decisions and loops, and created output.When you retrieved
user input, you had no control over how much time the user took to enter a response

Figure 9-13 Output of the JGreet3.html document

296 Chapter 9 Applets

Learning About Event-Driven Programming 297

to a prompt, but you did control the fact that processing went no further until the input
was completed. In contrast, with event-driven programs, the user might initiate any
number of events in any order. For example, if you use a word-processing program, you
have dozens of choices at your disposal at any moment in time.You can type words,
select text with the mouse, click a button to change text to bold, click a button to change
text to italics, choose a menu item, and so on.With each word-processing document you
create, you choose options in any order that seems appropriate at the time.The word-
processing program must be ready to respond to any event you initiate.

Within an event-driven program, a component on which an event is generated is the
source of the event.A button that a user can click is an example of a source; a text field
that a user can use to enter text is another source.An object that is interested in an event
is a listener. Not all objects can receive all events—you probably have used programs in
which clicking many areas of the screen has no effect. If you want an object, such as your
applet, to be a listener for an event, you must register the object as a listener for the source.

Newspapers around the world register with news services, such as the Associated Press
or United Press International.The news services maintain a list of subscribers, and send
each one a story when important national or international events occur. Similarly, a Java
component source object (such as a button) maintains a list of registered listeners and
notifies all registered listeners (such as an applet) when any event occurs, such as a mouse
click. When the listener “receives the news,” an event-handling method that is part of
the listener object responds to the event.

A source object and a listener object can be the same object. For example, a
JButton can change its label when a user clicks it.

To respond to user events within any applet you create, you must do the following:

� Prepare your Swing applet to accept event messages.

� Tell your Swing applet to expect events to happen.

� Tell your Swing applet how to respond to any events that happen.

Preparing Your Swing Applet to Accept Event Messages
You prepare your applet to accept mouse events by importing the java.awt.event pack-
age into your program and adding the phrase implementsƒActionListener to the
class header. The java.awt.event package includes event classes with names such as
ActionEvent, ComponentEvent, and TextEvent. ActionListener is an interface, or a set
of specifications for methods that you can use with Event objects. Implementing
ActionListener provides you with standard event method specifications that allow your
applet to work with ActionEvents, which are the types of events that occur when a user
clicks a button.

Tip

9

You can identify interfaces such as ActionListener because they are implemented,
and not imported or extended.

Telling Your Swing Applet to Expect Events to Happen
You tell your applet to expect ActionEvents with the addActionListener() method.
If you have declared a JButton named aButton, and you want to perform an action when
a user clicks aButton, then aButton is the source of a message, and you can think of your
applet as a target to which to send a message.You learned in Chapter 4 that the this
reference means “this current method,” so aButton.addActionListener(this);
causes any ActionEvent messages (button clicks) that come from aButton to be sent to
“this current object.”

Not all Events are ActionEvents with an addActionListener() method. For exam-
ple, KeyListeners have an addKeyListener() method and FocusListeners have an
addFocusListener() method. Additional event types and methods are covered in
more detail in Chapters 13 and 14.

Telling Your Swing Applet How to Respond to Any Events
That Happen

The ActionListener interface contains the actionPerformed(ActionEvent e)
method specification.When a JApplet has registered as a listener with a JButton, and a
user clicks the JButton, the actionPerformed() method executes. You must write the
actionPerformed() method, which contains a header and a body like all methods.You
use the header publicƒvoidƒactionPerformed(ActionEventƒe), where e is
any name you choose for the Event (the JButton click) that initiated the notification of
the ActionListener (the JApplet).The body of the method contains any statements that
you want to execute when the action occurs.You might want to perform mathematical
calculations, construct new objects, produce output, or execute any other operation. For
example, Figure 9-14 shows an actionPerformed() method that produces a line of out-
put at the operating system prompt.

Figure 9-14 The actionPerformed() method that produces a line of output

public void actionPerformed(ActionEvent someEvent)
{

System.out.println
("I'm inside the actionPerformed() method!");

}

Tip

Tip

298 Chapter 9 Applets

Learning About Event-Driven Programming 299

When more than one component is added and registered to a Swing applet,
it is necessary to determine which component was used for your program to
act accordingly. ActionEvent and other event objects are part of the
java.awt.event package and are subclasses of the EventObject class.

Every event-handling method is sent an event object of some kind. To determine the
source of the event, the getSource() method of the object is used to determine the com-
ponent that sent the event. For example, if the method header publicƒvoid
ActionPerformed(ActionEventƒe)ƒ{ is followed by the statement Object
sourceƒ=ƒe.getSource();, the object returned by the getSource() method deter-
mines the component that sent the event. Continuing the example, if the source of the
event is a JButton named exit, then the following if statement evaluates to true and
the statements contained in its body execute:

if(sourceƒ==ƒexit)
{
//executeƒtheseƒstatements
}

You can also use the instanceof keyword inside an event-handling method to deter-
mine the source of the event.The instanceof keyword is used when it is necessary
to know only the component’s type, rather than what component triggered the event.
For example, if any JTextField, regardless of name, generates an action event when text
is typed in it and [Enter] is pressed, the following if statement would execute:

voidƒactionPerformed(ActionEventƒe)
{
ƒƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒƒifƒ(sourceƒinstanceofƒJTextField)
ƒƒƒ{
ƒƒƒ//executeƒtheseƒstatements
ƒƒƒ}
}

Next you will make your applet an event-driven program by adding functionality to
your Swing applet.When the user enters a name and clicks the JButton, the JApplet will
display a greeting on the command line.

To add functionality to your Swing applet:

1. Open the JGreet3.java file in your text editor and change the class name
to JGreet4.

2. Add a third import statement to your program by typing:
import java.awt.event.*;.

3. Position the insertion point at the end of the class header publicƒclass
JGreet4ƒextendsƒJApplet, press [Spacebar], and then type implements
ActionListener.

Tip

9

4. Position the insertion point at the end of the statement in the init() method
that adds the pressMe button to the JApplet, and press [Enter]. Prepare
your Swing applet for JButton-sourced events by typing the statement
pressMe.addActionListener(this);.

5. Position the insertion point to the right of the closing curly brace for the
init() method, and then press [Enter]. Add the following actionPerformed()
method which follows the init() method but comes before the closing brace
for the JGreet4 class. Use the object’s getSource() method to determine that
the source of the event is the JButton. Use an if statement to control the
events that occur when the event’s source is the JButton.You will declare a
String to hold the user’s name, use the getText() method on the answer
JTextField to retrieve the String, and display an on-screen message to the user.

publicƒvoidƒactionPerformed(ActionEventƒthisEvent)
{
ƒƒObjectƒsourceƒ=ƒthisEvent.getSource();
ƒƒif(sourceƒ==ƒpressMe)
ƒƒ{
ƒƒƒƒStringƒnameƒ=ƒanswer.getText();
ƒƒƒƒSystem.out.println("Hiƒthereƒ"ƒ+ƒname);
ƒƒ}
}

6. Save the file as JGreet4.java, and compile the program. Edit the file
TestJGreet.html and change the class reference to TestJGreet4.class.
Save the file as TestJGreet4.html. Run the program using the
appletviewerTestJGreet4.html command.

7. Type your name in the JTextField, and then click the Press Me button.
Examine your command-prompt screen.The personalized message (“Hi
there” and your name) should appear on the command prompt screen.

You might need to drag the Applet Viewer window to a new position so you
can see the output on the command line.

8. Drag the mouse to highlight the name in the text field in the Applet Viewer
window, and then type a different name. Click the Press Me button. A new
greeting appears on the command-line screen.

9. Close the Applet Viewer window.

When Swing applets contain a JTextField, there are two ways to get the applet to accept
user input.You can enter text and click a button, or you can enter text and press [Enter].
If your Swing applet needs to receive an event message from a JTextField, then you must
make your applet a registered Event listener with the JTextField.

Adding Output to a Swing Applet 301

To add the ability to press [Enter] from within the JTextField for input:

1. In the JGreet4.java text file, change the class name to JGreet5, position
the insertion point at the end of the statement
pressMe.addActionListener(this);, and then press [Enter].

2. Make the answer field accept input by typing:
answer.addActionListener(this);

3. Add the following statements to the end of the ActionPerformed method
that uses the instanceof keyword to test for an action event generated by
the JTextField named answer:

elseƒif(sourceƒinstanceofƒJTextField)
ƒƒƒƒ{
ƒƒƒƒƒƒStringƒnameƒ=ƒanswer.getText();
ƒƒƒƒƒƒSystem.out.println("Hiƒthereƒ"ƒ+ƒname);
ƒƒƒƒ}

4. Save the file as JGreet5.java, and compile the program. Edit the file
TestJGreet4.html and change the class reference to TextJGreet5.class.
Save the file as TestJGreet5.html. Run the program using the appleviewer
TestJGreet5.html command.To confirm that you can cause the message
to appear, type a name and then press [Enter].

5. Close the Applet Viewer window.

ADDING OUTPUT TO A SWING APPLET

A Swing applet that produces output on the command-line screen is not very exciting.
Naturally, you will want to make changes as various events occur. For example, rather
than using System.out.println("Hi"ƒ+ƒname); to send a greeting to the com-
mand-line screen, you might want to add a greeting to the Swing applet itself. One
approach is to create a new JLabel that gets added to the applet with the add() method
after the user enters a name.You can declare a new, empty JLabel with the statement
JLabelƒpersonalGreetingƒ=ƒnewƒLabel("");.After the name is retrieved, you
can use the setText() method to set the JLabel text for personalGreeting to "Hi
thereƒ"ƒ+ƒname.

To add a personalGreeting JLabel to the Swing applet:

1. Within the JGreet5.java text file, change the class name to JGreet6, and
then remove both System.out.println("Hi"ƒ+ƒname); statements
from the actionPerformed() method.

2. Position the insertion point at the end of the statement JTextField
answerƒ=ƒnewƒJTextField("",10); and press [Enter].To declare

9

a new JLabel named personalGreeting, type the statement:
JLabelƒpersonalGreetingƒ=ƒnewƒJLabel("");

3. Position the insertion point in the init() method after the
con.add(pressMe); statement, and then add the JLabel personalGreeting
with the statement con.add(personalGreeting);, then press [Enter].

4. Add the following statement to the actionPerformed() method after the
Stringƒnameƒ=ƒanswer.getText(); statement to set the text of the
personalGreeting. Be sure to add the statement to the body of both the if
and if…else statements.

personalGreeting.setText("Hiƒ"ƒ+ƒname);

5. Save the program as JGreet6.java, and compile the file. Edit the file
TestJGreet5.html and change the class reference to TestJGreet6.class.
Save the file as TestJGreet6.html. Run the program using the
appletviewerƒTestJGreet6.html command.Type a name in the
JTextField, and then press [Enter] or click the Press Me button.

6. Close the Applet Viewer window.

If you can add components to an applet, you should also be able to remove them; you
do so with the remove() method. For example, after a user enters a name into the
JTextField, you might not want the user to use the JTextField or its JButton again, so
you can remove them from the applet.To use the remove() method, you place the com-
ponent’s name within the parentheses. As with the add() method, you must redraw the
applet after the remove() method to display the effects.

To remove the JTextField and JButton from the Greet applet:

1. Open the JGreet6.java file, if necessary, and rename the class JGreet7.
Place the insertion point after the closing curly brace of the if…else state-
ment in the actionPerformed() method, and press [Enter].Then enter the
following statements. Note that the repaint() method causes the Swing applet
to redraw after the JButton and JTextField are removed from the screen.

remove(answer);
remove(pressMe);
repaint();

2. Save the file as JGreet7.java and compile the file. Edit the file
TestJGreet6.html and change the class reference to TestJGreet.class.
Save the file as TestJGreet7.html. Run the program using the
appletviewer TestJGreet7.html command. Enter a name, and
then either press [Enter] or click the Press Me button. Notice that the
JTextField and the JButton disappear from the screen.

3. Close the Applet Viewer window.

302 Chapter 9 Applets

Understanding the Swing Applet Life Cycle 303

UNDERSTANDING THE SWING APPLET LIFE CYCLE

Swing applets are popular because they are easy to use in a Web page. Because applets
execute in a browser, the JApplet class contains methods that are automatically called by
the browser. Earlier in this chapter you learned the names of four of these methods:
init(), start(), stop(), and destroy().

You have already written your own init() methods.When you write a method that has
the same method header as an automatically provided method, you replace or override
the original version. Every time a Web page containing a Swing applet is loaded in the
browser or when you run the appletviewer command within an HTML document
that calls a Swing applet, if you have written an init() method for the Swing applet, that
method executes; otherwise the automatically provided init() method executes. You
should write your own init() method when you have any initialization tasks to perform,
such as setting up user interface components.

When you override a method, you create your own version that Java uses,
instead of using the automatically supplied version with the same name. It is
not the same as overloading a method, which is writing several methods that
have the same name but take different arguments. You learned about over-
loading methods in Chapter 4.

The start() method executes after the init() method, and it executes again every time
the applet becomes active after it has been inactive. For example, if you run a Swing
applet using the appletviewer command, and then minimize the Applet Viewer win-
dow, the Swing applet becomes inactive.When you restore the window, the Swing applet
becomes active again. On the Internet, users can leave a Web page, visit another page,
and then return to the first site. Again, the Swing applet becomes inactive, and then
active.When you write your own start() method you must include any actions you want
your Swing applet to take when a user revisits the Swing applet. For example, you might
want to resume some animation that you suspended when the user left the applet.

When a user leaves a Web page (perhaps by minimizing a window or traveling to a dif-
ferent Web page) the stop() method is invoked.You override the existing empty stop()
method only if you want to take some action when a Swing applet is no longer visible.
You don’t usually need to write your own stop() methods.

The destroy() method is called when the user closes the browser or Applet Viewer.
Closing the browser or Applet Viewer releases any resources the Swing applet might have
allocated. As with the stop() method, you do not usually have to write your own
destroy() methods.

Advanced Java programmers override the stop() and destroy() methods when
they want to add instructions to “suspend a thread,” or stop a chain of events
that were started by a Swing applet, but which are not yet completed.Tip

Tip
9

Again, every Swing applet has the same life cycle outline, as shown in Figure 9-15.When
it executes, the init() method runs, followed by the start() method. If the user leaves the
Swing applet’s page, the stop() method executes. When the user returns, the start()
method executes.The stop() and start() sequence might continue any number of times,
until the user closes the browser (or Applet Viewer) which invokes the destroy() method.

To demonstrate the life cycle methods in action, you can write a Swing applet that over-
rides all four methods. Note the number of times each method executes.

To demonstrate the life cycle of a Swing applet:

1. Open a new text file in your text editor, and then type the following import
statements:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;

2. So the Swing applet will include a JButton that the user can click and, so
the ActionListener will be implemented, type the following header for a
JLifeCycle applet:
publicƒclassƒJLifeCycleƒextendsƒJAppletƒimplements
ƒƒActionListener

3. Press [Enter], type the opening curly brace for the class, and then press
[Enter] again to start a new line.

Init()

start()

stop()

stop()

destroy()

Figure 9-15 Swing applet life cycle

304 Chapter 9 Applets

Understanding the Swing Applet Life Cycle 305

4. Declare the following six JLabel objects that you will use to display each
name of the six methods that will execute during the lifetime of the
Swing applet:

JLabelƒmessageInitƒ=ƒnewƒJLabel("initƒ");
JLabelƒmessageStartƒ=ƒnewƒJLabel("startƒ");
JLabelƒmessageDisplayƒ=ƒnewƒJLabel("displayƒ");
JLabelƒmessageActionƒ=ƒnewƒJLabel("actionƒ");
JLabelƒmessageStopƒ=ƒnewƒJLabel("stopƒ");
JLabelƒmessageDestroyƒ=ƒnewƒJLabel("destroyƒ");

5. Declare a JButton by typing: JButtonƒpressButtonƒ=ƒnew
JButton("Press");.

6. Declare six integers that will hold the number of occurrences of each of the
six methods by typing the following code on one line:

intƒcountInit,ƒcountStart,ƒcountDisplay,ƒcountAction,
countStop,ƒcountDestroy;

7. Start the init() method by adding a container and flow layout manager with
the statements:

publicƒvoidƒinit()
{
ƒƒContainerƒconƒ=ƒgetContentPane();
ƒƒcon.setLayoutƒ(newƒFlowLayout());

8. Add the following statements, which adds one to countInit, places the com-
ponents within the applet, and then calls the display() method:

ƒƒ++countInit;
ƒƒcon.add(messageInit);
ƒƒcon.add(messageStart);
ƒƒcon.add(messageDisplay);
ƒƒcon.add(messageAction);
ƒƒcon.add(messageStop);
ƒƒcon.add(messageDestroy);
ƒƒcon.add(pressButton);
ƒƒpressButton.addActionListener(this);
ƒƒdisplay();
}

9. Add the following start() method, which adds one to countStart and calls
display():

publicƒvoidƒstart()
{
ƒƒ++countStart;
ƒƒdisplay();
}

9

10. Add the following display() method, which adds one to countDisplay, displays
the name of each of the six methods with the current count, and indicates
how many times the method has executed:

publicƒvoidƒdisplay()
{
ƒƒ++countDisplay;
ƒƒmessageInit.setText("initƒ"ƒ+ƒcountInit);
ƒƒmessageStart.setText("startƒ"ƒ+ƒcountStart);
ƒƒmessageDisplay.setText("displayƒ"ƒ+ƒcountDisplay);
ƒƒmessageAction.setText("actionƒ"ƒ+ƒcountAction);
ƒƒmessageStop.setText("stopƒ"ƒ+ƒcountStop);
ƒƒmessageDestroy.setText("destroyƒ"ƒ+ƒcountDestroy);
}

11. Add the following stop() and destroy() methods, which each add one to the
appropriate counter and call display():

publicƒvoidƒstop()
{
ƒƒ++countStop;
ƒƒdisplay();
}
publicƒvoidƒdestroy()
{
ƒƒ++countDestroy;
ƒƒdisplay();
}

12. When the user clicks pressButton, the following actionPerformed() method
will execute; it adds one to countAction and displays it. Enter the method:

publicƒvoidƒactionPerformed(ActionEventƒe)
{
ƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒif(sourceƒ==ƒpressButton)
ƒƒ{
ƒƒƒƒ++countAction;
ƒƒƒƒdisplay();
ƒƒ}
}

13. Add the closing curly brace for the class. Save the program as JLifeCycle.java
in the Chapter.09 folder on your Student Disk. If necessary, compile, correct
any errors, and compile again.

Take a moment to examine the code you created for JLifeCycle.java. Each method adds
one to one of the six counters, but you never explicitly call any of the methods except
display(); each of the other methods will be called automatically. Next you will create
an HTML document so you can test JLifeCycle.java.

306 Chapter 9 Applets

Understanding the Swing Applet Life Cycle 307

To create an HTML document to test JLifeCycle.java:

1. Open a new text file in your text editor.

2. Enter the following HTML code:

<HTML>
<APPLETƒCODE="JLifeCycle.class"ƒWIDTHƒ=ƒ460ƒHEIGHTƒ=ƒ200>
</APPLET>
</HTML>

3. Save the file as TestJLifeCycle.html in the Chapter.09 folder on your
Student Disk.

4. Run the HTML document using the command appletviewer
TestJLifeCycle.html. Figure 9-16 shows the output.When the applet
begins, the init() method is called, so one is added to countInit.The init()
method calls display(), so one is added to countDisplay. Immediately after the
init() method executes, the start() method is executed, and one is added to
countStart.The start() method calls display(), so one more is added to
countDisplay.The first time you see the applet, countInit is 1, countStart is 1,
and countDisplay is 2.The methods actionPerformed(), stop(), and destroy()
have not yet been executed.

5. Click the Minimize button to minimize the Applet Viewer window, and then
click the Taskbar button to restore it.The applet now looks like Figure 9-17.
The init() method still has been called only once, but when you minimized
the applet, the stop() method executed, and when you restored it, the start()
method executed.Therefore, countStop is now 1 and countStart has increased
to 2. Additionally, because start() and stop() call display(),countDisplay() is
increased by two and now holds the value 4.

Figure 9-16 JLifeCycle Swing applet after start-up

9

6. Minimize and maximize the Applet Viewer window again. Now the stop()
method has executed twice, the start() method has executed three times,
and the display() method has executed a total of six times, as shown in
Figure 9-18.

7. Click the Press button.The count for the actionPerformed() method is now
1, and actionPerformed() calls display(), so countDisplay() is now 7, as shown
in Figure 9-19.

8. Continue to minimize, maximize, and click the Press button. Note the
changes that occur with each activity until you can correctly predict the out-
come. Notice that the destroy() method is not executed until you close the
applet, and then it is too late to observe an increase in countDestroy.

Figure 9-18 JLifeCycle Swing applet after being minimized and restored twice

Figure 9-17 JLifeCycle Swing applet after being minimized and restored

308 Chapter 9 Applets

Creating a More-Sophisticated Interactive Swing Applet 309

CREATING A MORE-SOPHISTICATED INTERACTIVE SWING APPLET

You are now able to create a fairly complex application or applet. Next you will create an
applet that contains several components, receives user input, makes decisions, uses arrays,
performs output, and reacts to the applet life cycle.

The JPartyPlanner Swing applet lets its user estimate the cost of an event hosted by Event
Handlers Incorporated. Event Handlers uses a sliding fee scale so the per-guest cost
decreases as the total number of invited guests increases.Table 9-1 shows the fee structure.

The Swing applet lets the user enter a number of anticipated guests.The user can press
[Enter] or click a JButton to perform the fee lookup and event cost calculation. Then
the Swing applet displays the cost per person as well as the total cost for the event.The
user can continue to request fees for a different number of guests and view the results
for any length of time before making another request or leaving the page.When the user
leaves the page, however, you will erase the last number of requested guests and ensure
that the next user starts fresh with zero guests.

Number of Guests Cost per Guest

1 to 24 $27

25 to 49 $25

50 to 99 $22

100 to 199 $19

200 to 499 $17

500 to 999 $14

1000 and over $11

Table 9-1 Cost per guest for events

Figure 9-19 JLifeCycle Swing applet after clicking the Press button

9

To begin creating an interactive party planner Swing applet:

1. Open a new text file in your text editor.

2. Type the following import statements, the JPartyPlanner class header, and the
opening curly brace for the class:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJPartyPlannerƒextendsƒJAppletƒimplements
ƒƒActionListener
{

3. You will need several components: a JLabel for the company name, a JButton
the user can click to perform a calculation, and two more JLabels to display
output. Add the following code to implement these components:

JLabelƒcompanyNameƒ=ƒnewƒ
ƒƒJLabel("EventƒHandlersƒIncorporated");
JButtonƒcalcButtonƒ=ƒnewƒJButton("Calculate");
JLabelƒperPersonResultƒ=ƒnewƒJLabel("Planƒwithƒus.");
JLabelƒtotalResultƒ=ƒnewƒJLabel("Theƒmoreƒtheƒmerrier");

4. To enhance the appearance, create a Font object by typing the following:

FontƒbigFontƒ=ƒnewƒFont("Helvetica",ƒFont.ITALIC,ƒ24);

5. Use the init() method to place components within the applet screen, and
then prepare the JButton to receive action messages by typing the following:

publicƒvoidƒinit()
{
Containerƒconƒ=ƒgetContentPane();
con.setLayout(newƒFlowLayout());
companyName.setFont(bigFont);
con.add(companyName);
con.add(calcButton);
calcButton.addActionListener(this);
con.add(perPersonResult);
con.add(totalResult);
}

6. Add the following start() method, which executes when the user leaves the
Swing applet and resets the JLabel and the data-entry JTextField:

publicƒvoidƒstart()
{
ƒƒperPersonResult.setText("Planƒwithƒus.");
ƒƒtotalResult.setText("Theƒmoreƒtheƒmerrier");
ƒƒrepaint();
}

7. Save the partially completed Swing applet as JPartyPlanner.java in the
Chapter.09 folder on your Student Disk.

310 Chapter 9 Applets

Creating a More-Sophisticated Interactive Swing Applet 311

You finished the init() and start() methods for the JPartyPlanner Swing applet, placed
each component in the Swing applet, and reinitialized each component every time a
user returns to the Swing applet after leaving.The Swing applet doesn’t actually do any-
thing yet; most of the applet’s work will be contained in the actionPerformed() method,
the most complicated method in this applet.

Next you will create the actionPerformed() method.You begin by declaring two paral-
lel arrays—one array will hold guest limits for each of six event rates, and the other array
will hold the actual rates.

To complete the JPartyPlanner Swing applet:

1. Use a dialog box to receive user input for the number of guests. Enter the
following method header for actionPerformed() and declare two arrays for
guest limits and rates:

publicƒvoidƒactionPerformed(ActionEventƒe)
{
Objectƒsourceƒ=ƒe.getSource();
ƒƒif(sourceƒ==ƒcalcButton)
ƒƒ{
ƒƒƒƒStringƒresponseƒ=ƒJOptionPane.showInputDialog(null,
ƒƒƒƒƒƒ"Enterƒtheƒnumberƒofƒguests");
ƒƒƒƒint[]ƒguestLimitƒ=ƒƒƒ{0,ƒ25,ƒ50,ƒ100,ƒ200,ƒ500,ƒ1000};
ƒƒƒƒint[]ƒratePerGuestƒ=ƒ{27,ƒ25,ƒ22,ƒ19,ƒ17,ƒ14,ƒ11};

2. Next add the following variable to hold the number of guests.The user will
receive input from a dialog box, but you need an integer to perform calcula-
tions so you can use the parseInt() method.

intƒguestsƒ=ƒInteger.parseInt(response);

You learned about the parseInt() method in Chapter 6.

3. You need two variables—one will hold the individual, per-person fee for an
event, and the other will hold the fee for the entire event. Enter the follow-
ing variables:

intƒindividualFeeƒ=ƒ0,ƒeventFeeƒ=ƒ0;

4. Enter the following variables to use as subscripts for the arrays:

intƒx =ƒ0,ƒaƒ=ƒ0;

There are several ways to search through the guestLimit array to discover the
appropriate position of the per person fee in the ratePerGuest array. One
possibility is to use a for loop and decrement from six down to zero. If the
number of guests is greater than or equal to any value in the guestLimit

Tip

9

array, then the corresponding per person rate in the ratePerGuest array is the
correct rate. After finding the correct individual rate, you determine the
price for the entire event by multiplying the individual rate by the number
of guests. After finding the appropriate individual fee for a given event, you
no longer want to search through the guestLimit array, so you set the sub-
script x equal to zero to force an early exit from the for loop.

5. Enter the following for loop:

for(xƒ=ƒ6;ƒxƒ>=ƒ0;ƒ--x)
ƒƒif(guestsƒ>=ƒguestLimit[x])
ƒƒƒƒ{
ƒƒƒƒƒƒindividualFeeƒ=ƒratePerGuest[x];
ƒƒƒƒƒƒeventFeeƒ=ƒguestsƒ*ƒindividualFee;
ƒƒƒƒƒƒxƒ=ƒ0;
ƒƒƒƒ}

6. The only tasks that still must be included in the actionPerformed() method
involve producing output for the user. Enter the following code to accom-
plish this processing:

perPersonResult.setText("$"ƒ+ƒindividualFeeƒ+ƒ"ƒper
ƒƒperson");
totalResult.setText("Eventƒcostƒ$"ƒ+ƒeventFee);

7. Add three closing curly braces—two for the actionPerformed() method, and
one for the entire JPartyPlanner Swing applet.

8. Save the file, and then compile it at the command prompt.

9. Open a new text file in your text editor, and then create the following
HTML document to test the applet:

<HTML>
<APPLETƒCODE="JPartyPlanner.class"
ƒƒWIDTHƒ=ƒ320ƒHEIGHTƒ=ƒ200>
</APPLET>
</HTML>

10. Save the HTML document as TestJPartyPlan.html in the Chapter.09 folder
on your Student Disk.Then use the appletviewer command to execute
the file.Test the applet with different numbers of guests until you are sure
that the per person rates and event rates are correct. Minimize and restore the
Applet Viewer window and observe that any calculated fees are replaced with
start() messages. For example, if you enter 100 guests, then your output
should resemble Figure 9-20.

11. Close the Applet Viewer window.

312 Chapter 9 Applets

Using the setLocation() and setEnabled() Methods 313

USING THE SETLOCATION() AND SETENABLED() METHODS

A serious shortcoming of the objects you have written so far is that you cannot choose
the location of the JLabel and JButton objects you place within your Swing applets.
When you use the add() method to add a component to an applet, it seems to have a
mind of its own as to where it is physically placed.Although you must learn more about
the Java programming language before you can change the initial placement of compo-
nents when you use the add() method, you can use the setLocation() method to change
the location of a component at a later time.The setLocation() method allows you to
place a component at a specific location within the Applet Viewer window.

Any applet window consists of a number of horizontal and vertical pixels on the
screen.You set the pixel values in the HTML document you write to test the Swing
applet. Any component you place on the screen has a horizontal, or x-axis, position
as well as a vertical, or y-axis, position in the window. The upper-left corner of any
display is position 0,0. The first, or x-coordinate, value increases as you travel from
left to right across the window. The second, or y-coordinate, value increases as you
travel from top to bottom.

For example, to position a Label object named someLabel at the upper-left corner of a
window, you write someLabel.setLocation(0,0);. If a window is 200 pixels wide
and 100 pixels tall, then you can place a Button named pressMe in the approximate
center of the window with the statement pressMe.setLocation(100,50);.
Figure 9-21 illustrates the screen coordinate positions.

You can picture a coordinate as an infinitely thin line that lies between the
pixels of the output device.

Tip

Figure 9-20 Output of JPartyPlanner Swing applet

9

When you use setLocation(), the upper-left corner of the component is placed
at the specified x- and y-coordinates. If a window is 100 by 100 pixels, then
aButton.setLocation(100,100); places the JButton outside the
window, where you cannot see the component.

Next you will create a JLabel that changes its location with each JButton click.

To create a moving JLabel:

1. Open a new text file in your text editor, and then type the following import
statements:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;

2. Type the following class header and opening curly brace for a class named
JMoveLabel.You must implement ActionListener because the Swing applet
requires that the user click a JButton as the action event.

publicƒclassƒJMoveLabel
ƒƒextendsƒJAppletƒimplementsƒActionListener

3. Declare the following JLabel, JButton, and two integers that will hold the
horizontal and vertical coordinates of the JLabel:

JLabelƒmovingMsgƒ=ƒnewƒJLabel("EventƒHandlersƒInc.");
JButtonƒpressButtonƒ=ƒnewƒJButton("Press");
intƒxLocƒ=ƒ20,ƒyLocƒ=20;

Tip

Y

X

10, 10

10, 100

100, 10

100, 100

Figure 9-21 Screen coordinate positions

314 Chapter 9 Applets

Using the setLocation() and setEnabled() Methods 315

4. Enter the following init() method to add the components to the Swing applet
screen and prepare the JButton to receive messages:

publicƒvoidƒinit()
{
ƒƒContainerƒconƒ=ƒgetContentPane();
ƒƒcon.setLayout(newƒFlowLayout());
ƒƒcon.add(movingMsg);
ƒƒcon.add(pressButton);
ƒƒpressButton.addActionListener(this);
}

5. Enter the following actionPerformed method() to move the message 10 pixels
to the right and 10 pixels down each time the user clicks the JButton:

publicƒvoidƒactionPerformed(ActionEventƒe)
{
ƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒif(sourceƒ==ƒpressButton)
ƒƒƒƒƒmovingMsg.setLocation(xLoc+=10,ƒyLoc+=10);
}

6. Add the closing curly brace to the class.

7. Save the file as JMoveLabel.java in the Chapter.09 folder on your Student
Disk, and then compile it.

8. Open a new file in your text editor, and then create the following HTML
document to test the Swing applet:

<HTML>
<APPLETƒCODE="JMoveLabel.class"ƒWIDTHƒ=ƒ460ƒHEIGHTƒ=ƒ300>
</APPLET>
</HTML>

9. Save the HTML document as Test JMoveLabel.html in the Chapter.09
folder on your Student Disk.Then run the file using the appletviewer
TestJMoveLabel.html command. Click the pressButton and observe
how the JLabel moves each time you click it. If you click enough times, the
JLabel moves off the screen.

10. Close the Applet Viewer window.

The setEnabled() Method
You probably have used computer programs in which a component becomes disabled
or unusable. For example, a JButton might become dim and unresponsive when the pro-
grammer no longer wants you to have access to the JButton’s functionality.You can use
the setEnabled() method with a component to make it unavailable and, in turn, to
make it available again.The setEnabled() method takes an argument of true if you want
to enable a component, or false if you want to disable a component.

9

When you create a component, it is enabled by default.

For example, in the JMoveLabel applet, a user can continue to click the JButton until the
JLabel moves completely off the screen. If you want to prevent this from happening, you can
disable the JButton after the JLabel has advanced as far as you want it to go. Next you will
stop the JLabel from moving after it reaches a y-coordinate of 280.

To disable the JButton:

1. Open the JMoveLabel.java file in your text editor and change the class
name to JMoveLabel2.

2. Position the insertion point at the end of the if statement in the
actionPerformed() method, and then press [Enter] to start a new line of text.
Add the following statement to disable the JButton when the message has
moved to a y-coordinate of 280:

if(yLoc==280)
ƒƒpressButton.setEnabled(false);

3. Save the file as JMoveLabel2.java and compile. Change the Test
JMoveLabel.html document created earlier to Test JMoveLabel2.html,
change the class internally to JMoveLabel2.class, and then type the
appletviewerƒTestJMoveLabel2.html command to run the applet.
Click pressButton until the JButton is disabled and the JLabel cannot
descend any farther.

4. Close the Applet Viewer window.

CHAPTER SUMMARY
❒ Swing applets are programs that are called from within another application.You run

them within a Web page, or within another program called Applet Viewer, which
comes with the Java Developer’s Kit. An applet must be called from within an
HTML (Hypertext Markup Language) document.

❒ A component is not added directly to a Swing applet. Instead, you use the add()
method to add a component to a container.

❒ Every Swing applet includes four methods: publicƒvoidƒinit(), public
voidƒstart(), publicƒvoidƒstop(), and publicƒvoidƒdestroy().

❒ A JTextField is a component into which a user can type a single line of text data.
Typically, a user types a line into a JTextField and then inputs the data by pressing
[Enter] on the keyboard or clicking a JButton with the mouse.The setText()
method allows you to change the text in a previously created TextField.The
getText() method allows you to retrieve the String of text in a TextField.

Tip

316 Chapter 9 Applets

Review Questions 317

❒ You can create a JButton with or without a label.You can change a JButton’s label
with the setLabel() method, or get the JLabel and assign it to a String object with
the getLabel() method.

❒ JLabel is a built-in class that holds text that can be displayed within a Swing applet.
The setText() method assigns text to a JLabel or any other component.

❒ An event occurs when a Swing applet’s user takes action on a component, such as
using the mouse to click a JButton object. In event-driven programs, the user
might initiate any number of events in any order.Within an event-driven program,
a component on which an event is generated is the source of the event. An object
that is interested in an event is a listener.

❒ To respond to user events within any Swing applet you create, you must prepare
your applet to accept event messages, tell your applet to expect events to happen,
and then tell your applet how to respond to any events that happen. Adding
implementsƒActionListener to an applet’s class header prepares a Swing
applet to receive event messages.

❒ An ActionEvent is the type of event that occurs when a user clicks a JButton.You
tell an applet to expect ActionEvents with the addActionListener() method.The
ActionListener interface contains the actionPerformed(ActionEvent e) method
specification. In the body of the method, you write any statements that you want to
execute when an action takes place.

❒ Every event-handling method is sent an event of some kind.The object’s
getSource() method can be used to determine the component that sent the event.

❒ When you use the add() method to add a component to an applet, you do not
specify the physical location of the component in the Applet Viewer window.The
setLocation() method allows you to place a component at a specific location within
an Applet Viewer window.When you include x- and y-coordinates within the
setLocation() method, the upper-left corner of the component is placed at the
specified location.

❒ You can use the setEnabled() method with a component to make it unavailable
and, in turn, to make it available again.The setEnabled() method takes an argument
of true if you want to enable a component, or false if you want to disable a
component.

REVIEW QUESTIONS
1. A major difference between AWT and Swing applets is .

a. the AWT applet uses a content pane

b. they are executed using different Java commands

c. they are executed from within different HTML documents

d. the Swing applet imports from the .javax.swing package

9

2. A program that allows you to display HTML documents on your computer screen
is a .

a. search engine

b. compiler

c. browser

d. server

3. The name of any Swing applet called using CODE within an HTML document
must use the extension.

a. .exe

b. .code

c. .java

d. .class

4. The is a String representing a font.

a. point size

b. style

c. leading

d. typeface

5. A JTextField is a Swing component .

a. into which a user can type a single line of text data

b. into which a user can type multiple lines of text data

c. that automatically has focus when the applet runs

d. whose text cannot be changed

6. The Swing add() method .

a. adds two integers

b. adds a component directly to the Swing applet

c. places a component within a container

d. places a text value within an applet component

7. The start() method called in any Swing applet is called .

a. at start-up

b. when the user closes the browser

c. when a user revisits an applet

d. when a user leaves a Web page

318 Chapter 9 Applets

Review Questions 319

8. A Font object contains all of the following arguments except .

a. language

b. typeface

c. style

d. point size

9. To respond to user events within a Swing applet, you must .

a. prepare the applet to accept event messages

b. import the java.applet.* package

c. tell your applet how to respond to any events that happen

d. accomplish both a and c

10. The constructor publicƒJButton("4") creates .

a. an unlabeled JButton

b. a JButton four pixels wide

c. a JButton four characters wide

d. a JButton with a “4” on it

11. An event occurs when a .

a. component requests focus

b. component is enabled

c. component sets text

d. button is clicked

12. ActionListener is an example of a(n) .

a. import

b. applet

c. interface

d. component

13. When a Swing applet is registered as a listener with a JButton, if a user clicks the
JButton, the method that executes is .

a. buttonPressed()

b. addActionListener()

c. start()

d. actionPerformed()

9

14. When you write a method that has the same method header as an automatically
provided method, you the original version.

a. destroy

b. override

c. call

d. copy

15. Which of the following statements creates a JLabel that says “Welcome”?

a. JLabelƒ=ƒnewƒJLabel("Welcome");

b. JLabelƒaLabelƒ=ƒJLabel("Welcome");

c. aLabelƒ=ƒnewƒJLabel("Welcome");

d. JLabelƒaLabelƒ=ƒnewƒJLabel("Welcome");

16. Which of the following statements correctly creates a Font object?

a. FontƒaFontƒ=ƒnewƒFont("TimesRoman",ƒFont.ITALIC,ƒ20);

b. FontƒaFontƒ=ƒnewƒFont(30,ƒ"Helvetica",ƒFont.ITALIC);

c. FontƒaFontƒ=ƒnewƒFont(Font.BOLD,"Helvetica",ƒ24);

d. FontƒaFontƒ=ƒnewƒFont(22,ƒFont.BOLD,"TimesRoman");

17. The method that positions a component within an applet is .

a. position()

b. setPosition()

c. location()

d. setLocation()

18. In a window that is 200 x 200 pixels, position 10, 190 is nearest to the
corner.

a. upper-left

b. upper-right

c. lower-left

d. lower-right

19. An object’s method can be used to determine the component
that sends an event.

a. getSource()

b. instanceof()

c. both of the above

d. none of the above

320 Chapter 9 Applets

Exercises 321

20. Which of the following statements disables a component named
someComponent?

a. someComponent.setDisabled();

b. someComponent.setDisabled(true);

c. someComponent.setEnabled(false);

d. someComponent.setEnabled(true);

EXERCISES
1. Create a Swing applet with a JButton labeled “Who’s number one?”.When the

user clicks the button, display your favorite team in a large font. Save the program
in the Chapter.09 folder on your Student Disk as JNumberOne.java.

2. a. Create a Swing applet that asks a user to enter a password into a JTextField and
to then press [Enter]. Compare the password to “Rosebud”; if it matches, dis-
play “Access Granted”; if not, display “Access Denied”. Save the program in the
Chapter.09 folder on your Student Disk as JPasswordA.java.

b. Modify the password applet in Exercise 2a to ignore differences in case
between the typed password and “Rosebud”. Save the program in the
Chapter.09 folder on your Student Disk as JPasswordB.java.

c. Modify the password applet in Exercise 2b to compare the password to a list of
five valid passwords: “Rosebud”, “Redrum”,“Jason”, “Surrender”, or
“Dorothy”. Save the program in the Chapter.09 folder on your Student Disk as
JPasswordC.java.

3. Create a Swing applet with a JButton.When the user clicks the JButton, change
the font typeface and style. Save the program in the Chapter.09 folder on your
Student Disk as JChangeFont.java.

4. Create a Swing applet that displays the date and time in a JTextField with the
JLabel “Today is” when the user clicks a JButton. Save the program in the
Chapter.09 folder on your Student Disk as JDayOfYear.java.

5. Create a Swing applet that displays an employee’s title in a JTextField when the
user types the employee’s first and last names (separated by a space) in another
JTextField. Include JLabels for each JTextField.You can use arrays to store the
employees’ names and titles. Save the program in the Chapter.09 folder on your
Student Disk as JEmployeeTitle.java.

6. Create a Swing applet that displays an employee’s title in a TextField when the
user types an employee’s first and last names (separated by a space) in another
JTextField, or displays an employee’s name in a JTextField when the user types the
employee’s title in a JTextField. Include a JLabel for each JTextField. Add a JLabel
at the top of the applet with the text “Enter a name or a title”.You can use arrays
to store the employees’ names and titles. Save the program in the Chapter.09
folder on your Student Disk as JEmployeeTitle2.java.

9

7. Create a Swing applet that uses a dialog box to enter an integer.When the user
clicks a JButton, the user is prompted to enter an integer.When the user clicks
the OK button, the integer is doubled and the answer is displayed. Save the pro-
gram in the Chapter.09 folder on your Student Disk as JDialogDouble.java.

8. Create a Swing applet that allows the user to enter two integers into two sepa-
rate dialog boxes.When the user clicks a JButton, the sum of the integers is dis-
played. Save the program in the Chapter.09 folder on your Student Disk as
JDialogAdd.java.

9. a. Create an applet named DivideTwo that allows the user to enter two integers
in two separate JTextFields.The user can click a JButton to divide the first
integer by the second integer and display the result.

b. Modify the DivideTwo applet created in Exercise 9a so that if a user enters zero
for the second integer, when the user clicks the JButton to divide, the Swing
applet displays the message “Division by zero not allowed!” Save the final pro-
gram in the Chapter.09 folder on your Student Disk as JDivideMe.java.

10. a. Create a payroll Swing applet named CalcPay that allows the user to enter
two double values—hours worked, and an hourly rate.When the user clicks a
JButton, gross pay is calculated. Save the program in the Chapter.09 folder on
your Student Disk as JCalculatePay.java.

b. Modify the payroll Swing applet created in Exercise 10a so that federal with-
holding tax is subtracted from gross pay based on the following table:

Save the program in the Chapter.09 folder on your Student Disk as
JCalculatePay2.java.

11. Create a conversion Swing applet that prompts the user to enter a distance in
miles in a dialog box, then converts miles to kilometers and displays the result in a
JTextField as “XX.XX kilometers”, where XX.XX is the number of kilometers.
You can use the formula miles *1.6 to convert miles to kilometers. Save the pro-
gram in the Chapter.09 folder on your Student Disk as JConversion.java.

12. Create a Swing applet that calculates the current balance in a checking account in
a JTextField.The user enters the beginning balance, check amount, and deposit
amount in separate JTextFields with the appropriate JLabels. After the applet cal-
culates the current balance, reposition the JTextFields and JLabels so that the
beginning balance appears on the first line, the check and deposit amounts appear
on the second line, and the new balance appears on the third line. Save the pro-
gram in the Chapter.09 folder on your Student Disk as JCalculateBalance.java.

Income$ Withholding%

0 to 99.99 10

100.00 to 299.99 15

300.00 to 599.99 21

600.00 and up 28

322 Chapter 9 Applets

Case Project 323

13. Create a Swing applet that displays two of your family members’ names, rela-
tionships to yourself, and ages, in JTextFields when you click a JButton. Each
JTextField should have a JLabel. After clicking the JButton, reposition the
JTextFields and JLabels so that your family members’ names appear on the sec-
ond line, and the family members’ relationships to you and ages appear on the
third line. Save the program in the Chapter.09 folder on your Student Disk as
JFamilyRecord.java.

14. Each of the following files in the Chapter.09 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugNine1.java will become FixDebugNine1.java.You
can test each applet with the TestDebugNine1.html throughTestDebugNine4.html
files on your Student Disk.

a. DebugNine1.java

b. DebugNine2.java

c. DebugNine3.java

d. DebugNine4.java

CASE PROJECT
Ray’s Appliance Store sells a wide variety of kitchen appliances. Customers often ask
for an estimate of the annual cost of running an appliance. Ray typically scribbles his
calculations with a pencil on a notepad when he can find one. He has asked you to
write a Swing applet that will do the calculations on his computer. Ray wants to be
prompted to enter the cost per kilowatt hour of electricity and the estimated number
of hours the appliance will run annually. After the figures are entered, the applet
should display the estimated annual cost.

Case
Project

9

325

CHAPTER

10
GRAPHICS
In this chapter, you will:

� Learn about the paint() and repaint() methods
� Use the drawString() method to draw Strings
� Use the setFont() and setColor() Graphics object methods
� Create Graphics and Graphics 2D objects
� Draw lines, rectangles, ovals, arcs, and polygons
� Copy an area
� Learn more about fonts and their methods
� Draw with Java 2D graphics
� Add sound, images, and simple animations to Swing applets

What are you smiling about?” your mentor, Lynn Greenbrier, asks as she
walks by your desk at Event Handlers Incorporated.

“I liked Java programming from the start,” you say,“but now that I’m creat-
ing applets, I’m really having fun.”

“If you like what you’ve done with applets so far,” Lynn smiles, “just wait
until you add colors, shapes, images, and sound. Let me show you how to
use graphics and multimedia to add some sizzle.”

PREVIEWING THE JGREGORIANTIME SWING APPLET

The Chap10JGregorianTime Swing applet works as an interactive advertisement for
Event Handlers Incorporated and demonstrates several graphics methods.You can now
use a completed version of the Swing applet that is saved in the Chapter.10 folder on
your Student Disk.

To run the Chap10JGregorianTime Swing applet:

1. Go to the command prompt for the Chapter.10 folder on your Student Disk,
type appletviewerƒTestChap10JGregorianTime.html, and then press
[Enter]. It might take a few minutes for the Applet Viewer window shown in
Figure 10-1 to open.

2. Use the Swing applet by clicking the PressMe button to see the time display
change. Click the PressMe button as many times as you like.

3. Click the Close button to close the Applet Viewer window.

LEARNING ABOUT THE PAINT() AND REPAINT() METHODS

In Chapter 9, you learned that every Swing applet uses four methods: init(), start(), stop(),
and destroy(). If you don’t write these methods, Java provides you with a “do nothing”
copy.You can, however, override any of these automatically supplied methods by writ-
ing your own versions.

Actually, a fifth method is used within every Swing applet.The paint() method runs
when Java displays your Swing applet.You can write your own paint() method to over-
ride the automatically supplied one whenever you want to paint graphics, such as
shapes, on the screen. As with init(), start(), stop(), and destroy() methods, if you don’t

Figure 10-1 Chap10JGregorianTime Swing applet

326 Chapter 10 Graphics

Learning About the Paint() and Repaint() Methods 327

write a paint() method, you get an automatic version from Java. The paint() method
executes automatically every time you minimize, maximize, or resize the Applet
Viewer window.

The paint() method header is publicƒvoidƒpaintƒ(Graphics g).The header indi-
cates that the method requires a Graphics object argument; here it is named g but you
can use any legal identifier. However, you don’t usually call the paint() method directly.
Instead, you call the repaint() method, which you can use when a window needs to be
updated, such as when it contains new images.The Java system calls the repaint() method
when it needs to update a window, or you can call it yourself—in either case, repaint()
creates a Graphics object for you. The repaint() method calls another method named
update(), which calls the paint() method. The series of events is best described with an
example that you will create in the following steps.

To demonstrate how repaint() and paint() operate:

1. Open a new text file in your text editor.

2. Type the following first few lines of a Swing applet named JDemoPaint:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJDemoPaintƒextendsƒJApplet
ƒimplementsƒActionListener
{

3. The only component in this Swing applet is a JButton that you can create by
typing the following code on the next line: JButtonƒpressButtonƒ=
newƒJButton("Press");.

4. Type the following init() method, which initializes a Container named con,
sets the con layout to FlowLayout, and adds the pressButton to con:

publicƒvoidƒinit()
{
ƒContainerƒconƒ=ƒgetContentPane();
ƒcon.setLayout(newƒFlowLayout()ƒ);
ƒcon.add(pressButton);
ƒpressButton.addActionListener(this);
}

5. Override the paint() method by typing the following code, so it prints a mes-
sage to the screen every time it executes:

publicƒvoidƒpaint(Graphicsƒg)
{
ƒƒSystem.out.println("inƒpaintƒmethod");
ƒƒpressButton.repaint();
}

10

6. Call the repaint() method when the user clicks the JButton by typing the
following:

publicƒvoidƒactionPerformed(ActionEventƒe)
{
ƒObjectƒsourceƒ=ƒe.getSource();
ƒifƒ(sourceƒ==ƒpressButton)
ƒ{
ƒƒƒrepaint();
ƒ}
}

7. Add the closing curly brace for the class, and then save the file as
JDemoPaint.java in the Chapter.10 folder on your Student Disk. Compile
the Swing applet using the javacƒJDemoPaint.java command.

8. Open a new text file, and then create the following HTML document to
host the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JDemoPaint.class"ƒ
ƒƒWIDTHƒ=ƒ100ƒHEIGHTƒ= 100>
</APPLET>
</HTML>

9. Save the file as TestJDemoPaint.html in the Chapter.10 folder on your
Student Disk, and then type appletviewerƒTestJDemoPaint.html at the
command prompt to run the Swing applet using the file. Make sure you can
view the command line and the Swing applet on your screen.When the Swing
applet starts, the paint() method executes automatically, so the message “in paint
method” appears on the command line. Click the pressButton in the Swing
applet.The actionPerformed() method calls the repaint() method, the repaint()
method calls the update() method, which then calls the paint() method, so a
second message appears on the command line. Minimize the Applet Viewer
window and then restore it. Resize the window by dragging its border.With
each action, an “in paint method” message appears on the command line,
demonstrating all the conditions under which the paint() method executes.

10. Close the Applet Viewer window.

The repaint() method only requests that Java repaint the screen. If a second
request to repaint() occurs before Java can carry out the first request, then
Java executes only the last repaint() method.

USING THE DRAWSTRING() METHOD TO DRAW STRINGS

The drawString() method allows you to draw a String in a Swing applet window.The
drawString() method requires three arguments: a String, an x-axis coordinate, and a y-axis
coordinate.

Tip

328 Chapter 10 Graphics

Using the drawString() Method to Draw Strings 329

You are already familiar with x- and y-axis coordinates because you used them with
the setLocation() method for components in Chapter 9. However, there is a minor
difference in how you place components using the setLocation() method and how
you place Strings using the drawString() method.When you use x- and y-coordinates
with components, such as JLabels, the upper-left corner of the component is placed
at the coordinate position.When you use x- and y-coordinates with drawString(), the
lower-left corner of the String appears at the coordinates. Figure 10-2 shows the posi-
tions of a JLabel placed at the coordinates 30, 10 and a String placed at the coordi-
nates 10, 30.

The drawString() method is a member of the Graphics class, so you need to use a Graphics
object to call it. Recall that the paint() method header shows that the method receives a
Graphics object from the update() method. If you use drawString() within paint(), then
the Graphics object you name in the header is available to you. For example, if you write
a paint() method with the header publicƒvoidƒpaint(Graphics brush), then you
can draw a String within your paint() method by using a statement such as
brush.drawString("Hi",50,80);.

To use drawString() to place a String within a Swing applet:

1. Open a new text file, and begin a class definition for a JDemoGraphics class
by typing the following:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJDemoGraphicsƒextendsƒJApplet
{

2. Declare a String to hold the company name for Event Handlers Incorporated
by typing StringƒcompanyNameƒ=ƒnewƒString("EventƒHandlers
Incorporated");.

Figure 10-2 JLabel and String coordinates

0
x

10 20 30 40 50 60
0

10

20

30

40

50

This String is at 10, 30

This Label is at 30,10

y

10

3. Type the following paint() method that uses a Graphics object to draw the
companyName String:

ƒpublicƒvoidƒpaint(Graphicsƒgr)
ƒ{
ƒgr.drawString(companyName,10,100);
ƒ}
}

4. Save the file as JDemoGraphics.java in the Chapter.10 folder on your
Student Disk, and then compile at the command prompt using the javac
command.

5. Open a new text file, and then create the following HTML document for the
JDemoGraphics1 class:

<HTML>
<APPLETƒCODEƒ=ƒ
ƒ"JDemoGraphics.class"ƒWIDTHƒ=ƒ420ƒHEIGHTƒ=ƒ300>
</APPLET>
</HTML>

6. Save the file as TestJDemoGraphics.html in the Chapter.10 folder on your
Student Disk, and then use the appletviewer TestJDemoGraphics.html
command to run the program.The program’s output appears in Figure 10-3.

7. Close the Applet Viewer window.

Figure 10-3 Swing applet using the drawString() method

330 Chapter 10 Graphics

Using the setFont() and setColor() Graphics Object Methods 331

USING THE SETFONT() AND SETCOLOR() GRAPHICS OBJECT METHODS

You can improve the appearance of Graphics objects by using the setFont() and setColor()
Graphics object methods.The setFont() method requires a Font object, which, as you recall,
you create with a statement such as FontƒsomeFontƒ=ƒnewƒFont("TimesRoman",
Font.BOLD,ƒ16);.Then you can instruct a Graphics object to use the font by using the
font as the argument in a setFont() method. For example, if a Graphics object is named
brush, then the font is set to someFont with brush.setFont(someFont);.

You learned about the Font object when you changed a JLabel’s font in
Chapter 9.

You can designate a Graphics color with the setColor() method.The Color class contains
13 constants that appear in Table 10-1.You can use any of these constants as an argument
to the setColor() method. For example, you can instruct a Graphics object named brush
to apply green paint by using the statement brush.setColor(Color.green);. Until
you change the color, subsequent graphics output will appear as green.

Java constants are usually written in all uppercase letters, as you learned in
Chapter 4. However, even though the color names of the Color class are con-
stants, Java’s creators failed to make them uppercase.

Next you will use your knowledge of fonts and colors to set the color and font style of
a Swing applet.

To add a Font and color to your JDemoGraphics class:

1. Open the JDemoGraphics.java text file in your text editor and rename the
class JDemoGraphics2.

2. Just after the companyName declaration, add a Font object by typing:

FontƒbigFontƒ=ƒnewƒFont("Helvetica",ƒFont.ITALIC,ƒ24);

black green red

blue lightGray white

cyan magenta yellow

darkGray orange

gray pink

Table 10-1 Color class constants

Tip

Tip

10

3. For the first two statements in the paint() method after the opening curly
brace, type the following statements so the gr object uses the bigFont object
and the color magenta:

gr.setFont(bigFont);
gr.setColor(Color.magenta);

4. Following the existing drawString() method call, type the following lines to
change the color and add an additional call to the drawString() method:

gr.setColor(Color.orange);
gr.drawString(companyName,40,140);

5. Save the file as JDemoGraphics2.java in the Chapter.10 folder on your
Student Disk, and compile at the command prompt using the javac com-
mand. Modify the TestJDemoGraphics.html document for use with the
JDemoGraphics2, and then save as TestJDemoGraphics2.html. Use the
appletviewerƒTestJDemoGraphics2.html command to run the pro-
gram.The program’s output appears in Figure 10-4. Although the figure is
shown in black and white in this book, notice that the Strings on your screen
print as magenta and orange text.

The fonts that appear in your Swing applet might be different, depending on
your computer’s installed fonts. You will learn about installed fonts later in this
chapter.

6. Close the Applet Viewer window.

Figure 10-4 JDemoGraphics2 Swing applet using font and color

Help
?

332 Chapter 10 Graphics

Using the setFont() and setColor() Graphics Object Methods 333

You can also create your own Color object with the statement Color someColor = new
Color(r, g, b);, where r, g, and b are numbers representing the intensity of red, green,
and blue you want in your color.The numbers can range from 0 to 255, with 0 being the
darkest shade of the color and 255 being the lightest. For example, color darkPurple =
new Color(100, 0, 100); produces a dark purple color that has red and blue compo-
nents, but no green.You can create more than 16 million custom colors using this approach.

Some computers cannot display each of the 16 million possible colors. Each
computer will display the closest color it can.

You can discover the red, green, or blue components of any existing color with the
methods getRed(), getGreen(), and getBlue(). Each of these methods returns an integer.
For example, you can discover the amount of red in a magenta color by printing the
value of Color.magenta.getRed();.

Next you will use the methods for getting and setting colors to display several hundred
colors in a Swing applet.

To create a demonstration program that displays several hundred colors:

1. Open a new text file in your text editor.

2. Type the following import statements, a class header for a JDemoColor pro-
gram, and the opening curly brace:

importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒJDemoColorƒextendsƒJAppletƒ
{

3. Define a small font by typing:

FontƒlittleFontƒ=ƒnewƒFont("Helvetica",ƒFont.ITALIC,ƒ6);

4. Add the following paint() method with five integer variables—r, g, b, x, and y.

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒintƒr,ƒgƒ,ƒb;
ƒintƒxƒ=ƒ0,ƒyƒ=ƒ0;

5. Set the Graphics object font by typing gr.setFont(littleFont);.

6. Create a for loop in which the red component will vary from 255 down to 0
in decrements of 20.Within the red for loop, vary the intensity of green, and
within the green for loop, vary the intensity of blue. Although you won’t get
every possible combination of components, you will get a wide variety.

for(rƒ=ƒ255;ƒrƒ>=ƒ0;ƒrƒ-=ƒ20)
ƒfor(gƒ=ƒ255;ƒgƒ>=ƒ0;ƒgƒ-=ƒ20)
ƒƒfor(bƒ=ƒ255;ƒbƒ>=ƒ0;ƒbƒ-=ƒ20)ƒ
ƒƒƒƒƒ{

Tip

10

7. Within the body of the innermost for loop, create a new color, set the color,
and draw an X. After the X is drawn, you increase the x-axis coordinate by 5.
When the value of x approaches the horizontal limit of the Swing applet—
that is, when it passes 400 or so—increase y and reset x to 0.To accomplish
this processing, type the following code:

ƒƒƒColorƒvarietyƒ=ƒnewƒColor(r,ƒg,ƒb);
ƒƒƒgr.setColor(variety);
ƒƒƒgr.drawString("X",x,y);
ƒƒƒxƒ+=ƒ5;
ƒƒƒifƒ(xƒ>=ƒ400)
ƒƒƒ{
ƒƒƒƒxƒ=ƒ0;
ƒƒƒƒyƒ+=ƒ10;
ƒƒƒ}//endƒif
ƒƒ}//endƒfor
ƒ}//endƒpaint()
}//endƒJDemoColorƒclass

8. Save the file as JDemoColor.java in the Chapter.10 folder on your Student
Disk, and then compile at the command prompt using the javac command.
Modify the TestJDemoGraphics2.html document for use with the
JDemoColor class, and then save as TestJDemoColor.html.When you run
the Swing applet, you should see it filled with hundreds of small Xs in many
different colors.

9. Close the Applet Viewer window.

The Swing Applet’s Background Color
In addition to changing the color of Strings that you display, you can change the background
color of your Swing applet. For example, the statement setBackground(Color.pink);
changes the Swing applet screen color to pink.You do not need a Graphics object to change
the Swing applet’s background color; it is the Swing applet itself that changes colors. (You
could also write this.setBackground(Color.pink); because setBackgound refers to
“this” Swing applet.)

CREATING GRAPHICS AND GRAPHICS 2D OBJECTS

When you call the paint() method, you can use the automatically created Graphics
object, but you also can instantiate your own Graphics or Graphics 2D objects. For
example, you might want to use a Graphics object when some action occurs, such as a
mouse event. Because the ActionPerformed() method does not supply you with a
Graphics object automatically, you can create your own.

334 Chapter 10 Graphics

Creating Graphics and Graphics 2D Objects 335

For example, to display a string when the user clicks a JButton, you can code an
ActionPerformed() method such as the following:

publicƒvoidƒactionPerformed(ActionEventƒe)
{
ƒObjectƒsourceƒ=ƒe.getSource();
ƒifƒ(sourceƒ==ƒbutton1)
ƒ{
ƒƒGraphicsƒdrawƒ=ƒgetGraphics();
ƒƒdraw.drawString("Youƒclickedƒtheƒbutton!",50,100);
ƒ}
}

This method instantiates a Graphics object named draw. (You can use any legal Java iden-
tifier.) The getGraphics() method provides the draw object with Graphics capabilities.Then
the draw object can employ any of the Graphics methods you have learned—setFont(),
setColor(), and drawString().

Notice that when you create the draw object, you are not calling the Graphics
constructor directly. (The name of the graphics constructor is Graphics(), not
getGraphics().) You are not allowed to call the Graphics constructor because
Graphics() is an abstract class. You will learn about abstract classes in Chapter 11.

Next you will create a Graphics object named pen and use the object to draw a String on
the screen.The text of the String will appear to move each time a JButton is clicked.

To write a Swing applet in which you create your own Graphics object:

1. Open a new text file in your text editor, and type the following import state-
ments for the Swing applet:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;

2. Start typing the following Swing applet that uses the mouse, and defines a
String, a JButton, a Font, and two integers to hold x and y coordinates:

publicƒclassƒJDemoCreateGraphicsObjectƒextendsƒJAppletƒ
ƒimplementsƒActionListenerƒƒ
{ƒ
ƒStringƒcompanyNameƒ=ƒnewƒStringƒ
ƒƒ("EventƒHandlersƒIncorporated");ƒ
ƒJButtonƒmoveButtonƒ=ƒnewƒJButton("MoveƒIt");ƒƒ
ƒFontƒhell2Fontƒ=ƒnewƒFont("Helvetica",ƒFont.ITALIC,ƒ12);
ƒintƒxƒ=ƒ10,yƒ=ƒ50;ƒ

3. Type the following init() method, which changes the background color, adds
the JButton, and prepares the Swing applet to listen for JButton events:

publicƒvoidƒinit()
{

Tip

10

ƒsetBackground(Color.yellow);
ƒContainerƒconƒ=ƒgetContentPane();
ƒcon.setLayout(newƒFlowLayout()ƒ);
ƒcon.add(moveButton);
moveButton.addActionListener(this);
}

4. Within the actionPerformed() method, you can create a Graphics object and
use it to draw the String on the screen. Each time a user clicks the JButton,
the x- and y-coordinates both increase so a copy of the company name
appears slightly below and to the right of the previous company name.Type
the following code to accomplish this processing:

ƒƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒƒ{
ƒƒƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒƒƒifƒ(sourceƒ==ƒmoveButton)
ƒƒƒƒ{
ƒƒƒƒƒGraphicsƒpenƒ=ƒgetGraphics();
ƒƒƒƒƒpen.setFont(hell2Font);
ƒƒƒƒƒpen.setColor(Color.magenta);
ƒƒƒƒƒpen.drawString(companyName,ƒx+=20,yƒ+=ƒ20);
ƒƒƒƒ}//endƒif
ƒƒ}//endƒactionPerformed()
}//endƒJDemoCreateGraphicsObject class

5. Save the file as JDemoCreateGraphicsObject.java in the Chapter.10
folder on your Student Disk, and then compile at the command prompt
using the javac command. Modify theTestDemoGraphics2.html docu-
ment for use with the JDemoCreateGraphicsObject class, and save it as
TestJDemoCreateGraphicsObject.html in the Chapter.10 folder on your
Student Disk. Use the appletviewer TestJDemoGraphicsObject.html
command to run the program. Click the moveButton several times to see the
String message appear and move on the screen.

6. When you finish clicking the moveButton, close the Applet Viewer window.

If you run JDemoCreateGraphicsObject and click the JButton enough times, the “Event
Handlers Incorporated” String appears to march off the bottom of the Swing applet.
Every time you click the JButton, the x- and y-coordinates used by drawString() increase.
You can prevent this error by checking the screen coordinates’ values to see if they exceed
the applet’s dimensions.

To avoid the error of exceeding the applet viewing area:

1. Open the JDemoCreateGraphicsObject file, and change the class name to
JDemoCreateGraphicsObject2.

2. Position your insertion point to the right of the statement pen.setColor
(Color.magenta); in the actionPerformed() method, and then press
[Enter] to start a new line.

336 Chapter 10 Graphics

Drawing Lines, Rectangles, Ovals, Arcs, and Polygons 337

3. Because you add 20 to the x variable each time you draw the String within
the applet, you can ensure that the String appears only 12 times by prevent-
ing the x-coordinate from exceeding a value of 250.Type the following if
statement to check the x-coordinate value:

if(xƒ<ƒ250)
{

4. Position your insertion point to the right of the line pen.drawString
(companyName,x+=20,y+=20);, press [Enter], type the closing curly
brace for the if statement, and then press [Enter] again.

5. On the new line, type the following else statement that disables the JButton
after the x-coordinate becomes too large:

else
ƒmoveButton.setEnabled(false);

6. Save the file as JDemoCreateGraphicsObject2.java in the Chapter.10
folder on your Student Disk, and compile at the command prompt using the
javac command. Modify theTestJDemoCreateGraphicsObject.html
document for use with the JDemoCreateGraphicsObject2 class, and save as
TestJDemoCreateGraphicsObject2.html in the Chapter.10 folder on
your Student Disk. Now when you click the moveButton until the company
name moves to x-coordinate 250, the JButton is disabled, and the company
name no longer violates the applet size limits.

7. Close the Applet Viewer window.

DRAWING LINES, RECTANGLES, OVALS, ARCS, AND POLYGONS

Just as you can draw Strings using a Graphics object and the drawString() method, Java
provides you with several methods for drawing a variety of lines and geometric shapes.

Any line or shape will be drawn in the current color you set with the setColor()
method.

You can use the drawLine() method to draw a straight line between any two points on
the screen.The drawLine() method takes four arguments: the x- and y-coordinates of the
line’s starting point, and the x- and y-coordinates of the line’s ending point. For example,
if you create a Graphics object named pen, then pen.drawLine(10,10,100,200);
draws a straight line that slants down and to the right, from position 10, 10 to position
100, 200, as shown in Figure 10-5. Because you can start at either end when you draw a
line, an identical line is created with pen.drawLine(100,200,10,10);.

Tip

10

It is almost impossible to draw a picture of any complexity without sketching
it first on a piece of graph paper to help you determine correct coordinates.

You can use the drawRect() method and fillRect() method, respectively, to draw the
outline of a rectangle or to draw a solid, or filled, rectangle. Each of these methods
requires four arguments.The first two arguments represent the x- and y-coordinates of
the upper-left corner of the rectangle.The last two arguments represent the width and
height of the rectangle. For example, drawRect(20,100,200,10); draws a short,
wide rectangle that begins at position 20, 100, and is 200 pixels wide by 10 pixels tall.

For an alternative to the drawRect() method, you can use four calls to
drawLine().

The clearRect() method also requires four arguments and draws a rectangle.The dif-
ference between using the drawRect() and fillRect() methods and the clearRect()
method is that the drawRect() and fillRect() methods use the current drawing color,
whereas the clearRect() method uses the current background color to draw what appears
to be an empty or “clear” rectangle. For example, the JDemoRectangles program shown
in Figure 10-6 produces the Swing applet shown in Figure 10-7.The program sets the
background color, draws a filled rectangle in a contrasting color, and draws a smaller, clear
rectangle (using the background color) within the boundaries of the filled rectangle.

Tip

Tip

Figure 10-5 Line from position 10, 10 to 100, 200

338 Chapter 10 Graphics

Drawing Lines, Rectangles, Ovals, Arcs, and Polygons 339

You can create rectangles with rounded corners when you use the drawRoundRect
method. The drawRoundRect() method requires six arguments. The first four argu-
ments match the four arguments required to draw a rectangle: the x- and y-coordinates
of the upper-left corner, and the width and height.The two additional arguments rep-
resent the arc width and height associated with the rounded corners; an arc is simply a
portion of a circle. If you assign zeros to the arc coordinates, the rectangle will not be
rounded; instead, the corners will be square. At the other extreme, if you assign values
to the arc coordinates that are at least the width and height of the rectangle, the rectangle
is so rounded that it is a circle.The paint() method in Figure 10-8 draws four rectangles
with increasingly large corner arcs. Figure 10-9 shows the program’s output.

Figure 10-7 Output of the JDemoRectangles program

import javax.swing.*;
import java.awt.*;
public class JDemoRectangles extends JApplet
{

public void paint(Graphics gr)
{

gr.setColor(Color.red);
setBackground(Color.blue);
gr.fillRect(20,20,120,120);
gr.clearRect(40,40,50,50);
invalidate();
validate();

}
}

Figure 10-6 JDemoRectangles program

10

Like with the fillRect() method, you can use the fillRoundRect() method to create a filled,
rounded rectangle.

Drawing Ovals
It is possible to draw an oval using the drawRoundRect() or fillRoundRect() methods,
but it is usually easier to use the drawOval() and fillOval() methods.The drawOval()
and fillOval() methods both draw ovals using the same four arguments that rectangles use.
When you supply drawOval() or fillOval() with x- and y-coordinates for the upper-left
corner and width and height measurements, you can picture an imaginary rectangle that
uses the four arguments.The oval is then placed within the rectangle so it touches the rec-
tangle at the center of each of the rectangle’s sides. For example, if you create a Graphics
object named tool and draw a rectangle with tool.drawRect(50,50,100,60);, and
an oval with tool.drawOval(50,50,100,60);, then the output will appear as shown
in Figure 10-10 with the oval edges just skimming the rectangle’s sides.

Figure 10-9 Output of the JDemoRectangles2 program that draws rounded rectangles

import javax.swing.*;
import java.awt.*;
public class JDemoRectangles2 extends JApplet
{

public void paint(Graphics gr)
{

gr.drawRoundRect(20,20,80,80,0,0);
gr.drawRoundRect(120,20,80,80,10,10);
gr.drawRoundRect(220,20,80,80,40,40);
gr.drawRoundRect(320,20,80,80,80,80);

}
}

Figure 10-8 JDemoRectangles2 program that draws rounded rectangles

340 Chapter 10 Graphics

Drawing Lines, Rectangles, Ovals, Arcs, and Polygons 341

If you draw a rectangle with identical height and width, you draw a square.
If you draw an oval with identical height and width, you draw a circle.

Next you will add a simple line drawing to the JDemoCreateGraphicsObject2 program.
The drawing will appear after the user clicks the JButton enough times to increase the
x-coordinate to 250, which disables the JButton.

To add a line drawing to a program:

1. Open the JDemoCreateGraphicsObject2 program, and rename the class
JDemoCreateGraphicsObject3.

2. Position your insertion point to the right of the opening curly brace for the
actionPerformed() method, and then press [Enter] to start a new line.

3. Type the following to define a Graphics object and set its font and color:

Graphicsƒpenƒ=ƒgetGraphics();
pen.setFont(hell2Font);
pen.setColor(Color.magenta);

4. Replace the current if...else structure with the following code that tests
the value of x, and either draws the company name or disables the JButton
and draws a logo.When you draw the logo, you set the drawing color to
black and draw a simple drawing of the Event Handlers Incorporated logo,
which is two overlapping balloons with strings attached:

if(xƒ<ƒ250)
{
ƒpen.drawString(companyName,xƒ+=ƒ20,yƒ+=ƒ20);
}
else
{
ƒmoveButton.setEnabled(false);
ƒpen.setColor(Color.black);
ƒpen.drawOval(50,170,70,70);
ƒpen.drawLine(85,240,110,300);

Tip

Figure 10-10 Demonstration of the drawOval() method

10

ƒpen.drawOval(100,170,70,70);
ƒpen.drawLine(135,240,110,300);
}

5. Save the file as JDemoCreateGraphicsObject3.java in the Chapter.10
folder on your Student Disk, and compile at the command prompt using the
javac command. Modify theTestJDemoCreateGraphicsObject2.html
document for use with the JDemoCreateGraphicsObject3 class, and save as
TestJDemoCreateGraphicsObject3.html in the Chapter.10 folder on your
Student Disk.After the company name moves to x-coordinate 250, the JButton
is disabled, and the balloon drawing appears, as shown in Figure 10-11.

6. Close the Applet Viewer window.

Drawing Arcs
In Java, you can draw an arc using the Graphics drawArc() method.To use the drawArc()
method, you provide six arguments:

� The x-coordinate of the upper-left corner of an imaginary rectangle that rep-
resents the bounds of the imaginary circle that contains the arc

� The y-coordinate of the same point

� The width of the imaginary rectangle that represents the bounds of the imag-
inary circle that contains the arc

� The height of the same imaginary rectangle

Figure 10-11 Output of the JDemoCreateGraphicObjects3 program with the JButton
disabled

342 Chapter 10 Graphics

Drawing Lines, Rectangles, Ovals, Arcs, and Polygons 343

� The beginning arc position

� The arc angle

Arc positions and angles are measured in degrees; there are 360 degrees in a circle. The
zero-degree position for any arc is at the three o’clock position, as shown in Figure 10-12.
The other 359-degree positions increase as you move counterclockwise around an
imaginary circle, so that 90 degrees is at the top of the circle in the 12 o’clock posi-
tion, 180 degrees is opposite the starting position at nine o’clock, and 270 degrees is at
the bottom of the circle in the six o’clock position.

The arc angle is the number of degrees over which you want to draw the arc, traveling
counterclockwise from the starting position. For example, you could draw a half circle
by indicating an arc angle of 180 degrees, or a quarter circle by indicating an arc angle
of 90 degrees. If you want to travel clockwise from the starting position, you express the
degrees as a negative number. Just as when you draw a line, when drawing any arc you
can take one of two approaches: either start at point A and travel to point B, or start at
point B and travel to point A. For example, to create an arc object halfarc that looks like
the top half of a circle, the statements halfarc.drawArc(x,y,w,h,0,180); and
halfarc.drawArc(x,y,w,h,180,-180); produce identical results.The first state-
ment starts an arc at the three o’clock position and travels 180 degrees counterclockwise
to the nine o’clock position. The second statement starts at nine o’clock and travels
clockwise to three o’clock.

270 degrees

180 degrees 0 degrees

90 degrees

Figure 10-12 Arc positions

10

The fillArc() method creates a solid arc.The arc is drawn and two straight lines are drawn
from the arc end points to the center of the imaginary circle whose perimeter the arc occu-
pies. For example, the two statements solidarc.fillArc(10,50,100,100,20,320);
and solidarc.fillArc(200,50,100,100,340,40); together produce the output
shown in Figure 10-13. Each of the two arcs is in a circle of size 100 by 100.The first almost
completes a full circle, starting at position 20 (near two o’clock) and ending 320 degrees
around the circle (at position 340, near four o’clock). The second filled arc more closely
resembles a pie slice, starting at position 340 and extending 40 degrees to end at position 40.

Creating Three-Dimensional Rectangles
The draw3DRect() method is a minor variation on the drawRect() method.You use the
draw3DRect() method to draw a rectangle that appears to have “shadowing” on two of
its edges—the effect is that of a rectangle that is slightly raised or slightly lowered. The
draw3DRect() method requires a fifth argument in addition to the x- and y-coordinates
and width and height required by the drawRect() method.The fifth argument is a Boolean
value, which is true if you want the raised rectangle effect (darker on the right and bot-
tom) and false if you want the lowered rectangle effect (darker on the left and top).
There is also a fill3DRect() method for creating filled three-dimensional rectangles.

The three-dimensional methods work well only with lighter drawing colors.

Creating Polygons
When you want to create a shape that is more complex than a rectangle, you can use a
sequence of calls to the drawLine() method, or you can use the drawPolygon() method
to draw complex shapes.The drawPolygon() method requires three arguments: two inte-
ger arrays and a single integer.

Tip

Figure 10-13 Two filled arcs

344 Chapter 10 Graphics

Drawing Lines, Rectangles, Ovals, Arcs, and Polygons 345

The first integer array holds a series of x-coordinate positions, and the second array holds
a series of corresponding y-coordinate positions.The third integer argument is the num-
ber of pairs of points you want to connect. If you don’t want to connect all the points
represented by the array values, you can assign this third argument integer a value that
is smaller than the number of elements in each array. However, an error occurs if the
third argument is a value higher than the available number of coordinate pairs.

For example, examine the code shown in Figure 10-14, which is a Swing applet that has
one task—to draw a red, star-shaped polygon. Two parallel arrays are assigned x- and
y-coordinates; the paint() method sets the drawing color to red and draws the polygon.
The program’s output appears in Figure 10-15.

Figure 10-15 Output of the JStar Swing applet

Figure 10-14 JStar Swing applet

import javax.swing.*;
import java.awt.*;
public class JStar extends JApplet
{

int xPoints[] = {42, 52, 72, 52, 60, 40, 15, 28, 9, 32, 42};
int yPoints[] = {38, 62, 68, 80, 105, 85, 102, 75, 58, 60, 38};
public void paint(Graphics gr)
{

gr.setColor(Color.red);
gr.drawPolygon(xPoints, yPoints, xPoints.length);

}
}

10

In Chapter 8, you learned that you can use length for the length of an array.
Rather than using a constant integer value, such as 11, it is convenient to use
the length of one of the coordinate point arrays, as in xPoints.length.

You can use the fillPolygon() method to draw a solid shape. The major difference
between the drawPolygon() and fillPolygon() methods is that if the beginning and end-
ing points used with the fillPolygon() method are not identical, then the two end points
will be connected by a straight line before the polygon is filled with color.

The difference is subtle, but rather than providing the fillPolygon() method with three
arguments, you can create a Polygon object that defines a polygon, and then pass the
constructed object as a single argument to the fillPolygon() method. Note the follow-
ing statements:

PolygonƒsomeShapeƒ=ƒnewƒPolygon(xPoints,ƒyPoints,ƒsize);
fillPolygon(someShape);

These statements have the same result as the following:

fillPolygon(xPoints,ƒyPoints,ƒsize);

Additionally, you can instantiate an empty Polygon object (with no points) using the
statement PolygonƒsomeFutureShapeƒ=ƒnewƒPolygon();. You use the following
statements to add points to the polygon later using a series of calls to the addPoint() method:

someFutureShape.addPoint(100,100);
someFutureShape.addPoint(150,200);
someFutureShape.addPoint(50,250);

It is practical to use addPoint() instead of coding the point values when you want to write
a program in which the user enters polygon point values.Whether the user does so from
the keyboard or with a mouse, you can continue to add points to the polygon indefinitely.

COPYING AN AREA

After you create a graphics image, you might want to create copies of the image. For
example, you might want a company logo to appear several times in an applet. Of course,
you can redraw the picture, but you can also use the copyArea() method to copy any
rectangular area to a new location.The copyArea() method requires six parameters:

� The x- and y-coordinates of the upper-left corner of the area to be copied

� The width and height of the area to be copied

� The horizontal and vertical displacement of the destination of the copy

Next you will learn how to copy an area containing a logo that you want to appear sev-
eral times on a Swing applet without re-creating the logo each time.

Tip

346 Chapter 10 Graphics

Copying an Area 347

To copy an image:

1. Open a new text file in your text editor, and then enter the beginning state-
ments for a Swing applet that uses the copyArea() method:

importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒJThreeStarsƒextendsƒJApplet
{

2. Add the following statements, which will create a polygon in the shape of a star:

intƒxPoints[]ƒ=ƒ{42,ƒ52,ƒ72,ƒ52,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ60,ƒ40,ƒƒ15,ƒ28,ƒƒ9,ƒ32,ƒ42};
intƒyPoints[]ƒ=ƒ{38,ƒ62,ƒ68,ƒ80,
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ105,ƒ85,ƒ102,ƒ75,ƒ58,ƒ60,ƒ38};
PolygonƒaStarƒ=ƒ
ƒnewƒPolygon(xPoints,ƒyPoints,ƒxPoints.length);

3. Add the following paint() method, which sets a color, draws a star, and then
draws two additional identical stars:

ƒpublicƒvoidƒpaint(Graphicsƒstar)
ƒ{
ƒƒstar.setColor(Color.red);
ƒƒstar.drawPolygon(aStar);
ƒƒstar.copyArea(0,0,75,105,125,130);
ƒƒstar.copyArea(0,0,75,105,180,70);
ƒ}
}

4. Save the program as JThreeStars.java in the Chapter.10 folder on your
Student Disk, and then compile the program.

5. Open a new file in your text editor, and then enter the following HTML
document to test the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JThreeStars.class"ƒ
ƒƒWIDTHƒ=ƒ420ƒHEIGHTƒ= 300>
</APPLET>
</HTML>

6. Save the HTML document as TestJThreeStars.html in the Chapter.10
folder on your Student Disk, and then run it using the appletviewer
TestJThreeStars.html command.The output should look like
Figure 10-16.

10

7. Close the Applet Viewer window.

8. Modify the program to add more stars in any location you choose, save and
compile the program, and then run the HTML document to confirm that
the stars are copied to your desired locations.

9. Close the Applet Viewer window.

LEARNING MORE ABOUT FONTS AND THEIR METHODS

As you add more components in your Swing applet, positioning becomes increasingly
important. In particular, when you draw Strings using different fonts, if you do not place the
Strings correctly, they overlap and become impossible to read.Additionally, even when you
define a font, such as FontƒmyFont = new Font("TimesRoman",Font.PLAIN,10);,
you have no guarantee that the font will be available on every computer that runs your Swing
applet. If your user’s computer does not have the font loaded, then Java chooses a default
replacement font, so you are never completely sure of how your output will look.
Fortunately, Java provides many useful methods for obtaining information about the fonts
you use.

You can discover the fonts that are available on your system by using the getAllFonts()
method that is part of the GraphicsEnvironment class defined in the java.awt package.
The GraphicsEnvironment class structure shown in Figure 10-17 describes the collec-
tion of GraphicsDevice objects and Font objects available to a Java application on a par-
ticular platform.The getAllFonts() method returns an array of String objects that are the
names of available fonts, as shown in the following code: GraphicsEnvironment
myFontsƒ=ƒGraphicsEnvironment.getLocalGraphicsEnvironment();
FontƒmyFontsƒ=ƒmyFonts.getAllFonts().

Figure 10-16 Output of the JThreeStars applet

348 Chapter 10 Graphics

Learning More About Fonts and Their Methods 349

Notice in the example above that you can’t call the GraphicsEnvironment object
directly. Instead, you must get a reference object to the current computer by calling the
static getLocalGraphicsEnvironment() method. In the previous example, myFonts is the
reference object.Then in the second statement, the myFonts object is used as the Font
reference to the getAllFonts() method.The getAllFonts method returns an array of Font
objects existing on the current system.

You can discover the resolution and screen size on your system by using the
getScreenResolution() method and getScreenSize() method that is part of the
Toolkit class.The structure of this helpful class is shown in Figure 10-18.

The getDefaultToolkit() method provides information about the system in use.The
getScreenResolution() method returns the number of pixels as an int type.You can
create a Toolkit object and get the screen resolution with the following code:

Toolkitƒtkƒ=ƒToolkit.getDefaultToolkit();
intƒresolutionƒ=ƒtk.getScreenResolution()

The Dimension class structure is shown in Figure 10-19. A Dimension object is useful
for representing the width and height of a user interface component. For example, call-
ing the Dimension(int, int) constructor in the following example creates a Dimension
object representing the width and height specified as arguments. The Dimension class
has three constructors:

� Dimension() method creates an instance of Dimension with a width of zero
and a height of zero.

� Dimension(Dimension d) creates an instance of Dimension whose width and
height are the same as for the specified dimension.

� Dimension(int width, int height) constructs a Dimension and initializes it to
the specified width and specified height.

Figure 10-18 Structure of the Toolkit class

java.lang.Object
|
+--java.awt.Toolkit

Figure 10-17 Structure of the GraphicsEnvironment class

java.lang.Object
|
+--java.awt.GraphicsEnvironment

10

The getScreenSize() method that is a member of the Toolkit object returns an object
of type Dimension which specifies the width and height of the screen in pixels. Knowing
the number of pixels for the width and height of your display is useful to set the coor-
dinates for the position of the window and also set the width and height of the window.

Dimensionƒscreenƒ=ƒtk.getScreenSize();
Stringƒwidthƒ=ƒscreen.width;
Stringƒheightƒ=ƒsd.height;

Next you will write a Swing applet that lists the resolution and screen size along with
the fonts available on your system.

To write an applet that lists the resolution, screen size, and fonts on your system:

1. Open a new file in your text editor, and then enter the first few lines of the
JFontList Swing applet:

importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒJFontListƒextendsƒJApplet
{

2. Add the following statement to create two integer variables to hold the
x- and y-coordinate positions you will use to draw Strings within the applet:
intƒxƒ=ƒ10,ƒyƒ=ƒ15;.

3. Add the following paint() method header and an opening curly brace.Within
the method, create a Toolkit object by calling the getDefaultToolkit()
method. Call the toString() method to return the value stored in a String
named resAndSize. Draw the first String named resAndSize at horizontal
position 10 and vertical position 15.

publicƒvoidƒpaint(Graphicsƒgr)
ƒ{
ƒƒToolkitƒtkƒ=ƒToolkit.getDefaultToolkit();
ƒƒStringƒresAndSizeƒ=ƒtoString();
ƒƒgr.drawString(resAndSize,x,ƒyƒ+=ƒ15);

4. Enter the statement that creates the GraphicsEnvironment object named ge.
Enter the following for loop to the paint() method.This loop will draw each
String in the array that was filled using the getAvailableFontFamilyNames()
method.You will draw each subsequent String 15 pixels lower within the
applet. Finally, type the closing curly brace for the paint() method.

Figure 10-19 Structure of the Dimension class

java.lang.Object
|
+--java.awt.geom.Dimension2D

|
+--java.awt.Dimension

350 Chapter 10 Graphics

Learning More About Fonts and Their Methods 351

ƒGraphicsEnvironmentƒgeƒ=
ƒƒƒGraphicsEnvironment.getLocalGraphicsEnvironment();
ƒString[]ƒfontnamesƒ=ƒge.getAvailableFontFamilyNames();
ƒforƒ(intƒiƒ=ƒ0;ƒiƒ<ƒfontnames.length;ƒit=4)
ƒƒƒ{
ƒƒgr.drawString(fontnames[i],ƒx,ƒy);
ƒƒgr.drawString(fontnames[i+1],ƒx+190,ƒy);
ƒƒgr.drawString(fontnames[i+2],ƒx+380,ƒy);
ƒƒgr.drawString(fontnames[i+3],ƒx+570,ƒy+=15);
ƒƒƒ}

5. Create a toString() method that constructs and returns information about the
screen resolution and size.Within the method, create a Toolkit object named
tk and a Dimension object named sd.You can use the methods and fields of
these objects to construct a return String containing screen information.
Finally add a closing curly brace for the paint() method.

ƒpublicƒStringƒtoString()
ƒ{
ƒƒToolkitƒtkƒ=ƒToolkit.getDefaultToolkit();
ƒƒDimensionƒsdƒ=ƒtk.getScreenSize();
ƒƒreturnƒ"ScreenƒResolution:ƒ"ƒ+ƒtk.getScreenResolution()
ƒƒƒƒƒƒƒƒƒƒ+ƒ"ƒdotsƒperƒinch"ƒ+
ƒƒƒƒƒƒ"ƒScreenƒSize:ƒ"ƒ+ƒsd.widthƒ+ƒ"ƒbyƒ"ƒ+ƒsd.heightƒ+ƒ
ƒƒƒƒƒƒ"ƒpixels";
ƒ}
}

In Chapter 7, you first used the automatically included toString() method that
converts objects to Strings. Now, you override that method for this class by
writing your own version. You will learn more about the toString() method in
Chapter 12.

6. Save the file as JFontList.java in the Chapter.10 folder on your Student
Disk, and then compile it using the javac command.

7. Open a new text file, and then enter the following text to create an HTML
document to host the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JFontList.class"ƒWIDTHƒ=ƒ760ƒ
ƒƒƒHEIGHTƒ= 600>
</APPLET>
</HTML>

8. Save the HTML document as TestJFontList.html in the Chapter.10 folder on
your Student Disk, and then run the program using the appletviewer com-
mand.Your output should look like Figure 10-20. Notice that the Swing applet
is not large enough to display all of the fonts that are installed. (Your font list
might be different, depending on the fonts installed on your computer.Your list
might even be so long that it cannot fully display in the applet.

Tip

10

9. Close the Applet Viewer window.

Typesetters and desktop publishers measure the height of every font in three parts: lead-
ing, ascent, and descent. Leading is the amount of space between baselines. Ascent is
the height of an uppercase character from a baseline to the top of the character. Descent
measures the size of characters that “hang below” the baseline, such as the tails on the
lowercase letters g and j. The height of a font is the sum of the leading, ascent, and
descent. Figure 10-21 shows each of these measurements.

Leading is pronounced “ledding.”

Byheight ascent

baseline
descent

leading

Figure 10-21 Parts of a font’s height

Tip

Figure 10-20 Output of the JFontList program

352 Chapter 10 Graphics

Learning More About Fonts and Their Methods 353

You can discover a font’s height by using the getFontMetrics() method. The
getFontMetrics() method is part of the Graphics class and returns a FontMetrics object.
The FontMetrics class contains the following methods that return a font’s statistics:

� publicƒintƒgetLeading()

� publicƒintƒgetAscent()

� publicƒintƒgetDescent()

� publicƒintƒgetHeight()

Each of these methods returns an integer value representing the font size in points (one
point measures 1/72 of an inch) of the requested portion of the Font object. For exam-
ple, if you define a Font object named myFont, and a Graphics object named paintBrush,
then you can set the current font for the Graphics object with the statement
paintBrush.setFont(myFont);. When you code int heightOfFont =
paintBrush.getFontMetrics().getHeight();, then the heightOfFont variable
holds the total height of myFont characters.

Notice the object-dot-method-dot-method construction of the getHeight()
statement. Alternately, if it is clearer to you, you can write two statements. The
first statement declares a FontMetrics object: FontMetricsƒfmObjectƒ=
paintBrush.getFontMetrics();. The second statement assigns a value
to heightOfFont: intƒheightOfFontƒ=ƒfmObject.getHeight();.

When you define a Font object, you use point size. However, when you use
the getFontMetrics() methods, the sizes are returned in pixels.

Next you will write a Swing applet to demonstrate the FontMetrics() methods.You will
create three Font objects and display their metrics.

To demonstrate the FontMetrics methods:

1. Open a new text file in your text editor, and then enter the first few lines of
the JDemoFontMetrics program:
importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒJDemoFontMetricsƒextendsƒJAppletƒ
{

2. Type the following code to create a String and a few fonts to use for demon-
stration purposes:
StringƒcompanyNameƒ=ƒ
ƒnewƒString("EventƒHandlersƒIncorporated");
Font
ƒcourierItalicƒ=ƒnewƒFont("Courier",ƒFont.ITALIC,ƒ16),
ƒtimesPlainƒ=ƒnewƒFont("TimesRoman",ƒFont.PLAIN,ƒ16),
ƒhelvetBoldƒ=ƒnewƒFont("Helvetica",ƒFont.BOLD,ƒ16);

Tip

Tip 10

If your JFontList program showed that you do not have one of these fonts,
then substitute another font that you do have.

3. Add the following code to define four integer variables to hold the four font
measurements, and two integer variables to hold the current horizontal and
vertical output positions within the Swing applet:
intƒascent,ƒdescent,ƒheight,ƒleading;
intƒxƒ=ƒ10,ƒyƒ=ƒ15;ƒ

4. Within the Swing applet, you will draw Strings for output that you will posi-
tion 15 pixels apart vertically on the screen.Type the following statement to
create a constant to hold this vertical increase value:
staticƒfinalƒintƒINCREASEƒ=ƒ15;

5. Add the following statements to start writing a paint() method.Within the
method, you set the Font to courierItalic, draw the companyName String
to show a working example of the font, and then call a displayMetrics()
method that you will write in Step 6.You will pass the Graphics object to
the displayMetrics() method, so the displayMetrics() method can discover
the sizes associated with the current font. Perform the same three steps
using the timesPlain and helvetBold fonts.
publicƒvoidƒpaint(Graphicsƒpen)
{
ƒpen.setFont(courierItalic);
ƒpen.drawString(companyName,ƒx,ƒy);
ƒdisplayMetrics(pen);
ƒpen.setFont(timesPlain);
ƒpen.drawString(companyName,ƒx,ƒyƒ+=ƒ40);
ƒdisplayMetrics(pen);
ƒpen.setFont(helvetBold);
ƒpen.drawString(companyName,ƒx,ƒyƒ+=ƒ40);
ƒdisplayMetrics(pen);
}

6. Next add the header and opening curly brace for the displayMetrics()
method.The method will receive a Graphics object from the paint() method.
Add the following statements to call the four getFontMetrics() methods to
obtain values for the leading, ascent, descent, and height variables:
publicƒvoidƒdisplayMetrics(Graphicsƒmetrics)
{
ƒleadingƒ=ƒmetrics.getFontMetrics().getLeading();
ƒascentƒ=ƒmetrics.getFontMetrics().getAscent();
ƒdescentƒ=ƒmetrics.getFontMetrics().getDescent();
ƒheightƒ=ƒmetrics.getFontMetrics().getHeight();ƒ

7. Add the following five drawString() statements to display the values. Use the
expression yƒ+=ƒINCREASE to change the vertical position of each String by
the INCREASE constant.

Tip

354 Chapter 10 Graphics

Learning More About Fonts and Their Methods 355

ƒmetrics.drawString("Leadingƒisƒ"ƒ+ƒleading,ƒ
ƒƒƒƒx,ƒyƒ+= ƒINCREASE);
ƒmetrics.drawString("Ascentƒisƒ"ƒ+ƒascent,ƒ
ƒƒƒƒx,ƒyƒ+= ƒINCREASE);
ƒmetrics.drawString("Descentƒisƒ"ƒ+ƒdescent,ƒ
ƒƒƒƒx,ƒyƒ+= ƒINCREASE);
ƒmetrics.drawString("ƒƒƒƒƒ",ƒx,ƒyƒ+=ƒINCREASE);
ƒmetrics.drawString("Heightƒisƒ"ƒ+ƒheight,
ƒƒƒƒx,ƒyƒ+= ƒINCREASE);
ƒ}
}

8. Save the program as JDemoFontMetrics.java in the Chapter.10 folder on
your Student Disk, and then compile it using the javac command.

9. Open a new text file in your text editor, and then enter the following
HTML document to host the JDemoFontMetrics Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ
ƒ"JDemoFontMetrics.class"ƒWIDTHƒ=ƒ400ƒHEIGHTƒ=ƒ350>
</APPLET>
</HTML>

10. Save the HTML document as TestJFontMetrics.html in the Chapter.10
folder on your Student Disk. At the command prompt, type appletviewer
TestJFontMetrics.html.Your output should look like Figure 10-22.
Notice that even though each Font object was constructed with a size of 16,
the individual statistics vary for each Font object.

Figure 10-22 Output of the JDemoFontMetrics Swing applet

10

11. Close the Applet Viewer window.

A practical use for discovering the height of your font is to space Strings correctly as
you print them. For example, instead of placing every String in a series vertically equidis-
tant from the previous String with a statement, such as pen.drawString("Some
string",ƒx,ƒyƒ+=ƒINCREASE); (where INCREASE is always the same), you can
make the actual increase in the vertical position dependent on the font. If you code
pen.drawString("Someƒstring",ƒx,ƒyƒ+=ƒpen.getFontMetrics().
getHeight());, then you are assured that each String has enough room, and will appear
regardless of the font currently in use by the Graphics pen object.

When you create a String, you know how many characters are in the String. However, you
cannot be sure which font Java will use or substitute, and because fonts have different mea-
surements, it is difficult to know the exact width of the String in a Swing applet. Fortunately,
the FontMetrics class contains a stringWidth() method that returns the integer width of
a String.As an argument, the stringWidth() method requires the name of a String.For exam-
ple, if you create a String named myString, then you can retrieve the width of myString
with intƒwidthƒ= gr.getFontMetrics().stringWidth(myString);.

Next you will use the FontMetrics methods to draw a rectangle around a String. Instead
of guessing at appropriate pixel positions, you can use the height and width of the String
to create a box with borders placed symmetrically around the String.

To draw a rectangle around a String:

1. Open a new file in your text editor, and then enter the first few lines of a
JBoxAround Swing applet:

importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒJBoxAroundƒextendsƒJAppletƒ
{

2. Enter the following statements to add a String, a Font, and variables to hold
the font metrics and x- and y-coordinates:

StringƒcompanyNameƒ=ƒ
ƒnewƒString("EventƒHandlersƒIncorporated");
FontƒserifItalicƒ=ƒnewƒFont("Serif",ƒFont.ITALIC,ƒ20);
intƒleading,ƒascent,ƒheight,ƒwidth;
intƒxƒ=ƒ40,ƒyƒ=ƒ60;

3. Create the following constant variable that holds a number of pixels indicat-
ing the dimensions of the rectangle that you will draw around the String:

staticƒfinalƒintƒBORDERƒ=ƒ5;

4. Add the following paint() method, which sets the font, draws the String, and
obtains the font metrics:

publicƒvoidƒpaint(Graphicsƒgr)
{

356 Chapter 10 Graphics

Learning More About Fonts and Their Methods 357

ƒgr.setFont(serifItalic);
ƒgr.drawString(companyName,x,y);
ƒleadingƒ=ƒgr.getFontMetrics().getLeading();
ƒascentƒ=ƒgr.getFontMetrics().getAscent();
ƒheightƒ=ƒgr.getFontMetrics().getHeight();
ƒwidthƒ=ƒgr.getFontMetrics().stringWidth(companyName);

5. Draw a rectangle around the String using the following drawRect() method.
In Figure 10-23, the x- and y-coordinates of the upper-left edge are set at
40-border, 60-(ascent + leading + border).The proper width and height are
then determined to draw a uniform rectangle around the string.

The values of the x- and y-coordinates used in the drawString() method indicate the
left side of the baseline of the first character in the String. You want to position the
upper-left corner of the rectangle five pixels to the left of the String, so the first argu-
ment to drawRect() is five less than x, or xƒ-ƒBORDER. The second argument to
drawRect() is the y-coordinate of the String minus the ascent of the String, minus the
leading of the String, minus five, or yƒ-ƒ(ascentƒ+ƒleadingƒ+ƒBORDER).The last
two arguments to drawRectangle() are the width and the height of the rectangle. The
width is the String’s width plus five pixels on the left and five pixels on the right.The
height of the rectangle is the String’s height, plus five pixels above the String and five
pixels below the String.

ƒgr.drawRect(xƒ-ƒBORDER,ƒyƒ-ƒ(ascentƒ+ƒleadingƒ+ƒBORDER),
ƒwidthƒ+ƒ2ƒ*ƒBORDER,ƒheightƒ+ƒ2ƒ*ƒBORDER);
ƒrepaintƒ();
ƒ}
}

6. Save the file as JBoxAround in the Chapter.10 folder on your Student Disk,
and then compile it using the javac command.

Figure 10-23 Rectangle surrounding a String

corner point
40 – border,
60 – (ascent + leading + border)

width = border + string width + border

Event Handlers Incorporated height = border + height + border

40,60

10

7. Open a new text file in your text editor, and then enter the following
HTML document to host the applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JBoxAround.class"ƒWIDTHƒ=ƒ400ƒHEIGHTƒ=
120>
</APPLET>
</HTML>ƒ

8. Save the HTML document as TestJBoxAround.html in the Chapter.10
folder on your Student Disk, and then run the program using the
appletviewer TestJBoxAround.html command.Your output should
look like Figure 10-24.

9. Close the Applet Viewer window, and then experiment with changing the
contents of the String and the size of the BORDER constant. Confirm that
the rectangle is drawn symmetrically around any String object.When you
finish, close the Applet Viewer window.

DRAWING WITH JAVA 2D GRAPHICS

Drawing operations earlier in this chapter are called using an object. In addition, you
can call drawing operations on a Graphics2D object. The structure of the Graphics2D
class is shown in Figure 10-25.

The advantage of using Java 2D is the enhanced classes offered to create higher-quality
two-dimensional (2D) graphics, images, and text for use in your programs. They don’t

Figure 10-25 Structure of the Graphics2D class

java.lang.Object
|
+--java.awt.Graphics

|
+--java.awt.Graphics2D

Figure 10-24 Output of the JBoxAround program

358 Chapter 10 Graphics

Drawing with Java 2D Graphics 359

replace the existing java.awt classes, though—you can still use the other classes and pro-
grams that use them.

One of the advantages of Java 2D is a set of high-quality classes to offer enhanced 2D
graphics, images, and text. Some of these classes include features such as:

� Fill patterns such as gradients

� Strokes that define the width and style of a drawing stroke

� Anti-aliasing, a graphics technique for producing smoother on-screen graphics

Graphics2D is found in the java.awt package.A Graphics2D object is produced by cast-
ing a Graphics object and is commonly referred to as a graphics context. For example,
the void paint()method of the previous JBoxAround applet could be cast to create a
Graphics2D object as follows:

publicƒvoidƒpaint(Graphicsƒpen)
{
ƒGraphics2Dƒnewpenƒ=ƒ(Graphics2D)pen;

The JBoxAround2 program created by casting is shown in Figure 10-26. It produces
identical output to the JBoxAround program, as shown earlier in Figure 10-24.

Figure 10-26 JBoxAround2 program

import javax.swing.*;
import java.awt.*;
public class JBoxAround2 extends JApplet
{

String companyName =
new String(”Event Handlers Incorporated”);

Font serifItalic = new Font(”Serif”. Font.ITALIC. 20);
int leading, ascent, height, width;
int x = 40, y = 60;

static final int BORDER = 5

public void paint(Graphics pen)
{

Graphics2D two = (Graphics2D)pen;
two.setFont(serifItalic);
two.drawString(companyName,x,y);
leading = two.getFontMetrics().getLeading();
ascent = two.getFontMetrics().getAscent();
height = two.getFontMetrics().getHeight();
width = two.getFontMetrics().stringWidth(companyName);
two.drawRect(x - BORDER, y - (ascent + leading + BORDER),

width + 2 = BORDER, height +2 = BORDER);
repaint();

}
}

10

One concept introduced with Java 2D distinguishes between an output device’s coordinate
space and the coordinate space you refer to when drawing an object. Coordinate space
is any 2D area that can be described using x- and y-coordinates. For all drawing operations
so far in this chapter, the only coordinate space used is for the device coordinate space.
Recall that you have specified the x- and y-coordinates for an output area such as a con-
tainer on a Swing applet, and those coordinates have been used to draw lines, text, and
other objects. Java 2D adds a user coordinate space that you refer to when creating and
drawing a 2D drawing object. The upper-left corner 0,0 of the drawing area represents
both the device space and the user space.Whereas the device space coordinate is constant,
the user space coordinate (0,0) can move as a result of a 2D drawing such as a 2D rota-
tion operation.You will learn more about the two coordinate systems as you work with
the 2D examples in this chapter.

You can think of the process of drawing with Java 2D objects as involving:

� Specifying the rendering attributes

� Setting a drawing stroke

� Creating objects to draw

Specifying the Rendering Attributes
The first step in drawing a 2D object is to specify how a drawn object will be rendered.
Whereas drawings that are not 2D can only specify the attribute Color, 2D can desig-
nate other attributes such as line width and fill patterns.You specify 2D colors by using
the setColor() method, which works like the Graphics method of the same name. Using
a Graphics2D object, the color can be set to black using the code:

gr2D.setColor(Color.black);

Fill patterns control how a drawing object will be filled in. In addition to using a solid
color, 2D fill patterns can be a gradient fill, texture, or even a pattern that you devise. A
fill pattern is created by using the setPaint() method of Graphics2D with a bPaint object
as the only argument. Classes that can be a fill pattern include GradientPaint,TexturePaint,
and Color.

A gradient fill is a gradual shift from one color at one coordinate point to a different
color at a second coordinate point. If the color shift occurs once between the points, it is
called an acyclic gradient. If the shift occurs repeatedly, it is called a cyclic gradient.
Figure 10-28 shows the top rectangle with an acyclic shift, and the bottom rectangle with
a cyclic shift between white and darkGray colors.

360 Chapter 10 Graphics

Drawing with Java 2D Graphics 361

Setting a Drawing Stroke
All lines in non-2D graphics operations are drawn solid, with square ends and a line
width of 1 pixel. With the new 2D methods, the drawing line width can be changed
using the setStroke() method. The Stroke is actually an interface; the class that defines
line types and implements the Stroke interface is named BasicStroke. A BasicStroke
constructor takes three arguments:

� A float value representing the line width, with 1.0 as the norm

� An int value determining the type of cap decoration at the end of a line

� An int value determining the style of juncture between two line segments

BasicStroke class variables determine the endcap and juncture style arguments. Endcap
styles apply to the end of lines that do not join with other lines, and include CAP_BUT,
CAP_ROUND, and CAP_SQUARE. Juncture styles, for lines that join, include
JOIN_MITER, JOIN_ROUND, and JOIN_BEVEL.

Technically, the term stroke has been defined as a single movement using or
as if using, a tool or implement such as a pen or pencil.

The following statements create a BasicStroke object and make it the current stroke:

BasicStrokeƒaLineƒ=ƒnewƒBasicStroke(1.0f,
ƒBasicStroke.CAP_ROUND,ƒBasicStroke.JOIN_ROUND);
gr2D.setStroke(aLine);ƒ

The f indicates that the 1.0 argument is a floating-point type.

Tip

Figure 10-27 One rectangle has an acyclic gradient; the other has a cyclic gradient

10

Creating Objects to Draw
After you have created a Graphics2D object and specified the rendering attributes, the
final steps are to create the different draw objects and then draw them. Objects that are
drawn in Java 2D are first created by defining them as geometric shapes using the
java.awt.geom package classes.You can define the shape of lines, rectangles, ovals, and
arcs; after you define the shape, you use it as an argument to the draw() or fill() meth-
ods.The Graphics2D class does not have different methods for each shape you can draw.

Lines

Lines are created using the Line2D.Float class that takes four arguments.The arguments
are the x- and y-coordinates of the two endpoints of the line. For example, to create a
line from the endpoint (60,5) to the endpoint (13,28), the arguments are:

Line2D.Floatƒlineƒ=ƒnewƒLine2D.Float(60F,ƒ5F,ƒ13F,ƒ28F);

Note that F or f is used with the literal arguments so that the Java compiler
will not mistake them for integers.

It is possible to create lines based on x and y points defined in the Point2D class. The
Point.2D.Float class defines a point from a pair of x- and y-coordinates of type float.
In the following example, you replace the x- and y-coordinates with Point2D objects:

Point2D.Floatƒpos1ƒ=ƒnewƒPoint2D.Float(60,5);
Point2D.Floatƒpos2ƒ=ƒnewƒPoint2D.Float(13,28);

The code to create a line then becomes Line2D.Floatƒlineƒ=ƒnewƒLine2D.Float
(pos1,ƒpos2);.

Next you will create a line with a drawing stroke to illustrate how a drawing stroke can
be created with different end types and juncture types where lines intersect.

To create a line with a drawing stroke:

1. Open a new file in your text editor, and then enter the first few lines of a
J2DLine Swing applet. (Note that you are importing the java.awt.geom
package.)

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.geom.*;
publicƒclassƒJ2DLineƒextendsƒJApplet
{

2. Enter the following statements to create a paint() method, create a Graphics
environment gr, and cast the Graphics environment to a Graphics2D environ-
ment gr2D. Create x and y points with the Point2D.Float class.

Tip

362 Chapter 10 Graphics

Drawing with Java 2D Graphics 363

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒGraphics2Dƒgr2Dƒ=ƒ(Graphics2D)gr;
ƒPoint2D.Floatƒpos1ƒ=ƒnewƒPoint.2D.Float(50,10);
ƒPoint2D.Floatƒpos2ƒ=ƒnewƒPoint2D.Float(13,28);

3. Create a BasicStroke object, and then create a drawing stroke named aLine.
Note that the line width is set to 5 pixels and the endcap style and juncture
style are set to CAP_ROUND.

BasicStrokeƒaLineƒ=ƒnewƒBasicStroke(5.0f,
BasicStroke.CAP_ROUND,ƒBasicStroke.JOIN_ROUND);

4. Add the following code to create a line between the points posx and posy,
and draw the line:

ƒƒgr2D.setStroke(aline);
ƒƒLine2D.Floatƒlineƒ=ƒnewƒLine2D.Float(pos1,ƒpos2);
ƒƒgr2D.draw(line);
ƒƒrepaint();
ƒƒ}
}

5. Save the file as J2DLine.java in the Chapter.10 folder on your Student Disk,
and then compile it using the javac command.

6. Open a new file in your text editor, and then enter the following HTML
document to host the applet:

<HTML>
<APPLETƒCODEƒ=ƒ"J2DLine.class"ƒWIDTHƒ=ƒ50ƒHEIGHTƒ=ƒ50>
</APPLET>
</HTML>ƒ

7. Save the HTML document as TestJ2DLine.html in the Chapter.10 folder
on your Student Disk, and then run the program using the appletviewer
TestJ2DLine.html command.Your output should look like Figure 10-28.

Rectangles

Rectangles can be created by using a Rectangle2D.Float or a Rectangle2D.Double class.
The two classes are distinguished by the type of arguments used in the constructor—
float or double. Rectangle2D.Float and Rectangle2D.Double both require four arguments

Figure 10-28 Output of the J2DLine program

10

364 Chapter 10 Graphics

representing the x-coordinate, y-coordinate, width, and height. The code to create a
Rectangle2D.Float object named rect at (10,10) with a width of 50 and height of 40
is Rectangle2D. Float rect = newƒRectangle2D.Float(10F, 10F,
50F, 40F);.

Ovals

Oval objects can be created with the Ellipse2D.Float class.The Ellipse2D.Float constructor
requires four arguments representing the x-coordinate, y-coordinate, width, and height.The
code to create an Ellipse2D.Float object named ell at (10,73) with a width of 40 and height
of 20 is Ellipse2D.Float ell = new Ellipse2D.Float(10F,73F,40F,20F);.

Arcs

Arcs can be created with the Arc2D.Float class.The Arc2D.Float constructor takes seven
arguments. The first four are arguments representing the x-coordinate, y-coordinate,
width, and height that apply to the ellipse of which the arc is a part.The remaining three
arguments are:

� The starting degree of the arc

� The number of degrees it travels

� An integer indicating how it is closed

The number of degrees traveled by the arc is specified in a counterclockwise direction
using positive numbers.The last argument uses one of the three class variables:

� Arc2D.PIE connects the arc to the center of an ellipse and looks like a pie slice.

� Arc2D.CHORD connects the arc’s endpoints with a straight line.

� Arc2D.OPEN is an unclosed arc.

To create an Arc2D.Float object named ac at (10,133) with a width of 30 and height of 33,
a starting degree of 30, 120 degrees traveled, and using the class variable Arc.2D.PIE, you use
the following statment: Arc2D.Floatƒacƒ=ƒnewƒArc2D.Float(10,133,30,33,
30,120,Arc2D.PIE);.

Polygons

A Polygon is created by defining the movements from one point to another.The move-
ment that creates a polygon is defined as a GeneralPath object found in the java.awt.geom
package.

� The statement GeneralPathƒpolƒ=ƒnewƒGeneralPath(); creates a
GeneralPath object named pol.

� The moveTo() method of GeneralPath is used to create the beginning point
on the polygon.Thus, the statement pol.moveTo(10F,193F); starts the
polygon named pol at the coordinates (10,193).

Drawing with Java 2D Graphics 365

� The lineTo() method is used to create a line that ends at a new point.The
statement pol.lineTo(25F,183F); creates a second point using the argu-
ments of 25 and 183 as the x- and y-coordinates of the new point.

� The statement pol.lineTo(100F,223F); creates a third point.The
lineTo() method can be used to connect the current point to the original
point or, alternately, you can use the closePath() method without any argu-
ments. Here we use the statement pol.closePath() to close the polygon.

Next you will you use the Java 2D drawing object types to create a Swing applet that
illustrates sample rectangles, ovals, arcs, and polygons.

To create the JShapes2D Swing applet:

1. Open a new file in your text editor, and then enter the first few lines of a
JShapes2D Swing applet:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.geom.*;
publicƒclassƒJShapes2DƒextendsƒJApplet
{

2. Enter the following statements to create a paint() method, create a Graphics
environment gr, and cast the Graphics environment to a Graphics2D environ-
ment gr2D:

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒGraphics2Dƒgr2Dƒ=ƒ(Graphics2D)gr;

3. Create two Rectangle2D.Float objects named rect and rect2. Draw the rect
object, and then fill the rect2 object.

Rectangle2D.Floatƒrectƒ=ƒnewƒRectangle2D.Float(10F,ƒ10F,ƒ
ƒƒ40F,ƒ20F);
Rectangle2D.Floatƒrect2ƒ=ƒnewƒRectangle2D.Float(10F,ƒ40F,
ƒƒ40F,ƒ20F);
gr2D.draw(rect);
gr2D.fill(rect2);

4. Create two Ellipse2D.Float objects named ell and ell2. Draw the ell object
and fill the ell2 object.

Ellipse2D.Floatƒellƒ=ƒnewƒEllipse2D.Float(10F,73F,40F,
ƒƒ20F);
Ellipse2D.Floatƒell2ƒ=ƒnewƒEllipse2D.Float(10F,103F,40F,
ƒƒ20F);
gr2D.draw(ell);
gr2D.fill(ell2);

10

5. Create two Arc2D.Float objects named ac and ac2. Draw the ac object and fill
the ac2 object.

Arc2D.Floatƒacƒ=ƒnewƒArc2D.Float(10,133,30,33,30,120,
ƒƒArc2D.PIE);
Arc2D.Floatƒac2ƒ=ƒnewƒArc2D.Float(10,163,30,33,30,120,
ƒƒArc2D.PIE);
gr2D.draw(ac);
gr2D.fill(ac2);ƒƒ

6. Create a new GeneralPath object named pol. Set the starting point of the
polygon and create two additional points. Use the closePath() method to
close the polygon by connecting the current point to the starting point.
Draw the pol object.

ƒƒGeneralPathƒpolƒ=ƒnewƒGeneralPath();
ƒƒpol.moveTo(10F,193F);
ƒƒpol.lineTo(25F,183F);
ƒƒpol.lineTo(100F,223F);
ƒƒpol.closePath();
ƒƒgr2D.draw(pol);
ƒ}
}ƒ

7. Save the file asJShapes2D.java in the Chapter.10 folder on your Student
Disk, and then compile it using the javac command.

8. Open a new file in your text editor, and then enter the following HTML
document to host the applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JShapes2D.class"ƒWIDTHƒ=ƒ250ƒ
ƒƒƒHEIGHTƒ= 250>
</APPLET>
</HTML>ƒ

9. Save the HTML document as TestJShapes2D.html in the Chapter.10 folder
on your Student Disk, and then run the program using the appletviewer
TestJShapes2D.html command.Your output should look like Figure 10-29.

366 Chapter 10 Graphics

Adding Sound, Images, and Simple Animation to Swing Applets 367

ADDING SOUND, IMAGES, AND SIMPLE ANIMATION TO SWING
APPLETS

Java 2 still supports sound using applet methods that have been available since the intro-
duction of Java.This allows you to make Java programs audible using the methods of the
Applet class to retrieve and play sound files in programs using various sound formats.
Sound formats include the Windows Wave file format(.wav), Sun Audio file format(.au),
and Music and Instrument Digital Interface file format(.midi).

The simplest way to retrieve and play a sound is to use the play() method of the Applet
class.The play() method retrieves and plays the sound as soon as possible after it is called.
The play() method takes one of two forms:

� play() with one argument—the argument is a Uniform Resource Locater
(URL) object that loads and plays an audio clip when both the URL object
and the audio clip are stored at the same URL.

� play() with two arguments—loads and plays the audio file (the first argument is
a URL object and the second argument is a folder path name).The first argu-
ment will often be a call to a getCodeBase() method or getDocumentBase()
method to retrieve the URL object; the second argument is the name of the
audio clip within the folder path that is stored at that URL.

The <APPLET> tag was introduced in Chapter 9 to run an Applet from
within an HTML document using the attributes CODE, HEIGHT, and WIDTH.
The getCodeBase() and getDocumentBase()methods are Applet methods. By
using these methods when loading sound or images, you make it possible for
the applet to work even if you move it to another Web server.

Tip

Figure 10-29 Output of the JShapes2D program

10

Used with the CODEBASE attribute, which indicates the filename of the applet’s main
class file, the above methods direct the browser to look in a different folder for the applet
and other files it uses.This is necessary when the desired files are in a different location
than the Web page containing the applet. By calling getCodeBase() in an applet, you get
a URL object that represents the folder where the applet’s class file is stored. For exam-
ple, the following statement retrieves and plays the event.au sound file which is stored
at the same place as the applet: play(getCodeBase(),"event.au");.

The getDocumentBase() method returns an absolute URL naming the direc-
tory of the document in which the applet is stored. It is sometimes used
instead of getCodeBase() as a matter of preference.

To play a sound more than once, or start or stop the sound, you must load the sound into
an AudioClip object using the applet’s newAudioClip() method.AudioClip is part of the
java.awt.Applet class and must be imported into your program. The getAudioClip()
method can take one or two arguments similar to the play() method.The first argument
(or only argument, if there is only one) is a URL argument that identifies the sound file;
the second argument is a folder path reference needed for locating the file.

The following statement loads the sound file from the previous example into the clip object:
AudioClipƒaClipƒ=ƒnewAudioClip(getCodeBase(),ƒ"audio/event.au");.
Here the sound file reference indicates that the event.au sound file is located in the audio
folder.After you have created an AudioClip object, you can use the play() method to call
and play the sound, the stop() method to halt the playback, and the loop() method to play
the sound repeatedly.

Next you will use the play() method and AudioClip to play a sound in a Swing applet.
You will also create and add a Graphics2D object.

To play a sound and add a Graphics2D object in a Swing applet for Event
Handlers, Inc.:

1. Open a new file in your text editor, and then enter the first few lines of the
JEventSound Swing applet:

importƒjava.awt.*;
importƒjava.applet.*;
importƒjavax.swing.*;
publicƒclassƒJEventSoundƒextendsƒJApplet
{

2. Enter the following statement to declare an AudioClip object named sound:

AudioClipƒsound;

Tip

368 Chapter 10 Graphics

Adding Sound, Images, and Simple Animation to Swing Applets 369

3. Create the init() method and an AudioClip object to play the event.au sound
file with the code:

publicƒvoidƒinit()
ƒ{
ƒƒsoundƒ=ƒgetAudioClip(getCodeBase(),"event.au");
ƒ}

4. Create the following start() method.The start method uses the loop() method
to play the event.au sound file continually:

publicƒvoidƒstart()
ƒ{
ƒƒsound.loop();
ƒ}

5. Create the following stop() method to halt the event.au sound file.

publicƒvoidƒstop()
{
ƒsound.stop();
}

6. Create a Graphics object using paint (Graphics g), and then use a cast to change
the graphics context to a Graphics2D object. Use the drawstring() method to
create a message which appears on the screen while the Swing applet play.Add
a closing curly brace for the class.

publicƒvoidƒpaint(Graphicsƒg)
ƒƒ{
ƒƒGraphics2Dƒg2Dƒ=ƒ(Graphics2D)g;
ƒƒg2D.drawString
ƒƒƒƒƒ("PlayingƒEventƒHandlersƒInc.ƒEvent
ƒƒsoundsƒ...",ƒ10,ƒ10);
ƒ}
}

7. Save the file as JEventSound.java in the Chapter.10 folder on your Student
Disk, and then compile it using the javac command.

8. Open a new file in your text editor, and then enter the following HTML
document to test the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JEventSound.class"ƒWIDTHƒ=ƒ400ƒ
ƒƒƒHEIGHTƒ= 250ƒ>
</APPLET>
</HTML>

9. Save the HTML document as TestJEventSound.html in the Chapter.10
folder on your Student Disk, and then run it using the appletviewer
TestJEventSound.html command.The output should look like
Figure 10-30.You should also be able to hear sound playing continually if
speakers are installed for your system.

10

Adding Images
An image is a likeness of a person or thing. Images abound on the Internet in all shapes,
colors and sizes. Images formats supported by Java include:

� Graphics Interchange Format (GIF), which can contain a maximum of
256 different colors

� Join Photographic Experts Group (JPEG) which is commonly used to store
photographs, and is a more sophisticated way to represent a color image

� Portable Network Graphics (PNG), which is more flexible than the GIF, and
stores its images in a lossless form (It was originally designed to be a portable
image storage form for computer-originated images.)

Java’s image capabilities include using the Image class and ImageIcon class to load images
in one of the formats discussed earlier.The Image class is an abstract class. An abstract
class is one from which you cannot create any objects, but from which you can inherit,
so you must create Image objects indirectly. The Image class is found in the java.awt
package, as shown in Figure 10-31.The ImageIcon class is particularly useful because it
can be used to easily load an image into either an applet or an application. The
ImageIcon class is part of the Swing package, as shown in Figure 10-32.

Figure 10-32 Structure of ImageIcon class

java.lang.Object
|
+--javax.swing.ImageIcon

Figure 10-31 Structure of Image class

java.lang.Object
|
+--java.awt.Image

Figure 10-30 Output of the JEventSound Swing applet

370 Chapter 10 Graphics

Adding Sound, Images, and Simple Animation to Swing Applets 371

To declare an Image with the name eventLogo1, you use the declaration Image
eventLogo1;.The getImage() method is used to load an Image into the applet. Like
the AudioClip method used for loading sound, one version of the getImage() method
can take up to two arguments—a location where the image is stored and the filename
of the image.You create and load the Image named eventImage with the statement:

eventLogo1ƒ=ƒgetImage(getCodeBase(),"event.gif");

Notice that the Image object is not created directly. Instead, you request that an Image
be loaded and returned to you.

Because the ImageIcon class is not an abstract class, you can create the ImageIcon
eventLogo2 with the following statement:

eventLogo2ƒ=ƒnewƒImageIcon("event.gif");

This creates an ImageIcon object that holds the same event.gif as the eventLogo1 Image.

The ImageIcon class provides several constructors that allow an ImageIcon
object to be initialized with an image from a local computer or an image
stored on a Web server.

The applet’s paint() method is used to display both Image and ImageIcon object images.
The drawImage() method is a Graphics method which uses the following four arguments:

� The first argument is a reference to the Image object in which the image
is stored.

� The second argument is the x-coordinate where the image will appear on
the applet.

� The third argument is the y-coordinate where the image will appear on
the applet.

� The fourth argument is a reference to an ImageObserver object.

An ImageObserver object can be any object that implements the ImageObserver interface.
The Component class implements the ImageObserver interface so all components will
inherit this implementation. Usually, the ImageObserver object is the object on which the
image appears. For example, when the JApplet class implements this interface, it can track
the progress of an image.This useful feature allows you to display a message such as “Please
wait. Loading images.” while graphics files are being loaded. Recall from Chapter 4 what
you learned about the this reference. Here you use the this reference to refer to the
applet in the following example.The code to display the eventLogo1 image is:

g.drawImage(eventLogo1,0,0,this);

A second version of the Graphics method, the drawImage() method, is unavailable to
Image objects, but can be used with ImageIcon images. In this version, the drawImage()

Tip

10

method is used to output a scaled image. This method takes six arguments. Note that
the first three arguments are the same as those for the other drawImage() method.

� The first argument is a reference to the Image object in which the image
is stored.

� The second argument is the x-coordinate where the image will appear on
the applet.

� The third argument is the y-coordinate where the image should appear on
the applet.

� The fourth argument is a call to the getWidth() method to specify the image
width for display purposes.

� The fifth argument is a call to the getHeight() method to specify the image
height for display purposes (in the following example, the height should be
100 pixels fewer than the height of the applet).

� The sixth argument uses the this reference to implement the
ImageObserver object.

The code to display the eventLogo2 image is:

g.drawImage(eventLogo1,0,120,ƒgetWidth(),ƒgetHeight()ƒ-
100,ƒthis);

You can also use the paintIcon() method to display ImageIcon images. This method
requires four arguments:

� The first argument is a reference to the Component on which the image will
appear—this in the following example.

� The second argument is a reference to the Graphics object that will be used
to render the image—g in the following example.

� The third argument is the x-coordinate for the upper-left corner of the image.

� The fourth argument is the y-coordinate for the upper-left corner of the image.

The code to display the eventLogo2 image using the paintIcon() method is:

eventLogo2.paintIcon(this,ƒg,ƒ180,ƒ0);

The completed Swing applet is shown in Figure 10-33 with the class name JEventImage.
Output of the JEventImage is shown in Figure 10-34.You should review the preceding
paragraphs while viewing the program and program output.

372 Chapter 10 Graphics

Adding Sound, Images, and Simple Animation to Swing Applets 373

Adding Simple Animation
At some time in your life, you probably created simple animation by drawing a series of
figures on the pages of a book, and slightly changing each version of the figure from the
previous one.When you flipped through the pages of the book, the figure appeared to
move. Movies, whether animated or not, are created in a similar manner—you see a suc-

Figure 10-34 Output of the JEventImage program

Figure 10-33 The JEventImage program

import javax.applet.*;
import java.awt.*;
import javax.swing.*;

public class JEventImage extends JApplet
{

Image eventLogo1;
ImageIcon eventLogo2;

public void init()
{

eventLogo1 = getImage(getCodeBase(),"event.gif");
eventLogo2 = new ImageIcon("event.gif");

}
public void paint (Graphics g)

{
g.drawImage(eventLogo1,0,0,this);
g.drawImage(eventLogo1,0,120, getWidth(), getHeight()-100, this);
eventLogo2.paintIcon(this, g, 180, 0);

}
}

10

cession of film frames, and each one contains a slightly modified image. Computer ani-
mation is achieved in the same fashion—a series of images appear on your screen in
rapid succession.You will be able to create fairly sophisticated animation after you have
covered Chapter 17; for now, you can use an ActionListener to control drawing differ-
ent images using the paint() method. Although the results will not be truly animated,
you can achieve dynamic results in which the time appears to change. This change is
accomplished by displaying time as a String and updating the String time contents with
successive clicks of a JButton.

Next you will create a Swing applet for Event Handlers Incorporated that contains a
graphical representation of the current day, date, and time, which changes when the user
clicks a JButton. In addition, a sound plays while the message “ It’s time to Party…”
appears under the graphical time representation. An image of a banner of the Event
Handlers company name appears under the message. A snapshot of the Swing applet at
a random time appears in Figure 10-35.

To create the JGregorianTime applet:

1. Open a new text file, and enter the first few lines of the JGregorianTime
Swing applet:

importƒjava.applet.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
importƒjava.util.*;
importƒjavax.swing.*;
publicƒclassƒJGregorianTimeƒextendsƒJAppletƒimplements
ActionListener
{ƒ

2. Add the following statements to create an AudioClip named sound, a new
Color named tan, an empty String named lastTime, and an ImageIcon named
eventLogo:

privateƒAudioClipƒsound;
privateƒColorƒtanƒ=ƒnewƒColor(255,ƒ204,ƒ102);
privateƒStringƒlastTimeƒ=ƒ"";
privateƒImageIconƒeventLogoƒ;

3. Add the following statements to create a JButton for the user to click:

JButtonƒpressMeƒ=ƒnewƒJButton("pressMe");

4. Begin the init() method, and enter the following statements to add a sound
object and ImageIcon object:

publicƒvoidƒinit()
{
ƒƒsoundƒ=ƒgetAudioClip(getCodeBase(),"event.au");
ƒƒeventLogoƒ=ƒnewƒImageIcon("event.gif");

374 Chapter 10 Graphics

Adding Sound, Images, and Simple Animation to Swing Applets 375

5. Add the following statements to set the background of the applet, create a
container name con, and change the default layout from BorderLayout to
FlowLayout:

setBackground(Color.blue);
Containerƒconƒ=ƒgetContentPane();
con.setLayout(newƒFlowLayout());

6. Add the following statements, which add the JButton named pressMe to the
container and add an ActionListener() for pressMe.Then add the closing curly
brace to the init() method.

ƒƒcon.add(pressMe);
ƒƒpressMe.addActionListener(this);
}

7. Begin the paint() method and cast the Graphics context to Graphics 2D.
Create a new font named monoFont and set the font of the Graphics2D
object to monoFont. (Note the syntax for setting monoFont in a Graphics
2D environment.)

publicƒvoidƒpaint(Graphicsƒg)
{
ƒƒGraphics2Dƒg2Dƒ=ƒ(Graphics2D)g;
ƒƒFontƒmonoFontƒ=ƒnewƒFont("Monospaced",ƒFont.BOLD,ƒ20);
ƒƒg2D.setFont(monoFont);

8. Create a new GregorianCalendar object named day, create a String named
time using the getTime() method, and then convert the result using the
toString() method.

GregorianCalendarƒdayƒ=ƒnewƒGregorianCalendar();
Stringƒtimeƒ=ƒday.getTime().toString();ƒ

9. Use the setColor()method and drawString() method to set the color and
draw the strings lastTime and time. (Note that when the animation starts, the
String lastTime is empty.) Set the g2D object’s color to tan, and then draw
the time string. Finally, reference the String lastTime to the String time.

g2D.setColor(Color.blue);
g2D.drawString(lastTime,ƒ5,ƒ75);
g2D.setColor(tan);
g2D.drawString(time,ƒ5,ƒ75);
lastTimeƒ=ƒtime;

10. Add the ImageIcon eventLogo to the paint() method below the graphic rep-
resentation of the day, date, and time. Add the drawString() method under the
eventLogo Image to display the string “It’s time to Party...”. Add a repaint()
method so that the JButton will be redrawn each time the paint() method is
called, and then add the closing curly brace to the paint() method.

10

ƒƒeventLogo.paintIcon(this,ƒg,ƒ50,ƒ120);
ƒƒg2D.drawString("It'sƒtimeƒtoƒParty...",ƒ50,ƒ100);
ƒƒpressMe.repaint();
}

11. Add the Swing applet’s start() and stop() methods. Add the loop() method to
the applet’s start() method to play the sound continually.Then add the stop
method to the applet’s stop() method.

publicƒvoidƒstart()
{
ƒƒsound.loop();
}
publicƒvoidƒstop()
{
ƒƒsound.stop();
}

12. At this point, the Swing applet is almost completed.You still must add the
actionPerformed() method that executes when the user clicks the JButton.
The only task performed by the method is to call the repaint() method. Add
the following method to your applet.Then add the closing curly braces for
the acitonPerformed() method and the class.

publicƒvoidƒactionPerformed(ActionEventƒe)
ƒ{
ƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒif(sourceƒ==ƒpressMe)
ƒƒƒrepaint();
ƒƒ}
}

13. Save the file as JGregorianTime in the Chapter.10 folder on your Student
Disk, and then compile it using the javac command.

14. Open a new file in your text editor, and then enter the code for an HTML
document to host the applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JGregorianTime.class"
ƒƒƒWIDTHƒ=ƒ400ƒHEIGHTƒ=ƒ200>
</APPLET>
</HTML>ƒ

15. Save the HTML document as TestJGregorianTime.html in the Chapter.10
folder on your Student Disk, and then run it using the appletviewer
TestJGregorianTime.html command.The output appears in Figure 10-35.
Wait at least a couple of minutes, click the pressMe button, wait a period of
time, and observe the time changes. Figure 10-36 shows the output of the
program after the JButton has been clicked.

376 Chapter 10 Graphics

Chapter Summary 377

16. Close the Applet Viewer window.

CHAPTER SUMMARY
❒ The paint() method header, publicƒvoidƒpaintƒ(Graphicsƒg), requires a

Graphics object argument.The paint() method runs when you display, maximize,
minimize, or restore an applet.You can use the paint() method automatically sup-
plied by Java, or you can write your own.You don’t usually call the paint() method
directly. Instead, you call the repaint() method, which calls the update() method,
which then calls the paint() method.

❒ You use the drawString() method to draw a String in an applet.The drawString()
method requires three arguments: a String, an x-coordinate, and a y-coordinate.
The x- and y-coordinates represent the lower-left position of the String.The
drawString() method is a member of the Graphics class, so you need to use a
Graphics object to call it.

Figure 10-36 Output of the JGregorianTime program after clicking the JButton

Figure 10-35 A snapshot of the JGregorianTime applet

10

❒ You can designate a Graphics color with the setColor() method.The Color class
contains 13 constants: black, blue, cyan, darkGray, gray, green, lightGray, magenta,
orange, pink, red, white, and yellow.You can create your own Color object with the
statement ColorƒsomeColorƒ=ƒnewƒColor(r,ƒg,ƒb);, where r, g, and b are
numbers representing the intensity of red, green, and blue you want in your color.

❒ You can use the drawLine() method to draw a straight line between any two points
on the screen.The drawLine() method takes four arguments: the x- and y-coordinates
of the line’s starting point, and the x- and y-coordinates of the line’s ending point.

❒ You can use the drawRect() and fillRect() methods, respectively, to draw the out-
line of a rectangle or to draw a solid, filled rectangle. Each of these methods
requires four arguments.The first two arguments represent the x- and y-coordinates
of the upper-left corner of the rectangle.The last two arguments represent the
width and height of the rectangle.

❒ The drawOval() and fillOval() methods draw ovals using four arguments—the x- and
y-coordinates for the upper-left corner, and the width and height measurements of an
imaginary rectangle that surrounds the oval.

❒ An arc is a portion of a circle that you can draw using the Graphics method
drawArc().The drawArc() method requires six arguments: the x-coordinate of the
upper-left corner of an imaginary rectangle that represents the bounds of the imagi-
nary circle that contains the arc, the y-coordinate of the same point, the width of the
imaginary rectangle that represents the bounds of the imaginary circle that contains
the arc, the height of the same point, the beginning arc position, and the arc angle.

❒ You can discover the fonts that are available on your system by calling the
getLocalGraphicsEnvironment() method and then the resulting object to reference
its getAllFonts() method.You can also discover the resolution and screen size on
your computer system by using the getScreenResolution()and getScreenSize()
methods that are part of the Toolkit class.

❒ A Graphics2D environment can be created in a paint() method by casting a
Graphics environment.

❒ Drawn objects in Java 2D are created by defining them as geometric shapes using
the java.awt.geom package classes.You can draw lines, rectangles, ovals, arcs, and
polygons.The Graphics2D class does not have different methods for each of the
shapes you can draw. Instead, you define the shape and use it as an argument to the
draw() or fill() methods.

❒ Images can be added to an applet using the Image and ImageIcon classes.

❒ Sound can be added to an applet by first retrieving a sound file with WAV,AU, or
MIDI formats.The sound can then be played using an AudioClip object.

378 Chapter 10 Graphics

Review Questions 379

REVIEW QUESTIONS
1. The method that calls the paint() method for you is .

a. callPaint()

b. repaint()

c. requestPaint()

d. draw()

2. The paint() method header requires a(n) argument.

a. void

b. integer

c. String

d. Graphics

3. The statement g.drawString(someString,ƒ50,ƒ100); places someString’s
corner at position 50, 100.

a. upper-left

b. lower-left

c. upper-right

d. lower-right

4. If you use the setColor() method to change a Graphics object’s color to yellow,
will appear in yellow.

a. only the next graphics output

b. all graphics output for the remainder of the method

c. all graphics output for the remainder of the applet

d. all graphics output until you change the color

5. The correct statement to instantiate a Graphics object named picasso is
.

a. Graphicsƒpicasso;

b. Graphicsƒpicassoƒ=ƒnewƒGraphics();

c. Graphicsƒpicassoƒ=ƒgetGraphics();

d. Graphicsƒpicassoƒ=ƒgetGraphics(new);

6. The statement g.drawRoundRect(100,100,100,100,0,0); draws a shape
that looks most like a .

a. square

b. round-edged rectangle

c. circle

d. straight line

10

7. If you draw an oval with the same value for width and height, then you draw a(n)
.

a. circle

b. square

c. rounded square

d. ellipsis

8. The zero-degree position for any arc is at the o’clock position.

a. three

b. six

c. nine

d. 12

9. The method you use to create a solid arc is .

a. solidArc()

b. fillArc()

c. arcSolid()

d. arcFill()

10. You use the method to copy any rectangular area to a new
location.

a. copyRect()

b. copyArea()

c. repeatRect()

d. repeatArea()

11. The measurement of an uppercase character from the baseline to the top of the
character is its .

a. ascent

b. descent

c. leading

d. height

12. To be sure that a vertical series of Strings has enough room to appear in an
applet, you would use which of the following statements?

a. g.drawString("Someƒstring",ƒx,ƒ
ƒƒyƒ+=ƒg.getFontMetrics(). getHeight());

b. g.drawString("Someƒstring",ƒx,ƒ
ƒƒyƒ+=ƒg.getFontMetrics(). getLeading());

380 Chapter 10 Graphics

Review Questions 381

c. g.drawString("Someƒstring",ƒx,ƒ
ƒƒyƒ+=ƒg.getFontMetrics(). getAscent());

d. g.drawString("Someƒstring",ƒx,ƒ
ƒƒyƒ+=ƒg.getFontMetrics(). getDescent());

13. You can discover the fonts that are available on your system by using the
.

a. getAllFonts() method of the GraphicsEnvironment class

b. getAllFonts() method of the Graphics class

c. setAllFonts() method of the GraphicsEnvironment class

d. getAllFonts() method of the ImageEnvironment class

14. The getScreenResolution() method and getScreenSize() method .

a. both return the number of pixels as an int type

b. return the number of pixels as an int type and an object of type Dimension

c. both return an object of type Dimension

d. return the number of pixels as a double type and an object of type Dimension

15. A Graphics2D object is produced by .

a. the setGraphics2D() method

b. the Graphics2Dƒnewpenƒ=ƒGraphics2D() statement

c. the Graphics2Dƒ=ƒGraphics(g) statement

d. casting a Graphics object

16. Java 2D uses when creating and drawing a 2D drawing object.

a. only coordinate space

b. only user coordinate space

c. both coordinate and user coordinate space

d. only 2D coordinate space

17. A gradient fill is a gradual change in .

a. color

b. font size

c. drawing style

d. line thickness

18. After the getAudioClip() method retrieves a sound object named mysound, the
plays a sound continually in a Swing applet.

a. sound.loop() method

b. loop() method

c. mysound.loop() method

d. mysound.continuous() method

10

19. The is particularly useful for loading an image into either an
applet or application.

a. Image class

b. ImageLogo class

c. ImageIcon class

d. GetImage class

20. Showing successive images on the screen is called .

a. action-oriented

b. object-oriented

c. animation

d. volatility

EXERCISES
1. Write a Swing applet that demonstrates displaying your first name in every even-

numbered font size from 4 through 24. Save the program as
JFontSizeDemo.java in the Chapter.10 folder on your Student Disk.

2. Write a Swing applet that displays your name in blue the first time the user clicks
a JButton, and then displays your name larger and in gray the second time the
user clicks the JButton. Save the program as JBlueGray.java in the Chapter.10
folder on your Student Disk.

3. Write a Swing applet that displays a form for creating an e-mail directory.The
form should contain three JTextFields and three JLabels for first name, last name,
and e-mail address. After the user enters an e-mail address and presses [Enter], the
program should display the information that was entered. Use the drawString()
method to display the information. Use the paint() method to display a heading
line for the information display, such as “The e-mail information you entered is: ”.
Save the program as JEmailForm.java in the Chapter.10 folder on your
Student Disk.

4. a. Write a Swing applet that displays a yellow smiling face on the screen. Save the
program as JSmileFace.java in the Chapter.10 folder on your Student Disk.

b. Add a JButton to the JSmileFace Swing applet so the smile changes to a frown
when the user clicks the JButton. Save the program as JSmileFace2.java in
the Chapter.10 folder on your Student Disk.

5. a. Use polygons and lines to create a graphics image that looks like a fireworks
display.Write a Swing applet that displays the fireworks. Save the program as
JFireworks.java in the Chapter.10 folder on your Student Disk.

b. Add a JButton to the JFireworks Swing applet. Do not show the fireworks
until the user clicks the JButton. Save the program as JFireworks2.java in the
Chapter.10 folder on your Student Disk.

382 Chapter 10 Graphics

Exercises 383

6. a. Write a Swing applet to display your name. Place boxes around your name at
intervals of 10, 20, 30, and 40 pixels. Save the program as JBorders.java in the
Chapter.10 folder on your Student Disk.

b. Make each of the four borders in the JBorders.java applet display a different
color. Save the program as JBorders2.java in the Chapter.10 folder on your
Student Disk.

7. Create a Swing applet and use dialog boxes to prompt the user to enter a name and
weight in pounds. Once the name and weight are entered, use Graphics2D methods
to display the user’s name and weight, with weight displayed in pounds, ounces,
kilograms, and metric tons on separate lines. Use the following conversion factors:

1 pound = 16 ounces

1 kilogram = 1 pound / 2.204623

1 metric ton = 1pound / 2204.623

Save the program as JCalculateWeight.java in the Chapter.10 folder on your
Student Disk.

8. Write a Swing applet that uses the Graphics2D environment to create a GeneralPath
object. Use the General path object to create the outline of your favorite state.
Display the state name at the approximate center of the state boundaries. Save the
program as JFavoriteState.java in the Chapter.10 folder on your Student Disk.

9. Write a Swing applet that draws a realistic-looking Stop sign. Save the program as
JStopSign.java in the Chapter.10 folder on your Student Disk.

10. Write a Swing applet that uses the ImageIcon class to place image icon objects on
four JButtons. Download your favorite GIF files from the Internet. If necessary,
reduce the size of the GIF images to approximately 30 by 30 pixels, or you can
use the four GIF files in your Student Disk if you wish. Each time a JButton is
clicked, display a different message below the JButtons. Save the program as
JButtonIcons.java in the Chapter.10 folder on your Student Disk.

11. Each of the following files in the Chapter.10 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugTen1.java will become FixDebugTen1.java.You can
test each applet with the TestDebugTen.html files on your Student Disk.
Remember to change the Java class file referenced in the HTML document so it
matches the DebugTen applet on which you are working.

a. DebugTen1.java

b. DebugTen2.java

c. DebugTen3.java

d. DebugTen4.java

10

CASE PROJECT
The Party Planners organization in your local town is sponsoring a contest to see who
can program the best Java Swing applet to be used as an advertisement for their party
events.You can download sound clips and graphics images from the Internet to use in
your program. Create a Swing applet named JPartyPlanner and an HTML test file to run
the Swing applet. Good luck! I hope you win!

Case
Project

384 Chapter 10 Graphics

385

CHAPTER

11
INTRODUCTION TO INHERITANCE

In this chapter, you will:
� Learn about the concept of inheritance
� Extend classes
� Override superclass methods
� Work with superclasses that have constructors
� Use superclass constructors that require arguments
� Access superclass methods
� Learn about information hiding
� Use methods you cannot override

You look exhausted,” Lynn Greenbrier says to you late one Friday
afternoon.

“I am,” you reply. “Now that I know some Java, I am writing program after
program for several departments in the company. It’s fun, but it’s a lot of
work, and the worst thing is that I seem to be doing a lot of the same work
over and over.”

“What do you mean?” Lynn asks.

“Well, the Event Planning Department asked me to develop several classes
that will hold information for every event type handled by Event Handlers.
There are weekday and weekend events, events with or without dinners, and
events with or without guest speakers. Sure, these various types of events
have differences, but all events have many things in common, such as an
event number and a number of guests.”

“I see,” Lynn says.“You’d like to create a class based on an existing class, just
by adding the specific new components the new class needs.You want to
avoid rewriting the components that you already created.”

“Exactly!” you say.“But, since I can’t do that, I guess I’ll just have to get back
to work.”

“Go home and relax!” Lynn says.“On Monday morning, I’ll teach you how
to use inheritance to solve these problems.”

PREVIEWING AN EXAMPLE OF INHERITANCE

Weekend events hosted by Event Handlers Incorporated cost more than weekday events
because staff members who work at the events are paid overtime rates.Weekend events have
all the components of all other events, but they also possess this surcharge.You can use com-
piled versions of the Chap11Event, Chap11WeekendEvent, and UseChap11WeekendEvent
class files that are saved in the Chapter.11 folder on your Student Disk to run the
UseChap11WeekendEvent program.

To use the Chap11WeekendEvent class:

1. Go to the command prompt for the Chapter.11 folder on your Student Disk,
type javaƒUseChap11WeekendEvent, and then press [Enter].This pro-
gram allows you to supply data for a weekend event.The prompts will ask
you for an event number, host name, and number of guests.You can supply
any answers you want to these questions.The data you enter will echo to the
screen, and you will see the charge for the event.The charge is calculated at
$10 per person, plus a $400 surcharge for the weekend. Figure 11-1 shows a
typical program run.

2. Open your text editor, and then open the UseChap11WeekendEvent.java
file, or examine the code shown in Figure 11-2.The program creates a
Chap11WeekendEvent object named anEvent, and then calls five methods.

3. Open the Chap11WeekendEvent.java file in your text editor, or examine the
code shown in Figure 11-3.The class Chap11WeekendEvent does not contain
any data fields, and it contains only one method, named computePrice(). How-
ever, when you ran the program UseChap11WeekendEvent, you provided
input for several data fields.The program called several methods, and displayed
several lines of output.The additional fields and methods were available because
the WeekendEvent class inherited its additional components.You will create
similar classes in this chapter.

Figure 11-1 Output of the UseChap11WeekendEvent program

386 Chapter 11 Introduction to Inheritance

Learning About the Concept of Inheritance 387

LEARNING ABOUT THE CONCEPT OF INHERITANCE

Inheritance is the principle that allows you to apply your knowledge of a general cate-
gory to more-specific objects. In Java, inheritance is a mechanism that enables one class
to inherit both the behavior and the attributes of another class.You are familiar with the
concept of inheritance from all sorts of nonprogramming situations.

In Chapter 3, you first learned about inheritance, where a class object can inherit
all the attributes of an existing class. A functional new class can be created sim-
ply by indicating how it is different from the class from which it is derived.

When you use the term inheritance, you might think of genetic inheritance.You know
from biology that your blood type and eye color are the product of inherited genes; you
can say that many facts about you—or your data fields—are inherited. Similarly, you often
can attribute your behaviors to inheritance.For example, your attitude toward saving money
might be the same as your grandma’s, and the odd way that you pull on your ear when you
are tired might also be what your Uncle Steve does—thus your methods are inherited, too.

Tip

Figure 11-3 Chap11WeekendEvent class

public class Chapter11WeekendEvent extends Chap11Event
{
 public void computePrice()
 {
 super.computePrice();
 quotedPrice += 400;
 System.out.println
 ("Besides the usual $10 per person fee,");
 System.out.println
 ("there is a $400 surcharge for a weekend event.");
 }
}

Figure 11-2 UseChap11WeekendEvent.java program

public class UseChapter11WeekendEvent
{
 public static void main(String args[]) throws Exception
 {
 Chap11WeekendEvent anEvent = new Chapter11WeekendEvent();
 anEvent.setEventNum();
 anEvent.setEventHost();
 anEvent.setnumGuests();
 anEvent.computePrice();
 anEvent.printDetails();
 }
}

11

You also might choose plants and animals based on inheritance.You plant impatiens next
to your house because of your shady street location; you adopt a Doberman pinscher
because you need a watchdog. Every individual plant and pet has slightly different char-
acteristics, but within a species, you can count on many consistent inherited attributes
and behaviors. Similarly, the classes you create in object-oriented programming languages
can inherit data and methods from existing classes.When you create a class by making it
inherit from another class, you are provided with data fields and methods automatically.

From the first chapter of this book, you have been creating classes and instantiating
objects that are members of those classes. For example, consider the simple Employee
class shown in Figure 11-4.The class contains two data fields, empNum and empSal, and
four methods, a get and set method for each field.

After you create the Employee class, you can create specific Employee objects, such as
Employeeƒreceptionistƒ=ƒnewƒEmployee(); and EmployeeƒdeliveryPerson
=ƒnewƒEmployee();. These Employee objects can eventually possess different numbers
and salaries, but because they are Employee objects, you know that each Employee has some
number and salary.

Suppose you hire a new Employee named serviceRep. A serviceRep object requires an
employee number and a salary, but a serviceRep object also requires a data field to indi-
cate territory served. You can create a new class with a name such as
EmployeeWithTerritory, and provide the class three fields (empNum, empSal, and
empTerritory) and six methods (get and set methods for each of the three fields).

Figure 11-4 Employee class

public class Employee
{
 private int empNum;
 private double empSal;
 public int getEmpNum()
 {
 return empNum;
 }
 public double getEmpSal()
 {
 return empSal;
 }
 public void setEmpNum(int num)
 {
 empNum = num;
 }
 public void setEmpSal(double sal)
 {
 empSal = sal;
 }
}

388 Chapter 11 Introduction to Inheritance

Learning About the Concept of Inheritance 389

However, when you do this, you are duplicating much of the work that you have already
done for the Employee class. The wise, efficient alternative is to create the class
EmployeeWithTerritory so it inherits all the attributes and methods of Employee.Then,
you can add just the one field and two methods that are additions within
EmployeeWithTerritory objects. Figure 11-5 shows a diagram of this relationship.

When you use inheritance to create the EmployeeWithTerritory class, you:

� Save time, because the Employee fields and methods already exist

� Reduce errors, because the Employee methods already have been used and tested

� Ease understanding, because you have used the Employee methods on simpler
objects and already understand how they work

The ability to use inheritance in the Java programming language makes programs easier to
write, less error prone, and easier to understand. Imagine that besides creating
EmployeeWithTerritory, you also want to create several other specific Employee classes
(perhaps EmployeeEarningCommission including a commission rate, or DismissedEmployee
including a reason for dismissal). By using inheritance, you can develop each new class
correctly and more quickly.

The concept of a class inheritance is useful because it makes class code
reusable.

A class that is used as a basis for inheritance, such as Employee, is called a base class.
When you create a class that inherits from a base class (such as EmployeeWithTerritory),
it is a derived class. When confronted with two classes that inherit from each other,
you can tell which class is the base class and which class is the derived class by using the
two classes in a sentence with the phrase “is a”. A derived class always “is a” case or
instance of the more general base class. For example, a Tree class may be a base class to

Tip

empNum

empSal

getEmpNum()

getEmpSal()

setEmpNum()

setEmpSal()

Employee

Employee

empTerritory

getEmpTerritory()

setEmpTerritory()

EmployeeWithTerritory

Figure 11-5 EmployeeWithTerritory class inherits from Employee class

11

an Evergreen class. An Evergreen “is a”Tree, so Tree is the base class; however, it is not
true for all Trees that “a Tree is an Evergreen”. Similarly, an EmployeeWithTerritory “is
an” Employee—but not the other way around—so Employee is the base class.

You can use the terms superclass and subclass as synonyms for base class and derived
class. Thus, Evergreen can be called a subclass of the Tree superclass.You can also use
the terms parent class and child class. An EmployeeWithTerritory is a child to the
Employee parent. Use the pair of terms with which you are most comfortable; all of
these terms will be used interchangeably throughout the book.

As an alternate way to discover which of two classes is the base class or subclass, you can
try saying the two class names together.When people say their names together, they state
the more-specific name before the all-encompassing family name, as in “Ginny Kroening”.
Similarly, with classes, the order that “makes more sense” is the child-parent order.
“Evergreen Tree”makes more sense than “Tree Evergreen”, thus Evergreen is the child class.

Finally, you usually can distinguish superclasses from their subclasses by size.Although it
is not required, in general a subclass is larger than a superclass because it usually has addi-
tional fields and methods. A subclass description might look small, but any subclass
contains all the fields and methods of its superclass, as well as the new, more-specific
fields and methods you add to that subclass.

EXTENDING CLASSES

You use the keyword extends to achieve inheritance within the Java programming lan-
guage. For example, the class header public class EmployeeWithTerritory
extends Employee creates a superclass-subclass relationship between Employee and
EmployeeWithTerritory. Each EmployeeWithTerritory automatically receives the data
fields and methods of the superclass Employee; you then add new fields and methods to
the newly created subclass. Figure 11-6 shows an EmployeeWithTerritory class.

You used the phrase extendsƒJApplet throughout Chapters 9 and 10.
Every Swing applet that you write is a child of the JApplet class.

When you write a program that instantiates an object using the statement
EmployeeWithTerritory northernRep = new EmployeeWithTerritory();,
then you can use any of the following statements to get field values for northernRep:

� northernRep.getEmpNum();

� northernRep.getEmpSal();

� northernRep.getTerritoryNum();

Tip

390 Chapter 11 Introduction to Inheritance

Extending Classes 391

The northernRep object has access to all three methods—two methods that it inherits
from Employee and one method that belongs to EmployeeWithTerritory.

Similarly, any of the following statements are legal:

� northernRep.setEmpNum(915);

� northernRep.setEmpSal(210.00);

� northernRep.setTerritoryNum(5);

Inheritance is a one-way proposition; a child inherits from a parent, not the other way
around. If a program instantiates an Employee object, as in EmployeeƒaClerkƒ=
newƒEmployee;, then the Employee object does not have access to the
EmployeeWithTerritory methods. Employee is the parent class, and aClerk is an object
of the parent class. It makes sense that a parent class object does not have access to its
child’s data and methods.When you create the parent class, you will not know how many
future subclasses there might be, or what their data or methods might look like. In addi-
tion, subclasses are more specific. An Orthodontist class and Periodontist class are
children of the Dentist class.You do not expect all members of the general parent class
Dentist to have the Orthodontist’s braces() method or the Periodontist’s deepClean()
method. However, Orthodontist objects and Periodontist objects have access to the more
general Dentist methods takeXRays() and billPatients().

Next you will create a working example of inheritance.You will create this example in
four stages:

1. First, you will create a general Event class for Event Handlers Incorporated.This
Event class will be small—it will hold just one data field and two methods.

2. After you create the general Event class, you will write a program to demon-
strate its use.

3. Then you will create a more-specific DinnerEvent subclass that inherits the
attributes of the Event class.

Figure 11-6 EmployeeWithTerritory class

public class EmployeeWithTerritory extends Employee
{
 private int territoryNum;
 public int getTerritoryNum()
 {
 return territoryNum;
 }
 public void setTerritoryNum(int num)
 {
 territoryNum = num;
 }
}

11

4. Finally, you will modify the demonstration program to add an example using
the DinnerEvent class.

To create the general Event class:

1. Open a new file in your text editor, and then enter the following first few
lines for a simple Event class.The class will host one integer data field—the
number of guests expected at the event.

publicƒclassƒEvent
{
ƒprivateƒintƒeventGuests;

2. To the Event class, add the following method that displays the number of
eventGuests:

publicƒvoidƒprintEventGuests()
{
ƒSystem.out.println("Eventƒguests:ƒ"ƒ+ƒeventGuests);
}

3. Add a second method that prompts the user for the number of guests and
stores the response in the eventGuests field. Begin by typing the following
method header, which includes the throwsƒException clause that handles
data entry:

publicƒvoidƒsetEventGuests()ƒthrowsƒException
{

You first learned about throwsƒException in Chapter 5.

4. Enter the following code to add an integer variable to hold each character as
it is read from the keyboard and a String variable to which you will add each
numeric character the user enters:

charƒinChar;
StringƒguestsStringƒ=ƒnewƒString("");

5. Prompt the user for the guest number and read the response using the fol-
lowing code:

System.out.print
ƒ("Enterƒtheƒnumberƒofƒguestsƒatƒyourƒeventƒ");
inCharƒ=ƒ(char)System.in.read();

6. Enter the following while loop.While the user continues to enter digits, add
each to a String.

while(inCharƒ>=ƒ'0'ƒ&&ƒinCharƒ<=ƒ'9')
{

Tip

392 Chapter 11 Introduction to Inheritance

Extending Classes 393

ƒguestsStringƒ=ƒguestsStringƒ+ƒinChar;
ƒinCharƒ=ƒ(char)System.in.read();
}

7. When the user finishes entering digits, use the parseInt() method to assign
the String value to the eventGuests data field. In addition, add one more
read() statement to absorb the extra byte from [Enter].

ƒeventGuestsƒ=ƒInteger.parseInt(guestsString);
ƒSystem.in.read();
ƒ}
}

8. Save the file as Event.java in the Chapter.11 folder on your Student Disk. At
the command prompt, compile the class using the javacƒEvent.java
command. If necessary, correct any errors and compile again.

Now that you have created a class, you can use it in an application or Swing applet. A
very simple application creates an Event object, sets a value for the data field, and then
displays the results.

To write a simple application that uses the Event class:

1. Open a new file in your text editor.

2. Write a UseSimpleEvent program that has one method—a main() method.
Enter the following main() method, which declares an Event object, supplies it
with a value, and then prints the value.Add a closing curly brace for the class:

publicƒclassƒUseSimpleEvent
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{
ƒƒEventƒanEventƒ=ƒnewƒEvent();
ƒƒanEvent.setEventGuests();
ƒƒanEvent.printEventGuests();
ƒ}
}

3. Save the file as UseSimpleEvent.java in the Chapter.11 folder on your Student
Disk. Compile the program using the javacƒUseSimpleEvent.java com-
mand.After the program compiles without errors, run the program by typing
javaƒUseSimpleEvent, type 100 and press [Enter], type Evans and press
[Enter], then type 75 and press [Enter].The program’s output appears in
Figure 11-7.

Next you will create a new class named DinnerEvent.A DinnerEvent “is a” type of Event
at which dinner is served, so DinnerEvent will be a child class of Event.

11

To create a DinnerEvent class that extends Event:

1. Open a new file in your text editor, and type the following header for the
DinnerEvent class:

publicƒclassƒDinnerEventƒextendsƒEvent
{

2. A DinnerEvent contains a number of guests, but you do not have to define
the variable here.The variable is already defined in Event, which is the super-
class of this class.You only need to add any variables that are particular to a
DinnerEvent. Enter the following code to add a character to hold the dinner
menu choice, which will be b or c (for beef or chicken) for each
DinnerEvent object: charƒdinnerChoice;.

3. The Event class already contains methods to set and print the number of
guests, so DinnerEvent only needs methods to print and set the dinnerChoice
variable.To keep this example simple, you will not validate the input charac-
ter to ensure that it is b or c; you can add this improvement to the method
later.The printDinnerChoice() method will assume that if the choice is not
beef, it must be chicken.Type the printDinnerChoice() method as follows:

publicƒvoidƒprintDinnerChoice()
{
ƒif(dinnerChoiceƒ==ƒ'b')
ƒƒSystem.out.println("Dinnerƒchoiceƒisƒbeef");
ƒelse
ƒƒSystem.out.println("Dinnerƒchoiceƒisƒchicken");
}

4. Enter the following setDinnerChoice() method, which prompts the user for the
choice of entrées at the event, and then add a closing curly brace for the class:

ƒpublicƒvoidƒsetDinnerChoice()ƒthrowsƒException
{
ƒƒSystem.out.println("Enterƒdinnerƒchoice");

Figure 11-7 Output of the UseSimpleEvent program

394 Chapter 11 Introduction to Inheritance

Extending Classes 395

ƒƒSystem.out.print("bƒforƒbeef,ƒcƒforƒchickenƒ");
ƒƒdinnerChoiceƒ=ƒ(char)System.in.read();
ƒƒSystem.in.read();ƒSystem.in.read();
ƒ}
}

5. Save the file as DinnerEvent.java in the Chapter.11 folder on your Student
Disk, and then compile it.

Now you can modify the UseSimpleEvent program so that it creates a DinnerEvent as
well as a plain Event.

To modify the UseSimpleEvent program:

1. Open the UseSimpleEvent.java file in your text editor.

2. Change the class name from UseSimpleEvent to UseDinnerEvent.

3. Position your insertion point at the end of the line that constructs anEvent,
and then press [Enter] to start a new line.Type the following println() state-
ment so that when you run the program you will know that you are using
the Event class to create the event:

System.out.println("Aƒplainƒevent");

4. Position your insertion point at the end of the line that prints the event
guests (just before the closing curly braces), and then press [Enter] to start a
new line. Add the following two new statements—one constructs a Dinner
event, and the other prints a line so that when you run the program you will
understand you are creating a DinnerEvent:

DinnerEventƒaDinnerEventƒ=ƒnewƒDinnerEvent();
System.out.println("Anƒeventƒwithƒdinner");

5. Add the following method calls to set the number of guests and dinner
choice for the DinnerEvent object. Even though the DinnerEvent class does
not contain a setEventGuests() method, its parent class (Event) does, so
aDinnerEvent can use the setEventGuests() method.

aDinnerEvent.setEventGuests();
aDinnerEvent.setDinnerChoice();

6. Enter the following code to call the methods that print the entered data:

aDinnerEvent.printEventGuests();
aDinnerEvent.printDinnerChoice();

7. Save the file as UseDinnerEvent.java in the Chapter.11 folder on your
Student Disk. Compile the program and run it using the values shown in
Figure 11-8.The DinnerEvent object successfully uses the data field and
methods of its superclass, as well as its own data field and methods.

11

OVERRIDING SUPERCLASS METHODS

When you create a new subclass by extending an existing class, the new subclass con-
tains data and methods that were defined in the original superclass. Sometimes those
superclass data fields and methods are not entirely appropriate for the subclass objects.

When you use the English language,you often use the same method name to indicate diverse
meanings. For example, if you think of MusicalInstrument as a class, you can think of play()
as a method of that class. If you think of various subclasses such as Guitar and Drum, you
know that you carry out the play() method quite differently for each subclass.Using the same
method name to indicate different implementations is called polymorphism. The word
polymorphism means “many forms”; many forms of action take place, even though you use
the same word to describe the action. In other words, there are many forms of the same word
depending on the object associated with the word.

For another example, you can create an Employee superclass containing data fields such as
firstName, lastName, socialSecurityNumber, dateOfHire, rateOfPay, and so on.The meth-
ods contained in the Employee class include the usual set and get methods. If your usual
time period for payment to each Employee object is weekly, then your getRateOfPay()
method might include a statement such as System.out.println("Pay is " +
rateOfPay + " per week");.

Imagine your company has a few Employees who are not paid weekly. Maybe some are
paid by the hour, and others are Employees whose work is contracted on a job-to-job basis.
Because each Employee type requires different paycheck-calculating procedures, you might
want to create subclasses of Employee, such as HourlyEmployee and ContractEmployee.

When you call the getRateOfPay() method for an HourlyEmployee object, you want
the display to include the phrase “per hour”, as in “Pay is $8.75 per hour”. When
you call the getRateOfPay() method for a ContractEmployee, include “per contract”
as in “Pay is $2000 per contract”. Each class—the Employee superclass and the two
subclasses—requires its own getRateOfPay() method. Fortunately, if you create

Figure 11-8 Output of the UseDinnerEvent program

396 Chapter 11 Introduction to Inheritance

Overriding Superclass Methods 397

separate getRateOfPay() methods for each class, then each class’s objects will use the
appropriate method for that class.

It is important to note that each subclass method overrides any method in the
parent class that has the same name and argument list.

If you could not override superclass methods, you could always create unique names for each
subclass method, such as getRateOfPayForHourly() and getRateOfPayForContractual(), but
the classes you create are easier to write and understand if you use one reasonable name for
methods that do essentially the same thing. Because you are attempting to get the rate of pay
for each object, getRateOfPay() is an excellent method name for all three object types.

You already have overridden methods in your Swing applets. When you write
your own init() or start() method within a Swing applet, you are overriding
the automatically supplied superclass version you get when you use the
phrase extendsƒJApplet.

If a superclass and its subclass have methods with the same name but differ-
ent argument lists, you are overloading methods, and not overriding them.
You learned about overloading methods in Chapter 4.

Next you will create two methods with the same name, printHeader(), with one ver-
sion in the Event superclass and another in the DinnerEvent subclass.When you call the
printHeader() method, the correct version will execute based on the object you use.

To demonstrate that subclass methods override superclass methods with the
same name:

1. In your text editor, open the Event.java file in the Chapter.11 folder on
your Student Disk. Change the class name from Event to EventWithHeader
because this new class will contain a method that allows you to print a
header line of explanatory text with each class object. Save the file as
EventWithHeader.java in the Chapter.11 folder on your Student Disk. In
addition to providing a descriptive name, changing the class name serves
another purpose. By giving the class a new name, you retain the original class
on your disk so you can study the differences later.

2. Position the insertion point at the end of the line that contains the closing
curly brace for the printEventGuests() method, and then press [Enter] to
start a new line.

3. Enter the following printHeader() method:

publicƒvoidƒprintHeader()
{
ƒSystem.out.println("Simpleƒevent:ƒ");
}

Tip

Tip

Tip

11

4. Save the file, and then compile it.

5. Open the DinnerEvent.java file in the Chapter.11 folder. Change the class
name from DinnerEvent to DinnerEventWithHeader, and change the class
from which it extends—Event—to EventWithHeader. Save the file as
DinnerEventWithHeader.java in the Chapter.11 folder on your Student Disk.

6. Position your insertion point at the end of the line that contains the closing
curly brace for the printDinnerChoice() method, and then press [Enter] to
start a new line of text. Add the following printHeader() method to this class:

publicƒvoidƒprintHeader()
{
ƒSystem.out.println("Dinnerƒevent:ƒ");
}

7. Save the file, and then compile it.

You just created a DinnerEventWithHeader class that contains a printHeader() method.
Then you extended the class by creating a DinnerEvent subclass containing a method
with the same name. Now you will write a program that demonstrates that the correct
method executes depending on the object.

To create a program that demonstrates that the correct printHeader() method
executes depending on the object:

1. Open a new file in your text editor, and then enter the first few lines of a
UseEventWithHeader class:

publicƒclassƒUseEventWithHeader
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{

2. Enter the following code to create two objects, EventWithHeader and
DinnerEventWithHeader:

EventWithHeaderƒanEventƒ=ƒnewƒEventWithHeader();
DinnerEventWithHeaderƒaDinnerEventƒ=ƒ
newƒDinnerEventWithHeader();

3. Enter the following code to call the three EventWithHeader methods:

anEvent.printHeader();
anEvent.setEventGuests();
anEvent.printEventGuests();

4. Enter the following code to call the five DinnerEventWithHeader methods,
and then add the closing curly brace for the class:

aDinnerEvent.printHeader();
aDinnerEvent.setEventGuests();
aDinnerEvent.setDinnerChoice();
aDinnerEvent.printEventGuests();

398 Chapter 11 Introduction to Inheritance

Working with Superclasses that Have Constructors 399

ƒƒƒƒaDinnerEvent.printDinnerChoice();
ƒƒ}
}

5. Save the file as UseEventWithHeader.java in the Chapter.11 folder on
your Student Disk. Compile and run the program. Input the values shown in
Figure 11-9. Be sure to notice that for each type of object, the correct
method executes.

WORKING WITH SUPERCLASSES THAT HAVE CONSTRUCTORS

When you create any object, as in SomeClassƒanObjectƒ=ƒnewƒSomeClass();,
you are calling a class constructor method that has the same name as the class itself.When
you instantiate an object that is a member of a subclass, you are actually calling at least
two constructors: the constructor for the base class and the constructor for the extended,
derived class.When you create any subclass object, the superclass constructor must exe-
cute first, and then the subclass constructor executes.

In the examples of inheritance so far in this chapter, each class contained default con-
structors, so their execution was transparent. However, you should realize that when you
create an object using HourlyEmployeeƒclerkƒ=ƒnewƒHourlyEmployee();
(where HourlyEmployee is a subclass of Employee), both the Employee() and
HourlyEmployee() constructors execute.

You can create a class whose constructor does nothing but print a message.Then, when
you extend the class, you can create a subclass constructor that prints a different mes-
sage.When the program is run, both classes will print messages confirming that the con-
structor in each class is called.

To demonstrate that a subclass constructor calls the superclass constructor first:

1. Open a new file in your text editor.

Figure 11-9 Output of the UseEventWithHeader program

11

2. Create the following superclass, whose constructor prints a message on
the screen:

publicƒclassƒASuperClass
{
ƒpublicƒASuperClass()
ƒ{
ƒƒSystem.out.println("Inƒsuperclassƒconstructor");
ƒ}
}

3. Save the file as ASuperClass.java in the Chapter.11 folder on your Student
Disk, and then compile it.

4. Open a new file in your text editor, and then enter the following program to
create a derived subclass that extends the superclass.The constructor of the
subclass also prints a message.

publicƒclassƒASubClassƒextendsƒASuperClass
{
ƒpublicƒASubClass()
ƒ{ƒƒ
ƒƒSystem.out.println("Inƒsubclassƒconstructor");
ƒ}
}

5. Save the file as ASubClass.java in the Chapter.11 folder on your Student
Disk, and then compile it.

6. Open a new text file and enter the following program that does just one
thing—it creates a child class object:

publicƒclassƒDemoConstructors
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒASubClassƒchildƒ=ƒnewƒASubClass();
ƒ}
}

7. Save this file as DemoConstructors.java in the Chapter.11 folder on your
Student Disk. Compile the file, and then execute the program.The output
appears as shown in Figure 11-10. Even though you create only one subclass
object, two separate messages print—one from the superclass constructor and
one from the subclass constructor.

Of course, most constructors perform many more tasks than printing a message to
inform you that they exist.When constructors initialize variables, you usually want the
superclass constructor to take care of initializing the data fields that originate in the
superclass.The subclass constructor only needs to initialize the data fields that are spe-
cific to the subclass.

400 Chapter 11 Introduction to Inheritance

Working with Superclasses that Have Constructors 401

Next you will add a constructor to the Event class you created for Event Handlers
Incorporated.When you instantiate a subclass DinnerEvent object, the superclass Event
constructor will execute.

To add a constructor to the Event class:

1. Open the EventWithHeader.java file in your text editor. Use your text edi-
tor’s Save As command to save the file as EventWithConstructor.java in
the Chapter.11 folder on your Student Disk. Be sure to change the class
name from EventWithHeader to EventWithConstructor.

2. Position your insertion point to the right of the statement that declares the
eventGuests data field, and then press [Enter] to start a new line.Type the
following constructor that initializes the number of guests to zero:

publicƒEventWithConstructor()
{
ƒeventGuestsƒ=ƒ0;
}

3. Save the file and compile it.

4. In your text editor, open the DinnerEventWithHeader.java file from the
Chapter.11 folder. Change the class header so that both the class name and
the parent class name read as follows:

publicƒclassƒDinnerEventWithConstructor
ƒextendsƒEventWithConstructor

5. Save the file as DinnerEventWithConstructor.java in the Chapter.11
folder on your Student Disk, and then compile it.

6. In your text editor, open a new file so you can write a program to demon-
strate the use of the base class constructor with both a base class object and
an extended class object.To begin the class, you create a class header, a main()

Figure 11-10 Output of the DemoConstructors program

11

method header, and definitions of two objects—one is a member of the base
class, and the other is a member of the extended class:

publicƒclassƒUseEventsWithConstructors
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒEventWithConstructorƒanEventƒ=ƒ
ƒƒƒnewƒEventWithConstructor();
ƒƒDinnerEventWithConstructorƒaDinnerEventƒ=ƒ
ƒƒƒnewƒDinnerEventWithConstructor();

7. Add the following statements that print a header and the number of guests
for the parent class member:

ƒƒanEvent.printHeader();
ƒƒanEvent.printEventGuests();

8. Add statements that print a header and the number of guests for the child
class member, and then add a closing curly brace for the class:

ƒƒaDinnerEvent.printHeader();
ƒƒaDinnerEvent.printEventGuests();
ƒƒ}
}

9. Save the program as UseEventsWithConstructors.java in the Chapter.11
folder on your Student Disk.Then compile and run the program.The output
is shown in Figure 11-11.The guest number is initialized correctly for objects
of both classes.

Figure 11-11 Output of the UseEventsWithConstructors program

402 Chapter 11 Introduction to Inheritance

Using Superclass Constructors that Require Arguments 403

USING SUPERCLASS CONSTRUCTORS THAT REQUIRE ARGUMENTS

When you create a class and do not provide a constructor, Java automatically supplies
you with one that never requires arguments.When you write your own constructor, you
replace the automatically supplied version. Depending on your needs, the constructor
you create for a class might require arguments.When you use a class as a superclass, and
the class has a constructor that requires arguments, then you must make sure that any
subclasses provide the superclass constructor with what it needs.

Don’t forget that a class can have many constructors. As soon as you create at
least one constructor for a class, you no longer can use an automatic version.

When a superclass constructor requires arguments, you must include a constructor for
each subclass you create.Your subclass constructor can contain any number of statements,
but the first statement within the constructor must call the superclass constructor. Even
if you have no other reason to create a subclass constructor, you must write the subclass
constructor so it can call its superclass’ constructor.

The format of the statement that calls a superclass constructor is super(list of
arguments);.The keyword super always refers to the superclass of the class in which
you use it. Suppose that you create an Employee class with a constructor that requires
three arguments—a character, a double, and an integer—and you create an
HourlyEmployee class that is a subclass of Employee.The following code shows a valid
constructor for HourlyEmployee:

publicƒHourlyEmployee()
{
ƒsuper('P',ƒ12.35,ƒ40);
ƒ//ƒOtherƒstatementsƒcanƒgoƒhere
}

The HourlyEmployee constructor requires no arguments, but it passes three arguments
to its superclass constructor. A different HourlyEmployee constructor can require argu-
ments. It could then pass the appropriate arguments to the superclass constructor. For
example:

publicƒHourlyEmployee(charƒdept,ƒdoubleƒrate,ƒintƒhours)
{
ƒsuper(dept,ƒrate,ƒhours);
ƒ//ƒOtherƒstatementsƒcanƒgoƒhere
}

Except for any comments, the super() statement must be the first statement
in the subclass constructor. Not even data field definitions can precede it.

Tip

Tip

11

Although it seems that you should be able to use the superclass constructor
name to call the superclass constructor, Java does not allow this. You must
use the keyword super.

Next you will modify the Event class so that its constructor requires arguments.Then,
to show how the superclass and subclass constructors work, you will create a subclass
object that calls its superclass constructor.

To demonstrate how inheritance works when class constructors require
arguments:

1. Open the EventWithConstructor.java file in your text editor, and then
change the class name to EventWithConstructorArg.

2. Change the current constructor name so it matches the class name, and then
change the constructor argument list so it requires an integer argument. In
other words, change publicƒEventWithConstructor() to
publicƒEventWithConstructorArg(intƒguests).

3. Change the constructor statement that sets eventGuests to zero as follows so
that it sets the event guests field to the constructor’s argument value:
eventGuestsƒ=ƒguests;.

4. Save the file as EventWithConstructorArg.java in the Chapter.11 folder
on your Student Disk, and then compile it.

Next you will add a constructor to the DinnerEvent class so it can call its parent’s con-
structor.The child class constructor requires an integer argument, which it then passes
to the parent class constructor.

To create the child class:

1. Open the DinnerEventWithConstructor.java file in your text editor.

2. Change the class header as follows so that the name of this class is
DinnerEventWithConstructorArg, and thus inherits from
EventWithConstructorArg:

publicƒclassƒDinnerEventWithConstructorArg
ƒextendsƒEventWithConstructorArg

3. Position your insertion point after the declaration of the dinnerChoice field,
and then press [Enter] to start a new line. Create the following constructor
that requires an integer argument and passes it to the superclass constructor:

publicƒDinnerEventWithConstructorArg(intƒguests)
{
ƒsuper(guests);
}

4. Save the file as DinnerEventWithConstructorArg.java in the Chapter.11
folder on your Student Disk, and then compile it.

Tip

404 Chapter 11 Introduction to Inheritance

Using Superclass Constructors that Require Arguments 405

Now you can create a program to demonstrate creating parent and child class objects
when the parent constructor needs an argument.

To create the program:

1. Open a new file in your text editor, and then enter the following first few
lines of a program that demonstrates using super():

publicƒclassƒUseEventsWithConstructorArg
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{

2. Enter the following code to create an EventWithConstructorArg object and
give it a value for the number of guests:

EventWithConstructorArgƒanEventƒ=
ƒƒnewƒEventWithConstructorArg(45);

3. Add the following code to create a DinnerEventWithConstructorArg object.
This constructor also requires an integer argument.

DinnerEventWithConstructorArgƒaDinnerEventƒ=
ƒƒnewƒDinnerEventWithConstructorArg(65);

4. Add the following statements to print explanations and guest fields for each
object, and then add the closing curly brace for the class:

ƒanEvent.printHeader();
ƒanEvent.printEventGuests();
ƒaDinnerEvent.printHeader();
ƒaDinnerEvent.printEventGuests();
ƒ}
}

5. Save the file as UseEventsWithConstructorArg.java in the Chapter.11
folder on your Student Disk, then compile and execute the program.The
output appears in Figure 11-12. Each object is correctly initialized because
the superclass constructor was correctly called in each case.

Figure 11-12 Output of the UseEventsWithConstructorsArg program

11

ACCESSING SUPERCLASS METHODS

Earlier in this chapter, you learned that a subclass could contain a method with the same
name and arguments as a method in its parent class.When this happens, using the sub-
class method overrides the superclass method. However, you might want to use the
superclass method within a subclass. If so, you can use the keyword super to access the
parent class method.To demonstrate, you will create a simple subclass that has a method
with the same name as a method that is part of its superclass.

To access a superclass method from within a subclass:

1. Open a new file in your text editor, then create the following parent class
with a single method:

publicƒclassƒAParentClass
{
ƒprivateƒintƒaVal;
ƒpublicƒvoidƒprintClassName()
ƒ{
ƒƒSystem.out.println("AParentClass");
ƒ}
}

2. Save the file as AParentClass.java in the Chapter.11 folder on your Student
Disk, and then compile it.

3. Open a new text file, then create the following child class that inherits from
the parent.The child has one method.The method has the same name as the
parent’s method, but the child can call the parent’s method without conflict
by using the keyword super.

publicƒclassƒAChildClassƒextendsƒAParentClass
{
ƒpublicƒvoidƒprintClassName()
ƒ{
ƒƒSystem.out.println("IƒamƒAChildClass");
ƒƒSystem.out.println("Myƒparentƒisƒ");
ƒƒsuper.printClassName();
ƒ}
}

4. Save the file as AChildClass.java in the Chapter.11 folder on your Student
Disk, and then compile it.

5. Finally, open a new text file and enter the following demonstration program
to show that the child class can call its parent’s method:

publicƒclassƒDemoSuper
{

406 Chapter 11 Introduction to Inheritance

Learning About Information Hiding 407

ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒ{
ƒƒAChildClassƒchildƒ=ƒnewƒAChildClass();
ƒƒchild.printClassName();
ƒ}
}

6. Save the file as DemoSuper.java in the Chapter.11 folder on your Student
Disk, then compile and execute the program.As the output in Figure 11-13
shows, even though the child and parent classes have methods with the same
name, the child class can use the parent class method correctly by employing the
keyword super.

You can use the keyword this as the opposite of super. For example, if
a superclass and its subclass each have a method named someMethod(),
then within the subclass, super.someMethod() refers to the superclass
version of the method. Both someMethod() and this.someMethod() refer to
the subclass version.

LEARNING ABOUT INFORMATION HIDING

The AStudent class shown in Figure 11-14 is a typical construction for Java classes.The
keyword private precedes each data field, and the keyword public precedes each
method. As a matter of fact, the four get and set methods are necessary within the
AStudent class specifically because the data fields are private. Without the public
get and set methods, there would be no way to access these private data fields.

Tip

Figure 11-13 Output of the DemoSuper program

11

When a program is a class user of AStudent (that is, it instantiates the AStudent object),
then the user cannot directly alter the data in any private field. For example, when you
write a main() method that creates a AStudent as AStudentƒsomeStudentƒ=ƒnew
AStudent();, you cannot change the AStudent’s idNum with a statement such as
someStudent.idNumƒ=ƒ812;.The idNum of the someStudent object is not accessi-
ble in the main() program that uses the AStudent object because idNum is private.
Only methods that are part of the AStudent class itself are allowed to alter AStudent data.
To alter an AStudent’s idNum, you must use the public method setIdNum(), as in
someStudent.setIdNum(812);.

The concept of keeping data private is known as information hiding. When you
employ information hiding, your data can be altered only by the methods you choose
and only in ways that you can control. For example, you might want the setIdNum()
method to check to make sure the idNum is within a specific range of values. If a class
other than the AStudent class itself could alter idNum, then idNum could be assigned a
value that the AStudent class couldn’t control.

You first learned about information hiding and using the public and
private keywords in Chapter 3. You may want to review these concepts.

When a class serves as a superclass to other classes you create, your subclasses inherit all
the data and methods of the superclass, with one exception: private members of the

Tip

Figure 11-14 AStudent class

public class AStudent
{
 private int idNum;
 private double semesterTuition;
 public int getIdNum()
 {
 return idNum;
 }
 public double getTuition()
 {
 return semesterTuition;
 }
 public void setIdNum(int num)
 {
 idNum = num;
 }
 public void setTuition(double amt)
 {
 semesterTuition = amt;
 }
}

408 Chapter 11 Introduction to Inheritance

Learning About Information Hiding 409

parent class are not inherited. If you could use private data outside its class, you would
use the advantages of information hiding. If you intend the AStudent class data field
idNum to be private, then you don’t want any outside classes using the field. If a new
class could simply extend your AStudent class and get to its data fields without going
through the proper channels, then information hiding would not be operating.

There are occasions when you want to access parent class data from within a subclass.
For example, suppose you create two child classes that extend the AStudent class:
PartTimeStudent and FullTimeStudent. If you want the subclass methods to be able to
access idNum and semesterTuition, then those data fields cannot be private. However,
if you don’t want other, nonchild classes to access those data fields, then they cannot be
public.To solve this problem, you can create the fields using the modifier protected.
Using the keyword protected provides you with an intermediate level of security
between public and private access. If you create a protected data field or method, it can
be used within its own class or in any classes extended from that class, but it cannot be
used by “outside” classes. In other words, protected members are those that can be used
by a class and its descendents.

Next you will create a superclass with a protected field using the protected access
modifier with a superclass data field so that you can access the field within a subclass
method.Then you will create a method to set the number of event guests, and create a
simple program to test this class.

To create a superclass with a protected field:

1. In your text editor, open the EventWithHeader.java file. For simplicity, you
will use the file that you created before adding constructors. Change the class
name to EventWithProtectedData.

2. Change the modifier on the eventGuests field from private to protected.

3. Save the file as EventWithProtectedData.java in the Chapter.11 folder on
your Student Disk, and then compile it.

4. Open the DinnerEventWithHeader.java file. Change its name and its parent’s
name so the class header reads as follows:

publicƒclassƒDinnerEventWithProtectedData
ƒextendsƒEventWithProtectedData

Assume that Event Handlers Incorporated requires at least 10 guests for an
event with dinner, but there is no minimum guest number for other event
types.To ensure that DinnerEvents (unlike plain Events) have at least 10 guests,
the subclass setEventGuests() method will override the setEventGuests()
method in the superclass.The subclass version of the method will call the
superclass method, but if the user does not enter a guest number of at least 10,
the subclass method will call the superclass method again.

11

5. To create the subclass setEventGuests() method, position your insertion point
at the end of the closing curly brace of the setDinnerChoice() method, press
[Enter] to start a new line, and then type the following header for the
method and the method’s opening curly brace:

publicƒvoidƒsetEventGuests()ƒthrowsƒException
{

6. Call the superclass method with the same name:

super.setEventGuests();

7. Check the value of the eventGuests data field using the following while
loop. Because the field is protected in the base class, it can be accessed
here in the derived class. If the guest number continues to be too low, issue
an error message and call the superclass method.

while(eventGuestsƒ<ƒ10)
{
ƒSystem.out.print("Minimumƒrequiredƒforƒdinner:ƒ");
ƒSystem.out.println("10ƒguests!");
ƒsuper.setEventGuests();
}

If eventGuests had not been inherited (that is, if it was still private), you
would need to use publicƒgetEventGuests() to access its value.

8. Add the closing curly brace for the method, save the file as
DinnerEventWithProtectedData.java in the Chapter.11 folder on your
Student Disk, and then compile it.

9. Next, create a simple program to test this class. Open a new file in your text
editor and then enter the following first few lines of a demonstration program:

publicƒclassƒUseProtected
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒthrowsƒException
ƒ{

10. Create the aDinnerEvent object by entering the following code:

DinnerEventWithProtectedDataƒaDinnerEventƒ=ƒ
ƒnewƒDinnerEventWithProtectedData();

11. Using the newly created object, print an explanation, set the field values, then
print the field values by entering the following code:

aDinnerEvent.printHeader();
aDinnerEvent.setEventGuests();
aDinnerEvent.setDinnerChoice();

Tip

410 Chapter 11 Introduction to Inheritance

Using Methods You Cannot Override 411

aDinnerEvent.printEventGuests();
aDinnerEvent.printDinnerChoice();

12. Add the closing curly brace for the main() method and the closing curly
brace for the class, and then save the file as UseProtected.java in the
Chapter.11 folder on your Student Disk.

13. Compile and execute the program.When you run the program, make several
attempts to set the number of dinner guests to values below 10.The program
will continue to prompt you until your guest number meets the required
minimum. A sample program output appears in Figure 11-15.

USING METHODS YOU CANNOT OVERRIDE

There are four types of methods that you cannot override in a subclass:

� private methods

� static methods

� final methods

� Methods within final classes

You already know that when you create a private variable in a superclass, the variable
is not available for use in a subclass. Similarly, if you create a private method in a
superclass, the method is not available for use in any class extended from the superclass.
You also know that a subclass can access private variables in the superclass through
the use of nonprivate methods. Again, similarly, if a superclass has a nonprivate method
that accesses a private method, then a child class can use the inherited nonprivate
method to access the noninherited private method.

For example, Figure 11-16 shows a superclass named Super that contains two methods:
one method is public and the other method is private.

Figure 11-15 Sample output from the UseProtected program
11

Figure 11-17 shows a subclass that attempts to extend Super. If you compile the Sub class,
you will receive the error message, “No method matching printPrivate() found in class
Sub”.The statement that calls printPublic() works correctly because as a public method,
printPublic() is inherited by the Sub class.The printPublic() method calls printPrivate(),
which is perfectly legal because printPublic() and printPrivate() are methods within the
same class. However, within the Sub class, because the printPrivate() method is “invisi-
ble”, the compiler tells you that it doesn’t exist. As a private method, printPrivate() is
not inherited.

Additionally, you cannot override a method that is private in a parent class. For exam-
ple, examine the class in Figure 11-18.The Sub class extends the Super class shown in
Figure 11-16 and adds its own printPrivate() method.When a main() program creates a
Sub object, as in SubƒaSubObjectƒ=ƒnewƒSub();, and calls printPrivate() with
aSubObject.printMessages();, then the screen will show “This method is pri-
vate” from the Super class, and not “This will never print” from the Sub class method.
This makes sense when you consider that printPublic() is a method that is part of the
Super class.The printPublic() method calls the printPrivate() method from its own class.
The subclass shown in Figure 11-18 compiles without error, but does so as if the
printPrivate() method within the subclass does not exist.

Figure 11-17 Incorrect Sub class with a printPrivate() method

public class Sub extends Super
{
 public void printMessages()
 {
 printPublic();
 printPrivate();
 }
}

Figure 11-16 Super class

public class Super
{
 public void printPublic()
 {
 System.out.println("This method is public");
 printPrivate();
 }
 private void printPrivate()
 {
 System.out.println("This method is private");
 }
}

412 Chapter 11 Introduction to Inheritance

Using Methods You Cannot Override 413

In addition to private methods, you also cannot override static methods from a
parent class.You learned in Chapter 4 that static methods are also called class meth-
ods and that they have no objects associated with them.You call a static method using
the class name, not an object name. Recall that in Java the keyword static implies
uniqueness; a static method is unique to the base class and all its descendants.

The main() methods in Java applications are always static.

Methods carrying the access modifier final cannot be overridden by subclass methods.
For example, the statement publicƒfinalƒvoidƒgetEmpNum() is declared final
by placing the modifier in the class declaration. If getEmpNum() is an automatically avail-
able method in a Java program, any attempt to create a method with the same name will
result in an error. In Chapter 4, you learned that you can use the keyword final when
you want to create a constant, as in finalƒdoubleƒTAXRATEƒ=ƒ.065;.You can also
use the final modifier with methods when you don’t want the method to be overrid-
den.You use static as a method access modifier when you create class methods for
which you want to prevent overriding; you use final as a method access modifier when
you create instance methods for which you want to prevent overriding.

You can think of private and static methods as being implicitly final.

Because a final method’s definition can never change, the compiler optimizes the pro-
gram by removing the calls to final methods and replacing them with the expanded
code of their definitions at each method call location.This process is called inlining the
code.You are never aware that inlining is taking place; the compiler chooses to use this
procedure to save the overhead of calling a method.

Tip

Tip

Figure 11-18 Sub class with a invisible method

public class Sub extends Super
{
 public void printMessages()
 {
 printPublic();
 }
 private void printPrivate()
 {
 System.out.println("This will never print");
 }
}

11

The compiler chooses to inline a final method only if it is a small method
containing just one or two lines of code.

Finally, you can declare a class to be final. When you do so, all of its methods are
final, regardless of which access modifier precedes the method name. A final class
cannot be a parent.

Java’s Math class, which you learned about in Chapter 4, is an example of a
final class.

CHAPTER SUMMARY
❒ Inheritance is the principle that asserts that you can apply knowledge of a general

category to more-specific objects.The classes you create in object-oriented
programming languages can inherit data and methods from existing classes.When
you create a class through inheritance, you are automatically provided with data
fields and methods.

❒ A class that is used as a basis for inheritance is called a base class, a superclass, or a
parent class.When you create a class that inherits from a base class, it is called a
derived class, a subclass, or a child class. In general, a subclass is larger than a
superclass because you add new, more-specific fields and methods to a subclass, as
well as inherit fields and methods from the superclass.

❒ If you create separate methods for each subclass of a superclass, then each class’s
objects will use the appropriate method for that class. Each child class method
overrides the method that has the same name in the parent class. Using the same
method name to indicate different implementations is called polymorphism.

❒ When you instantiate an object that is a member of a subclass, you are actually
calling two constructors: the constructor for the superclass and the constructor for
the subclass.The base class constructor executes first, and then the subclass
constructor executes.

❒ When constructors initialize variables, you usually want the base class constructor
to take care of initializing the data fields that originate in the base class.The
derived class constructor must initialize only the data fields that are specific to the
derived class.

❒ When a superclass constructor requires arguments, you must create a constructor
for each subclass you create.The first statement within the constructor must call the
superclass constructor.The format of the statement that calls a superclass construc-
tor is super(listƒofƒarguments);.The keyword super always refers to the
superclass of the class in which you use it.

Tip

Tip

414 Chapter 11 Introduction to Inheritance

Review Questions 415

❒ When a program is a class user, it cannot directly alter the data in any private
field.The concept of keeping data private is known as information hiding.
Information hiding lets you control how data is used and altered.

❒ If you create a data field or method that uses the protected access modifier, then
the field or method can be used within its own class or in any classes extended
from that class, but cannot be used by “outside” classes.

❒ There are four types of methods that you cannot override in a subclass: private,
static, final, and methods within final classes.

❒ If you create a private method in a superclass, the method is not available for use
in any class extended from the superclass. If a superclass has a nonprivate method
that accesses a private method, then a child class can use the inherited nonpri-
vate method to access the noninherited private method.

❒ When you declare a class to be final, all of its methods are final, regardless of
which access modifier precedes the method name. A final class cannot be a parent.

REVIEW QUESTIONS
1. as an alternate way(s) to discover which of two classes is the

base class or subclass.

a. Look at the class size

b. Try saying the two class names together

c. Use polymorphism

d. Both a and b are correct.

2. Employing inheritance reduces errors because .

a. the new classes have access to fewer data fields

b. the new classes have access to fewer methods

c. you can copy methods that you already created

d. many of the methods you need have already been used and tested

3. A base class can also be called a .

a. child class

b. subclass

c. derived class

d. superclass

11

4. Which of the following choices most closely describes a parent class/child class
relationship?

a. Rose/Flower

b. Present/Gift

c. Dog/Poodle

d. Sparrow/Bird

5. The Java keyword that creates inheritance is .

a. static

b. enlarge

c. extends

d. inherits

6. A class named Building has a method named getFloors(). If School is a child class
of Building, and ModelHigh is an object of type School, then which of the fol-
lowing statements is valid?

a. Building.getFloors();

b. School.getFloors();

c. ModelHigh.getFloors();

d. All of the above statements are valid.

7. Which of the following statements is false?

a. A child class inherits from a parent class.

b. A parent class inherits from a child class.

c. Both of the above statements are false.

d. Neither of the above statements is false.

8. When a subclass method has the same name and argument types as a superclass
method, the subclass method can the superclass method.

a. override

b. overuse

c. overload

d. overcompensate

9. When you instantiate an object that is a member of a subclass, the
constructor executes first.

a. subclass

b. child class

c. extended class

d. parent class

416 Chapter 11 Introduction to Inheritance

Review Questions 417

10. The keyword super always refers to the of the class in which
you use it.

a. child class

b. derived class

c. sub class

d. parent class

11. If a superclass constructor requires arguments, then its subclass .

a. must contain a constructor

b. must not contain a constructor

c. must contain a constructor that requires arguments

d. must not contain a constructor that requires arguments

12. If a superclass constructor requires arguments, any constructor of its subclasses
must call the superclass constructor .

a. as the first statement

b. as the last statement

c. at some time

d. multiple times if multiple arguments are involved

13. A child class Motorcycle extends a parent class Vehicle. Each class constructor
requires one String argument.The Motorcycle class constructor can call the
Vehicle class constructor with the statement .

a. Vehicle("Honda");

b. Motorcycle("Harley");

c. super("Suzuki");

d. none of the above

14. In the Java programming language, the concept of keeping data private is known
as .

a. polymorphism

b. information hiding

c. data deception

d. concealing fields

15. If you create a data field or method that is , it can be used
within its own class or in any classes extended from that class.

a. public

b. protected

c. private

d. none of the above

11

16. Within a subclass, you cannot override methods.

a. public

b. private

c. protected

d. constructor

17. You call a static method using a(n) name.

a. class

b. superclass

c. object

d. none of the above

18. You use final as a method access modifier when you create
methods for which you want to prevent overriding.

a. class

b. superclass

c. subclass

d. instance

19. A compiler can decide to a final method.

a. duplicate

b. inline

c. redline

d. beeline

20. You use as a method access modifier when you create class
methods for which you want to prevent overriding.

a. final

b. static

c. private

d. public

EXERCISES
1. Create a class named Book that contains data fields for title and number of pages.

Include get and set methods for these fields. Next create a subclass named Textbook,
which contains an additional field that holds a grade level for the Textbook, and
additional methods to get and set the grade level field.Write a program that demon-
strates using objects of each class. Save the programs as Book.java, Textbook.java,
and DemoBook.java in the Chapter.11 folder on your Student Disk.

418 Chapter 11 Introduction to Inheritance

Exercises 419

2. Create a class named Square that contains data fields for height, width, and
surfaceArea, and a method named computeSurfaceArea(). Create a child class
named Cube. Cube contains an additional data field named depth, and a
computeSurfaceArea() method that overrides the parent method.Write a program
that instantiates a Square object and a Cube object and displays the surface areas of
the objects. Save the programs as Cube.java, Square.java, and Demo Square.java
in the Chapter.11 folder on your Student Disk.

3. Create a class named Order that performs order processing of a single item.The
superclass has four fields: customer name, customer number, quantity ordered, and
unit price. Include set and get methods for each field.This class also needs meth-
ods to compute the total price (quantity times unit price) and to display the
fields. Create a subclass that overrides computePrice() by adding a shipping and
handling charge of $4.00.Write a program that uses these classes. Save the pro-
grams as Order.java, HandlingShipping.java, and UseHandlingShipping.java
in the Chapter.11 folder on your Student Disk.

4. Create a class named Vacation that computes the amount of vacation time an
employee gets. If an employee has worked for more than five years, the total vaca-
tion time is three weeks annually; otherwise the employee gets two weeks annually.
Use a superclass that contains an integer field that holds the number of vacation
weeks, and get and set methods for the field. Use a superclass object for employees
who have earned two weeks of vacation. Use a subclass for three-weeks vacation.
Obtain the employee information from text fields in an applet. Use text boxes for
employee number, employee name, and number of years. Display the number of
weeks of vacation after computing the result. Save the programs as Vacation.java,
ExtraVacation.java, VacationHome.java, UseVacation.java, and
TestUseVacation.html in the Chapter.11 folder on your Student Disk.

5. a. Create a class named Year that contains a data field that holds the number of
days in the year. Include a get method that displays the number of days and a
constructor that sets the number of days to 365. Create a subclass named
LeapYear. LeapYear’s constructor overrides Year’s constructor and sets the day
field to 366.Write a program that instantiates one object of each class and
displays their data. Save the programs as Year.java, LeapYear.java, and
UseYear.java in the Chapter.11 folder on your Student Disk.

b. Add a method named daysElapsed() to the Year class you created in Exercise 5a.
The daysElapsed() method accepts two arguments representing a month and a
day; it returns an integer indicating the number of days that have elapsed since
January 1 of the year. Create a daysElapsed() method for the LeapYear class that
overrides the method in the Year class.Write a program that calculates the
days elapsed on March 1 for a Year and for a LeapYear. Save the programs as
Year2.java, LeapYear2.java, and UseYear2.java in the Chapter.11 folder on
your Student Disk.

11

6. Create a class named Computer that contains data fields for processor model (for
example, Pentium III) and clock speed in gigahertz (for example, 1.6). Include a get
method for each field and a constructor that requires a parameter for each field.
Create a subclass named MultimediaComputer that contains an additional integer
field for the CD-ROM speed.The MultiMedia class also contains a get method
for the new data field and a constructor that requires arguments for each of the
three data fields.Write a program to demonstrate creating and using an object of
each class. Save the programs as Computer.java, MultimediaComputer.java,
and UseComputer.java in the Chapter.11 folder on your Student Disk.

7. Create a class named HotelRoom that includes an integer field for the room num-
ber and a double field for the nightly rental rate. Include get methods for these
fields, and a constructor that requires an integer argument representing the room
number.The constructor sets the room rate based on the room number; rooms
numbered 299 and below are $69.95 per night, others are $89.95 per night. Create
an extended class named Suite whose constructor requires a room number and
adds a $40.00 surcharge to the regular hotel room rate based on the room number.
Write a program to demonstrate creating and using an object of each class. Save
the programs as HotelRoom.java, Suite.java, and UseHotelRoom.java in the
Chapter.11 folder on your Student Disk.

8. Create a class named Package with data fields for weight in ounces, shipping
method, and shipping cost.The shipping method is a character: A for air, T for
truck, or M for mail.The Package class contains a constructor that requires argu-
ments for weight and shipping method.The constructor calls a calculateCost()
method that determines the shipping cost based on the following:

The Package class also contains a display() method that displays the values in all
four fields. Create a subclass named InsuredPackage that adds an insurance cost
to the shipping cost based on the following:

Shipping Cost Before Insurance ($) Additional Cost ($)

0 to 1.00 2.45

1.01 to 3.00 3.95

3.01 and over 5.55

Weight (lb) Air Truck Mail

1 to 8 2.00 1.50 .50

9 to 16 3.00 2.35 1.50

17 and over 4.50 3.25 2.15

Shipping Method ($)

420 Chapter 11 Introduction to Inheritance

Exercises 421

Write a program that instantiates at least three objects of each type (Package and
InsuredPackage) using a variety of weights and shipping method codes. Display the
results for each Package and InsuredPackage. Save the programs as Package,
InsuredPackage, and UsePackage in the Chapter.11 folder on your Student Disk.

9. Write a program named CarRental that computes the cost of renting a car for a
day, based on the size of the car: economy, medium, or full size. Include a construc-
tor that requires the car size. Add a subclass to add the option of a car phone.Write
a program to use these classes. Save the programs as CarRental, CarPhone, and
UseCarRentalAndPhone in the Chapter.11 folder on your Student Disk.

10. Write a program named CollegeCourse that computes the cost of taking a college
course. Include a constructor that requires a course ID number. Add a subclass to
compute a lab fee for a course that uses a lab.Write a program to use these
classes. Save the programs as CollegeCourse, Lab, and UseCourse in the
Chapter.11 folder on your Student Disk.

11. Write a program named Discount that computes the price of an item. Include a
constructor that requires the quantity, item name, and item number. Add a subclass
to provide a discount based on the quantity ordered.Write a program to use these
classes. Save the programs as Discount, ComputeDiscount, and UseDiscount
in the Chapter.11 folder on your Student Disk.

12.Write a program named Vehicle that acts as a superclass for vehicle types.The
Vehicle class must contain private variables for the number of wheels and the
average number of miles per gallon.The Vehicle class must also contain a con-
structor with integer arguments for the number of wheels and range in miles, and
a toString() method to return the number of wheels and range in miles when
called.Write subclass programs Car and MotorCycle that extend the Vehicle class.
Each subclass should contain a privateƒstaticƒfinal integer variable that
sets the number of wheels for the subclass and a private variable to set the
number of passengers. Each subclass must have a toString() method for returning
the number of wheels, range, and passengers for the vehicle type.Write a
UseVehicle class to instantiate the two vehicle objects and print the object’s val-
ues. Save the programs as Vehicle, Car, MotorCycle, and UseVehicle in the
Chapter.11 folder on your Student Disk.

13. Create a class named Course that contains data fields for a course title and a
boolean variable that indicates whether the class is offered online. Include get and
set methods for these fields. Next create a subclass named OnLine, which contains
an additional field that holds a grade level for students eligible to sign up for a
course, and additional methods to get and set the grade level field.Write a pro-
gram that demonstrates using objects of each class. Save the programs as Course,
OnLine, and DemoCourse in the Chapter.11 folder on your Student Disk.

11

14. Each of the following files in the Chapter.11 folder on your Student Disk has syntax
and/or logical errors. In each case, determine the problem and fix the program.
After you correct the errors, save each file using the same filename preceded with
Fix. For example, DebugEleven1.java will become FixDebugEleven1.java.

a. DebugEleven1.java

b. DebugEleven2.java

c. DebugEleven3.java

d. DebugEleven4.java

CASE PROJECT
Wei’s Tea Shop asks you to write an Inventory control program to keep track of the boxes
of tea they serve to customers.The program will allow the user to enter the name of the
tea, the number of boxes on hand, and the number of boxes used during a one-day period.
The output will display the input data and the number of boxes remaining. Use dialog boxes
for program input and output.The program names are InventoryControl, InventorySold,
and UseInventorySold. The InventorySold class extendsƒInventoryControl and
prompts for the quantity of tea boxes sold.

Case
Project

422 Chapter 11 Introduction to Inheritance

423

CHAPTER

12
ADVANCED INHERITANCE

CONCEPTS
In this chapter, you will:

� Create and use abstract classes
� Use dynamic method binding
� Create arrays of subclass objects
� Use the Object class and its methods
� Use inheritance to achieve good software design
� Create and use interfaces
� Create and use packages

Inheritance sure makes my programming job easier, you tell Lynn Greenbrier
over a frosty lemonade at the Event Handlers Incorporated company picnic.

“So everything is going well, I take it?” says Lynn, smiling.

“It is,” you say as you smile back,“but I’m ready to learn more.What else can
you tell me about inheritance?”

“Enjoy the picnic for today,” Lynn says.“On Monday morning I’ll teach you
about superclass arrays that can use subclass methods, interfaces, and packages.
Then you will be an inheritance pro.”

PREVIEWING AN EXAMPLE OF USING AN ABSTRACT CLASS

Clients at Event Handlers Incorporated can choose many types of entertainment to feature
at their events. Even though Event Handlers uses different class types to store different
entertainment types, the different entertainment acts must be stored in a single
entertainment database; this can be accomplished using methods introduced in this chapter.
You can now use a completed version of the EntertainmentSelector program that is saved
in the Chapter.12 folder on your Student Disk.

To use the Chap12EntertainmentSelector class:

1. Go to the command prompt for the Chapter.12 folder on your Student Disk.
Determine that the following four classes are in the folder:
Chap12EntertainmentSelector, Entertainment, MusicalEntertainment, and
OtherEntertainment. At the command prompt type java
Chap12EntertainmentSelector, and then press [Enter].This program
allows you to supply data for six entertainment acts that are under contract to
Event Handlers Incorporated.When you see the prompt, type 1 or 2 for a
musical or non-musical weekend event, respectively.

2. If you indicated that this act is a musical act, the prompts will ask you for an
act name and a style of music; if you indicated that this act is a non-musical act,
the prompts will ask you for an act type. Supply any answers you want to these
questions.After you enter information for six acts, the data you entered will
echo to the screen and you will see the charge for each act.

3. Musical acts are paid by the event; non-musical acts are paid by the hour. Select
the act you want to perform at your event.The last lines of a typical program
run appear in Figure 12-1. (Yours may differ.) You will create a similar program
in this chapter.

Figure 12-1 Output of the Chap12EntertainmentSelector program

424 Chapter 12 Advanced Inheritance Concepts

Creating and Using Abstract Classes 425

CREATING AND USING ABSTRACT CLASSES

Creating new classes is easier after you understand the concept of inheritance.When you
use a class as a basis from which to create extended child classes, the child classes are more
specific than their parent.When you create a child class, it inherits all the general attributes
you need; thus you must create only the new, more-specific attributes. For example, a
SalariedEmployee and an HourlyEmployee are more specific than an Employee.They can
inherit general attributes, such as an employee number, but they add specific attributes,
such as pay-calculating methods.

Notice that a superclass contains the features that are shared by its subclasses.The subclasses
are more-specific examples of the superclass type; they add additional features to the shared,
general features. Conversely, when you examine a subclass, you see that its parent is more
general and less specific. Sometimes a parent class is so general that you never intend to
create any specific instances of the class. For example, you might never create “just” an
Employee; each Employee is more specifically a SalariedEmployee, HourlyEmployee, or
ContractEmployee.A class, such as Employee, that you create only to extend from, but not
to instantiate from, is an abstract class. An abstract class is one from which you cannot
create any concrete objects, but from which you can inherit. Abstract classes usually have
one or more empty abstract methods.You use the keyword abstract when you declare
an abstract class.

Nonabstract classes from which objects can be instantiated are called concrete
classes.

In Chapter 11 you learned that you can create final classes if you do not
want other classes to be able to extend them. Classes that you declare to be
abstract are the opposite; your only purpose in creating them is to enable
other classes to extend them.

In other programming languages, such as C++, abstract classes are known as
virtual classes.

Abstract classes are like regular classes because they have data and methods but usually
contain at least one abstract method.The difference is that you cannot create instances
of abstract classes by using the new operator.You create abstract classes simply to provide
a superclass from which other objects may inherit. Usually, abstract classes contain
abstract methods.An abstract method is a method with no method statements.When
you create an abstract method, you provide the keyword abstract and the intended
method type, name, and arguments, but you do not provide any statements within the
method.When you create a subclass that inherits an abstract method from a parent, you
must provide the actions, or implementation, for the inherited method. It’s important to

Tip

Tip

Tip 12

understand that you are required to code a subclass method to override the empty
superclass method that is inherited. Programmers of abstract classes can include two
method types: those that are implemented in the abstract class and simply inherited by
its children, and those that are abstract and must be implemented by its children.

If you attempt to instantiate an object from an abstract class, you will receive
an error message that you have committed an InstantiationError.

If you provide an empty method within an abstract class, the method is an
abstract method even if you do not explicitly use the keyword abstract
when defining the method.

Suppose you want to create classes to represent different animals, such as Dog and Cow.You
can create a generic abstract class named Animal so you can provide generic data fields, such
as the animal’s name,only once.An Animal is generic, but all specific Animals make a sound.
The actual sound differs from Animal to Animal. If you code an empty speak() method in
the abstract Animal class, then you require all future Animal subclasses to code a speak()
method that is specific to the subclass. Figure 12-2 shows an abstract Animal class containing
a data field for the name, a constructor, a getName() method, and an abstract speak() method.

The Animal class in Figure 12-2 is declared as abstract.You cannot place a statement
such as Animal myPet = new Animal("Murphy"); within a program because the
program will not execute. Animal is an abstract class, so no Animal objects can exist.

Figure 12-2 Animal class

public abstract class Animal
{
 private String name;

 public Animal(String nm)
 {
 name = nm;
 }

 public String getName()
 {
 return(name);
 }

 public abstract void speak();
}

Tip

Tip

426 Chapter 12 Advanced Inheritance Concepts

Creating and Using Abstract Classes 427

If you declare any method to be an abstract method, then you must also
declare its class to be abstract.

You would create an abstract class such as Animal only so that you can extend it. For
example, because a dog is an animal, you can create a Dog class as a child class of Animal.
Figure 12-3 shows a Dog class; notice that it extends Animal.The Animal parent class
in Figure 12-2 contains a constructor that requires a String holding the Animal’s name,
so the child Dog class must also contain a constructor that passes a String to its superclass
constructor.

You learned how child class and parent class constructors operate in Chapter 11.

The speak() method within the Dog class is required because the abstract, parent Animal
class contains an abstract speak() method.You can code any statements you like within the
Dog speak() method, but the speak() method must exist. Remember, you cannot instantiate
an Animal object; however, instantiating a Dog object is perfectly legal because Dog is not
an abstract class.When you code Dog myPet = new Dog("Murphy"); you create a Dog
object.Then when you code myPet.speak();, the correct Dog speak() method executes.

If you do not provide a subclass method to override a superclass abstract
method, then you cannot instantiate any subclass objects. In this case, you
also must declare the subclass itself to be abstract. Then you can extend the
subclass into sub-subclasses where you write code for the method.

The classes in Figures 12-4 and 12-5 also inherit from the Animal class.When you create
a Cow or a Snake object, each Animal will be able to use speak() appropriately.

Tip

Figure 12-3 Dog class

public class Dog extends Animal
{
 public Dog(String nm)
 {
 super(nm);
 }
 public void speak()
 {
 System.out.println("Woof");
 }
}

Tip

Tip

12

In Chapter 11, you learned that using the same method name to indicate dif-
ferent implementations is called polymorphism. Using polymorphism, one
method name causes different actions for different types of objects.

Next you will create an abstract Entertainment class for Event Handlers Incorporated.The
Entertainment class holds data about entertainment acts that customers can hire for their
events. The class includes fields for the name of the act and for the fee charged for
providing the act. Entertainment is an abstract class. You will create two subclasses,
MusicalEntertainment and OtherEntertainment.The more-specific classes include different
methods for calculating the entertainment act’s fee (musical acts are paid by the performance;
other acts are paid by the hour), as well as different methods for displaying data.

To create an abstract Entertainment class:

1. Open a new file in your text editor and enter the following first two lines of
an abstract Entertainment class:

publicƒabstractƒclassƒEntertainment
{

Figure 12-5 Snake class

public class Snake extends Animal
{
 public Snake(String nm)
 {
 super(nm);
 }
 public void speak()
 {
 System.out.println("Sss");
 }
}

Figure 12-4 Cow class

public class Cow extends Animal
{
 public Cow(String nm)
 {
 super(nm);
 }
 public void speak()
 {
 System.out.println("Moo");
 }
}

Tip

428 Chapter 12 Advanced Inheritance Concepts

Creating and Using Abstract Classes 429

2. Define the two data fields that hold the entertainer’s name and fee as pro-
tected rather than private because you want child classes to be able to
access the fields when the fee is set and when the fields are shown on the
screen. Define the fields as follows:
protectedƒStringƒentertainer;
protectedƒintƒfee;

3. The Entertainment constructor calls two methods.The first method accepts the
entertainer’s name from the keyboard.The second method sets the entertainer’s
fee. Because the first method accepts keyboard data entry, you must include the
phrase throws Exception in the following constructor method header:

publicƒEntertainment()ƒthrowsƒException
{
ƒsetEntertainerName();
ƒsetEntertainmentFee();
}

4. Include the following two get methods that return the values for the entertainer’s
name and the act’s fee:

publicƒStringƒgetEntertainerName()
{
ƒreturnƒentertainer;
}
publicƒdoubleƒgetEntertainmentFee()
{
ƒreturnƒfee;
}

5. Enter the following setEntertainerName() method, which is similar to other
data-entry methods you have coded in previous chapters. It prompts the user
for the name of an entertainment act and assigns the characters to the
entertainer field.

public void setEntertainerName() throws Exception
{
ƒStringƒinputStringƒ=ƒnewƒString();
ƒcharƒnewChar;
ƒSystem.out.print("Enterƒnameƒofƒentertainerƒ");
ƒnewCharƒ=ƒ(char)System.in.read();
ƒwhile(newCharƒ>=ƒ'A'ƒ&&ƒnewChar<='z'||newChar=='ƒ'||
ƒƒƒƒnewChar>='O'ƒ&&ƒnewChar<='9')
ƒ{
ƒƒƒƒinputStringƒ=ƒinputStringƒ+ƒnewChar;
ƒƒƒƒnewCharƒ=ƒ(char)System.in.read();
ƒ}
ƒSystem.in.read();
ƒentertainerƒ=ƒinputString;
}

12

6. The setEntertainmentFee() method is an abstract method. Each subclass you
eventually create that represents different entertainment types will have a
different fee schedule.Type the abstract method definition and the closing curly
brace for the class:

publicƒabstractƒvoidƒsetEntertainmentFee();
}

7. Save the file as Entertainment.java in the Chapter.12 folder on your Student
Disk. At the command prompt, compile the file using the javac command.

You just created an abstract class, but you cannot instantiate any objects from this class.
Rather, you must extend this class to be able to create any Entertainment-related objects.
Next you will create a MusicalEntertainment class that extends the Entertainment class.This
new class will be concrete; that is, you can create actual MusicalEntertainment class objects.

To create the MusicalEntertainment class:

1. Open a new file in your text editor, and then type the following header and
opening brace for a MusicalEntertainment class that is a child of the
Entertainment class:

publicƒclassƒMusicalEntertainmentƒextendsƒEntertainment
{

2. Add the definition of a music type field that is specific to musical entertain-
ment by typing: private String typeOfMusic;.

3. The MusicalEntertainment constructor must call its parent’s constructor. It
must also use the following method that sets the music type in which the
entertainer specializes:

publicƒMusicalEntertainment()ƒthrowsƒException
{
ƒsuper();
ƒsetTypeOfMusic();
}

4. Enter the following setTypeOfMusic method, which asks for user input:

publicƒvoidƒsetTypeOfMusic()ƒthrowsƒException
{
ƒStringƒinputStringƒ=ƒnewƒString();
ƒcharƒnewChar;
ƒSystem.out.print("Whatƒkindƒofƒmusicƒdoƒtheyƒplay?ƒ");
ƒnewCharƒ=ƒ(char)System.in.read();
ƒwhile(newCharƒ>=ƒ'A'ƒ&&ƒnewCharƒ<=ƒ'z'||ƒnewCharƒ==ƒ'ƒ')
ƒ{
ƒƒinputStringƒ=ƒinputStringƒ+ƒnewChar;
ƒƒnewCharƒ=ƒ(char)System.in.read();
ƒ}
ƒSystem.in.read();
ƒtypeOfMusicƒ=ƒinputString;
}

430 Chapter 12 Advanced Inheritance Concepts

Creating and Using Abstract Classes 431

5. Event Handlers Incorporated charges a flat rate of $600 per event for musical
entertainment. Add the following setEntertainmentFee() method to your
program:
public void setEntertainmentFee()
{
ƒfeeƒ=ƒ600;
}

6. Add the following toString() method that you can use when you want to
convert the details of a MusicalEntertainment object into a String so you can
easily and efficiently display the contents of the object. Add the closing curly
brace for the class.

In Chapter 7, you first used the automatically included toString() method that
converts objects to Strings. Now you are overriding that method for this class
by writing your own version. You will learn more about the toString() method
later in this chapter.

ƒpublicƒStringƒtoString()
ƒ{
ƒƒreturn(entertainerƒ+ƒ",ƒfeaturingƒ"ƒ+ƒtypeOfMusic
ƒƒ+ƒ"ƒmusicƒwhoseƒfeeƒisƒ$ƒ"ƒ+ƒfeeƒ+ƒ"ƒperƒevent!");
ƒ}
}

7. Save the file as MusicalEntertainment.java in the Chapter.12 folder on your
Student Disk, and then compile the file.

Event Handlers Incorporated classifies all non-musical entertainment acts, such as
clowns, jugglers, and stand-up comics, as OtherEntertainment.The OtherEntertainment
class inherits from Entertainment, just as the MusicalEntertainment class does.Whereas
the MusicalEntertainment class requires a data field to hold the type of music played by
the act, the OtherEntertainment class requires a field for the type of act. Other
differences lie in the content of the prompt within the setTypeOfAct() method, and in
the handling of fees. Event Handlers Incorporated charges $50 per hour for non-musical
acts, so both the setEntertainmentFee() and toString() methods differ from those in the
MusicalEntertainment class.

Next you will create an OtherEntertainment class to implement the abstract method
setEntertainmentFee().

To create the OtherEntertainment class file:

1. Open a new file in your text editor, and then type the following first lines of
the OtherEntertainment class:
publicƒclassƒOtherEntertainmentƒextendsƒEntertainment
{

Tip

12

2. Create the following String variable to hold the type of entertainment act
(such as comedian): private String typeOfAct;.

3. Enter the following code so the OtherEntertainment class constructor calls
the parent constructor, then calls its own method to set the act type:
publicƒOtherEntertainment()ƒthrowsƒException
{
ƒsuper();
ƒsetTypeOfAct();
}

4. Enter the following setTypeOfAct() method:

publicƒvoidƒsetTypeOfAct()ƒthrowsƒException
{
ƒStringƒinputStringƒ=ƒnewƒString();
ƒcharƒnewChar;
ƒSystem.out.print("Whatƒtypeƒofƒactƒisƒthis?ƒ");
ƒnewCharƒ=ƒ(char)System.in.read();
ƒwhile(newCharƒ>='A'ƒ&&ƒnewCharƒ<=ƒ'z'ƒ||ƒnewCharƒ==ƒ'ƒ')
{
ƒinputStringƒ=ƒinputStringƒ+ƒnewChar;
ƒnewCharƒ=ƒ(char)System.in.read();
}
System.in.read();
typeOfActƒ=ƒinputString;
}

5. The fee for non-musical acts is $50 per hour, so add the following
setEntertainmentFee() method:

publicƒvoidƒsetEntertainmentFee()
{
ƒfeeƒ=ƒ50;
}

6. Enter the following toString() method and add the closing curly brace for
the class:

ƒpublicƒStringƒtoString()
ƒ{
ƒƒreturn(entertainerƒ+ƒ",ƒisƒaƒ"ƒ+ƒtypeOfActƒ+
ƒƒ"ƒwhoseƒfeeƒisƒ$ƒ"ƒ+ƒfeeƒ+ƒ"ƒperƒhour.");
ƒ}
}

7. Save the file as OtherEntertainment.java in the Chapter.12 folder on your
Student Disk, and then compile the file.

Finally, you will create a program that instantiates concrete objects that belong to each
of the two child classes.

432 Chapter 12 Advanced Inheritance Concepts

Creating and Using Abstract Classes 433

To create a program that demonstrates using the MusicalEntertainment and
OtherEntertainment classes:

1. Open a new file in your text editor, and then enter the DemoEntertainment
class header, opening brace, main() method header, and its opening brace as
follows:

publicƒclassƒDemoEntertainment
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{

2. Enter the following statement that prompts the user to enter a musical act
description.Then instantiate a MusicalEntertainment object.

System.out.println("Createƒaƒmusicalƒactƒdescription:");
MusicalEntertainmentƒanActƒ=ƒnewƒMusicalEntertainment();

3. Enter the following similar statements for a non-musical act using the newline
character \n to print on the next line:

System.out.println
ƒƒƒ("\nCreateƒaƒnon-musicalƒactƒdescription:");
OtherEntertainmentƒanotherActƒ=ƒnewƒOtherEntertainment();

4. Enter the following lines to display the contents of the two objects and add
the closing curly brace for the main() method and for the class:

ƒSystem.out.println
ƒƒƒ("\nDescriptionƒofƒentertainmentƒacts:");
ƒSystem.out.println(anAct.toString());
ƒSystem.out.println(anotherAct.toString());
ƒ}
}

5. Save the file as DemoEntertainment.java in the Chapter.12 folder on your
Student Disk, and then compile the file. After the file compiles with no errors,
run this program using the java DemoEntertainment command.When
the program prompts you to do so, enter the name of a musical act, a type of
music, the name of a non-musical act, and the type of act. Figure 12-6 shows a
sample program run.

12

USING DYNAMIC METHOD BINDING

When you create a superclass and one or more subclasses, each object of the subclass “is a”
superclass object.Every SalariedEmployee “is an”Employee; every Dog “is an”Animal. (The
opposite is not true. Superclass objects are not members of any of their subclasses. An
Employee is not a SalariedEmployee. An Animal is not a Dog.) Because every subclass
object “is a” superclass member, you can convert subclass objects to superclass objects.

As you are aware, when a superclass is abstract, you cannot instantiate objects of the
superclass; however, you can indirectly create a reference to a superclass abstract method.
A reference is not an object, but points to a memory address.When you create a reference,
you do not use the keyword new to create a concrete object; you create a variable name
in a subclass in which you can hold the memory address of a subclass concrete object that
“is a” superclass member.

You learned how to create a reference in Chapter 4. When you code
someClass someObject;, you are creating a reference. If you later code
someObject = new someClass();, then you actually set aside mem-
ory for someObject.

If you create an Animal class, as shown in Figure 12-2, and various subclasses, as shown
in Figures 12-3 through 12-5, then you create a new public class with a generic Animal
reference variable into which you can assign any of the concrete Animal child objects.
Figure 12-7 shows a new AnimalReference class, and Figure 12-8 shows its output.The
variable ref is a type of Animal. No superclass Animal object is created, but instead, Dog,
Cow, and Snake objects are created using the new keyword from classes extended from
the Animal class. When the Cow object is assigned to the Animal reference, the
ref.speak() method call results in “Moo”; when the Dog object is assigned to the Animal
reference, the method call results in “Woof ”.

Tip

Figure 12-6 Output of the DemoEntertainment program

434 Chapter 12 Advanced Inheritance Concepts

Using Dynamic Method Binding 435

Recall from Chapter 2 that when you assign a variable or constant of one type
to a variable of another type, as in doubleVar = intVar;, the behavior
is called casting.

The program in Figure 12-7 demonstrates polymorphic behavior.The same statement,
ref.speak();, repeats after ref is set to each new animal type. Each call to the speak()
method results in different output. Each reference “chooses” the correct speak() method
based on the type of animal referenced. The program’s ability to select the correct subclass
method is known as dynamic method binding. When the program executes, the

Tip

Figure 12-8 Output of the AnimalReference program

Figure 12-7 AnimalReference class

public class AnimalReference
{
 public static void main(String[] args)
 {

 Animal ref;
 Cow aCow = new Cow("Mabel");
 Dog aDog = new Dog("Rover");
 Snake aSnake = new Snake("Siskal");

 ref = aCow;
 ref.speak();

 ref = aDog;
 ref.speak();

 ref = aSnake;
 ref.speak();

 }
}

12

correct method is attached (or bound) to the program based on the current, changing
context (dynamically).

Dynamic method binding is also called late binding.

CREATING ARRAYS OF SUBCLASS OBJECTS
You might want to create a superclass reference and treat subclass objects as superclass
objects so that you can create an array of different objects that share the same ancestry.
For example, even though every Employee object is a SalariedEmployee or an
HourlyEmployee subclass object, it can be convenient to create an array of generic
Employee objects. Likewise, an Animal array might contain individual elements that are
Dog, Cow, or Snake objects. As long as every Employee subclass has access to a
calculatePay() method, or every Animal subclass has access to a speak() method, you can
manipulate an array of superclass objects by invoking the appropriate method for each
subclass member.

In Chapter 8 you learned that all elements in a single array must be of the
same type.

The statement Animal[] ref = new Animal[3]; creates an array of three Animal
references. The statement reserves enough computer memory for three Animal objects
named ref[0], ref[1], and ref[2].The statement does not actually instantiate Animals;Animals
are abstract and cannot be instantiated.The statement simply reserves memory for three
Animal object references. If you instantiate three Animal subclass objects, you can place
references to those objects in the Animal array, as Figure 12-9 illustrates.

Recall from Chapter 8 that when you create an array of any type of objects,
concrete or abstract, you are not actually constructing those objects. Instead,
you are creating space for references not yet instantiated.

Once the objects are in the array, you can manipulate them like any other array objects.
For example, you can use a loop and a subscript to get each individual reference to
speak(). Figure 12-10 shows the output of the AnimalArray program. The output is
identical to that of Figure 12-8, except that an array of references is used, instead of a
single reference.

Tip

Tip

Tip

436 Chapter 12 Advanced Inheritance Concepts

Creating Arrays of Subclass Objects 437

Next you will write an Event Handlers Incorporated program in which you create an array
of Entertainment references.Within the program, you will assign MusicalEntertainment
objects and OtherEntertainment objects to the same array.Then, because the different object
types are stored in the same array, you can easily manipulate them by using a for loop.

Figure 12-10 Output of the AnimalArray program

Figure 12-9 AnimalArray class

public class AnimalArray
{

 public static void main(String[] args)
 {

 Animal[] ref = new Animal[3];

 Cow aCow = new Cow("Mabel");

 Dog aDog = new Dog("Rover");

 Snake aSnake = new Snake("Siskal");

 ref[0] = aCow;

 ref[1] = aDog;

 ref[2] = aSnake;

 for (int x = 0;x < 3; ++x)
 ref[x].speak();

 }

}

12

To write a program that uses an Entertainment array:

1. Open a new file in your text editor, and then enter the following first few
lines of the EntertainmentDataBase program:

publicƒclassƒEntertainmentDataBase
{
ƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒException
ƒ{

2. Create the following array of six Entertainment references and an integer
subscript to use with the array:

Entertainment[]ƒactArrayƒ=ƒnewƒEntertainment[6];
intƒx;

3. Enter the following for loop that prompts you to select whether you will enter
a musical or non-musical entertainment act. Based on user input, instantiate
either a MusicalEntertainment or an OtherEntertainment object.

for(xƒ=ƒ0;ƒxƒ<ƒactArray.length;ƒ++x)
{
ƒchar selection;
ƒSystem.out.print("Pleaseƒselectƒtheƒtypeƒofƒ");
ƒSystem.out.println("actƒyouƒwantƒtoƒenter:");
ƒSystem.out.println("ƒƒ1ƒ-ƒMusicalƒact");
ƒSystem.out.println("ƒƒ2ƒ-ƒAnyƒotherƒtypeƒofƒact");
ƒselectionƒ=ƒ(char)System.in.read();
ƒSystem.in.read();ƒSystem.in.read();
ƒif(selectionƒ==ƒ'1')
ƒƒƒactArray[x]ƒ=ƒnewƒMusicalEntertainment();
ƒelse
ƒƒƒactArray[x]ƒ=ƒnewƒOtherEntertainment();
}

4. After entering the information for all the acts, display the array contents by
typing the following code, and by typing the closing curly braces for the main()
method and for the class:

ƒSystem.out.print("\n\nOurƒavailableƒentertainmentƒ");
ƒSystem.out.println("selectionsƒinclude:\n");
ƒfor(xƒ=ƒ0;ƒxƒ<ƒactArray.length;ƒ++x)
ƒSystem.out.println(actArray[x].toString());
ƒ}
}

5. Save the file as EntertainmentDataBase.java in the Chapter.12 folder on your
Student Disk, and then compile it. Run the program, enter some appropriate
data (use Figure 12-11 as a guide, if you want), and then compare your results to
the output shown in Figure 12-11.

438 Chapter 12 Advanced Inheritance Concepts

Using the Object Class and Its Methods 439

USING THE OBJECT CLASS AND ITS METHODS

Every class in Java is actually a subclass, except one.When you define a class, if you do not
explicitly extend another class, then your class is an extension of the Object class. The
Object class is defined in the java.lang package,which is imported automatically every time
you write a program. It includes methods that you can use or override, as you see fit.

The toString() Method
You overrode the Object class toString() method in the steps you used to create the
MusicalEntertainment and OtherEntertainment classes. If you do not create a toString()
method for a class, then you can use the superclass version of the toString() method. For
example, review the Dog class shown in Figure 12-3. Notice that it does not contain a
toString() method and that it extends the Animal class. Examine the Animal class shown
in Figure 12-2. Notice that it also does not define a toString() method.Yet, when you
write the program that prints a Dog object, as shown in Figure 12-12, the program
compiles correctly, converts the Dog object to a String, and produces the output shown
in Figure 12-13.The output is not very useful, however. It consists of the class name of
which the object is an instance, the at sign (@), and a hexadecimal (base 16) number
that represents the object.

The hexadecimal number, which is expressed as a series of digits and letters,
represents a computer memory address that can change every time you run the
program, and basically is of no use to you.

It is usually better to write your own toString() method that displays some or all of the
data field values, instead of using the automatic toString() method with your classes.

Tip

Figure 12-11 Final lines of output of the EntertainmentDataBase program

12

A good toString() method can be very useful in debugging a program. If you do
not understand why a class is behaving as it is, you can print the toString() value
and examine its contents. You can also use a toString() method to return text
to a method statement call. In Chapter 10, you used the toString() method to
return a String representation of the screen resolution and screen size using a
combination of text, method calls, and catenation.

The equals() Method
The Object class also contains an equals() method that takes a single argument, which
must be the same type as the type of the invoking method, as in the following example:

someObject.equals(someOtherObjectOfTheSameType)

Other classes, such as the String class, also have their own equals() methods.
You first used the equals() method to compare String objects in Chapter 7. Two
String objects were considered equal only if their String contents were identical.Tip

Figure 12-13 Output of the DogString program

Figure 12-12 DogString program

public class DogString
{

 public static void main(String[] args)
 {

 Dog myDog = new Dog("Murphy");

 System.out.println(myDog);

 }
}

Tip

440 Chapter 12 Advanced Inheritance Concepts

Using the Object Class and Its Methods 441

The Object class equals() method returns a Boolean value indicating whether the objects
are equal.This equals() method considers two objects of the same class to be equal only
if they have the same memory address; in other words, they are equal only if one is a
reference to the other. If you want to consider two objects to be equal only when one is
a reference to the other, you can use the Object class equals() method. However, if you
want to consider objects to be equal based on their contents, then you must write your
own equals() method for your classes.

The program shown in Figure 12-14 instantiates three Dog objects: aBlackLab named
Murphy, aCollie named Colleen, and aSchnauzer named Murphy. The Dog class does
not include its own equals() method, so it does not override the Object equals() method.
Thus, the program in Figure 12-14 produces the output in Figure 12-15. Even though
two of the Dog objects have the same name, none of the Dogs are equal because they
do not have the same memory address.

Figure 12-14 DogCompare program

public class DogCompare
{
 public static void main(String[] args)
 {
 Dog aBlackLab = new Dog("Murphy");
 Dog aCollie = new Dog("Colleen");
 Dog aSchnauzer = new Dog("Murphy");

 System.out.print("The black lab and collie are ");

 if (aBlackLab.equals(aCollie))
 System.out.println("equal");

 else
 System.out.println("not equal");

 System.out.print("The black lab and the schnauzer are ");

 if (aBlackLab.equals(aSchnauzer))
 System.out.println("equal");

 else
 System.out.println("not equal");

 System.out.print("The schnauzer and the collie are ");

 if (aSchnauzer.equals(aCollie))
 System.out.println("equal");

 else
 System.out.println("not equal");

 }

}

12

Next you will add an equals() method to the Dog class to override the equals() method
in the DogCompare program.

To override the equals() method in the DogCompare program:

1. Open the Dog.java program in your text editor, and change the class name to
Dog2. Change the name of the Dog constructor to Dog2.

2. Add the equals() method shown in Figure 12-16 to the Dog2 class.You can add
the equals() method to the Dog2 class file anywhere within the file as long as it
is not within any other method.The best location is after the closing curly brace
for the Dog2 class constructor and before the method header for speak().This
way, the equals() method appears in alphabetical order among the methods.

3. Save the file as Dog2.java in the Chapter.12 folder on your Student Disk, and
then compile it.

4. Open the DogCompare.java program in your text editor, and change the class
name to DogCompare2.

5. Change each occurrence of Dog that instantiates a new Dog object to Dog2.

6. Save the file as DogCompare2.java in the Chapter.12 folder on your Student
Disk, and then compile it. Run the program and observe that the output (as
shown in Figure 12-17) now indicates that two Dog objects with the same
name are equal.

The equals() method in Figure 12-16 returns a Boolean value.When you call the method,
you use the name of one Dog2 object, a dot, and the name of another Dog2 object as an
argument within parentheses, as in aBlackLab.equals(aCollie). Therefore, the
equals() method header shows that it receives a Dog2 object, which has the local name
anotherDog. When you compare the name of the calling Dog2 with the argument
anotherDog by using the String equals() method, you determine whether the two Dog2s
are to be considered equal.

Figure 12-15 Output of the DogCompare program when Dog does not override equals()

442 Chapter 12 Advanced Inheritance Concepts

Using the Object Class and Its Methods 443

Recall from Chapter 4 that when you use an instance method for a class object,
the method receives a this reference to the calling object. Therefore, the call
to the getName() method retrieves the name for this Dog. You could replace
the expressionƒgetName().equals(anotherDog.getName()) with
this.getName().equals(anotherDog.getName()).

If you change a class, such as adding the equals() method to the Dog class, not
only must you recompile the Dog class, but to make use of the newly added
method, you must also recompile a client program such as DogCompare.Tip

Tip

Figure 12-17 Output of the DogCompare2 program when Dog2 overrides equals()

Figure 12-16 Dog2 equals() method

boolean equals(Dog2 anotherDog)
{

 boolean result;

 if(getName().equals(anotherDog.getName()))

 result = true;

 else

 result = false;

 return result;

}

12

If there were more fields in the Dog class, you could base equality on a large number of
comparisons. Rather than simply comparing names, within the equals() method of the
Dog class you could substitute a more-detailed comparison, such as the following:

if(getName().equals(anotherDog.getName())ƒ&&
ƒƒgetAge()ƒ==ƒanotherDog.getAge()ƒ&&
ƒƒgetGender()ƒ==ƒanotherDog.getGender()ƒ&&
ƒƒgetBreed().equals(anotherDog.getBreed()))
ƒƒƒresultƒ=ƒtrue;
ƒƒelse
ƒƒƒresultƒ=ƒfalse;

Using this code, two Dog objects are considered equal only if they have the same name,
age, gender, and breed.

Next you will add an equals() method to the Event Handlers Incorporated Entertainment
class.Then you will use the equals() method in the EntertainmentDataBase program to
compare each new Entertainment act to every act residing in the database.Your improved
program will not allow two acts to have the same name.

To add an equals() method to the Entertainment class:

1. Open the Entertainment.java file in your text editor, and change the
constructor and the class name to Entertainment2.

2. Position your insertion point after the closing curly brace of the Entertainment
constructor, and then press [Enter] to start a new line.

3. Type the equals() method as follows:

publicƒbooleanƒequals(Entertainment2ƒact)
{
ƒbooleanƒresult;
ƒif(entertainer.equals(act.entertainer))
ƒƒƒresultƒ=ƒtrue;
ƒelse
ƒƒƒresultƒ=ƒfalse;
ƒreturnƒresult;
}

4. Save the file as Entertainment2.java, and then compile it using the javac
command.

Next you will modify the EntertainmentDataBase program so the user cannot enter
Entertainment objects with the same entertainer names.

To modify the EntertainmentDataBase class:

1. Open the EntertainmentDataBase.java file in your text editor, and then save it
as EntertainmentNoDuplicates.java. Change the class name in the first line of
the class file from EntertainmentDataBase to EntertainmentNoDuplicates.

444 Chapter 12 Advanced Inheritance Concepts

Using the Object Class and Its Methods 445

2. Change the Entertainment [] actArray = new Entertainment [6];
statement to Entertainment2[] actArray = new Entertainment2[6];
because the Entertainment class used by the EntertainmentDataBase was updated
in a previous example.

3. Change actArray[x] = new MusicalEntertainment (); and
actArray[x] = new OtherEntertainment (); to actArray[x] =
new MusicalEntertainment2(); and actArray[x] = new
OtherEntertainment2();, respectively, and then save the file.

4. Open the MusicalEntertainment file, and then save it as
MusicalEntertainment2.java. Change the name of the class and the name of
the constructor so each becomes MusicalEntertainment2. Change the class
that this class extends to Entertainment2. Save the file, and then compile it.

5. Open the OtherEntertainment file, and then save it as
OtherEntertainment2.java. Change the name of the class and the name of
the constructor so each become OtherEntertainment2. Change the class
that this class extends to Entertainment2. Save the file, and then compile it.

You must change the names of the MusicalEntertainment and
OtherEntertainment files so that the new files MusicalEntertainment2 and
OtherEntertainment2 now extend Entertainment2. When the equals()
method in the Entertainment2 class receives an object to compare, it must be
of the same type as Entertainment2.

6. Open the EntertainmentNoDuplicates file if necessary, and position your
insertion point at the end of the line that reads actArray[x] = new
OtherEntertainment2();. Press [Enter] to start a new line, and then
add the following for loop that compares the most recently entered actArray
element against all previously entered actArray elements. If the new element
equals any previously entered Entertainment act, then issue an error message
and reduce the subscript by one. Reducing the subscript ensures that the next
act you enter overwrites the duplicate act.

for(intƒyƒ=ƒ0;ƒyƒ<ƒx;ƒ++y)
ƒif(actArray[x].equals(actArray[y]))
ƒ{
ƒƒSystem.out.println
ƒƒƒ("Sorry,ƒyouƒenteredƒaƒduplicateƒact");
ƒƒ—x;
}

7. Save the file, compile it using the javac command, and then execute the
program.When you see the prompts, enter any appropriate data. Make sure that
you repeat an entertainer’s name for several of the prompts. Each time you repeat
a name, you will see an error message and get another opportunity to enter an
act.The program will not end until you enter six acts with unique names.

Tip

12

USING INHERITANCE TO ACHIEVE GOOD SOFTWARE DESIGN

When an automobile company designs a new car model, the company does not build
every component of the new car from scratch.The company might design a new feature
completely from scratch; for example, at some point someone designed the first air bag.
However, many of a new car’s features are simply modifications of existing features.The
manufacturer might create a larger gas tank or more comfortable seats, but even these
new features still possess many properties of their predecessors in the older models. Most
features of new car models are not even modified; instead, preexisting components, such
as air filters and windshield wipers, are included on the new model without any changes.

Similarly, you can create powerful computer programs more easily if many of their
components are used either “as-is” or with slight modifications. Inheritance does not give
you the ability to write any programs that you could not write without it because you could
create every part of a program from scratch. Inheritance simply makes your job easier.
Professional programmers constantly create new class libraries for use with Java programs.
Having these classes available makes programming large systems more manageable.

You have already used many “as-is” classes, such as String and JApplet. In these cases, your
programs were easier to write than if you had to write these classes yourself. Now that
you have learned about inheritance, you have gained the ability to modify existing classes.
When you create a useful, extendable superclass, you and other future programmers gain
several advantages:

� Subclass creators save development time because much of the code needed for
the class has already been written.

� Subclass creators save testing time because the superclass code has already been
tested and probably used in a variety of situations. In other words, the superclass
code is reliable.

� Programmers who create or use new subclasses already understand how the
superclass works, so the time it takes to learn the new class features is reduced.

� When you create a new subclass in Java, neither the superclass source code nor
the superclass bytecode is changed.The superclass maintains its integrity.

When you consider classes, you must think about the commonalities between them, and
then you can create superclasses from which to inherit. You might be rewarded
professionally when you see your own superclasses extended by others in the future.

CREATING AND USING INTERFACES

Many object-oriented programming languages, such as C++, allow a subclass to inherit
from more than one parent class. For example, you might create an Employee class that
contains data fields pertaining to each employee in your organization.You might also cre-
ate a Product class that holds information about each product your organization produces.

446 Chapter 12 Advanced Inheritance Concepts

Creating and Using Interfaces 447

When you create a Patent class for each product for which your company holds a patent,
you might want to include product information, as well as information about your com-
pany’s employee who was responsible for the invention. It would be convenient to inherit
fields and methods from both the Product and the Employee classes. The capability to
inherit from more than one class is called multiple inheritance.

Multiple inheritance is a difficult concept, and when programmers use it, they encounter
many problems. Programmers have to deal with the possibility that variables and methods
in the parent classes may have identical names, which creates conflict when the child class
uses one of the names.Also, you have already learned that a child class constructor must call
its parent class constructor.When there are two or more parents, this task becomes more
complicated.To which class should super() refer when a child class has multiple parents?

For all of these reasons, multiple inheritance is prohibited in the Java programming
language. Java, however, does provide an alternative to multiple inheritance—an interface.
An interface looks much like a class, except all of its methods must be abstract and all of
its data (if any) must be static final.When you create a class that uses an interface,
you include the keyword implements and the interface name in the class header. This
notation requires class objects to include code for all the methods in the interfaces that have
been implemented.Whereas extends exposes elements of the superclass program to the
user of subclasses, implements exposes elements of your programs to the user without
exposing the program source code.

As an example, you can create a Working interface to use with the Animal subclasses. For
simplicity, give the Working interface a single method named work(). Figure 12-18 shows
the Working program.

When any class implements Working, it must also include a work() method. The
WorkingDog class in Figure 12-19 extends Dog and implements Working; its work()
method calls the Dog speak() method, and then produces a line of output.

When you create a program that instantiates a WorkingDog object, as in Figure 12-20,
you can use the work() method.The program output appears in Figure 12-21.You can
also create WorkingCow and WorkingHorse classes that implement Working. In addition,
if you decide to create a Playing interface, any class that implements Working can also
implement Playing.

Figure 12-18 Working interface

public interface Working
{
 public void work();

}

12

Abstract classes and interfaces are similar in that you cannot instantiate concrete objects
from either one.Abstract classes differ from interfaces because abstract classes can contain
nonabstract methods, but all methods within an interface must be abstract. A class can
inherit from only one abstract superclass, but it can implement any number of interfaces.

Figure 12-21 Output of the DemoWorkingDog program

Figure 12-20 DemoWorkingDog program

public class DemoWorkingDog
{
 public static void main(String[] args)
 {
 WorkingDog mySheltie = new WorkingDog("Simon");

 mySheltie.work();
 }
}

Figure 12-19 WorkingDog class

public class WorkingDog extends Dog implements Working
{
 public WorkingDog(String nm)
 {
 super(nm);
 }

 public void work()
 {
 speak();
 System.out.println("I can herd cows");
 }
}

448 Chapter 12 Advanced Inheritance Concepts

Creating and Using Packages 449

Beginning programmers sometimes find it difficult to decide when to create an abstract
superclass and when to create an interface. Remember, you create an abstract class when
you want to provide data or methods that subclasses can inherit, but at the same time
these subclasses maintain the ability to override the inherited methods.

Suppose you create a CardGame class to use as a base class for different card games. It
contains four methods named shuffle(), deal(), listRules(), and keepScore().The shuffle()
method works the same way for every CardGame, so you write the statements for
shuffle() within the superclass, and any CardGame objects you create later inherit
shuffle(). The methods deal(), displayRules(), and keepScore() operate differently for
every subclass, so you force CardGame children to contain instructions for those
methods by leaving them empty in the superclass.When you write classes named Hearts,
Solitaire, and Poker, you extend the CardGame parent class, inherit the shuffle() method,
and implement deal(), displayRules(), and keepScore() methods for each specific child.

You create an interface when you know what actions you want to include, but you also
want every user to separately define the behavior that must occur when the method
executes. Suppose you create a MusicalInstrument class to use as a base for different musical
instrument object classes such as Piano,Violin, and Drum.The parent MusicalInstrument
class contains methods such as playNote() and outputSound() that apply to every
instrument, but you want to implement these methods differently for each type of
instrument. By making MusicalInstrument an interface, you require every subclass to code
all the methods.

An interface specifies only the messages to which an object can respond; an
abstract class can include methods that contain the actual behavior the object
performs when those messages are received.

You also create an interface when you want a class to implement behavior from more than
one parent.A NameThatInstrument card game that requires players to identify instrument
sounds they hear by clicking cards, for example, could not extend from two classes, but it
could extend from CardGame and implement MusicalInstrument.

You used prewritten interfaces earlier in this book. For example, you
implemented the ActionListener interface in applets you wrote in Chapters 9
and 10. By implementing ActionListener, you provided your applet the means
to respond to ActionEvents. You will use more interfaces in future chapters.

CREATING AND USING PACKAGES

Throughout most of this book, you have imported packages into your programs. You
learned in Chapter 4 that the java.lang package is automatically imported into every
program you write.You have explicitly imported packages such as java.util and javax.Swing.
When you create your own classes, you can place them in packages so that you or other

Tip

Tip

12

programmers can easily import related classes into new programs. When you create a
number of classes that inherit from each other, you will often find it convenient to place
these classes in a package.

Creating packages encourages others to reuse software because it makes it
convenient to import many related classes at once.

When you create classes for others to use, you most often do not want to provide the users
with your source code in the files with .java extensions. You expend significant effort
developing workable code for your programs, and you do not want other programmers to
be able to copy your programs, make minor changes, and market the new product
themselves. Rather, you want to provide users with the compiled files with the .class
extensions. These are the files the user needs to run the program you have developed.
Likewise, when other programmers use the classes you have developed, they need only the
completed compiled code to import into their programs.The .class files are the files you
place in a package so other programmers can import them.

You can include a package statement at the beginning of your class file to place the
compiled code into the indicated folder. For example, when it appears at the beginning of
a class file, the statement package com.course.animals; indicates that the compiled
file should be placed in a folder named com.course.animals.That is, the compiled file will
be stored in the animals subfolder inside the course subfolder inside the com subfolder
(or com\course\animals). The pathname can contain as many levels as you want. The
package statement must appear outside the class definition.

The package statement, import statements, and comments are the only
statements that appear outside class definitions in Java program files.

When you compile a file that you want to place in a package, you must use a compiler
option with the javac command. The -d option indicates that you want to place the
generated .class file in a folder. For example, the command javac -d c:\
Animal.java indicates that the compiled Animal.java file should be placed in the root
directory of drive C. If the Animal class file contains the statement package
com.course.animals;, then the Animal.class file will be placed in
C:\com\course\animals. If any of these subfolders do not exist, Java will create them. If
you similarly package the compiled files for Dog.java, Cow.java, and so on, future programs
only need to use the statement import com.course.animals.* to be able to use all
the related classes. Alternately, you can list each class separately, as in import
com.course.Dog; and import com.course.Cow;. Usually, if you want to use only
one or two classes in a package, you use separate import statements for each class. If you
want to use many classes in a package, it is easier to import the entire package, even if there
are some classes you will not use.

Tip

Tip

450 Chapter 12 Advanced Inheritance Concepts

Creating and Using Packages 451

The d in the -d compiler option stands for directory, which is another name
for folder.

You cannot import more than one package in one statement; for example,
import com.* does not work.

Because the Java programming language is used extensively on the Internet, it is important
to give every package a unique name. Sun Microsystems, the creator of the Java
programming language, has defined a package-naming convention in which you use your
Internet domain name in reverse order. For example, if your domain name is course.com,
then you begin all of your package names with com.course. Subsequently, you organize
your packages into reasonable subfolders. Using this convention ensures that your package
names will not conflict with those of any other Java code providers.

Next you will place some of the Event Handlers Incorporated classes into a package.
Because Event Handlers Incorporated sponsors a Web site at eventhandlers.com, you will
use the com.eventhandlers package.

To place three of your classes for Event Handlers Incorporated into a package:

1. Open the Entertainment.java file in your text editor.

2. For the first line in the file, insert the following statement:

packageƒcom.eventhandlers.entertainment;

3. Save the file as a:\Entertainment.java. Notice that you are saving this file in
the root directory of your disk, and not in the Chapter.12 folder. Because Java
uses the dot (period) to separate folder names for packages, you cannot use a
dot within a folder name.

Note that your drive letter may vary.

4. At the command line for the root directory on your Student disk, compile
the file using the command javac -d a:\ Entertainment.java.
(Make sure that you type a space between the drive name and the class name
Entertainment.java.) Java will create a folder named
com\eventhandlers\entertainment on your Student Disk.The compiled
Entertainment.class file will be placed within this folder.

If you see a list of compile options when you try to compile the file, then you
did not type a space between a:\ and Entertainment.java. Repeat Step 4 to
compile again.Help

?

Tip

Tip

Tip

12

To change to the command prompt for the root directory on your Student Disk,
type cd\ at the command prompt.

5. Examine the folders on your Student Disk, using any operating system program
with which you are familiar. For example, if you are compiling at the DOS
command line, type dir a:\ at the command-line prompt to view the folders
stored in the root directory.You can see that Java created a folder named com.
Within the com folder is an eventhandlers folder, and within eventhandlers is an
entertainment folder.The Entertainment.class file is within the entertainment
subfolder, and not in the same folder as the .java source file where it ordinarily
would be placed.

If Java did not create a com folder on your Student Disk, then you probably
did not compile the file at the command prompt for the root directory. Repeat
Steps 4 and 5, but make sure that you first change to the command prompt
for the root directory.

6. Delete the copy of the Entertainment.java file from the root directory of
your Student Disk.There is no further need for this source file because the
compiled .class file is stored in the com\eventhandlers\entertainment folder.

If you don’t want to delete the Entertainment.java file, you can move it to the
Chapter.12 folder and overwrite the existing file.

7. Open the MusicalEntertainment.java file in your text editor. For the
first line in the file, insert the following statement: package
com.eventhandlers.entertainment;.

8. Save the file in the root directory as a:\MusicalEntertainment.java.At the
command line for the root directory on your Student Disk, compile the file using
the command javac -d a:\ MusicalEntertainment.java. (Make sure
that you type a space between the drive name and the MusicalEntertainment.java
filename.) Then delete the MusicalEntertainment.java source file from the
root directory of your Student Disk.

9. Open the OtherEntertainment.java file in your text editor. For the first
line in the file, insert the following statement: package
com.eventhandlers.entertainment;. Save the file in the root
directory of your Student Disk as a:\OtherEntertainment.java. At the
command line for the root directory of your Student Disk, compile the file
using the command: javacƒ-d a:\ OtherEntertainment.java.Then
delete the OtherEntertainment.java source file from the root directory.

Tip

Help
?

Tip

452 Chapter 12 Advanced Inheritance Concepts

Chapter Summary 453

10. Open the EntertainmentDataBase.java file in your text editor. For the first
line in the file, insert the following statement: import
com.eventhandlers.entertainment.*;. Save the file as
a:\EntertainmentDataBase.java. Compile the file at the A:\> prompt using
the javac EntertainmentDataBase.java command, and then run the
program at the A:\> prompt using the java EntertainmentDataBase
command.The program’s output should be the same as it was before you
added the import statement.

Instead of using the wildcard import
com.eventhandlers.entertainment.*;, you can use three separate
import statements that name the classes individually, such as import
com.eventhandlers.entertainment.Entertainment;.

11. Examine again the contents of your Student Disk.The only .class file in the root
directory of your Student Disk is the EntertainmentDataBase.class file. Because
this file imports the class files from the com.eventhandlers.entertainment
package, your program recognizes the Entertainment, MusicalEntertainment,
and OtherEntertainment classes, even though neither their .java files nor their
.class files are in the same folder with the EntertainmentDataBase.

Placing the Entertainment-related class files in a folder is not required for the
EntertainmentDataBase program to execute correctly; you ran it in exactly the same
manner before you learned about creating packages. The first time you executed the
EntertainmentDataBase, all the files you used (source files as well as .class compiled files)
were in the Chapter.12 folder on your Student Disk. If you distribute that folder to clients,
they have access to all the code you have written.

After placing the class files in a package, you could import the package into the
EntertainmentDataBase program, and run the EntertainmentDataBase program from a
separate folder.The folder with the three .class files is the only folder you would want to
distribute to programmers who use your Entertainment classes to write programs similar to
EntertainmentDataBase. Placing classes in packages gives you the ability to more easily
isolate and distribute files.

CHAPTER SUMMARY
❒ A class that you create only to extend from, but not to instantiate from, is an abstract

class. An abstract class is one from which you cannot create any concrete objects, but
from which you can inherit.You use the keyword abstract when you declare an
abstract class.

Tip

12

❒ You cannot create instances of abstract classes using the new operator. Usually, abstract
classes contain abstract methods.An abstract method is a method with no method
statements.When you create an abstract method, you provide the keyword abstract
and the intended method type, name, and arguments, but you do not provide any
statements within the method.You must code a subclass method to override any
inherited abstract superclass method.

❒ When you create a superclass and one or more subclasses, each object of the subclass
“is a” superclass object. Because every subclass object “is a” superclass member, you
can convert subclass objects to superclass objects.

❒ You can create a reference to a superclass.When you create a reference, you do not
use the keyword new to create a concrete object.You create a variable name in
which you can hold the memory address of a subclass concrete object that “is a”
superclass member.

❒ The ability of a program to select the correct subclass method is known as dynamic
method binding.

❒ You might want to create a superclass reference and treat subclass objects as superclass
objects so you can create an array of different objects that share the same ancestry.
You can manipulate an array of superclass objects by invoking the appropriate
method for each subclass.

❒ When you create a useful, extendable superclass, you save development time because
much of the code needed for the class has already been written. In addition, you
save testing time and, because the superclass code is reliable, you reduce the time it
takes to learn the new class features.You also maintain superclass integrity.

❒ An interface is similar to a class, but all of its methods must be abstract, and all of its
data (if any) must be static final.When you create a class that uses an interface,
you include the keyword implements and the interface name in the class header.
This notation serves to require class objects to include code for all the methods in
the interface.

❒ Abstract classes and interfaces are similar in that you cannot instantiate concrete
objects from either. Abstract classes differ from interfaces because abstract classes can
contain nonabstract methods, but all methods within an interface must be abstract.
A class can inherit from only one abstract superclass, but it can implement any
number of interfaces.

❒ You can place classes in packages so you or other programmers can easily import
related classes into new programs.When you create a number of classes that inherit
from each other, you often will find it convenient to place them in a package.

❒ You can include a package statement at the beginning of your class file to place
compiled code in the indicated folder.The package statement must appear outside
the class definition.When you compile a file that you want to place in a package,
you must use the -d compiler option with the javac command.

454 Chapter 12 Advanced Inheritance Concepts

Review Questions 455

❒ The convention for naming packages uses Internet domain names in reverse order
to ensure that your package names will not conflict with those of any other
Internet users.

REVIEW QUESTIONS
1. Parent classes are than their child classes.

a. smaller

b. more specific

c. easier to understand

d. more cryptic

2. Abstract classes differ from regular classes in that you .

a. must not code any methods within them

b. must instantiate objects from them

c. cannot instantiate objects from them

d. cannot have data fields within them

3. Abstract classes can contain .

a. abstract methods

b. nonabstract methods

c. both of the above

d. none of the above

4. An abstract class Product has two subclasses, Perishable and NonPerishable. None
of the constructors for these classes requires any arguments.Which of the following
statements is legal?

a. ProductƒmyProductƒ=ƒnewƒProduct();

b. PerishableƒmyProductƒ=ƒnewƒProduct();

c. NonPerishableƒmyProductƒ=ƒnewƒNonPerishable();

d. none of the above

5. An abstract class Employee has two subclasses, Permanent and Temporary.The
Employee class contains an abstract method named setType(). Before you can
instantiate Permanent or Temporary objects, which of the following statements
must be true?

a. You must code statements for the setType() method within the Permanent class.

b. You must code statements for the setType()method within both the Permanent
and the Temporary classes.

12

c. You must not code statements for the setType() method within either the
Permanent or Temporary classes.

d. You may code statements for the setType() method within the Permanent class
or the Temporary class, but not both.

6. When you create a superclass and one or more subclasses, each object of the
subclass superclass object.

a. overrides the

b. “is a”

c. “is not a”

d. is a new

7. Which of the following statements are false?

a. Subclass objects are members of their superclass.

b. Superclass objects can contain abstract methods.

c. You can convert subclass objects to superclass objects.

d. Two of the above statements are false.

8. When you create a , you create a variable name in which you
can hold the memory address of an object.

a. class

b. superclass

c. subclass

d. reference

9. The program’s ability to select the correct subclass method to execute is known as
method binding.

a. polymorphic

b. dynamic

c. early

d. intelligent

10. The statement creates an array of five reference objects of an
abstract class named Currency.

a. Currency[]ƒ=ƒnewƒCurrency[5];

b. Currency[]ƒcurrencyref=ƒnewƒCurrency[5];

c. Currency[5]ƒcurrencyrefƒ=ƒnewƒCurrency[5];

d. Currency[5]ƒ=ƒnewƒCurrency[5];

456 Chapter 12 Advanced Inheritance Concepts

Review Questions 457

11. You override the toString() method in any class you create.

a. cannot

b. can

c. must

d. must implement StringListener to

12. The Object class equals() method takes .

a. no arguments

b. one argument

c. two arguments

d. as many arguments as you need

13. The following statement appears in a Java program:
if(thing.equals(anotherThing))ƒxƒ=ƒ1;.You know that

.

a. thing is an object of the Object class

b. anotherThing is the same type as thing

c. both of the above are correct

d. none of the above are correct

14. The Object class equals() method considers two objects of the same class to be equal
if they have the same .

a. value in all data fields

b. value in any data field

c. data type

d. memory address

15. Java subclasses have the ability to inherit from parent class(es).

a. one

b. two

c. multiple

d. no

16. The alternative to multiple inheritance in Java is known as a(n) .

a. superobject

b. abstract class

c. interface

d. none of the above

12

17. When you create a class that uses an interface, you include the keyword
and the interface’s name in the class header.

a. interface

b. implements

c. accouterments

d. listener

18. You cannot instantiate concrete objects from a(n) .

a. abstract class

b. interface

c. either a or b

d. neither a nor b

19. In Java, a class can .

a. inherit from only one abstract superclass

b. implement only one interface

c. both a and b

d. neither a nor b

20. When you want to provide some data or class that subclasses can inherit, but you
want the subclasses to override some specific methods, you should write a(n)

.

a. abstract class

b. interface

c. final superclass

d. concrete object

EXERCISES
1. a. Create an abstract class named Book. Include a String field for the book’s title and

a double field for the book’s price.Within the class, include a constructor that
requires the book title and two get methods—one that returns the title and one
that returns the price.Also include an abstract method named setPrice(). Create
two child classes of Book: Fiction and NonFiction.Within the constructors for the
Fiction and NonFiction classes, call setPrice so all Fiction Books cost $24.99 and
all NonFiction Books cost $37.99. Finally, write a program that demonstrates that
you can create both a Fiction and a NonFiction Book and display their fields.
Save the Book.java, Fiction.java, NonFiction.java, and UseBook.java pro-
grams in the Chapter.12 folder on your Student Disk.

458 Chapter 12 Advanced Inheritance Concepts

Exercises 459

b. Write a program named BookArray in which you create an array that holds 10
Books, some Fiction and some NonFiction. Using a for loop, display details
about all 10 books. Save the BookArray.java program in the Chapter.12
folder on your Student Disk.

2. a. Create an abstract class named Account for a bank. Include an integer field for
the account number and a double field for the account balance. Also include a
constructor that requires an account number and sets the balance to 0.0. Include
a set method for the balance. Also include two abstract get methods—one for
each field. Create two child classes of Account: Checking and Savings.Within
the Checking class, the get method displays the String “Checking Account
Information”, the account number, and the balance.Within the Savings class,
add a field to hold the interest rate, and require the Savings constructor to
accept an argument for the value of the interest rate.The Savings get method
displays the String “Savings Account Information”, the account number, the
balance, and the interest rate. Save the Account.java, Checking.java, and
Savings.java programs in the Chapter.12 folder on your Student Disk.

b. Write a program named AccountArray in which you enter data for a mix of 10
Checking and Savings accounts. Use a for loop to display the data. Save the
AccountArray.java program in the Chapter.12 folder on your Student Disk.

3. Create an abstract Auto class with fields for the car make and price. Include get
and set methods for these fields; the setPrice() method is abstract. Create two
subclasses for individual automobile makers (for example, Ford or Chevy) and
include appropriate setPrice() methods in each subclass. Finally, write a program
that uses the Auto class and subclasses to display information about different cars.
Save the Auto.java, Ford.java, Chevy.java, and UseAuto.java programs in the
Chapter.12 folder on your Student Disk.

4. Create an abstract class Division with fields for a company’s division name and
account number, and corresponding get and set methods. Use a constructor in the
superclass. Create at least two subclasses for divisions such as Accounting or Human
Resources.Write a program that uses the classes and displays information about
them. Save the Division.java, HumanResources.java, Accounting.java, and
UseDivision.java programs in the Chapter.12 folder on your Student Disk.

5. Write a program named UseChildren that uses an abstract Child class, and Male and
Female subclasses, to display the name, gender, and age of two or more children.
Use constructors with appropriate arguments in each of the classes. Include get and
set methods, at least one of which is abstract. Save the Child.java, Male.java,
Female.java, and UseChildren.java programs in the Chapter.12 folder on your
Student Disk.

6. Create a class named NewsPaperSubscriber with fields for a subscriber’s street address
and the subscription rate. Include get and set methods for the subscriber’s street
address, and get and set methods for the subscription rate.The set method for the
rate is abstract. Include an equals() method that indicates two Subscribers are equal if
they have the same street address. Create child classes named SevenDaySubscriber,
WeekdaySubscriber, and WeekendSubscriber. Each child class constructor sets the rate

12

as follows: SevenDaySubscribers pay $4.50 per week,WeekdaySubscribers pay $3.50
per week, and WeekendSubscribers pay $2.00 per week. Each child class should
include a toString() method that returns the street address, rate, and service type.
Write a program named Subscribers that prompts the user for the subscriber’s street
address and requested service, and creates the appropriate object based on the service
type. Do not let the user enter more than one subscription type for any given street
address. Save the NewspaperSubscriber.java, WeekdaySubscriber.java,
WeekEndSubscriber.java, and Subscriber.java programs in the Chapter.12 folder
on your Student Disk.

7. a. Create an interface named Turning, with a single method named turn(). Create a
class named Leaf that implements turn() to print “Changing colors”. Create a
class named Page that implements turn() to print “Going to the next page”.
Create a class named Pancake that implements turn() to print “Flipping”.Write a
program named Turners that creates one object of each of these class types and
demonstrates the turn() method for each class. Save the Turning.java,
Leaf.java, Pager.java, Pancake.java, and Turners.java programs in the
Chapter.12 folder on your Student Disk.

b. Think of two more objects that use turn(), create classes for them, and then add
objects to the Turners program. Save the programs, using the names of new
objects that use turn(), in the Chapter.12 folder on your Student Disk.

8. Write a program that uses an abstract class named Drug, and subclasses for two
specific drugs to display a drug, its purpose, and the number of times per day it
should be taken. Use constructors in each class, with appropriate arguments.
Include get and set methods, at least one of which is abstract. Prompt the user for
the drug to be displayed, and then create the appropriate object. Save the
programs, using the name of each drug for the program name, in the Chapter.12
folder on your Student Disk.

9. Write a program named UseInsurance that uses an abstract Insurance class and
Health and Life subclasses to display different types of insurance policies and the
cost per month. Use constructors in each class, with appropriate arguments. Include
get and set methods, at least one of which is abstract. Prompt the user for the type
to be displayed, and then create the appropriate object.Also create an interface for a
print() method and use this interface with both subclasses. Save the Life.java,
Health.java, Insurance.java, Print.java, and UseInsurance.java programs in the
Chapter.12 folder on your Student Disk.

10. Write a program named UseLoan that uses an abstract class named Loans and
subclasses to display different types of loans and the cost per month (home, car, and
so on). Use constructors in each of the classes with appropriate arguments. Include
get and set methods, at least one of which is abstract. Prompt the user for the type
to be displayed, and then create the appropriate object.Also create an interface with
at least one method that you use with your subclasses. Save the Loans.java,
Car.java, Home.java, Print.java, and UseLoan.java programs in the Chapter.12
folder on your Student Disk.

460 Chapter 12 Advanced Inheritance Concepts

Exercises 461

11. Create an abstract class called GeometricFigure. Each figure includes a height, a
width, a figure type, and an area. Include an abstract method to determine the area
of the figure. Create two subclasses called Square and Triangle. Create a program
that demonstrates the use of both subclasses, and create them using an array. Save
the GeometricFigure.java, Square.java, Triangle.java, and
UseGeometric.java programs in the Chapter.12 folder on your Student Disk.

CASE PROJECT
Sanchez Construction Loan Co. makes small loans for construction projects up to a
maximum of $10,000.00.The current cost for a $10,000 loan is based on the following fee
structure that has a maximum loan payoff time of 24 months:

Time Fee

6 months $800.00

12 months $1,800.00

18 months $3,000.00

24 months (max) $4,000.00

You have been asked to write a program that will track a starting and ending date (due
date) for all new construction loans.The program must also calculate the amount of the
original loan and the total amount owed at the due date (original loan amount + loan
fee).The program should include four classes, as shown in the table below:

The Loan Interface requires a CalculateFee() method.This method must be implemented
in the AnnualLoan class. The DemoLoan test program should instantiate at least two
AnnualLoan objects that output the loan amount of $10,000, the loan fee for the period,
the beginning date of the loan, the ending date of the loan, and the balance due at the
loan due date. Save the programs as Loan.java, LoanInterface.java, AnnualLoan.java,
and DemoLoan.java in the Chapter.12 folder on your Student Disk.

Class Type

Loan public class

LoanInterface public interface

AnnualLoan publicƒclassƒextendsƒLoanƒimplementsƒLoanInterface

DemoLoan Test program

Case
Project

462 Chapter 12 Advanced Inheritance Concepts

463

CHAPTER

13
UNDERSTANDING SWING

COMPONENTS
In this chapter, you will:

� Use the JFrame class
� Use additional JFrame class methods
� Use Swing event listeners
� Use JPanel class methods
� Use the JCheckBox class
� Use the ButtonGroup classes
� Create a drop-down list and combo box using the JComboBox class
� Create JScrollPanes
� Create JToolBars

Learning about inheritance has been interesting,” you say to Lynn
Greenbrier,“and I certainly can see how using inheritance is going to make

my programming life easier. But will understanding inheritance help me cre-
ate fancier applets, such as ones with frames, user lists, and choice boxes?”

“You bet it will,” Lynn replies. “One reason I gave you such a thorough
grounding in inheritance concepts is so it will be easier for you to learn to
use JFrame-type components.All the little gadgets such as the JComboBoxes
that you want to put in your JFrames are relatives, and inheritance makes it
possible to use all of them.What is more important, if you have a thorough
knowledge of how inheritance and components work in general, then you
can adapt your knowledge to other components.”

“You won’t show me every component?” you ask worriedly.

“I don’t have time to show you every component now,” Lynn says.“Besides,
there are new components that Java developers around the world are shap-
ing right this minute.”

“In other words, I can use the knowledge you give me about components,
and then I can extend that knowledge to future components.That’s just like
inheritance,” you tell Lynn. “Please explain more.”

PREVIEWING THE SWING APPLICATION FOR CHAPTER 13
Event Handlers Incorporated is developing a Swing application that lets a user deter-
mine the price of an event based on several event choices. For some options, such as
whether cocktails or dinner will be served, a user can select options in any combination
(serve only cocktails, serve only dinner, serve both cocktails and dinner, or serve noth-
ing). For other options, such as the dinner entrée or the entertainment, only one choice
is allowed. The Chap13JDemoButtonGroup class incorporates several such devices,
which you can use now.

To use the Chap13JDemoButtonGroup class:

1. Go to the command prompt for the Chapter.13 folder on your Student Disk,
type java Chap13JDemoButtonGroup, and then press [Enter]. In the
input dialog box, type 300.00 for the cost of cocktails (see Figure 13-1), and
then press [Enter].

2. To enter the cost of the default dinner price, type 200.00 in the input dialog
(see Figure 13-2), and then press [Enter].

3. To enter the event price, type 500.00 in the input dialog box (see Figure13-3),
and then press [Enter].

Figure 13-3 Input dialog box showing the Event price

Figure 13-2 Input dialog box showing the default Dinner price

Figure 13-1 Input dialog box showing the Cocktail price

464 Chapter 13 Understanding Swing Components

Using the JFrame Class 465

4. The initial event cost of $500 is shown in Figure 13-4 before any boxes have
been selected. Click the Cocktails box and Beef box and observe how the
total price of the event changes in response to your selections.The total cost of
the event, $1100 ($500 for the initial event cost, $300 for cocktails, and $300
for beef), is shown in Figure 13-5 after the cocktails and the beef are selected.

5. Close the application.

USING THE JFRAME CLASS

Computer programs are usually more user friendly (and more fun to use) when they
contain graphical user interface (GUI) components such as buttons, check boxes, and
menus. In Chapter 9, you learned how to add a few GUI components to a Swing applet;
in this chapter, you will learn how to add several more.

You can add GUI components to either applets or applications.

You already know that you do not need to create GUI components from scratch; Java’s cre-
ators packaged the Swing components to inherit from the java.awt.Container class, so you
can adapt them for your purposes. You insert the import statement import
javax.swing.*; at the beginning of your Java program files so you can take advantage of
the Swing GUI components and their methods.

Tip

Figure 13-5 Output of Chap13JDemoButtonGroup with the Cocktails and the Beef
boxes selected

Figure 13-4 Output of Chap13JDemoButtonGroup before any boxes have
been selected

13

Components are also called widgets, which stands for windows gadgets.

When you use components in a Java Swing program, you usually place them in con-
tainers. A container is a type of component that holds other components so you can
treat a group of several components as a single entity. Usually, a container takes the form
of a window that you can drag, resize, minimize, restore, and close. Containers are
defined in the Container class.

As you know, all Java classes are subclasses; they all descend from the Object class.The
Component class is a child of the Object class, and the Container class is a child of
the Component class.Therefore, every Container Object “is a” Component, and every
Component Object (including every Container) “is an” Object.

The Container class is also a parent class. Its child is the Window class. Similarly, the
Frame class is a subclass of the Window class, and the JFrame class is a subclass of the
Frame class, as shown in Figure 13-6.

Recall that the Object class is defined in the java.lang package, which is
imported automatically every time you write a Java program.

The Component class is an abstract class.You learned in Chapter 12 that when you cre-
ate an abstract class, you cannot create any concrete instances; instead, you create sub-
classes from which you create concrete instances. All GUI components, such as the
buttons, text fields, and other objects with which the user interacts, are actually subclasses
or extensions of the Component class. Likewise, the Container class, which descends from
the Component class, is itself an abstract class.Therefore, there are no “plain” Containers;
every concrete Container object is a member of a subclass of Container. The Window
class, which inherits from Container, is not abstract; you can instantiate a Window object.
However, Java programmers rarely use Window objects because the Window subclass
Frame allows you to create more useful objects.Window objects do not have title bars or
borders, but a Frame object does. As Figure 13-6 shows a JFrame“is a” Frame as well as

Tip

java.lang.Object
java.awt.Component

java.awt.Container
java.awt.Window

java.awt.Frame
javax.swing.JFrame

Figure 13-6 Relationship of the JFrame class to the Object, Component, Container,
Window, and Frame superclass

Tip

466 Chapter 13 Understanding Swing Components

Using the JFrame Class 467

a Window, a Container, a Component, and an Object, and therefore inherits all the meth-
ods of the parents.

You usually create a JFrame so that you can place other objects within it for display.The
JFrame class has four constructors:

� JFrame() constructs a new frame that is initially invisible.

� JFrame(GraphicsConfiguration gc) creates a JFrame in the specified
GraphicsConfiguration of a screen device and a blank title.

� JFrame(String title) creates a new, initially invisible JFrame with the
specified title.

� JFrame(String title, GraphicsConfiguration gc) creates a JFrame with the
specified title and the specified GraphicsConfiguration of a screen.

JFrame objects constructed with the no-argument constructor are untitled. For exam-
ple, the following two statements construct two JFrames—one with the title “Hello”,
and another JFrame with no title:

JFrameƒfirstFrameƒ=ƒnewƒJFrame("Hello");
JFrameƒsecondFrameƒ=ƒnewƒJFrame();

Next you will create a JFrame object that appears on the screen.

To create a JFrame object:

1. Open a new file in your text editor.

2. Type the following statement to import the java.swing classes: import
javax.swing.*;.

3. On the next lines, type the following class header for the JDemoFrame class
and its opening curly brace:

publicƒclassƒJDemoFrame
{

4. On the next lines, type the following main() method header and its opening
curly brace:

publicƒstaticƒvoidƒmain(String[]ƒargs)
{

5. Within the body of the main() method, enter the following code to declare a
JFrame with a title, set the JFrame’s size, and make the JFrame visible. If you
neglect to set a JFrame’s size, you will see only the title bar of the JFrame. If
you neglect to make the JFrame visible, you will not see anything at all. Add
two closing curly braces—one for the main() method and one for the
JDemoFrame class.

ƒƒJFrameƒaFrameƒ=ƒnewƒJFrame("Thisƒisƒaƒframe");
ƒƒaFrame.setSize(200,100);

13

ƒƒaFrame.setVisible(true);
ƒ}
}

6. Save the file as JDemoFrame.java in the Chapter.13 folder on your Student
Disk. Compile the class using the javac command, and then run the pro-
gram using the java command.The output looks like Figure 13-7.

The term frame means a generic GUI window that has a border and a title
and may include buttons. You can create forms using many programming lan-
guages as well as by using Java.

The JFrame shown in Figure 13-7 resembles frames that you have seen when using dif-
ferent GUI programs. One reason to use similar frame objects in your programs is your
program’s user is already familiar with the frame environment. Users expect to see a title
bar at the top of a frame that contains information (such as “This is a frame”). Users also
expect to see Minimize, Maximize or Restore, and Close buttons in the frame’s upper-
right corner. Most users assume that they can change a frame’s size by dragging its bor-
der, or reposition the frame on their screen by dragging the frame’s title bar to a new
location. Next you will confirm that the frame you just created has these capabilities.

To confirm that the JFrame you created has Minimize, Maximize, Restore,
and dragging capabilities:

1. Run the JDemoFrame program again, if necessary. Click the JFrame’s
Minimize button.The JFrame minimizes to an icon on the Windows taskbar.

2. Click the JFrame’s icon on the taskbar.The JFrame returns to its previous size.

3. Click the JFrame’s Maximize button.The JFrame fills the screen.

4. Click the JFrame’s Restore button to return the JFrame to its original size.

5. Position your mouse pointer on the JFrame’s title bar, and then drag the
JFrame to a new position on your screen.

6. Click the JFrame’s Close button.The JFrame disappears because the default
behavior is to simply hide the JFrame when the user closes the window.The
cursor is left blinking in the command window until the application is
closed.To close the application you must press [Ctrl]+C.

Tip

Figure 13-7 Output of the JDemoFrame program

468 Chapter 13 Understanding Swing Components

Using Additional JFrame Class Methods 469

In Chapter 6, you learned to press [Ctrl]+C to stop a program that contains
an infinite loop.

USING ADDITIONAL JFRAME CLASS METHODS

When you extend the JFrame class, you inherit several useful methods.Table 13-1 lists
the method header and purpose of several methods available to the JFrame class.

The syntax to use any of these methods is to use a JFrame object, a dot, and the method
name. If you use any of these methods within a JFrame’s class, then the method call to
set the title is this.setTitle("This is the title");, or more simply,
setTitle("This is the title");.

Earlier in this chapter you learned that when an application using a JFrame is closed,
the normal behavior is for the application to keep running.To create a JFrame that ends
the program when the user clicks the Close button, you can call the JFrame’s
setDefaultCloseOperation() method with the class variable EXIT_ON_CLOSE as an
argument. There are four class variables that provide flexibility in handling the Close

Method Purpose

void setTitle(String) Sets a JFrame’s title

void setSize(int, int) Sets a JFrame’s size in pixels with the width and height
as arguments

void setSize(Dimension) Sets a JFrame’s size using a Dimension class object by
calling the Dimension(int, int) constructor that creates
the object representing the specified width and height
arguments

String getTitle() Returns a JFrame’s title

void setResizable(boolean Sets the JFrame to be resizable by passing true, or
resizable) sets the JFrame not to be resizable by passing false to

the method

boolean isResizable() Returns true or false to indicate whether the Frame
is resizable

void setVisible(boolean) Sets a JFrame visible using the Boolean argument true
and invisible using the Boolean argument false

voidƒsetBounds Overrides the default behavior for the JFrame to be
(int,ƒint,ƒint,ƒint) positioned in the upper-left corner of the computer’s

desktop. The first two arguments are the x and y position
of the JFrame’s upper-left corner on the desktop. The last
two arguments set the width and height.

Table 13-1 Useful methods of the JFrame class

Tip

13

operation.These class variables and their ensuing actions that can be passed as an argu-
ment to the setDefaultCloseOperation() method include:

� EXIT_ON_CLOSE exits the program when the JFrame is closed.

� DISPOSE_ON_CLOSE closes the frame, disposes of the JFrame object, and
keeps running the application.

� DO_NOTHING_ON_CLOSE keeps the JFrame and continues running.

� HIDE_ON_CLOSE closes the JFrame and continues running.

When a JFrame serves as a Swing application’s main user interface, the normal behav-
ior when a JFrame is closed is for the application to keep running. To exit a program
when the JFrame is closed, add the following statement to the JFrame’s constructor
method: setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);. For exam-
ple, to set a JFrame program named JDefault to close when the JFrame’s Close button
is clicked, you can write the following constructor code:

publicƒJDefault()
{
ƒƒsuper("JDefaultƒExample")
ƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
//otherƒstatements
}

USING SWING EVENT LISTENERS

Classes that respond to user events must implement an interface that deals with the events.
These interfaces are called event listeners. Each of these listeners can handle a specific
event type, and a class can implement as many event listeners as it needs.Table 13-2 lists
event listeners and the types of events for which they are used.

Listener Type of events Example

ActionListener Action events Button clicks

AdjustmentListener Adjustment events Scrollbar moves

FocusListener Keyboard focus events Textfield gains or loses focus

ItemListener Item events Check box changes

KeyListener Keyboard events Text is entered from keyboard

MouseListener Mouse events Mouse clicks

MouseMotionListener Mouse movement events All mouse movements

WindowListener Window events Window closes

Change Listener Slider events Slider moves

Table 13-2 Alphabetical listing of event listeners

470 Chapter 13 Understanding Swing Components

Using Swing Event Listeners 471

In Table 13-3, each component that is created is associated with one of the methods to
associate a listener with it:

When a user event takes place, the appropriate method is called automatically by the sys-
tem. For example, when an event occurs in a program that implements ActionListener,
all classes that implement ActionListener must use a method with a structure similar to
the following:

publicƒvoidƒactionPerformed(ActionEventƒevent)
{
ƒƒƒ//methodƒtoƒhandleƒtheƒeventƒgoesƒhere
}

Failure to include the actionPerfomed() method will result in a compilation error. If
more than one component has an action event listener, you must figure out which com-
ponent was used and code accordingly in the program. In the example above, an
ActionEvent object is sent as an argument when the method is called. ActionEvent is
part of the java.awt.event package, and a subclass of the EventObject class.

This ActionEvent object that is an argument to actionPerformed() contains information
about the object that caused the event—for example, perhaps a button click or a scrollbar
movement generated the event.You can use several methods to discover the details about
the event-generating object. For example, the getSource() method returns the identity of
the component where the event occurred. Consider the following code example:

publicƒvoidƒactionPerformed(ActionEventƒevent)
{
ƒƒƒObjectƒsourceƒ=ƒevent.getSource();
ƒƒƒif(sourceƒ==ƒanswerButton)
ƒƒƒ//takeƒsomeƒaction
ƒƒƒelse
ƒƒƒ//takeƒsomeƒotherƒaction
}

Components Associated listeners

JButton, JCheckBox, JComboBox, addActionListener()
JToolbar, JTextField, and JRadioButton

JScrollBar addAdjustmentListener()

all Swing Components addFocusListener(), addKeyListener(),
addMouseListener(), and addMouseMotionListener()

JButton, JCheckBox, JComboBox addItemListener()
and JRadioButton

all JWindow and JFrame Components addWindowListener()

JSlider addChangeEvent()

Table 13-3 Swing components and their associated listeners

13

In this example, the if statement tests if the source is answerButton and if true takes
some action. An alternate method is to use the instanceof keyword to check what
kind of object generated the event:

{
ƒƒƒObjectƒsourceƒ=ƒevent.getSource();
ƒƒƒif(sourceƒinstanceofƒJButton)
ƒƒƒ//takeƒsomeƒaction
ƒƒƒelse
ƒƒƒ//takeƒsomeƒotherƒaction
}

In this example, if the source of the event is a JButton, the if statement evaluates to
true and some action is taken.

You first learned the instanceof keyword in Chapter 9 when you read
about action events of Swing applets.

USING JPANEL CLASS METHODS

Because it allows other components to be added directly to the container, the JPanel,
found in the JPanel class, is the simplest Swing container. The structure of the JPanel
class is shown in Figure 13-8.

To add a component to a JPanel, you call the Container’s add() method, using the com-
ponent as the argument. For example, the following code creates a JButton and adds it
to a JPanel:

JButtonƒexitƒ=ƒnewƒJButton("Exit");
JPanelƒpanelƒ=ƒnewƒJPanel();
panel.add(exit);

Some Swing containers such as the JFrame and JApplet do not allow components to be
added directly to the container.These Swing containers require that components added
to containers must be broken down into panes.

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.JPanel

Figure 13-8 Structure of the JPanel class

Tip

472 Chapter 13 Understanding Swing Components

Using JPanel Class Methods 473

Components are added to a container’s content pane using the following steps:

1. Create a JPanel object.

2. Add components to the JPanel using the add() method.

3. Call the setContentPane() method with the panel object created to set the
application’s content pane.

For example, the following code creates a JPanel object named pane and a JButton
object named button.Then the button object is added to the pane object, using the add()
method with button as the argument.The pane object is set as the content pane, using
the setContentPane() method with pane as the argument.

JPanelƒpaneƒ=ƒnewƒJPanel();
JButtonƒbuttonƒ=ƒJButton("Exit");
pane.add(button);
setContentPane(pane);

Swing components have a default size for the objects that are created. A component’s
size can be changed using the component’s setPreferredSize() method. For example, a
JButton’s preferred size can be changed as follows:

DimensionƒbuttonSizeƒ=ƒnewƒDimension(200,ƒ20);
JButtonƒbigButton=ƒnewƒJButton();
bigButton.setPreferredSize(buttonSize);

In the example, the preferred size of the JButton named bigButton is changed to a width
of 200 pixels and a height of 20 pixels using a Dimension object named buttonSize.

Next you will create a Swing application that displays a JFrame that uses a JPanel and
some JButtons.This exercise will show you that you can add JPanels to a Swing appli-
cation just as easily as you can add them to a Swing applet; it will also demonstrate some
JComponent class methods and associated event methods.Within the Swing application,
you create a JFrame and a JPanel containing three JButtons that change captions when
the user clicks them.

To create a JFrame that displays three JButtons within a JPanel:

1. Open a new file in your text editor, and then type the following first few
lines of a Swing application.The import statements used before the class
header definition make the Swing components, the AWT components, and
the event listener available. Note that the JChangeMessage class implements
ActionListener. Create a Dimension object to hold the width and height
dimensions. Create three JButtons with captions of “North”, “Center”, and
“South”.Then create a BorderLayout object for the component layout.

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJChangeMessageƒextendsƒJFrameƒimplements
ƒƒƒActionListener

13

{
ƒƒƒƒDimensionƒsizeƒ=ƒnewƒDimension(250,20);
ƒƒƒƒJButtonƒb1ƒ=ƒnewƒJButton("North");
ƒƒƒƒJButtonƒb2ƒ=ƒnewƒJButton("Center");
ƒƒƒƒJButtonƒb3ƒ=ƒnewƒJButton("South");
ƒƒƒƒBorderLayoutƒaBorderƒ=ƒnewƒBorderLayout();

2. In the JChangeMessage constructor method, set the JFrame title to “Change
Message” and the default close operation to EXIT_ON_CLOSE. Set the pre-
ferred size of each JButton by calling the setPreferredMethod() and using the
Dimension object named size as the argument. Add an ActionListener for
each JButton using the keyword this to represent the JFrame.

ƒƒƒƒpublic JChangeMessage()
ƒƒƒƒ{
ƒƒƒƒƒƒsuper("ChangeƒMessage");
ƒƒƒƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ƒƒƒƒƒƒb1.setPreferredSize(size);
ƒƒƒƒƒƒb2.setPreferredSize(size);
ƒƒƒƒƒƒb3.setPreferredSize(size);
ƒƒƒƒƒƒb1.addActionListener(this);
ƒƒƒƒƒƒb2.addActionListener(this);
ƒƒƒƒƒƒb3.addActionListener(this);

3. Create a JPanel object named pane. Set the layout for pane to BorderLayout,
with the setLayout() method using the aBorder object as an argument. Add
three JButtons to the JPanel named pane using the layout locations “North”,
“Center”, and “South”.Then call the setContentPane() method with pane as
the argument to make it the content pane.

ƒƒƒƒƒƒƒƒJPanelƒpaneƒ=ƒnewƒJPanel();
ƒƒƒƒƒƒƒƒpane.setLayout(aBorder);
ƒƒƒƒƒƒƒƒpane.add("North",ƒb1);
ƒƒƒƒƒƒƒƒpane.add("Center",ƒb2);
ƒƒƒƒƒƒƒƒpane.add("South",ƒb3);
ƒƒƒƒƒƒƒƒsetContentPane(pane);
ƒƒƒƒ}

4. Add the following main() method that creates a new JFrame named aFrame,
sizes it using the setSize() method, and sets its visible property to true.

ƒƒƒƒpublic static void main(String[] args)
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒJFrameƒaFrameƒ=ƒnewƒJChangeMessage();
ƒƒƒƒƒƒƒƒaFrame.setSize(275,100);
ƒƒƒƒƒƒƒƒaFrame.setVisible(true);
ƒƒƒƒ}

5. Enter the following actionPerformed() method which will execute when the user
clicks a JButton. Notice that each JButton has its own listener.To determine

474 Chapter 13 Understanding Swing Components

Using the JCheckBox Class 475

which JButton is clicked, an Object source is created by calling the ActionEvent’s
getSource() method.An if..else structure is used to determine which
JButton is clicked. If the source of the JButton that sent the event is the b1
JButton, the caption of b1 is set to “Event Handlers Incorporated” using the
setText() method.The same procedure is applied to each of the remaining
JButtons.Add a closing curly brace to end the ChangeMessage class.

ƒƒƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒƒƒƒƒƒƒifƒ(sourceƒ==ƒb1)
ƒƒƒƒƒƒƒƒƒƒƒƒb1.setText("EventƒHandlersƒIncorporated");
ƒƒƒƒƒƒƒƒelseƒifƒ(sourceƒ==ƒb2)
ƒƒƒƒƒƒƒƒƒƒƒƒb2.setText("PlanƒWithƒUs");
ƒƒƒƒƒƒƒƒelseƒifƒ(sourceƒ==ƒb3)
ƒƒƒƒƒƒƒƒƒƒƒƒb3.setText("Youƒjustƒrelax.ƒWe'llƒmanageƒthe
ƒƒƒƒƒƒƒƒƒƒƒƒfuss.");
ƒƒƒƒƒƒ}
ƒƒƒƒ}

6. Save the file as JChangeMessage.java in the Chapter.13 folder on your
Student Disk. Compile the file using the javac command.The output is
shown in Figure 13-9 before any JButtons are clicked, and again in Figure
13-10 after all the JButtons are clicked.

USING THE JCHECKBOX CLASS

A JCheckBox consists of a JLabel positioned beside a square; you can click the square to
display or remove a check mark. (Usually you use a JCheckBox to allow the user to turn
an option on or off.) The structure of the JCheckBox class is shown in Figure 13-11.

Figure 13-10 JChangeMessage program after all JButtons are clicked

Figure 13-9 JChangeMessage program before any JButtons are clicked

13

CheckBox methods are listed in Table 13-4.

When you construct a JCheckBox, you can choose whether to assign it a label.The follow-
ing statements create two JCheckBox objects—one with a label and one without a label:

JCheckBoxƒboxOneƒ=ƒnewƒJCheckBox();
JCheckBoxƒboxTwoƒ=ƒnewƒJCheckBox("Clickƒhereƒplease");

If you do not initialize a JCheckBox with a label, or if you want to change the label
later, you can use the setLabel() method, as in boxOne.setLabel(“Check this box
now”);.You can set the state of a JCheckBox with the setState() method; for example,
use boxOne.setState(false); to insure that boxOne is unchecked.The getState()
method is most useful in Boolean expressions, as in if(boxTwo.getState())
++votes;, which adds one to a votes variable if boxTwo is currently checked.

Using a JCheckBox object requires using a new interface, ItemListener. Whereas
ActionListener provides for mouse clicks and requires that you write an
actionPerformed() method, ItemListener provides for objects whose states change from
true to false and requires that you write an itemStateChanged() method. When a
check box’s state is changed from checked to unchecked or from unchecked to checked,
the code in the itemStateChanged() method executes.

You can call the getItem() method to determine the identity of the item that generated an
event.To determine whether that item was selected or deselected you use the getChange()
method. This method returns an integer that will be equal to either the class variable
ItemEvent.SELECTED or ItemEvent.DESELECTED. For example, in the following

Method Purpose

void setLabel Sets the label for the JCheckBox
(String label)

String getLabel() Returns the JCheckBox label

void setState Sets the JCheckBox state to true for checked or false
(boolean condition) for unchecked

boolean getState() Gets the current state (checked or unchecked) of the
JCheckBox

Table 13-4 JCheckBox methods

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.AbstractButton
javax.swing.JToggleButton
 javax.swing.JCheckBox

Figure 13-11 Structure of the JCheckBox class

476 Chapter 13 Understanding Swing Components

Using the JCheckBox Class 477

itemStateChanged() method code, the getItem() method is called and returns the object
named source.Then source is tested in an if statement to determine if it is equal to another
JCheckBox object named checkBox. If the two objects are equal, then the getStateChange()
method is called and returns an integer value that is assigned to the integer named select.
The value of the select is compared to the class field ItemEvent.SELECTED, and if they
are equal, a set of program statements executes. If they are not equal, the program state-
ments following the else execute.

publicƒvoidƒitemStateChanged(ItemEventƒe)
ƒƒ{
ƒƒƒƒObjectƒsourceƒ=ƒe.getItem();
ƒƒƒƒifƒ(sourceƒ==ƒcheckBox)
ƒƒƒƒ{
ƒƒƒƒƒƒintƒselectƒ=ƒe.getStateChange();
ƒƒƒƒƒƒif(selectƒ==ƒItemEvent.SELECTED)
ƒƒƒƒƒƒ//some statements
ƒƒƒƒƒƒelse
ƒƒƒƒƒƒ//other statements
ƒƒƒƒ}
ƒƒ}

Next you will create an interactive program that Event Handlers Incorporated clients
can use to determine an event’s price.The base price of an event is $500; serving cock-
tails adds $300, and serving dinner adds $200.The user can check and uncheck the cock-
tail and dinner check boxes to recalculate the event price.

To write a Swing application that includes two JCheckBox objects:

1. Open a new file in your text editor, and then type the following first few
lines of a Swing application that demonstrates the use of a JCheckBox. Note
that the JDemoCheckBox class implements ItemListener.

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJDemoCheckBoxƒextendsƒJFrameƒimplements
ƒƒƒItemListener
{

2. Create a FlowLayout object named flow to be used as an argument to set the lay-
out of the program to FlowLayout. Create two JCheckBoxes named cocktailBox
and dinnerBox, both unchecked, by setting their second argument to false.
Create two JLabels to hold the headings “Event Handlers Incorporated” and
“Event Price Estimate”. Create a JTextField object named totPrice and a String
variable named output.The JTextField is used to display the total price calculated
for the event.The total price of the event is calculated from the prices of the
individual event items selected and stored in the String variable named output.

FlowLayoutƒflowƒ=ƒnewƒFlowLayout();
ƒƒJCheckBoxƒcocktailBoxƒ=ƒnewƒJCheckBox("Cocktails",
ƒƒƒƒƒfalse);

13

ƒƒJCheckBoxƒdinnerBoxƒ=ƒnewƒJCheckBox("Dinner",ƒfalse);
ƒƒJLabelƒaEventƒ=ƒnewƒJLabel
ƒƒƒƒƒ("EventƒHandlersƒIncorporated");
ƒƒJLabelƒePriceƒ=ƒnewƒJLabel("EventƒPriceƒestimate");
ƒƒJTextAreaƒtotPriceƒ=ƒnewƒJTextArea(1,10);
ƒƒStringƒoutput;

3. Using the JOptionPane showInputDialog()method, accept keyboard input for
the price of cocktails, dinner, and the event. Use the parseDouble() method
to change the input String objects to the doubles named cocktailPrice,
dinnerPrice, and totalPrice.

ƒƒƒStringƒfirstPriceƒ=ƒJOptionPane.showInputDialog
ƒƒƒƒƒƒ("EnterƒtheƒCocktailƒprice");
ƒƒƒStringƒsecondPrice = JOptionPane.showInputDialog
ƒƒƒƒƒƒ("EnterƒtheƒDinnerƒprice");
ƒƒƒStringƒthirdPriceƒ=ƒJOptionPane.showInputDialog
ƒƒƒƒƒƒ("Enter theƒEventƒprice");
ƒƒƒdoubleƒcocktailPriceƒ=ƒDouble.parseDouble(firstPrice);
ƒƒƒdoubleƒdinnerPriceƒ=ƒDouble.parseDouble(secondPrice);
ƒƒƒdoubleƒtotalPriceƒ=ƒDouble.parseDouble(thirdPrice);

Figure 13-12 shows what the last dialog box will look like when the program is complete.

4. Create the constructor method statement public JDemoCheckBox().Add an
opening curly brace, press [Enter], and set the JFrame’s title to “Check Box”.
Set the value of the JFrame’s setDefaultCloseOperation to EXIT_ON_CLOSE
so that the JFrame will close when the Close button is clicked.Add a JPanel
named pane that will act as the content pane, and set the layout of the JPanel to
FlowLayout.Add the cocktailBox and dinnerBox to the JPanel.Add the two
JLabels and the JTextField to the JPanel. Note that you must add these compo-
nents to the JPanel in the top-to-bottom and left-to-right order in which they
are to appear. Use the setText() method to set the initial text of totPrice to the
String variable thirdPrice which holds the event price captured from keyboard
input. Register the cocktailBox and dinnerBox by adding an ItemListener for
each, and then use the setContentPane() method to set the JPanel as the content
pane for the program.

Figure 13-12 Input dialog box for the price of the event

478 Chapter 13 Understanding Swing Components

Using the JCheckBox Class 479

ƒƒpublicƒJDemoCheckBox()
ƒƒ{
ƒƒƒƒsuper("CheckƒBox");
ƒƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ƒƒƒƒJPanelƒpaneƒ=ƒnewƒJPanel();
ƒƒƒƒpane.setLayout(flow);
ƒƒƒƒpane.add(cocktailBox);
ƒƒƒƒpane.add(dinnerBox);
ƒƒƒƒpane.add(aEvent);
ƒƒƒƒpane.add(ePrice);
ƒƒƒƒpane.add(totPrice);
ƒƒƒƒtotPrice.setText(thirdPrice);
ƒƒƒƒcocktailBox.addItemListener(this);
ƒƒƒƒdinnerBox.addItemListener(this);
ƒƒƒƒsetContentPane(pane);
ƒƒ}

5. Add the following main() method that creates a new JFrame named aFrame,
sizes it using the setSize() method, and sets its visible property to true:

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒJFrameƒaFrameƒ=ƒnewƒJDemoCheckBox();
ƒƒƒaFrame.setSize(200,150);
ƒƒƒaFrame.setVisible(true);
ƒƒ}

6. Enter the following itemStateChanged() method, which executes when the
user changes the status of one of the two JCheckBoxes that are registered as
ItemListeners.The base price of the event is set at $500. If the cocktail
JCheckBox is checked, then the program adds the cocktail price ($300) to
the event total price. If the dinner JCheckBox is checked, the program adds
the dinner price ($200) to the event total price. If either of the JCheckBoxes
is subsequently unchecked, the appropriate prices are subtracted from the
total price. Note that the source of an ItemEvent is determined using the
getItem() method. Note also that whether or not the ItemEvent object is
checked is determined using the getStateChange() method. Finally, observe
that the variable output holds the total price as a string.This is accomplished
by assigning to output the result of concatenating an empty string “ ” +
totalPrice which forces the result to yield a string representation.

ƒƒpublicƒvoidƒitemStateChanged(ItemEventƒcheck)
ƒƒ{
ƒƒƒƒObjectƒsourceƒ=ƒcheck.getItem();
ƒƒƒƒifƒ(sourceƒ==ƒcocktailBox)
ƒƒƒƒ{
ƒƒƒƒƒƒintƒselectƒ=ƒcheck.getStateChange();
ƒƒƒƒƒƒif(selectƒ==ƒItemEvent.SELECTED)
ƒƒƒƒƒƒ{

13

ƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ+ƒcocktailPrice;
ƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒelseƒif(selectƒ==ƒItemEvent.DESELECTED)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ-ƒcocktailPrice;
ƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒƒƒif(sourceƒ==ƒdinnerBox)
ƒƒƒƒ{
ƒƒƒƒƒƒintƒselectƒ=ƒcheck.getStateChange();
ƒƒƒƒƒƒif(selectƒ==ƒItemEvent.SELECTED)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ+ƒdinnerPrice;
ƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒelseƒif(selectƒ==ƒItemEvent.DESELECTED)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ-ƒdinnerPrice;
ƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒ}
}

7. Save the file as JDemoCheckBox.java in the Chapter.13 folder on your
Student Disk. Compile the file using the javac command. Run the program
with java JDemoCheckBox.The initial event cost of $500 is shown in
Figure 13-13 before any boxes have been selected. Click the boxes of your
choice and observe how the total price of the event changes in response to
your selections.The total cost of the event, $1000, is shown in Figure 13-14,
with cocktails and dinner selected.

Figure 13-13 Output of JDemoCheckBox before any boxes have been selected

480 Chapter 13 Understanding Swing Components

Using the ButtonGroup Classes 481

USING THE BUTTONGROUP CLASSES

You can group several JCheckBoxes so a user can select only one at a time.When you
group JCheckBox objects, all other JCheckBoxes are automatically turned off when the
user selects any one check box.

A group of JCheckBoxes is similar to a set of radio buttons that you can cre-
ate using the JRadioButton class. However, when you place check boxes in a
group, any number can be selected. A group of radio buttons can have, at
most, one button selected at a time.

To organize check boxes into a group that allows only one at a time to be selected you
must create a ButtonGroup class object.You can either create a ButtonGroup and then
create the individual JCheckBoxes, or you can create the JCheckBoxes and then create
the ButtonGroup.The structure of the ButtonGroup class is shown in Figure 13-15.

To create a ButtonGroup, and then add a JCheckBox:

1. Create a ButtonGroup such as ButtonGroup aGroup = new
ButtonGroup();.

2. Create a JCheckBox such as JCheckBox aBox = new CheckBox();.

3. Add JCheckBox aBox to ButtonGroup aGroup as aGroup.add(aBox);.

For example, if you define a ButtonGroup as ButtonGroup favoriteStoogeGroup =
new ButtonGroup();, then you can assign an unselected JCheckBox to the group, and
add the JCheckBox object to the ButtonGroup using the following code:

JCheckBoxƒlarryBoxƒ=ƒnewƒJCheckBox("Larry",ƒfalse);
favoriteStoogeGroup.add(larryBox);

java.lang.Object
java.swing.ButtonGroup

Figure 13-15 Structure of the ButtonGroup class

Tip

Figure 13-14 Output of JDemoCheckBox with both the Cocktails and the Dinner
boxes selected

13

You can the use the following statement to assign JCheckBox moeBox = new
JCheckBox("Moe", true); to the ButtonGroup favoriteStoogeGroup:

favoriteStoogeGroup.add(moeBox);.

If you assign the true state to multiple JCheckBoxes within a group, each
new true assignment negates the previous one because only one box can
be selected within a group.

You can set one of the JCheckBoxes within a group to “on” by clicking it with the
mouse, or you can select a JCheckBox within a ButtonGroup with a statement such as
favoriteStoogeGroup.setSelected(larryBox);.You can determine which, if
any, of the JCheckBoxes in a ButtonGroup are selected with the isSelected() method.
For example, the statement: if(favoriteStoogeGroup.isSelected()); evalu-
ates to true if the favoriteStoogeGroup is selected.

Each JCheckBox object has access to every JCheckBox class method regard-
less of whether the JCheckBox is part of a ButtonGroup.

Next you will add a ButtonGroup to the program that determines the price of an event
for Event Handlers Incorporated. If the user wants to serve dinner at an event, the price
varies based on the selected menu. Because the user can choose only one entrée
(chicken, beef, or fish), it is appropriate to select the entrée using a ButtonGroup.

To add a ButtonGroup to the Event Handlers pricing program:

1. In your text editor, open the JDemoCheckBox.java file from the Chapter.13
folder on your Student Disk, and then save it as JDemoButtonGroup.java.

2. Delete the old class header and type the new class header: public class
JDemoButtonGroup extends JFrame implements ItemListener.

3. Position your insertion point at the end of the statement JCheckBox
dinnerBox = new JCheckBox("Dinner", false);, press [Enter] to
open up a blank line.To add new JCheckBoxes for the remaining two
entrées, beefBox and fishBox, initializing each entrée box to be unchecked
add the following statements:

ƒƒJCheckBoxƒbeefBoxƒ=ƒnewƒJCheckBox("Beef",ƒfalse);
ƒƒJCheckBoxƒfishBoxƒ=ƒnewƒJCheckBox("Fish",ƒfalse);

4. Position your insertion point at the end of the statement double
totalPrice = Double.parseDouble(thirdPrice);, and then press
[Enter].Then add the following two new variables for the dinner price if the
selected entrée is either beef or fish: int beefPrice = 300,
fishPrice = 500;.

Tip

Tip

482 Chapter 13 Understanding Swing Components

Using the ButtonGroup Classes 483

5. Delete the old JDemoCheckBox() constructor method, and then type the
new constructor method as JDemoButtonGroup(). Change the title of the
JFrame by changing the argument of the super() method to “Button Group”:
super("Button Group");

6. Position the insertion point in the JDemoButtonGroup() method at the end
of the line pane.setLayout(flow);, and then press [Enter].Type the
following code to add a ButtonGroup to hold the three dinner options.Then
add the dinnerBox (default dinner entrée), beefBox, and fishBox to the new
dinnerGroup.

ƒƒƒƒButtonGroupƒdinnerGroupƒ=ƒnewƒButtonGroup();
ƒƒƒƒdinnerGroup.add(dinnerBox);
ƒƒƒƒdinnerGroup.add(beefBox);
ƒƒƒƒdinnerGroup.add(fishBox);

7. Position your insertion point to the right of the statement
pane.add(dinnerBox);, and then press [Enter]. Add the beefBox and
fishBox to the pane as follows:

ƒƒƒƒpane.add(beefBox);
ƒƒƒƒpane.add(fishBox);

8. Position your insertion point to the right of the statement
dinnerBox.addItemListener(this);, and then press [Enter] to start a
new line. Enter the following code to register a listener for the beefBox and
fishBox. It is necessary to register listeners for each of the JCheckBoxes,
rather than a listener for the ButtonGroup.

ƒƒƒƒbeefBox.addItemListener(this);
ƒƒƒƒfishBox.addItemListener(this);

9. Within the main() method, delete the statement JFrame aFrame = new
JDemoCheckBox();, and then add JFrame aFrame = new JDemo
ButtonGroup();. Delete the statement aFrame.setSize(200,150);,
and then add aFrame.setSize(300,150);.

10. Place your insertion point at the end of the closing brace of the if(source
== dinnerBox) statement, and then press [Enter]. Add the following
changes to the itemStateChanged() methods, which execute when the user
changes the state of beefBox or fishBox:

ƒƒƒƒifƒ(sourceƒ==ƒbeefBox)
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒintƒselectƒ=ƒcheck.getStateChange();
ƒƒƒƒƒƒƒƒƒif(selectƒ==ƒItemEvent.SELECTED)
ƒƒƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ+ƒbeefPrice;
ƒƒƒƒƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒƒƒƒ}

13

ƒƒƒƒƒƒƒelseƒif(selectƒ==ƒItemEvent.DESELECTED)
ƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ-ƒbeefPrice;
ƒƒƒƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒƒƒifƒ(sourceƒ==ƒfishBox)
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒintƒselectƒ=ƒcheck.getStateChange();
ƒƒƒƒƒƒƒƒif(selectƒ==ƒItemEvent.SELECTED)
ƒƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ+ƒfishPrice;
ƒƒƒƒƒƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒƒƒ}
ƒƒƒƒƒƒƒƒelseƒif(selectƒ==ƒItemEvent.DESELECTED)
ƒƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒtotalPriceƒ=ƒtotalPriceƒ-ƒfishPrice;
ƒƒƒƒƒƒƒƒƒƒƒoutputƒ=ƒ"ƒ"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒƒƒ}
ƒƒƒƒ}

11. Save the file in the Chapter.13 folder on your Student Disk. Compile the
program using the javac command, and then run it.The output should look
similar to Figure 13-16 if you selected Cocktails and Beef. Note that select-
ing Beef added an additional $300 to the event price.

CREATING A DROP-DOWN LIST AND COMBO BOX USING THE
JCOMBOBOX CLASS

The Swing package contains a single JComboBox class for picking items from a list or
entering text into a field. Another option is a drop-down list, also called a choice list,
which is a component that enables a single item to be chosen from a list of items.This
list is usually configured to appear when the user clicks the component. A drop-down

Figure 13-16 Output of the JDemoButtonGroup Swing application

484 Chapter 13 Understanding Swing Components

Creating a Drop-Down List and Combo Box Using the JComboBox Class 485

list can also be configured to be a combo box. If the setEditable() method of the com-
ponent is called with the argument true, it becomes a combo box that the user can use
to enter text into a field.

The default behavior of the JComboBox class is to display an option; by clicking the
JComboBox object, a drop-down menu that contains a list of items appears.When the
user selects an item from the drop-down list, the selected item replaces the original
option in the display.The structure of the JComboBox class is shown in Figure 13-17.

You can build a JComboBox by using a constructor with no arguments, and then adding
items to the list with the addItem() method. For example, the following statements cre-
ate a JComboBox object with three options:

JComboBoxƒmajorChoiceƒ=ƒnewƒJComboBox();
majorChoice.addItem("English");
majorChoice.addItem("Math");
majorChoice.addItem("Sociology");

Table 13-5 lists the methods you can use with a JComboBox object. Using the select()
method, you choose one of the items in a JComboBox to be the initially selected item,
as in majorChoice.select("Math");.You can extract the text of a JComboBox
object and assign it to a String variable, as in String myMajor = majorChoice.
getSelectedItem(); with the getSelectedItem() method.

Method Purpose

String getItemAt(int) Returns the text of the list item at the index position
specified by the integer argument. The first item of
a choice list is at index position zero.

String getSelectedItem() Returns the text of the currently selected item

int getItemCount() Returns the number of items in the list

int getSelectedIndex() Returns the item in the list that matches the given item

void setSelectedIndex(int) Selects the item at the position indicated (by the
integer argument)

void setSelectedItem(Object) Selects the specified object in the list

void setMaximumRowCount(int) Sets the maximum number of combo box rows that
are displayed at one time

Table 13-5 JComboBox class methods

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.JComboBox

Figure 13-17 Structure of the JComboBox class

13

You can also treat the items in a JComboBox object as a zero-based array. For example,
you can use the getSelectedIndex() method to determine the list position of the cur-
rently selected item.Then you can use the index to access corresponding information.
For example, if a JComboBox named historyChoice has been filled with a list of his-
torical events, such as “Declaration of Independence,” “Pearl Harbor,” and “Man walks
on moon,” then after a user chooses one of the items, you can code int pos =
historyChoice.getSelectedIndex();. Now the variable pos holds the position
of the selected item, and you can use the pos variable to access an array of dates so you
can display the appropriate one. For example, if int[] dates = {1776, 1941,
1968};, then dates[pos] holds the year for the selected historical event.

Next you will create a Swing application for Event Handlers Incorporated that allows
the user to choose a party favor and displays the favor price.The party favor types are
none ($0), Hats ($725), Streamers ($325), Noise Makers ($125), or Balloons ($135).

To write a drop-down list using a JComboBox:

1. Open a new file in your text editor, and then add the necessary import state-
ments followed by the first few lines of the JDemoList program.The
JDemoList program uses the JComboBox to create a drop-down list. Note
that JDemoList implements ItemListener.

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJDemoListƒextendsƒJFrameƒimplements
ƒƒƒItemListener
{

2. Create a FlowLayout object named flow to be used as an argument to set the
layout of the program to FlowLayout. Create a JComboBox object named
favorBox, and a JLabel object named favorList to hold the list options.Add
another JLabel to hold a heading,“Event Handlers Incorporated”, and a
JTextField for displaying the output generated from selecting a party favor from
the list.
ƒƒƒƒFlowLayoutƒflowƒ=ƒnewƒFlowLayout();
ƒƒƒƒJComboBoxƒfavorBoxƒ=ƒnewƒJComboBox();
ƒƒƒƒJLabelƒfavorListƒ=ƒnewƒJLabel("FavorƒList");
ƒƒƒƒJLabelƒaEventƒ=ƒnewƒ
ƒƒƒƒƒƒƒJLabel("EventƒHandlers ƒƒƒƒIncorporated");
ƒƒƒƒJTextFieldƒtotPriceƒ=ƒnewƒJTextField(10);

3. Enter the following code to create an array of integers to hold the five prices
for the five party favor types. Add an integer variable to hold the price of the
selected favor, a String variable to hold the output from the party favor selec-
tion, and an int variable to hold the index number of the party favor items in
the party favor list.
int[]ƒfavorPriceƒ=ƒ{0,ƒ725,ƒ325,ƒ125,ƒ135};
intƒtotalPriceƒ=ƒ0;

486 Chapter 13 Understanding Swing Components

Creating a Drop-Down List and Combo Box Using the JComboBox Class 487

Stringƒoutput;
intƒFavorNum;

4. Add the JDemoList() constructor, set the title of the JFrame to “JDemoList”,
and then set the value of the JFrame’s setDefaultCloseOperation to
EXIT_ON_CLOSE so that the JFrame will close when the Close button is
clicked.

ƒƒƒƒpublicƒJDemoList()
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒsuper("JDemoList");
ƒƒƒƒƒƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

5. Enter the text to create a JPanel named pane, and set the layout for the pane
using the FlowLayout object named flow. Add the favorList object to the
pane, register the ItemListener for the favorBox object, and add the names of
five items to the JComboBox list:

ƒƒƒƒƒƒƒƒJPanelƒpaneƒ=ƒnewƒJPanel();
ƒƒƒƒƒƒƒƒpane.setLayout(flow);
ƒƒƒƒƒƒƒƒpane.add(favorList);
ƒƒƒƒƒƒƒƒfavorBox.addItemListener(this);
ƒƒƒƒƒƒƒƒfavorBox.addItem("None");
ƒƒƒƒƒƒƒƒfavorBox.addItem("Hats");
ƒƒƒƒƒƒƒƒfavorBox.addItem("Streamers");
ƒƒƒƒƒƒƒƒfavorBox.addItem("NoiseƒMakers");
ƒƒƒƒƒƒƒƒfavorBox.addItem("Balloons");

6. Enter the following add() methods to add favorBox, aEvent, and totPrice to
the pane object. Set the content pane for the application as the pane object,
and then type the closing brace for the JDemoList() constructor.

ƒƒƒƒƒƒƒƒpane.add(favorBox);
ƒƒƒƒƒƒƒƒpane.add(aEvent);
ƒƒƒƒƒƒƒƒpane.add(totPrice);
ƒƒƒƒƒƒƒƒsetContentPane(pane);
ƒƒƒƒ}

7. Add the following main() method that creates a new JDemoList object named
frame, sizes it using the setSize() method, and sets its visible property to true:

publicƒstaticƒvoidƒmain(String[]ƒarguments)
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒJDemoList frame = new JDemoList();
ƒƒƒƒƒƒƒƒframe.setSize(200,150);
ƒƒƒƒƒƒƒƒframe.setVisible(true);
ƒƒƒƒ}

8. Enter the following itemStateChanged() method, which determines the index
of the selected party favor type and prints the correct price based on the
index.When the user clicks the JComboBox option, a drop-down list
appears.When an item is selected, and the getSource() method is used to

13

determine the item selected, the getSelectedIndex() method identifies the
index position of the selected item.The index position is assigned to the
integer variable favorNum, and the price of the item selected is assigned to
the totPrice variable.

ƒƒƒƒpublic void itemStateChanged(ItemEvent list)
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒObjectƒsourceƒ=ƒlist.getSource();
ƒƒƒƒƒƒƒƒifƒ(sourceƒ==ƒfavorBox)
ƒƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒintƒfavorNumƒ=ƒfavorBox.getSelectedIndex();
ƒƒƒƒƒƒƒƒƒtotalPriceƒ=ƒfavorPrice[favorNum];
ƒƒƒƒƒƒƒƒƒoutputƒ=ƒ"FavorƒPriceƒ$"ƒ+ƒtotalPrice;
ƒƒƒƒƒƒƒƒƒtotPrice.setText(output);
ƒƒƒƒƒƒƒƒ}
ƒƒƒƒ}

9. Add the closing curly brace for the class.

10. Save the file as JDemoList.java in the Chapter.13 folder on your Student
Disk, compile it using the javac command, and run it with the command
java JDemoList. If you selected the Streamers party favor from the drop-
down list, your output should look like Figure 13-18. Make another choice
from the list, and then observe the new favor price.

It is possible to create a combo box from a drop-down list. If the JComboBox compo-
nent object’s method setEditable() is called with true as an argument, the user can make
a choice by entering the text of a list item in a JTextField and pressing [Enter], rather
than using the drop-down list to make a selection. Next you will modify the JDemoList
program so the user can make a choice by entering the text of a list item.

To allow the user to make a choice by entering a list item’s name:

1. Open the JDemoList program if necessary, and then change the class name
to JDemoBox.

2. Delete the JDemoList() constructor. Add the new constructor by typing:
public JDemoBox(). Change the title of the JFrame by changing the
argument of the super() method to super("JDemoBox");.

Figure 13-18 JDemoList output with Streamers selected

488 Chapter 13 Understanding Swing Components

Creating JScrollPanes 489

3. Position your insertion point at the end of the statement pane.add
(favorBox);, and then press [Enter] to start a new line. Add the statement
to set the favorBox object’s setEditable() method to true by typing:
favorBox.setEditable(true);.This statement causes the JComboBox
to behave as a combo box and allow the user to enter text.

4. Delete the statement JDemoList frame = new JDemoList(); in the
main() method. Add the new statement that creates a JFrame named frame by
typing: JDemoBox frame = new JDemoBox();.

5. Save the file as JDemoBox.java in the Chapter.13 folder on your Student
Disk. Compile it using the javac command, and then run the class with the
command java JDemoBox.Your output should look like Figure 13-19. Select
the default selection (“None”) and press [Del] to delete it.Type Balloons (be
sure to type a capital B) in the text box. Press [Enter]. Press [Enter] and
notice the Favor Price is now included, as shown in Figure 13-20.

CREATING JSCROLLPANES

When components in a Swing GUI are bigger than the area available to display them,
you can add a scroll pane container. It is common to add a JTextArea component to a
scroll pane container because it allows you to use both multiple rows and columns.The
JScrollPane class is a container whose methods can be used to hold any component that
can be scrolled. Figure 13-21 displays the structure of the JScrollPane class.

Figure 13-20 Output of JDemoBox program after [Enter] is pressed

Figure 13-19 Output of JDemoBox program prior to Favor selection

13

The JScrollPane constructor takes one of four forms:

� JScrollPane() creates an empty JScrollPane where both horizontal and vertical
scrollbars appear when needed.

� JScrollPane(Component) creates a JScrollPane that displays the contents of
the specified component.

� JScrollPane(Component, int, int) creates a JScrollPane that displays the speci-
fied component, vertical scrollbar, and horizontal scrollbar.

� JScrollPane(int, int) creates a scroll pane with specified vertical and horizontal
scrollbars.

A simple scroll pane can be created with the JScrollPane() constructor as follows:

JScrollPaneƒscrollƒ=ƒJScrollPane();

The horizontal and vertical scrollbars will appear if they are needed. User control of the
horizontal and vertical scrollbar configuration is achieved by using class variables of the
ScrollPaneConstants class. Each of the following constants can be used for the horizon-
tal and vertical scrollbar:

� HORIZONTAL_SCROLLBAR_AS_NEEDED

� HORIZONTAL_SCROLLBAR_ALWAYS

� HORIZONTAL_SCROLLBAR_NEVER

� VERTICAL_SCROLLBAR_AS_NEEDED

� VERTICAL_SCROLLBAR_ALWAYS

� VERTICAL_SCROLLBAR_NEVER

The following code creates a scroll pane with a vertical scrollbar and no horizontal
scrollbar:

JScrollPaneƒscrollƒ=ƒnewƒJScrollPane(area,
ƒƒVERTICAL_SCROLLBAR_ALWAYS,
ƒƒHORIZONTAL_SCROLLBAR_NEVER);

A JTextArea can be created and added as a component to the scroll pane using the fol-
lowing code:

JTextAreaƒareaƒ=ƒnewƒJTextArea(10,40);
JScrollPaneƒscrollƒ=ƒnewƒJScrollPane(area);

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.JScrollPane

Figure 13-21 Structure of the JScrollPane class

490 Chapter 13 Understanding Swing Components

Creating JToolBars 491

Notice that first a JTextArea object area is created. Then the JScrollPane(component)
constructor is called with the JTextArea object named area as an argument, and the con-
structor creates a JScrollPane object named scroll.Text that is subsequently added to the
JTextArea is viewable within the JScrollPane object created. When the added text fills
more than the allotted 10 rows or 40 columns, a subsequent vertical (more than 10 rows)
or horizontal (more than 40 columns) scrollbar appears automatically.

CREATING JTOOLBARS

A Swing GUI can be designed so that a user can move a toolbar from one section of a
graphical user interface to another section.This type of a toolbar is called a dockable tool-
bar; the process that allows you to move and then attach the toolbar is called docking.A
toolbar is created in Swing with the JToolBar class.The structure of the JToolBar class is
shown in Figure 13-22.

The most common toolbar is a container that groups several components, usually
JButtons, into a row or column. Constructor methods for the JToolBar class include the
following:

� JToolBar() creates a new toolbar that will line up components in a horizontal
direction.

� JToolBar(int) creates a new toolbar with a specified orientation of horizontal
or vertical.

You can use the HORIZONTAL and VERTICAL constants from the SwingConstants
class to explicitly set the orientation. For example, the following statement creates a tool-
bar that will line up components vertically:

JToolBarƒtbarƒ=ƒnewƒJToolBar(SwingConstants.VERTICAL);

After you create a toolbar, you can add components to it using the toolbar’s add()
method. Continuing the previous example, the statements JButton b1 = new
JButton();, followed by the statement tbar.add(b1); add the JButton named b1
to an existing JToolBar named tbar.

To make a JToolBar dockable, that is, attached to the edge of a screen much like a boat
is tied to a dock, the JToolBar component must use the layout manager BorderLayout.

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.JToolBar

Figure 13-22 Structure of the JToolBar class

13

The container should use only two of the possible north, east, south, west, and center
areas. One of the two areas must be the center area.

Chapter 14 covers the different layout managers in more detail. Recall that
both the FlowLayout and the BorderLayout managers have been used in this
chapter and in Chapter 9.

It is common practice to use toolbar components that are labels and buttons with
images.The images are created using the ImageIcon class.The ImageIcon class was intro-
duced in Chapter 9 in conjunction with the creation of JApplets. A JButton can have
both an icon and a text label. For example the following statements demonstrate how
to create an ImageIcon object, and then create a JButton object with both an icon and
a text label:

ImageIconƒpictureƒ=ƒnewƒImageIcon("picture.gif");
JButtonƒbothƒ=ƒnewƒJButton("MyƒText",ƒpicture);

The JButton will appear with the text “My Text” and the graphic named “picture.gif ”.

Next you will combine the scroll pane and text area objects (described in the previous
section) with a toolbar to create a dockable toolbar Swing application.

Create a dockable toolbar application with a text area:

1. Open a new file in your text editor, and then type the following first few
lines of a Swing application that demonstrates the creation of a dockable
toolbar. Note that the class implements ActionListener will be
included.

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJDemoToolBarƒextendsƒJFrameƒimplements
ƒƒƒActionListener
{

2. Create the necessary BorderLayout object required by a dockable toolbar.
Create a JTextArea with space for eight lines of thirty characters each. Create
a scroll pane object named scroll with three arguments—the first argument is
the text area Component Object named edit, the second and third arguments
are the scroll pane constants for including a vertical scrollbar and no horizon-
tal scrollbar.The scroll pane will have a vertical scrollbar that allows the text
area to hold rows of text larger than its row size.

ƒƒBorderLayoutƒbordƒ=ƒnewƒBorderLayout();
ƒƒJTextAreaƒeditƒ=ƒnewƒJTextArea(8,30);
ƒƒJScrollPaneƒscrollƒ=ƒnewƒJScrollPane(edit,
ƒƒƒƒScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
ƒƒƒƒScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);

Tip

492 Chapter 13 Understanding Swing Components

Creating JToolBars 493

3. Create a JPanel object named pane to be used as the content pane.The
JPanel will hold the completed toolbar and scroll pane. Next create three
ImageIcon objects to hold the three images to be displayed on the buttons.
Create three JButtons with constructors that take both a text object and an
ImageIcon object as arguments.Then create a JToolBar() object named bar to
hold the three JButton objects.

ƒƒJPanelƒpaneƒ=ƒnewƒJPanel();
ƒƒImageIconƒimage1ƒ=ƒnewƒImageIcon("dining.gif");
ƒƒImageIconƒimage2ƒ=ƒnewƒImageIcon("mail.gif");
ƒƒImageIconƒimage3ƒ=ƒnewƒImageIcon("phone.gif");
ƒƒJButtonƒb1ƒ=ƒnewƒJButton("Dining",ƒimage1);
ƒƒJButtonƒb2ƒ=ƒnewƒJButton("Mail",ƒimage2);
ƒƒJButtonƒb3ƒ=ƒnewƒJButton("Phone",ƒimage3);
ƒƒJToolBarƒbarƒ=ƒnewƒJToolBar();

4. Type the JDemoToolBar() constructor and add an opening curly brace. Use
the super() method with the argument “Event Handlers Toolbar” to set the
title of the JFrame. Use the setDefaultCloseOperation() method to cause the
JFrame to close when the Close button is clicked. Add each of the three
JButtons to the toolbar using the toolbar’s add() method.

publicƒJDemoToolBar()
ƒƒ{
ƒƒƒƒsuper("EventƒHandlersƒToolbar");
ƒƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ƒƒƒƒbar.add(b1);
ƒƒƒƒbar.add(b2);
ƒƒƒƒbar.add(b3);

5. Register each JButton with an ActionListener and set the pane object as the con-
tent pane.Then add the closing curly brace to the JDemoToolBar() constructor.

ƒƒƒƒb1.addActionListener(this);
ƒƒƒƒb2.addActionListener(this);
ƒƒƒƒb3.addActionListener(this);
ƒƒƒƒpane.setLayout(bord);
ƒƒƒƒpane.add(bar);
ƒƒƒƒpane.add(scroll);
ƒƒƒƒpane.add(bar,BorderLayout.NORTH);
ƒƒƒƒsetContentPane(pane);
ƒƒ}

6. Add the following main() method that creates a new JFrame named tFrame,
sizes it using the setSize() method, and then sets its visible property to true:

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒarguments)
ƒƒ{
ƒƒƒJFrameƒtFrameƒ=ƒnewƒJDemoToolBar();
ƒƒƒtFrame.setSize(400,200);

13

ƒƒƒtFrame.setVisible(true);
ƒƒ}

7. Enter the following actionPerformed() method, which executes when the
user clicks one of the three JButtons that are registered as ActionListeners.
When the b1 JButton is clicked, a list of corporate event choices appears in
the scroll pane text area.When the b2 JButton is clicked, the Event Handlers
Incorporated name and address are added to the existing scroll pane text area.
When the b3 JButton is clicked, the Event Handlers Incorporated name and
phone numbers are appended to the existing scroll pane text area. Note also
the use of the newline character “\n” to format a new line when it is con-
tained in the string text. At the end of the actionPerformed() method add a
closing curly brace for the class.
publicƒvoidƒactionPerformed(ActionEventƒevent)
{
ƒƒƒƒƒƒObjectƒsourceƒ=ƒevent.getSource();
ƒƒƒƒƒƒifƒ(sourceƒ==ƒb1)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒedit.append("\nOurƒEventƒChoicesƒare:\n"
ƒƒƒƒƒƒƒƒ+ƒ"Corporate,ƒPrivate,ƒandƒNonprofit\n"
ƒƒƒƒƒƒƒƒ+ƒ"withƒcocktails,ƒdinner,ƒandƒpartyƒfavors\n");
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒelseƒifƒ(sourceƒ==ƒb2)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒedit.append("\nOurƒaddressƒis:\n"
ƒƒƒƒƒƒƒƒ+ƒ"Event Handlers Incorporated\n"
ƒƒƒƒƒƒƒƒ+ƒ"8900ƒU.S.ƒHwyƒ14\n"
ƒƒƒƒƒƒƒƒ+ƒ"CrystalƒLake,ƒILƒ60014\n");
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒelseƒifƒ(sourceƒ==ƒb3)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒedit.append("\nOurƒTelephoneƒnumbersƒare:\n"
ƒƒƒƒƒƒƒƒ+ƒ"1-800-656-4576\n”
ƒƒƒƒƒƒƒƒ+ƒ"575-656-5879\n”);
ƒƒƒƒƒƒ}
ƒƒƒƒ}
}

8. Save the file as JDemoToolBar.java in the Chapter.13 folder on your
Student Disk. Compile the file using the javac command. Run the program
with java JDemoToolBar.The output of the Swing application before any
toolbar buttons are clicked is shown in Figure 13-23.

9. Click the waiter icon on the toolbar. A list of corporate event choices
appears in the scroll pane text area, as shown in Figure 13-24.

494 Chapter 13 Understanding Swing Components

Creating JToolBars 495

10. Click the letter icon on the toolbar.The Event Handlers Incorporated name
and address are appended to the existing scroll pane text area.Your output
should look like Figure 13-25.

11. Click the cell phone icon on the toolbar.The Event Handlers Incorporated
telephone numbers are added to the existing scroll pane text area, as shown
in Figure 13-26.

Figure 13-25 Output of Event Handlers Incorporated name and address

Figure 13-24 Output of a list of corporate event choices

Figure 13-23 Output of the Swing application before any toolbar buttons are clicked

13

12. Grab the toolbar by its handle (the dotted area to the left of buttons), and
drag the toolbar to the bottom of the application window.When you release
the toolbar, the application is rearranged using the BorderLayout manager.
The new position of the toolbar is shown in Figure 13-27.You can even drag
the toolbar entirely outside the application (not shown).

CHAPTER SUMMARY
❒ You insert the import statement import javax.swing.*; at the beginning of

your Java program files so you can take advantage of the Swing GUI components
and their methods.

❒ Within the awt package, components are defined in the Component class.When you
use components in a Java program, you usually place them in containers.A Container
“is a” component that holds other components so you can treat a group of several
components as a single entity. Containers are defined in the Container class.

❒ The JFrame class “is a” subclass of the awt Component class.The JFrame is the best
container option for hosting Java applications. Used in conjunction with the
Component class, the setSize() method allows you to set the physical size of a
JFrame and the setVisible() method makes the JFrame component visible or invisi-
ble to the user.You usually create a JFrame so you can place other objects within it
for display using a JPanel.

Figure 13-27 Output of JToolBar at the new border layout position

Figure 13-26 Output of Event Handlers Incorporated telephone numbers

496 Chapter 13 Understanding Swing Components

Chapter Summary 497

❒ Both the Container and Component classes are abstract classes. All of the GUI
components, such as buttons, text fields, and other objects with which the user
interacts, are subclasses or extensions of the Component class.

❒ A JFrame’s action in response to a user clicking the Close button is set by passing
an argument to the setDefaultCloseOperation() method placed inside the JFrame
constructor method.The most common action is to close the application using the
argument JFrame.EXIT_ON_CLOSE.

❒ Classes that respond to user events must implement an interface that deals with the
events. These interfaces are called event listeners. Each of these listeners can handle
a specific event type, and a class can implement as many event listeners as it needs.

❒ The simplest Swing container is the JPanel found in the JPanel class. To add a
component to the JPanel you call the container’s add() method, using the compo-
nent as the argument.

❒ Using a JCheckBox Object requires using the interface, ItemListener.Whereas the
interface ActionListener provides for mouse clicks and requires you to write an
actionPerformed() method, ItemListener provides for objects whose states change
from true to false and requires you to write an itemStateChanged() method.

❒ Since every event handling method is sent an event object of some type, the objects
getSource() method can be used to determine the component that sent the event.

❒ A JCheckBox consists of a label positioned beside a square; you can click the square
to display or remove a check mark. JCheckBox methods include those that set or get
the JCheckBox’s label, and set or get the JCheckBox’s state of checked or unchecked.

❒ By using the ButtonGroup class, you can group several JCheckBoxes so that the
user can select only one at a time.The methods you use with the ButtonGroup
class include those that set a JCheckBox in the group to true and that return the
currently selected JCheckBox.

❒ A JComboBox Object, created as a drop-down list, displays an option; clicking the
option displays a menu that contains other options.When the user selects an item
in the menu, the selected item replaces the original item in the display.The
JComboBox methods include methods that add an item to the list, methods that
select or return an item based on its name or position in the menu of the list, and a
method that changes the JComboBox Object to a combo box that allows the user
to enter text to select an item.

❒ When components in a Swing GUI are larger than the area available to display
them, you can create a scroll pane container from the JScrollPane class.The
JScrollPane class is a container whose methods can be used to hold any component
that can be scrolled. It is common to add a JTextArea component to a scroll pane
container because it allows you to use both multiple rows and columns.

❒ A Swing GUI can be designed so that a user can move a toolbar from one section
of a graphical user interface to another section.This type of a toolbar is called a
dockable toolbar, and the process is called docking. A toolbar is created in Swing
with the JToolBar class and can display both text and images in the toolbar menu.

13

REVIEW QUESTIONS
1. The generic name for the component type that holds other components so you

can treat a group of several components as a single entity is .

a. frame

b. window

c. container

d. receptacle

2. To cause a JFrame to close when the Close button is clicked, you can call a JFrame’s
setDefaultCloseOperation() method with as an argument:

a. EXIT_ON_CLOSE

b. DISPOSE_ON_CLOSE

c. DO_NOTHING_ON_CLOSE

d. HIDE_ON_CLOSE

3. A drop-down list can also be configured to be a combo box if the component’s
method is called with the argument true.

a. setSize()

b. setVisible()

c. setEditable()

d. setComponent()

4. If you use an argument with a JFrame constructor, the argument represents the
JFrame’s .

a. title

b. size

c. color

d. position

5. Within an event-driven program, an object that is interested in an event is a
.

a. source

b. Component

c. Container

d. listener

6. Which of the following statement(s) is true concerning event listeners?

a. Each listener can handle a specific event type.

b. A class can implement as many event listeners as it needs.

498 Chapter 13 Understanding Swing Components

Review Questions 499

c. both a and b

d. none of the above

7. The statement adds a JCheckBox object aBox to the
ButtonGroup object aGroup.

a. aGroup.add(aBox);

b. aBox.add(aGroup);

c. add(aBox);

d. You cannot add a JCheckBox object to a ButtonGroup object.

8. A JFrame is .

a. a Container

b. a Component

c. a Frame

d. all of the above

9. Component classes include all of the following classes, except .

a. Object

b. JLabel

c. ButtonGroup

d. JCheckBox

10. Component methods include .

a. getName()

b. setComponent()

c. isVisible()

d. deleteComponent()

11. The method that changes the text displayed on a JButton is .

a. setText()

b. setLabel()

c. setButton()

d. setName()

12. Which of the following constant(s) can be used to determine whether a
JCheckBox is selected or deselected?

a. SELECTED

b. DESELECTED

c. ItemEvent.SELECTED

d. both a and b

13

13. Which of the following statements initializes a JCheckBox with the label
“Choose Me”?

a. JCheckBoxƒChooseMeƒ=ƒnewƒJCheckBox();

b. JCheckBoxƒaBoxƒ=ƒnewƒJChooseMe();

c. JCheckBoxƒaBoxƒ=ƒnewƒJCheckBox("ChooseƒMe");

d. JCheckBoxƒaBoxƒ=ƒ"ChooseƒMe";

14. ItemListener is a(n) .

a. method

b. Container

c. Component

d. interface

15. When you use ItemListener, you must write a method named .

a. itemMethod()

b. itemStateChanged()

c. actionPerformed()

d. listenerActivated()

16. When you group JCheckBox objects within a ButtonGroup, all other JCheckBoxes
are automatically when the user selects a JCheckBox.

a. turned off

b. turned on

c. disabled

d. enabled

17. Which of the following statements is true?

a. You can create a ButtonGroup, and then create the individual JCheckBoxes.

b. You can create JCheckBoxes, and then create their ButtonGroup.

c. Both of the above are true.

d. None of the above are true.

18. The getSelectedIndex() method returns .

a. void

b. a Boolean value

c. an int

d. a ButtonGroup object

500 Chapter 13 Understanding Swing Components

Exercises 501

19. Clicking a JComboBox object results in .

a. a check mark appearing on the screen

b. an item being dimmed

c. the display of a menu

d. a JButton becoming disabled

20. To make a JToolBar dockable, the JToolBar component must use a
layout manager.

a. FlowLayout

b. BorderLayout

c. GridLayout

d. CardLayout

EXERCISES
1. Write a program that displays a JFrame that contains the words to any well-

known nursery rhyme. Save the program as JNurseryRhyme.java in the
Chapter.13 folder of your Student Disk.

2. Create a Swing application with a JFrame that holds five labels describing reasons
a customer might not buy your product (for example, “Too expensive”). Every
time the user clicks a JButton, remove one of the negative reasons. Save the pro-
gram as JDemoResistance.java in the Chapter.13 folder of your Student Disk.

3. Write a Swing application for a construction company to handle a customer’s
order to build a new home. Use separate ButtonGroups to allow the customer to
select one of four models (the Aspen, $100,000; the Brittany, $120,000; the
Colonial, $180,000; or the Dartmoor, $250,000), the number of bedrooms (two,
three, or four; each bedroom adds $10,500), and a garage (no, one-, two-, or
three-car; each car adds $7,775). Save the program as JMyNewHome.java in the
Chapter.13 folder of your Student Disk.

4. a. Write a Swing application for a video store. Place the names of 10 of your
favorite movies in a drop-down list. Let the user select the movie that he or
she wants to rent. Charge $2.00 for most movies, and $2.50 for your personal
favorite movie. Display the total rental fee. Save the program as JVideo.java in
the Chapter.13 folder on your Student Disk.

b. Change the drop-down list in the JVideo class to a combo box.Type the name
of the movie you wish to rent. Save the program as JVideo2.java in the
Chapter.13 folder on your Student Disk.

5. Design an order form Swing application for a pizzeria.The user makes a choice
from drop-down lists, and the application displays the price.The user can choose a
pizza size of small ($7), medium ($9), large ($11), or extra-large ($14), and any
number of toppings.There is no additional charge for cheese, but all other toppings

13

add $1 each to the base price.You must offer a choice of at least five different top-
pings. Save the program as JPizzaria.java in the Chapter.13 folder on your
Student Disk.

6. Write a program that allows the user to choose basketball team names that represent
the team the user wants to win the NCAA. Put at least five team names in a drop-
down list, allow the user to select a team, and then display the selected team. Save
the program as JBasketball.java in the Chapter.13 folder on your Student Disk.

7. Write a program that allows the user to choose insurance options in
JCheckBoxes. Use a ButtonGroup group for HMO (health maintenance organiza-
tion) and PPO (preferred provider organization) options; the user can only select
one option. Use regular JCheckBoxes for dental and vision options; the user can
select one option. Save the program as JInsurance.java in the Chapter.13 folder
on your Student Disk.

8. Write a program that allows the user to select options for a dormitory room. Use
JCheckBoxes for the options, such as private room, Internet connection, cable TV
connection, microwave, and refrigerator. Display the names of the options checked
in a common text area. Save the program as JDormRoom.java in the
Chapter.13 folder on your Student Disk.

9. Create a Swing applet with a JPanel that holds a JLabel.The JLabel hosts an icon
that is larger than the Swing Applet. Create a JScrollPane to hold the JPanel so
when the Swing applet is displayed the user can use both horizontal and vertical
scrollbars to view the entire picture. If you wish, you can use some appropriate
images found in the Chapter.13 folder of your Student Disk. Save the program as
JScrollApplet.java in the Chapter.13 folder of your Student Disk.

10. Create a JFrame with a JPanel that holds a JLabel.The JLabel hosts an icon that is
larger than the JFrame. Create a JScrollPane to hold the JPanel so when the
JFrame is displayed you can use both horizontal and vertical scrollbars to view the
entire picture. If you wish, you can use some appropriate images found in the
Chapter.13 folder of your Student Disk. Save the program as JScrollPicture.java
in the Chapter.13 folder of your Student Disk.

11. Create a JToolBar with both text and icons on the menu bar.When the user
clicks a menu button, display another icon that has the same theme as the menu
button in the scroll pane. For example, if you use a patriotic icon on the menu
bar you could display a flag in the scroll pane. If you wish, you can use some
appropriate images found in theChapter.13 of your Student Disk. Use at least
three menu bar items. Save the program as JImageBar.java in the Chapter.13
folder of your Student Disk.

502 Chapter 13 Understanding Swing Components

Case Project 503

12. Each of the following files in the Chapter.13 folder on your Student Disk has syn-
tax and/or logical errors. In each case, determine the problem and fix the program.
After you correct the errors, save each file using the same filename preceded with
Fix. For example, DebugThirteen1.java will become FixDebugThirteen1.java.

a. DebugThirteen1.java

b. DebugThirteen2.java

c. DebugThirteen3.java

d. DebugThirteen4.java

CASE PROJECT
The WebBuy Company has asked you to write a Swing application that will allow a
user to compose three parts of an e-mail message.The three parts of a complete e-mail
message include the “To:”,“Subject:”, and “Message:” text.The “To:” and “Subject:”
text areas should each allow for one line.The “Message:” area should allow scrolling, if
necessary, to accommodate a long message. A button is required to send the e-mail
message.When the message is completed and the Send button is clicked, the program
appends “E-mail has been sent!” on a new line in the message area. Save the program as
JEmail.java in the Chapter.13 folder on your Student Disk.

Case
Project

13

505

CHAPTER

14
USING LAYOUT MANAGERS AND

THE EVENT MODEL
In this chapter, you will:

� Learn about layout managers
� Use JPanels
� Learn about advanced layout managers
� Understand events and event handling
� Use the AWTEvent class methods
� Use event methods from higher in the inheritance hierarchy
� Handle mouse events

You have been developing Java applets and applications at Event Handlers
Incorporated for several months now. “I love this job!” you exclaim to

Lynn Greenbrier one day. “I’ve learned so much, yet there’s so much more
I don’t know. Sometimes I look at a Swing applet that I’ve created and think
how far I have come; other times I realize I barely have a start in the Java
programming language.”

“Go on,” Lynn urges,“what do you need to know more about right now?”

“Well, I wish it were easier to place components accurately within applets
and frames,” you say.“I’d like to be able to create more-complex applets and
applications, and one thing I’m really confused about is handling events.
You’ve taught me about ‘registering objects as listeners,’ ‘listening,’ and ‘han-
dling,’ but I’d like to learn more about the big picture.”

“Event handling is a complicated system,” Lynn says. “Let’s see if I can help
you organize it in your mind. After all, we are the Event Handlers!”

PREVIEWING THE CHAP14 SWING APPLET

Event Handlers Incorporated is developing an applet that the user can manipulate to
uncover an advertising slogan.The user passes the mouse over different regions of the
applet surface, individually revealing three colored panels.The user can reveal one-third
of the advertising slogan at a time by clicking one of the colored panels.The user can
also reposition each slogan segment within its panel area by clicking the mouse in a
new position. In this chapter, you will learn the techniques used to create this Swing
applet. Next you will run the finished version of the Swing applet that is saved on your
Student Disk.

To run the Chap14 Swing applet:

1. At the command line for the Chapter.14 folder on your Student Disk, type
appletviewerƒTestChap14JPanelApplet.html. After the Swing
applet appears in the Applet Viewer window, move the mouse pointer inside
the boundaries of the Swing applet.

2. When you move the mouse pointer inside the Swing applet boundaries, three
colored panels are revealed.When your pointer leaves the Swing applet, the
background color of the panels changes to black.When your pointer reenters
the Swing applet area, the panels’ background colors change back to their
original colors.

3. Click any one of the three colored panels. Depending on the exact position
of your mouse, you will see all or part of a slogan segment. Click each of the
remaining colored panels to reveal all three messages, which are shown in
Figure 14-1.

You can examine the code used to create the applet by opening the
Chap14JPanelApplet.java file in your text editor.

4. Close the Applet Viewer window.

Tip

506 Chapter 14 Using Layout Managers and the Event Model

Learning About Layout Managers 507

LEARNING ABOUT LAYOUT MANAGERS

When you add more than one or two components to a JFrame, Swing applet, or any
other container, you can spend a lot of time computing exactly where to place each
component so that the layout is attractive and no component obscures another one.
Another alternative is to use a layout manager. A layout manager is an interface class
that is part of the JDK. The layout manager aligns your components so they neither
crowd each other nor overlap. For example, one layout manager arranges components
in equally spaced columns and rows; another layout manager centers components within
their container.

Each layout manager defines methods that arrange components within a container, and
each component you place within a Container can also be a container itself, so you can
assign layout managers within layout managers.The Java platform supplies layout man-
agers that range from the very simple—FlowLayout and GridLayout, to the special pur-
pose—BorderLayout and CardLayout, to the very flexible—GridBagLayout and
BoxLayout.Table 14-1 shows each layout manager and typical situations where they are
commonly used.

Figure 14-1 Chap14JPanelApplet applet with three messages

14

BorderLayout
The BorderLayout manager is the default manager for all content panes.You can use the
BorderLayout class with any container that has five or fewer components. However, you
should be aware that any of the components could be a container that holds even more
components.The components fill the screen in five regions named North, South,East,West,
and Center. Figure 14-2 shows five JButton objects filling the five regions in an applet.

When you place exactly five components in a container and use BorderLayout, each
component fills one entire region, as illustrated in Figure 14-2.When the program runs,
the compiler determines the exact size of each component based on the component’s
contents.When you resize a container that uses BorderLayout, the regions also change
in size. If you drag the container’s border to make the container wider, then the
North, South, and Center regions become wider, but the East and West regions do not

Figure 14-2 Positions using BorderLayout

Swing layout manager When to use

BorderLayout Use when you add components to a maximum of five sections
arranged in North, South, East, West, and Center positions.

FlowLayout Use when you need to add components from left to right;
FlowLayout automatically moves to the next row when needed.

GridLayout Use when you need to add components into a grid of rows and
columns.

CardLayout Use when you need to add components that are displayed one at
a time.

BoxLayout Use when you need to add components into a single row or a
single column.

GridBagLayout Use when you need to set size, placement, and alignment constraints
for every component that you add.

Table 14-1 Swing layout managers

508 Chapter 14 Using Layout Managers and the Event Model

Learning About Layout Managers 509

change. If you increase the container’s height, then the East, West, and Center regions
become taller, but the North and South regions do not change.

When you create a container, you can set its layout manager to BorderLayout with the
statement setLayout(newƒBorderLayout());. For example, if you create a JFrame
with the code JFrameƒaFrameƒ=ƒnewƒJFrame();, then you can set the aFrame’s
layout manager with aFrame.setLayout(newƒBorderLayout());.

You may choose to create a BorderLayout manager, but it’s not necessary to
do so. The program automatically defaults to BorderLayout because it is the
default layout manager for all content panes.

When you use the add() method to add a component to a container that uses
BorderLayout, you use one of the five area names to specify the region of the container
where the component should be placed. For example, when you place a JButton into a
container, add(someButton,ƒ"South"); places the someButton object in the South
region of the current container, and when you place a JCheckBox into a container,
aNiceFrame.add(someCheckbox,ƒ"East"); adds someCheckbox to the East
region of aNiceFrame.

When you use BorderLayout with a container, you are not required to add five compo-
nents. If you add fewer components, any empty component regions disappear and the
remaining components expand to fill the available space. Next, so you can observe the
effect, you will remove a component from a container that uses BorderLayout.

To create a Container that uses BorderLayout with only four objects:

1. Open a new file in your text editor, and then type the following first few lines
of a Swing applet that will demonstrate BorderLayout with only four objects:

importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒJDemoBorderNoNorthƒextendsƒJApplet
{

2. Enter the following lines to create four buttons. Note that the North button
is purposefully omitted:

ƒƒƒƒprivateƒJButtonƒsbƒ=ƒnewƒJButton("SouthƒButton");
ƒƒƒƒprivateƒJButtonƒebƒ=ƒnewƒJButton("EastƒButton");
ƒƒƒƒprivateƒJButtonƒwbƒ=ƒnewƒJButton("WestƒButton");
ƒƒƒƒprivateƒJButtonƒcbƒ=ƒnewƒJButton("CenterƒButton");

3. Enter the following code to create the init() method in which you will set
the layout manager to BorderLayout:

ƒƒƒƒpublicƒvoidƒinit()
ƒƒƒƒ{
ƒƒƒƒƒƒContainerƒconƒ=ƒgetContentPane();
ƒƒƒƒƒƒcon.setLayout(newƒBorderLayout());

Tip

14

4. Next enter the following code to add the four buttons to the four regions,
along with the closing curly braces for the init() method and class:

ƒƒƒƒƒƒcon.add(sb,"South");
ƒƒƒƒƒƒcon.add(eb,"East");
ƒƒƒƒƒƒcon.add(wb,"West");
ƒƒƒƒƒƒcon.add(cb,"Center");
ƒƒƒ}
}

5. Save the program as JDemoBorderNoNorth.java, and then compile it
using the javac command.

6. Open a new text file in your text editor, and then create the following
HTML document to host the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JDemoBorderNoNorth.class"ƒWIDTHƒ=ƒ375ƒ
ƒƒƒHEIGHTƒ=ƒ300>
</APPLET>
</HTML>

7. Save the file as TestJBorder.html. Run the Swing applet using the
appletviewer command.The output looks like Figure 14-3. Notice that
there are only four components in this Swing applet and that none has been
assigned to the North region.The four components simply expand their sizes
to fit the space.

8. Close the Applet Viewer window.

Figure 14-3 JDemoBorderNoNorth applet

510 Chapter 14 Using Layout Managers and the Event Model

Learning About Layout Managers 511

9. Open the JDemoBorderNoNorth.java file, and then experiment with
removing different components. Run the applet by using the appletviewer
command and observe the results.

FlowLayout
Remember from Chapter 9 that you can use the FlowLayout class to arrange compo-
nents in rows across the width of a container. Each component that you add is placed
to the right of previously added components.When you use BorderLayout, the compo-
nents you add fill their regions. However, when you use FlowLayout, each component
retains its default size; for example, a JButton will be large enough to hold its text.When
you use BorderLayout, if you resize the window, the components change size accord-
ingly.With FlowLayout, when you resize the window, each component retains its size,
but it might become partially obscured or change position.

Next you will modify a BorderLayout Swing applet to demonstrate FlowLayout.

To demonstrate FlowLayout:

1. Open the JDemoBorderNoNorth.java file in your text editor, and immediately
save it as JDemoFlowRight.java. Position the insertion point at the end of the
opening curly brace for the JDemoBorderNoNorth.class and press [Enter].
Create a new North JButton with the statement
privateƒJButtonƒnbƒ=ƒnewƒJButton("NorthƒButton");.

2. Change the class name from JDemoBorderNoNorth to JDemoFlowRight.

3. Within the init() method, change the setLayout() statement to use
FlowLayout and right align:

con.setLayout(newƒFlowLayout(FlowLayout.RIGHT));

4. Add the North button with the statement con.add(nb);. Remove the
“South”, “East”, “West”, and “Center” locations from the remaining
statements.

5. Save the file, and then compile it using the javac command.

6. Open a new text file, and then create the following HTML document to
host the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JDemoFlowRight.class"ƒWIDTHƒ=ƒ300ƒ
ƒƒƒHEIGHTƒ=ƒ150>
</APPLET>
</HTML>

7. Save the HTML document as TestJDemoFlowRight.html in the
Chapter.14 folder on your Student Disk, and then run the applet using the
appletviewer command.Your output should look like Figure 14-4.

14

8. Experiment with widening and narrowing the Applet Viewer window, and
observe how the components realign themselves.

9. Close the Applet Viewer window.

GridLayout
If you want to arrange components into equal rows and columns, you can use the
GridLayout class. When you create a GridLayout object, you indicate the numbers of
rows and columns you want, and then the container surface is divided into a grid, much
like the screen you see when using a spreadsheet program. For example, the statement
setLayout(newƒGridLayout(4,5)); establishes a GridLayout with four horizon-
tal rows and five vertical columns.

You specify rows first, and then columns, which is the same technique you
used when specifying two-dimensional arrays in Chapter 8.

As you add new Components to a GridLayout, they are positioned left-to-right across
each row, in sequence. Unfortunately, you can’t skip a position or specify an exact posi-
tion for a component.You can specify zero for either the row or column figure, which
will provide an unlimited number of rows or columns.You can also specify a vertical and
horizontal gap measured in pixels using two additional arguments. For example, the
statement setLayout(newƒGridLayout(4,5,2,6)); establishes a GridLayout
with four horizontal rows and five vertical columns, a horizontal gap of two pixels, and
a vertical gap of six pixels.

Tip

Figure 14-4 JDemoFlowRight Swing applet

512 Chapter 14 Using Layout Managers and the Event Model

Learning About Layout Managers 513

Next you will modify a BorderLayout Swing applet to demonstrate GridLayout.

To demonstrate GridLayout:

1. Open the JDemoFlowRight.java file in your text editor, and then save the
file as JDemoGrid.java.

2. Change the class name from JDemoFlowRight to JDemoGrid.

3. Within the init() method, type the following statement to change the
setLayout() method call to establish a GridLayout with two rows, three
columns, a horizontal space of two pixels, and a vertical space of four pixels:

con.setLayout(newƒGridLayout(2,3,2,4));

4. Save the file, and then compile it using the javac command.

5. Open the TestJBorder.html file in your text editor, change the Swing applet
reference to JDemoGrid.class, and then save the file as TestJGrid.html in
the Chapter.14 folder on your Student Disk.

6. Use the appletviewer command to run the applet, and then compare your
output to Figure 14-5.The components are arranged in two rows and three
columns. Because there are only five components, one grid position still is
available.

7. Close the Applet Viewer window.

Figure 14-5 JDemoGrid Swing applet

14

CardLayout
The card layout manager generates a stack of containers or components, one on top
of another much like a blackjack dealer reveals cards one at a time from the top of a
deck of cards. Each container in the group is referred to as a card. A card layout is cre-
ated from the CardLayout class using one of two constructors:

� CardLayout() creates a new card layout without a horizontal or vertical gap.

� CardLayout(int hgap, int vgap) creates a new card layout with the specified
horizontal and vertical gaps.The horizontal gaps are placed at the left and
right edges.The vertical gaps are placed at the top and bottom edges.

For example, the statement CardLayoutƒclƒ=ƒnewƒCardLayout(); creates
the card with no horizontal or vertical gaps, while the statement
CardLayoutƒclƒ=ƒnewƒCardLayout(5,10); creates the card with a horizontal
gap of 5 pixels and a vertical gap of 10 pixels.

After you set the layout manager, as in the statement con.setLayout(cl);, you use
a slightly different add() method to add to the layout. The method is add(String, con-
tainer); Container in this example is the Container con.The following statements have
five effects:

CardLayoutƒclƒ=ƒnewƒCardLayout();
Containerƒconƒ=ƒthis.getContentPane();
con.setLayout(cl);
JButtonƒbutton1ƒ=ƒnewƒJButton();
con.add("Options",ƒbutton1);

1. Create a CardLayout object named cl.

2. Create a Container object named con for the program.

3. Set the layout of the Container to CardLayout.

4. Create a JButton called button1.

5. Add the Button to the Container con.

The String “Options” represents the name of the card; you can use any name you want. If
you have several cards, you might choose to name them “Option1”,“Option2”, and so on.

Usually in a program that has a card layout manager, a change of cards is triggered by a
user’s action. For example, a user could select a card by clicking a button that had been
registered as an event listener: option1.addActionListener(this);. The state-
ment next(getContentPane()) flips to the next card of the specified container, and
the statement previous(getContentPane()) flips to the previous card of the spec-
ified container. For example, the statement cl.next(getContentPane()); flips to
the next card held in the parent content pane.

514 Chapter 14 Using Layout Managers and the Event Model

Learning About Layout Managers 515

Next you will create a CardLayout with five cards, each representing a kind of enter-
tainment provided by Event Handlers Incorporated.

To demonstrate CardLayout:

1. Open a new file in your text editor, and then type the following first few
lines of a Swing applet that demonstrates CardLayout with five objects:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJCardLayoutƒextendsƒJAppletƒimplementsƒ
ƒƒƒActionListener
{

2. Create a new CardLayout manager cl with horizontal and vertical gaps, and
declare five buttons as the Components to be displayed in the program:

ƒƒCardLayoutƒclƒ=ƒnewƒCardLayout(5,5);
ƒƒJButtonƒb1,ƒb2,ƒb3,ƒb4,ƒb5;

3. Within the init() method, type the following statement to change the
setLayout() method call to establish a CardLayout:

ƒƒpublicƒvoidƒinit()
ƒƒ{
ƒƒƒContainerƒconƒ=ƒthis.getContentPane();
ƒƒƒcon.setLayout(cl);

4. Create the JButton b1 with the caption “Clown”. Add b1 to the Container
with the name “opt1”, then register b1 as an event listener. Repeat this
process to create four additional buttons for “Singer”, “Magician”, “Poet”,
and “Lion Tamer”.

ƒƒƒƒb1ƒ=ƒnewƒJButton("Clown");
ƒƒƒƒcon.add("opt1",b1);
ƒƒƒƒb1.addActionListener(this);
ƒƒƒƒb2ƒ=ƒnewƒJButton("Singer");
ƒƒƒƒcon.add("opt2",b2);
ƒƒƒƒb2.addActionListener(this);
ƒƒƒƒb3ƒ=ƒnewƒJButton("Magician");
ƒƒƒƒcon.add("opt3",b3);
ƒƒƒƒb3.addActionListener(this);
ƒƒƒƒb4ƒ=ƒnewƒJButton("Poet");
ƒƒƒƒcon.add("opt4",b4);
ƒƒƒƒb4.addActionListener(this);
ƒƒƒƒb5ƒ=ƒnewƒJButton("LionƒTamer");
ƒƒƒƒcon.add("opt5",b5);
ƒƒƒƒb5.addActionListener(this);
}

14

5. Add the following ActionPerformed method to flip from one card to the next.
The cards will display in the order in which they were placed in the content pane.

ƒƒƒƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒƒƒƒ{
ƒƒƒƒƒƒƒcl.next(getContentPane());
ƒƒƒƒƒ}
ƒƒƒ}
}

6. Save the file as JCardLayout.java, and then compile it using the javac
command.

7. Open the TestJGrid.html file in your text editor, change the Swing
applet reference to JCardLayout.class, and then save the file as
TestJCardLayout.html in the Chapter.14 folder on your Student Disk.

8. Use the appletviewer command to run the Swing applet, and then com-
pare your output to Figure 14-6. Note that the first card that appears contains
the name of an entertainment act. Click a card and the next card appears
with a new name.When you click the last card, the first card appears again.

9. Close the Applet Viewer window.

USING JPANELS

Using the BorderLayout, FlowLayout, GridLayout, and CardLayout managers provides a
limited number of screen arrangements.You can increase the number of possible com-
ponent arrangements by using the JPanel class.A JPanel is similar to a JWindow in that
a JPanel is a surface on which you can place components. But a JPanel is not a JWindow;
it is a sibling of a JComponent, as shown in Figure 14-7.A JPanel is a Container, which
means that it can contain other components. For example, you can create a Swing applet
using BorderLayout and place a JPanel in any of the five regions.Then within the North
JPanel, you can place four JButtons using GridLayout, and within the East JPanel, you
can place three JLabels using FlowLayout. By using JPanels within JPanels, you can cre-
ate an infinite variety of screen layouts.

Figure 14-6 JCardLayout Swing applet

516 Chapter 14 Using Layout Managers and the Event Model

Using JPanels 517

When you create a JPanel object, you can use one of two constructors:

� JPanel() creates a new JPanel with a double buffer and a flow layout.

� JPanel(LayoutManager layout) creates a new buffered JPanel with the speci-
fied layout manager.

Next you will create a Swing applet that uses a layout manager and contains a JPanel
that uses a different layout manager.To begin, you will create one JPanel named wp that
holds JButtons indicating the states in which Event Handlers Incorporated does busi-
ness. Using GridLayout, you will place three JButtons and a JLabel in this JPanel to rep-
resent three states.When the user clicks a JButton representing Wyoming, for example,
the Swing applet displays the locations of Event Handlers offices in that state. For sim-
plicity, you will activate only one of the three JButtons.

To create the JWesternPanel object:

1. Open a new file in your text editor, and then enter the following first few
lines of the JWesternPanel class.The JWesternPanel class extends JApplet and
implements ActionListener because the JPanel contains a clickable JButton.
Both the JButton and the JLabel are placed at the beginning so that their
scope extends throughout the JWesternPanel class.

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJWesternPanelƒextendsƒJAppletƒ
ƒƒimplementsƒActionListener
{
ƒƒJButtonƒwyButtonƒ=ƒnull;
ƒƒJLabelƒinfoLabelƒ=ƒnull;

2. Create an init() method for the Swing applet, and enter the following code
to create a Container for the Swing applet and set the Container’s layout to
BorderLayout:

ƒƒƒƒpublicƒvoidƒinit()
ƒƒƒƒ{
ƒƒƒƒƒƒContainerƒcontainerƒ=ƒthis.getContentPane();
ƒƒƒƒƒƒcontainer.setLayout(newƒBorderLayout());

java.lang.Object
java.awt.Component

java.awt.Container
javax.swing.JComponent

javax.swing.JPanel

Figure 14-7 Structure of the JPanel class

14

3. Create a new JPanel with a GridLayout using two rows and two columns to
hold the JLabel and JButtons. Create four Components: three JButtons for
the three Western states in which Event Handlers operates, and a JLabel.

ƒƒƒƒƒƒƒƒJPanelƒwpƒ=ƒnewƒJPanel(newƒGridLayout(2,2,2,2));
ƒƒƒƒƒƒƒƒwyButtonƒ=ƒnewƒJButton("Wyoming");
ƒƒƒƒƒƒƒƒJButtonƒcoButtonƒ=ƒnewƒJButton("Colorado");
ƒƒƒƒƒƒƒƒJButtonƒnvButtonƒ=ƒnewƒJButton("Nevada");
ƒƒƒƒƒƒƒƒinfoLabelƒ=ƒnewƒJLabel("ƒLocationƒInfoƒ");

4. Add the Wyoming JButton to the grid layout of the JPanel. Register the
JButton as an ActionListener so users can click the Wyoming Button. Add the
other JButtons and the JLabel to the grid layout. For now, these components
are not clickable, so don’t use the addActionListener() method with them.

ƒƒƒƒƒƒƒƒwyButtonƒ=ƒnewƒJButton("Wyoming");
ƒƒƒƒƒƒƒƒwp.add(wyButton);
ƒƒƒƒƒƒƒƒwyButton.addActionListener(this);
ƒƒƒƒƒƒƒƒwp.add(coButton);
ƒƒƒƒƒƒƒƒwp.add(nvButton);
ƒƒƒƒƒƒƒƒwp.add(infoLabel);

5. Create four new JButtons representing the North, South, East, and Center
regions of the Swing applet Container. Add these JButtons along with the
JPanel, placing the JPanel in the West region.

ƒƒƒƒƒƒƒƒJButtonƒnbƒ=ƒnewƒJButton("NorthƒButton");
ƒƒƒƒƒƒƒƒJButtonƒsbƒ=ƒnewƒJButton("SouthƒButton");
ƒƒƒƒƒƒƒƒJButtonƒebƒ=ƒnewƒJButton("EastƒButton");
ƒƒƒƒƒƒƒƒJButtonƒcbƒ=ƒnewƒJButton("CenterƒButton");
ƒƒƒƒƒƒƒƒcontainer.add(nb,"North");
ƒƒƒƒƒƒƒƒcontainer.add(sb,"South");
ƒƒƒƒƒƒƒƒcontainer.add(eb,"East");
ƒƒƒƒƒƒƒƒcontainer.add(wp,"West");
ƒƒƒƒƒƒƒƒcontainer.add(cb,"Center");
ƒƒƒƒ}

6. When the user clicks the Wyoming Button (which is the only active JButton),
the following actionPerformed() method executes.This method displays the
name of the Event Handlers Incorporated Wyoming location—Cody. After the
method, add a closing curly brace for the class.

ƒƒƒƒpublicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒƒƒ{
ƒƒƒƒƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒƒƒƒƒifƒ(sourceƒ==ƒwyButton)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒinfoLabel.setText("Cody");
ƒƒƒƒƒƒ}
ƒƒƒƒ}
ƒƒ}

518 Chapter 14 Using Layout Managers and the Event Model

Using JPanels 519

7. Save the file as JWesternPanel.java in the Chapter.14 folder on your
Student Disk, and then compile the file using the javac command.

8. Open a new text file, and then create the following HTML document to
host the Swing applet:

<HTML>
<APPLETƒCODEƒ=ƒ"JWesternPanel.class"ƒWIDTHƒ=ƒ400ƒ
ƒƒƒHEIGHTƒ=ƒ300>
</APPLET>
</HTML>

9. Save the HTML document as TestJWesternPanel.html in the Chapter.14
folder on your Student Disk, and then run the Swing applet using the
appletviewer command.Your output should look like Figure 14-8.

10. Click the North, South, Center, and East JButtons. Nothing happens,
because you have not activated these JButtons. Similarly, in the West region,
click the Colorado and Nevada JButtons; again, no actions result. Now,
click the Wyoming JButton; the JLabel within the JWestern Panel displays
Cody, the city name of the Wyoming Event Handlers location.

11. Close the Applet Viewer window.

Figure 14-8 JWesternPanel Swing applet

14

LEARNING ABOUT ADVANCED LAYOUT MANAGERS

Like Components, professional Java programmers are constantly creating new layout
managers.You are certain to encounter new and interesting layout managers during your
programming career; you might even create your own. Information about more-
complicated layout managers is available in the JDK documentation, which you can
access at the java.sun.com Web site.

When GridLayout is not sophisticated enough for your purposes, you can use
GridBagLayout.The GridBagLayout class allows you to add components to precise loca-
tions within the grid, as well as to indicate that specific Components should span mul-
tiple rows or columns within the grid. For example, if you want to create a JPanel with
six JButtons, in which two of the JButtons are twice as wide as the others, you can use
GridBagLayout.This class is difficult to use because you must set the position and size
for each component.

Another layout manager option is the BoxLayout manager of the BoxLayout class.When
you use the BoxLayout manager, components are arranged in either a single row or a
single column.When a row or column is filled, additional components do not spill over
onto another row or column. Instead, the box layout manager tries to make all the com-
ponents the same height(row) or width(column). When used in conjunction with a
JPanel, a row or column of JCheckBoxes or JButtons can be placed in a BoxLayout and
then added to the JPanel.

The BoxLayout constructor requires two arguments: the first refers to the container to
which the layout manager applies, and the second is a constant value.The constant value
can be either BoxLayout.X_Axis for a row arrangement, or BoxLayout.Y_Axis for
a column arrangement.

If you use a null layout manager, as in setLayout(null);, then you must use the
component class methods setBounds(), setSize(), and setLocation() to position your com-
ponents.You would do this if you need a complicated layout design that you cannot
achieve by using the existing layout managers, or if you want to create a new layout
manager.

UNDERSTANDING EVENTS AND EVENT HANDLING

You have already worked with many events in the programs you have written. Beginning
in Chapter 9, you learned how to create Swing applets which contain widgets that are
controlled by user-initiated events. Now that you understand inheritance and abstract
classes, you can take a deeper look at event handling.

Like all Java classes, events are Objects. Specifically, events are Objects that the user initi-
ates, such as key presses and mouse clicks. Many events that occur have significance only
for specific components within a program. For example, you have written programs, as

520 Chapter 14 Using Layout Managers and the Event Model

Understanding Events and Event Handling 521

well as used programs written by others, in which pressing [Enter] or double-clicking a
specific component has no effect. Other events have meaning outside your program; for
example, clicking the Close button in the Applet Viewer window sends a message to your
computer’s operating system, which closes the window and stops the program.

The parent class for all event objects is named EventObject, which descends from the
Object class. EventObject is the parent of AWTEvent, which in turn is the parent to
specific event classes such as ActionEvent and ComponentEvent. Figure 14-9 illustrates
the structure of these relationships.

The abstract class AWTEvent is contained in the package java.awt.event.

You can see in Figure 14-9 that ComponentEvent is itself a parent to several event classes,
including InputEvent, which is parent to KeyEvent and MouseEvent.The family tree for
events has roots that go fairly deep, but the class names are straightforward and they share
basic roles within your programs. For example, ActionEvents pertain to components that
users can click, such as JButtons and JCheckboxes, and TextEvents pertain to components
into which the user enters text, such as a JTextField. MouseEvents include determining the
location of the mouse and distinguishing between a single- and double-click.Table 14-2 lists
some common user actions and the events that are generated from them.

Because ActionEvents involve the mouse, it is easy to confuse ActionEvents
and MouseEvents. If you are interested in ActionEvents, you are interested in
changes in a component; if you are interested in MouseEvents, your focus is
centered on what the user has done manually with the mouse equipment.

Tip

Tip

java.lang.Object
java.util.EventObject

java.awt.AWTEvent
java.awt.event.ActionEvent
java.awt.event.AdjustmentEvent
java.awt.event.ItemEvent
java.awt.event.TextEvent
java.awt.event.ComponentEvent

java.awt.event.ContainerEvent
java.awt.event.FocusEvent
java.awt.event.PaintEvent
java.awt.event.WindowEvent
java.awt.event.InputEvent

java.awt.event.KeyEvent
java.awt.event.MouseEvent

Figure 14-9 Relationships among event classes

14

When you write programs with GUI interfaces, you are always handling events that orig-
inate with the mouse or keys on specific Components or Containers. Just as your tele-
phone notifies you when you have a call, the computer’s operating system notifies you,
the user, when an AWTEvent occurs, for example, when the mouse is clicked. Just as you
can ignore your phone when you’re not expecting or interested in a call, you can ignore
AWTEvents. If you don’t care about an event, such as when your program contains a
component which, when clicked, produces no effect, you simply don’t look for a mes-
sage to occur.

There is no class named Event; the general event class is AWTEvent.

When you care about events—that is, when you want to listen for an event—you can imple-
ment an appropriate interface for your class. Each event class shown in Table 14-2 has a lis-
tener interface associated with it so that for every event class, such as <name>Event, there is
a similarly named <name>Listener interface.

Remember that an interface contains only abstract methods, therefore all
interface methods are empty. If you implement a listener, you must provide
your own methods for all the methods that are part of the interface. Of
course, you may leave the methods empty in your implementation.

Every <name>Event class has a <name>Listener. The MouseEvent class has an
additional listener, the MouseMotionListener.

Every <name>Listener interface method has return type void, and each takes one
argument—an object that is an instance of the corresponding <name>Event class.Thus,
the ActionListener interface has a method named actionPerformed(), and its header is

Tip

Tip

Tip

User Action Resulting Event Type

Click a button ActionEvent

Click a component MouseEvent

Click an item in a choice ItemEvent

Click an item in a check box ItemEvent

Change text in a text field TextEvent

Open a window WindowEvent

Iconify a window WindowEvent

Press a key KeyEvent

Table 14-2 Examples of user actions and their resulting event types

522 Chapter 14 Using Layout Managers and the Event Model

Understanding Events and Event Handling 523

14

voidƒactionPerformed(ActionEventƒe). When an action takes place, the
actionPerformed() method executes, and e represents an instance of that event. Interface
methods, such as actionPerformed(), that are called automatically when an appropriate
event occurs, are called event handlers.

If a listener has only one method, there is no need for an adapter. For exam-
ple, the ActionListener class has one method, actionPerformed(), so there is
no ActionAdapter class.

Whether you use a listener or an adapter, you create an event handler when you write
code for the listener methods; that is, you tell your class how to handle the event. After
you create the handler, you must also register an instance of the class with the compo-
nent that you want the event to affect. For any <name>Listener, you must use the form
object.add<name>Listener(Component) to register an object with the Component that
will listen for objects emanating from it. The add<name>Listener() methods, such as
addActionListener() and addItemListener(), all work the same way. They register a lis-
tener with a component, return void, and take a <name>Listener object as an argu-
ment. For example, if a Swing applet is an ActionListener and contains a JButton named
pushMe, then within the Swing applet, pushMe.addActionListener(this); reg-
isters this particular applet as a listener for the pushMe JButton. Table 14-3 lists the
events with their listeners and handlers.

Event Listener Handlers

ActionEvent ActionListeneraction Performed(ActionEvent)

ItemEvent ItemListener itemStateChanged(ItemEvent)

TextEvent TextListener textValueChanged(TextEvent)

AdjustmentEvent AdjustmentListener adjustmentValueChanged(AdjustmentEvent)

ContainerEvent ContainerListener componentAdded(ContainerEvent)
componentRemoved(ContainerEvent)

ComponentEvent ComponentListener componentMoved(ComponentEvent)
componentHidden(ComponentEvent)
componentResized(ComponentEvent)
componentShown(ComponentEvent)

FocusEvent FocusListener focusGained(FocusEvent)
focusLost(FocusEvent)

MouseEvent MouseListenermouse Pressed(MouseEvent)
mouseReleased(MouseEvent)
mouseEntered(MouseEvent)
mouseExited(MouseEvent)
mouseClicked(MouseEvent)

MouseMotionListener mouseDragged(MouseEvent)
mouseMoved(mouseEvent)

Table 14-3 Events, their listeners, and their handlers

Tip

Next you will create a class that implements KeyListener.You use the KeyListener interface
when you are interested in actions the user initiates from the keyboard. The KeyListener
interface contains three methods—keyPressed(), keyTyped(), and keyReleased(). For most
keyboard applications in which the user must type a keyboard key, it is probably not impor-
tant whether you take resulting action when a user first presses a key, during the key press,
or upon the key’s release; most likely these events occur in quick sequence. However, on
those occasions when you don’t want to take action while the user holds down the key, you
can place the actions in the keyReleased() method.

It is best to use the keyTyped() method when you want to discover what character was
typed.When the user presses a key that does not generate a character (sometimes called
action keys), such as a function key, then keyTyped() does not execute. The methods
keyPressed() and keyReleased() provide the only ways to get information about keys that
don’t generate characters.

Java programmers call keyTyped() events “higher level” events because they
do not depend on the platform or keyboard layout. In contrast, keyPressed()
and keyReleased() events are “lower level” events and do depend on the
platform and keyboard layout.

To create a class that implements KeyListener:

1. Open a new file in your text editor, and then enter the following first few
lines for the JKeyFrame class that implements KeyListener:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJKeyFrameƒextendsƒJFrame
ƒimplementsƒKeyListener
{

Tip

Event Listener Handlers

KeyEvent KeyListener keyPressed(KeyEvent)
keyTyped(KeyEvent)
keyReleased(KeyEvent)

WindowEvent WindowListener windowActivated(WindowEvent)
windowClosing(WindowEvent)
windowClosed(WindowEvent)
windowDeiconified(WindowEvent)
windowIconified(WindowEvent)
windowOpened(WindowEvent)

Table 14-3 Events, their listeners, and their handlers (continued)

524 Chapter 14 Using Layout Managers and the Event Model

Understanding Events and Event Handling 525

14

2. Create a null container to hold the JFrame components. Create a BorderLayout
manager for the component layout. Create a JLabel and a JTextField.

ƒƒContainerƒconƒ=ƒnull;
ƒƒBorderLayoutƒborderƒ=ƒnewƒBorderLayout();
ƒƒJLabelƒlabelƒ=ƒnewƒJLabel("KeyƒTyped:");
ƒƒJTextFieldƒtextFieldƒ=ƒnewƒJTextField(25);

3. In the JKeyFrame constructor method, set the JFrame title to JKeyFrame and
the default close operation to EXIT_ON_CLOSE. Create the layout object
con by calling the getContentPane() method. Set the layout manager to bor-
der layout. Add the JLabel and JTextField to the North and South regions of
the border layout. Add an ActionListener for each JButton using the keyword
this to represent the JFrame.

ƒƒpublicƒJKeyFrame()
ƒƒ{
ƒƒƒsetTitle("JKeyƒFrame");
ƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ƒƒƒconƒ=ƒthis.getContentPane();
ƒƒƒcon.setLayout(border);
ƒƒƒcon.add(textField,"North");
ƒƒƒcon.add(label,"South");
ƒƒƒaddKeyListener(this);
ƒƒƒtextField.addKeyListener(this);
ƒƒ}

4. The following keyTyped() method is one of the three abstract methods con-
tained in KeyListener.To prove that this method is activated when the user
presses a key, send the simple message “pressed” to the command line. Use
the getKeyChar() method to retrieve the keyboard character typed, and then
display the character with the setText() method.

publicƒvoidƒkeyTyped(KeyEventƒe)
ƒ{
ƒƒSystem.out.println("typed");
ƒƒcharƒcƒ=ƒe.getKeyChar();
ƒƒlabel.setTextƒ("KeyƒTyped:ƒ"ƒ+ƒc);
ƒ}ƒ

5. Similarly, implement the following keyPressed() method to print “pressed” at
the command prompt:

publicƒvoidƒkeyPressed(KeyEventƒe)
ƒ{
ƒƒSystem.out.println("pressed");
ƒ}

6. Implement the following keyReleased() method so it prints “released”:

ƒƒpublicƒvoidƒkeyReleased(KeyEventƒe)
ƒƒ{
ƒƒƒSystem.out.println("released");
ƒƒ}ƒ

7. Add the following main() method that creates a new JFrame named kFrame,
sizes it using the setSize() method, and sets its visible property to true.

Remember to add the closing curly brace for the class.

ƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒarguments)
ƒƒƒƒ{
ƒƒƒƒƒƒJFrameƒkFrameƒ=ƒnewƒJKeyFrame();
ƒƒƒƒƒƒkFrame.setSize(250,100);
ƒƒƒƒƒƒkFrame.setVisible(true);
ƒƒƒƒ}

ƒƒƒ}

8. Save the file as JKeyFrame.java in the Chapter.14 folder on your Student
Disk. Compile the file using the javac command, and then run the program
using the javaƒJKeyFrame command.When the JFrame appears on your
screen, notice that it contains a text field in which you can enter data.When
you press an alphabetic keyboard key, the character appears in the text field and
in the label, and the command line displays three messages:“pressed”,“typed”,
and “released”. Figure 14-10 shows these messages. If you press a key, such as
F1 or Alt, that does not generate a character, you see “pressed” and “released”,
but not “typed”. If you hold down a key, such as the Alt key, you can generate
several “pressed” messages before receiving the “released” message.

Figure 14-10 Output of the JKeyFrame program

526 Chapter 14 Using Layout Managers and the Event Model

Using AWTEvent Class Methods 527

14

USING AWTEVENT CLASS METHODS
In addition to the handler methods included with the event listener interfaces, the
AWTEvent classes themselves contain methods.You use many of these methods to deter-
mine the nature of and the facts about an event in question. For example, the
ComponentEvent class contains a getComponent() method that returns the Component
involved in the event.You use the getComponent() method when you create an appli-
cation with several components, and then the getComponent() method allows you to
determine which Component is generating the event.The WindowEvent class contains
a similar method, getWindow(), that returns the Window that was the source of the
event.Table 14-4 lists some useful methods for many of the event classes.

All Components have the methods addComponentListener(), addFocusListener(),
addMouseListener(), and addMouseMotionListener().

Class Method Purpose

EventObject ObjectƒgetSource() Returns the Object involved in the event

ComponentEvent ComponentƒgetComponent() Returns the Component involved in the event

WindowEvent Window getWindow() Returns the Window involved in the event

ItemEvent Object getItem() Returns the Object that was selected or
deselected

ItemEvent int getStateChange() Returns an integer named ItemEvent.SELECTED
or ItemEvent.DESELECTED

InputEvent int getModifiers() Returns an integer to indicate which mouse
button was clicked

InputEvent int getWhen() Returns a time indicating when the event
occurred

InputEvent boolean isAltDown() Returns whether [Alt] was down when the
event occurred

InputEvent boolean isControlDown() Returns whether the Ctrl key was down when
the event occurred

InputEvent boolean isShiftDown() Returns whether the Shift key was down
when the event occurred

KeyEvent int getKeyChar() Returns the Unicode character entered from
the keyboard

MouseEvent int getClickCount() Returns the number of mouse clicks; lets you
identify the user’s double-clicks

MouseEvent int getX() Returns the x-coordinate of the mouse pointer

MouseEvent int getY() Returns the y-coordinate of the mouse pointer

MouseEvent Point getPoint() Returns the Point Object that contains x- and
y-coordinates of the mouse location

Table 14-4 Useful Event class methods

Tip

You can call any of the methods listed in Table 14-4 by using the object-dot-method
format that you use with all class methods. For example, if you have an InputEvent
named inEv, and an integer named modInt, then the statement
modIntƒ=ƒinEv.getModifiers(); is valid. You use the getModifiers() method
with an InputEvent object, and you can assign the return value to an integer variable.
Thus, when you use any of the handler methods from Table 14-3, such as
actionPerformed() or itemStateChanged(), they provide you with an appropriate event
object.You can use the event object within the handler method to obtain information;
you simply add a dot and the desired method name from Table 14-3.

USING EVENT METHODS FROM HIGHER IN THE INHERITANCE HIERARCHY

When you use an event such as KeyEvent, you can use any of the event’s methods.
Through the power of inheritance, you can also use methods that belong to any class
that is a superclass of the event with which you are working. For example, any KeyEvent
has access to the InputEvent, ComponentEvent, AWTEvent, EventObject, and Object
methods, as well as the KeyEvent methods.

Next you will use an EventObject method with an ActionEvent.You can accomplish
this because every ActionEvent is a descendant of EventObject. Therefore, when you
create a Component with several JButton objects, you can use ObjectEvent’s getSource()
method to determine the source of the ActionEvent.

To write a class that uses the EventObject method getSource() with an
ActionEvent:

1. Open a new file in your text editor, and then type the following first few
lines of the JButtonFrame class that implements the ActionListener interface
to respond to JButton clicks:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJButtonFrameƒextendsƒJFrame
ƒimplementsƒActionListener
{

2. Create the following three JButtons from which the user can choose to change
the Frame’s background color. Create a null container to hold the JFrame
components and a container to hold the FlowLayout manager for the compo-
nent layout.

ƒƒJButtonƒredButtonƒ=ƒnewƒJButton("Red");
ƒƒJButtonƒblueButtonƒ=ƒnewƒJButton("Blue");
ƒƒJButtonƒgreenButtonƒ=ƒnewƒJButton("Green");
ƒƒContainerƒconƒ=ƒnull;
ƒƒFlowLayoutƒflowƒ=ƒnewƒFlowLayout();

528 Chapter 14 Using Layout Managers and the Event Model

Using Event Methods from Higher in the Inheritance Hierarchy 529

14

3. Begin writing the JButtonFrame constructor and set the layout manager to
FlowLayout, the JButtonFrame title to JButtonFrame, and the default close
operation to EXIT_ON_CLOSE. Create the layout object con by calling
the getContentPane(), and then add the three JButtons to the container.

ƒƒpublicƒJButtonFrame()
ƒƒ{
ƒƒƒsetTitle("JButtonƒFrame");
ƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ƒƒƒconƒ=ƒthis.getContentPane();
ƒƒƒcon.setLayout(flow);
ƒƒƒcon.add(redButton);
ƒƒƒcon.add(blueButton);
ƒƒƒcon.add(greenButton);

Earlier in this chapter, you learned that the default layout for a JFrame is
BorderLayout.

4. Continue entering the JButtonFrame constructor by setting the background and
foreground of the container. Register the JButtonFrame as an ActionListener for
each of the three JButton objects, and then close the constructor method.

ƒƒƒƒcon.setBackground(Color.white);
ƒƒƒƒcon.setForeground(Color.black);
ƒƒƒƒredButton.addActionListener(this);
ƒƒƒƒblueButton.addActionListener(this);
ƒƒƒƒgreenButton.addActionListener(this);
ƒƒ}

5. Add the following main() method that creates a new JButtonFrame named
bFrame, sizes it using the setSize() method, and sets its visible property
to true.

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒJButtonFrameƒbFrameƒ=ƒnewƒJButtonFrame();
ƒƒƒbFrame.setSize(350,250);
ƒƒƒbFrame.setVisible(true);
ƒƒ}

6. Because JButtonFrame implements ActionListener, you are required to write
code for ActionListener’s only method, actionPerformed().The actionPerformed()
method provides you with an ActionEvent object with which you can use the
EventObject method named getSource() to return the source of the event as an
Object class instance. Using the if...else structure allows you to compare the

Tip

source Object with possible event sources and take the appropriate action.
Remember to add the closing curly braces for the method and class.

publicƒvoidƒactionPerformed(ActionEventƒe)
ƒƒ{
ƒƒƒƒObjectƒsourceƒ=ƒe.getSource();
ƒƒƒƒif(sourceƒ==ƒredButton)
ƒƒƒƒƒƒcon.setBackground(Color.red);
ƒƒƒƒelseƒifƒ(sourceƒ==ƒblueButton)
ƒƒƒƒƒƒcon.setBackground(Color.blue);
ƒƒƒƒelseƒifƒ(sourceƒ==ƒgreenButton)
ƒƒƒƒƒƒcon.setBackground(Color.green);
ƒƒ}
}

7. Save the file as JButtonFrame.java in the Chapter.14 folder on your Student
Disk. Compile the file using the javac command, and then run the program
using the javaƒJButtonFrame command.The output of the program after
the Blue button has been clicked is shown in Figure 14-11. Click any of the
three color JButtons and note the change in the JFrame’s background color.
Note that the JFrame listens for action on each of the JButtons, and the single
actionPerformed() method executes no matter which JButton is clicked.You
achieve different background colors in the JFrame because you use the
ObjectEvent method getSource() with the ActionEvent generated by each
button click.

HANDLING MOUSE EVENTS

Even though Java program users sometimes type characters from a keyboard, when you
write GUI programs, you probably expect users to spend most of their time operating
a mouse. The MouseMotionListener interface provides you with methods named
MouseDragged() and MouseMoved() that detect the mouse being rolled or dragged
across a component surface. The MouseListener interface provides you with methods

Figure 14-11 Output of the JButtonFrame program after the Blue button has
been clicked

530 Chapter 14 Using Layout Managers and the Event Model

Handling Mouse Events 531

14

named mousePressed(), mouseClicked(), and mouseReleased() that are analogous to the
keyboard event methods keyPressed(), keyTyped(), and keyReleased(). With a mouse,
however, you are interested in more than its key presses; you sometimes simply want to
know where a mouse is pointing. The additional interface methods mouseEntered()
and mouseExited() inform you when the user has positioned the mouse over a com-
ponent (entered) or moves the mouse off a component (exited). To illustrate, you will
create a JMouseFrame class that employs these methods. In addition, you will use three
MouseEvent methods—getX() and getY(), which return the mouse coordinates, and
getClickCount() which helps you distinguish between single- and double-clicks.

To write the JMouseFrame class:

1. Open a new file in your text editor, and then type the following first few
lines of the JMouseFrame class:

importƒjavax.swing.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
publicƒclassƒJMouseFrameƒextendsƒJFrame
ƒimplementsƒMouseListener
{

2. Create the following null container and three integer variables.Two hold
the x- and y-positions of the mouse; the third holds the size of a circle you
will draw when the mouse is clicked.

ƒƒContainerƒconƒ=ƒnull;
ƒƒintƒx,ƒy;
ƒƒintƒsize;

3. Enter the following JMouseFrame constructor, which sets the title and adds
the MouseListener:

ƒƒpublicƒJMouseFrame()
ƒƒ{
ƒƒƒsetTitle("MouseƒFrame");
ƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
ƒƒƒconƒ=ƒthis.getContentPane();
ƒƒƒaddMouseListener(this);
ƒƒ}

4. Enter the following mousePressed() method to get the x- and y-coordinates
from the MouseEvent that initiates the mousePressed() method call.The vari-
ables x and y hold the exact position of the mouse location at the time of the
event. Also, the mousePressed() method repaints the screen.

ƒƒpublicƒvoidƒmousePressed(MouseEventƒe)
ƒƒ{
ƒƒƒxƒ=ƒe.getX();
ƒƒƒyƒ=ƒe.getY();
ƒƒƒrepaint();
ƒƒ}ƒ

You learned about the repaint() method in Chapter 9.

5. Enter the following code to set the size variable to 10 or 4, depending on
whether the user single- or double-clicks the mouse.

ƒƒpublicƒvoidƒmouseClicked(MouseEventƒe)
ƒƒ{
ƒƒƒifƒ(e.getClickCount()ƒ==ƒ2)
ƒƒƒƒsizeƒ=ƒ10;
ƒƒƒelseƒsizeƒ=ƒ4;
ƒƒƒƒrepaint();
ƒƒ}ƒ

6. Enter the following code to change the JFrame background color to yellow
when the user positions the mouse over the JFrame, and then change the back-
ground to black when the user places the mouse somewhere else on the screen:

ƒƒpublicƒvoidƒmouseEntered(MouseEventƒe)
ƒƒ{
ƒƒƒcon.setBackground(Color.yellow);
ƒƒ}
ƒƒpublicƒvoidƒmouseExited(MouseEventƒe)
ƒƒ{
ƒƒƒcon.setBackground(Color.black);
ƒƒ}

7. You don’t need any special code for the mouseReleased() method, but you
must provide the following method because MouseListener is an abstract
interface:

ƒƒpublicƒvoidƒmouseReleased(MouseEventƒe)
ƒƒ{
ƒƒ}

8. Recall from Chapter 10 that the Graphics method drawOval() requires four
arguments. Envision a rectangle surrounding an oval and provide arguments
for the x- and y-coordinates of the upper-left corner and the width and
height of the rectangle.The mouseClicked() method sets the size to either 4
or 10, depending on the value returned by getClickCount().To draw a circle
with a diameter of either 8 or 20 pixels, use xƒ-ƒsize and yƒ-ƒsize for
the upper-left corner of the rectangle, and use sizeƒ*ƒ2 for the width and
the height. Add the closing curly brace for the method:

ƒƒpublicƒvoidƒpaint(Graphicsƒg)
ƒƒ{
ƒƒƒg.drawOval(xƒ-ƒsize,ƒyƒ-ƒsize,ƒsizeƒ*ƒ2,ƒsizeƒ*ƒ2);
ƒƒ}

Tip

532 Chapter 14 Using Layout Managers and the Event Model

Chapter Summary 533

14

9. Add the following main() method that creates a new JMouseFrame named
mFrame, sizes it using the setSize() method, and sets its visible property to
true. Add the closing curly brace for the class.

ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒJMouseFrameƒmFrameƒ=ƒnewƒJMouseFrame();
ƒƒƒmFrame.setSize(250,150);
ƒƒƒmFrame.setVisible(true);
ƒƒ}
}

10. Save the file as JMouseFrame.java in the Chapter.14 folder on your
Student Disk. Compile the file, and then run the program using the
javaƒJMouseFrame command.When the JFrame appears on your screen,
roll the mouse over the JFrame surface so it turns yellow. Roll your mouse
off the JFrame surface and it turns black. Roll the mouse over the JFrame
surface and click; a small circle appears at your mouse position.When you
click in a new position, the circle relocates.When you double-click in the
same position, a larger circle appears in the new mouse position, as shown in
Figure 14-12.

CHAPTER SUMMARY

❒ You can use the BorderLayout class with any container that has five or fewer com-
ponents.The components fill the screen in five regions named North, South, East,
West, and Center.The compiler determines the exact size of each component based
on the component’s contents.When you use BorderLayout with a container and
you add fewer than five components, any empty regions disappear.

❒ You can use the FlowLayout class to arrange Components in rows across the width
of a container.When you use FlowLayout, each component retains its default size
and automatically is centered within its assigned container.

❒ You use the GridLayout class to arrange Components into equal rows and columns.
As you add new components to a GridLayout, they are positioned left-to-right
across each row in sequence.

Figure 14-12 Output of the JMouseFrame program when the mouse is clicked and
double-clicked in the same position

❒ The CardLayout class allows you to arrange Components as if they were stacked
like index or playing cards. Only one component is visible at a time.

❒ A JPanel is similar to a JWindow in that a JPanel is a surface on which you can
place components. A JPanel is also a container, which means it can contain other
components. By using JPanels within other JPanels, you can create an infinite vari-
ety of screen layouts.

❒ The GridBagLayout class allows you to add components to precise locations within
the grid, as well as to indicate that specific components should span multiple rows
or columns within the grid.The BoxLayout class allows you to add components in
a horizontal row or vertical column.

❒ Events are Objects that the user initiates, such as key presses and mouse clicks.The
parent class for all event objects is named EventObject, which descends from the
Object class. EventObject is the parent of AWTEvent, which in turn is the parent
to specific event classes such as ActionEvent and ComponentEvent.

❒ When you want to listen for an event, you can implement an appropriate interface
for your class, such as ActionListener or WindowListener.The class becomes an
event listener. For every event class named <name>Event, there is a listener that is
similarly named—<name>Listener. Every <name>Listener interface method has
return type void, and each takes one argument—an object that is an instance of
the corresponding <name>Event class.

❒ Interface methods that are automatically called when an appropriate event occurs
are called event handlers.

❒ The KeyListener interface contains three methods: keyPressed(), keyTyped(), and
keyReleased().

❒ The MouseListener interface provides you with methods named mousePressed(),
mouseClicked(), and mouseReleased().The additional interface methods
mouseEntered() and mouseExited() inform you when the user positions the mouse
over a component (entered) or moves the mouse off a component (exited).

REVIEW QUESTIONS
1. If you add fewer than five components to a BorderLayout .

a. any empty component regions disappear

b. the remaining components expand to fill the available space

c. both a and b

d. none of the above

534 Chapter 14 Using Layout Managers and the Event Model

Review Questions 535

14

2. When you resize a Container that uses BorderLayout, .

a. the Container and the regions both change in size

b. the Container changes in size, but the regions retain their original sizes

c. the Container retains its size, but the regions change or might disappear

d. nothing happens

3. When you create a JFrame named myFrame, you can set its layout manager to
BorderLayout with the statement .

a. myFrame.setLayoutƒ=ƒnewƒBorderLayout();

b. myFrame.setLayout(newƒBorderLayout());

c. setLayout(myFrameƒ=ƒnew BorderLayout());

d. setLayout(BorderLayout(myFrame));

4. Which is the correct syntax for adding a JButton named b1 to a Container
named con when using CardLayout?

a. con.add(b1);

b. con.add("b1");

c. con.add("Options",ƒb1);

d. none of the above

5. You can use the class to arrange components in a single row
or column of a container.

a. FlowLayout

b. BorderLayout

c. CardLayout

d. BoxLayout

6. When you use a , the components you add fill their region;
they do not retain their default size.

a. FlowLayout

b. BorderLayout

c. FixedLayout

d. RegionLayout

7. The statement ensures that components are placed left-to-
right across the Swing applet surface until the first row is full, at which point a
second row is started at the applet surface’s left edge.

a. setLayout(FlowLayout.LEFT);

b. setLayout(newƒFlowLayout(LEFT));

c. setLayout(newƒFlowLayout(FlowLayout.LEFT));

d. setLayout(FlowLayout(FlowLayout.LEFT));

8. The GridBagLayout class allows you to .

a. add components to precise locations within the grid

b. indicate that specific components should span multiple rows or columns within
the grid.

c. both a and b

d. none of the above

9. The statement setLayout(new GridLayout(2,7)); establishes a GridLayout with
horizontal row(s).

a. zero

b. one

c. two

d. seven

10. As you add new components to a GridLayout, .

a. they are positioned left-to-right across each row in sequence

b. you can specify exact positions by skipping some positions

c. both of the above

d. none of the above

11. A JPanel is a .

a. Window

b. Container

c. both of the above

d. none of the above

12. The class allows you to arrange components as if they are
stacked like index or playing cards.

a. GameLayout

b. CardLayout

c. BoxLayout

d. GridBagLayout

13. AWTEvent is the child class of .

a. EventObject

b. Event

c. ComponentEvent

d. ItemEvent

536 Chapter 14 Using Layout Managers and the Event Model

Review Questions 537

14

14. When a user clicks a JPanel, the action generates a(n) .

a. ActionEvent

b. MouseEvent

c. ButtonEvent

d. none of the above

15. Event handlers are .

a. abstract classes

b. concrete classes

c. listeners

d. methods

16. The return type of getComponent() is .

a. Object

b. Component

c. int

d. void

17. The KeyEvent method getKeyChar() returns a(n) .

a. int

b. char

c. KeyEvent

d. AWTEvent

18. The MouseEvent method that allows you to identify double-clicks is
.

a. getDouble()

b. isClickDouble()

c. getDoubleClick()

d. getClickCount()

19. You can use the method to determine the Object where an
ActionEvent originates.

a. getObject()

b. getEvent()

c. getOrigin()

d. getSource()

20. The mousePressed() method is originally defined in the .

a. MouseListener interface

b. MouseEvent event

c. MouseObject object

d. AWTEvent class

EXERCISES
1. Create a JFrame and set the layout to BorderLayout. Place a JButton containing

the name of a politician in each region (left, center, and right, or West, Center,
and East). Each politician’s physical position should correspond to your opinion
of his or her political stance. Save the program as JPoliticalFrame.java in the
Chapter.14 folder of your Student Disk.

2. Modify the JWesternPanel class you created in this chapter so the user can choose
Northern states in addition to Western states. Create the necessary Northern state
buttons and activate one of them to display the city location of Event Handlers
Incorporated in the Northern region when clicked. Save the program as
JDemoNorth.java in the Chapter.14 folder of your Student Disk.

3. Use the CardLayout class to write a program that displays a series of cards that
make a Royal Flush in hearts (Ace, King, Queen, Jack, and 10). Save the program
as JRoyalFlush.java in the Chapter.14 folder of your Student Disk.

4. Create 26 JButtons, each labeled with a single, different letter of the alphabet. Create
a Swing applet to hold five JPanels in a five-by-one grid. Place six JButtons within
the first four JPanels and two JButtons within the fifth JPanel of the Swing applet.
Add a JLabel to the fifth JPanel.When the user clicks a JButton, the text of the
JLabel is set to “Folder X”, where X is the letter of the alphabet that is clicked. Save
the program as JFileCabinet.java in the Chapter.14 folder of your Student Disk.

5. Create a JFrame that holds four buttons with the names of four different fonts.
Draw any String using the font that the user selects. Save the program as
JFontFrame.java in the chapter.14 folder of your Student Disk.

6. Create a JFrame that uses BorderLayout. Place a JButton in the Center region.
Each time the user clicks the JButton, change the background color in one of the
regions. Save the program as JColorFrame.java in the Chapter.14 folder of your
Student Disk.

7. Create a JFrame with JPanels, a JButton, and a JLabel.When the user clicks the
JButton, reposition the JLabel to a new location in a different JPanel. Save the
program as JMovingFrame.java in the Chapter.14 folder of your Student Disk.

8. Write a JFrame application whose appearance and behavior mimics that of
the Chap14JPanelApplet Swing applet in this chapter. Save the program as
JFrameApp.java in the Chapter.14 folder of your Student Disk.

538 Chapter 14 Using Layout Managers and the Event Model

Exercises 539

14

9. Create a class named JPanelOptions that extends JPanel, and whose constructor
accepts two colors and a String. Use the colors for background and foreground to
display the String. Create a Swing applet named JTeamColors with GridLayout.
Display four JPanelOptions JPanels to display the names (in their team colors) of
four of your favorite sports teams. Save the program as JTeamColors.java in the
Chapter.14 folder of your Student Disk.

10. Write a program that lets you determine the integer value returned by the
InputEvent method getModifiers() when you press your left, right, or (if you
have one) middle mouse button. Save the program as JLeftOrRight.java in the
Chapter.14 folder of your Student Disk.

11. Write a Swing applet that displays car maintenance services (oil change, tune-up,
etc.). Allow the user to select any number of services. If the user clicks the right
mouse button, display a message that the user wants service ASAP. Display the
choices. Save the program as JMaintenance.java in the Chapter.14 folder of
your Student Disk.

12. Write a Swing applet that uses a JPanel to show the messages “Mouse Entered”
and “Mouse Exited” when the mouse enters and exits the Swing applet. Also,
when the mouse is clicked on the Swing applet, a message “Mouse Clicked here”
should appear. Save the program as JMouse.java in the Chapter.14 folder of your
Student Disk.

13. Write a Swing applet to show the messages “Don’t Move it! Drag the Mouse!”
and “Don’t Drag it! Move the Mouse!” when the mouse is alternately rolled and
dragged on the Swing applet. Save the program as JMouseMotion.java in the
Chapter.14 folder of your Student Disk.

14. Each of the following files in the Chapter.14 folder on your Student Disk has syn-
tax and/or logical errors. In each case, determine the problem and fix the program.
After you correct the errors, save each file using the same filename preceded with
Fix. For example, DebugFourteen1.java will become FixDebugFourteen1.java.
DebugFourteen2 and DebugFourteen3 are Swing applets.You can use the file
TestDebugFourteen.html on your Student Disk to test these Swing applets.

a. DebugFourteen1.java

b. DebugFourteen2.java

c. DebugFourteen3.java

d. DebugFourteen4.java

CASE PROJECT
The Programmers Organization wants you to reprogram one of its Java applications
so it uses panels and layout managers.The program JExperience is in the Chapter.14
folder of your Student Disk. Although the program compiles and runs, the appearance
of the components in the GUI could be greatly enhanced. Using the skills you
learned in this chapter, enhance the layout of the program. Save the program as
JNewExperience.java in the Chapter.14 folder of your Student Disk.

Case
Project

540 Chapter 14 Using Layout Managers and the Event Model

541

CHAPTER

15
EXCEPTION HANDLING

In this chapter, you will:
� Learn about exceptions
� Try code and catch Exceptions
� Use the Exception getMessage() method
� Throw and catch multiple Exceptions
� Use the finally block
� Understand the limitations of traditional error handling
� Specify the Exceptions a method can throw
� Handle Exceptions uniquely with each catch
� Trace Exceptions through the call stack
� Create your own Exceptions

You’re muttering to yourself at your desk at Event Handlers Incorporated.

“Anything wrong?” Lynn Greenbrier asks as she passes by.

“It’s these errors!” you complain.

“Aren’t you going overboard?” Lynn asks. “Everyone makes errors when
they code programs.”

“Oh, I expect typos and compiler errors while I’m developing my pro-
grams,” you say, “but no matter how well I write my code, the user can still
mess everything up by inputting bad data.The Event Planning Department
told me that it has events planned for the 32nd day of the month and for
negative five people. Even if my code is perfect, the user can enter mistakes.”

“Then your code isn’t perfect yet,” Lynn says.“Besides writing programs that
can handle ordinary situations, you must enable your programs to handle
exceptions.”

LEARNING ABOUT EXCEPTIONS

An exception is an unexpected or error condition.The programs you write can gen-
erate many types of potential exceptions, such as when:

� You issue a command to read a file from a disk, but the file does not exist there.

� You write data to a disk, but the disk is full or unformatted.

� Your program asks for user input, but the user enters invalid data.

� The program attempts to divide a value by zero, access an array with a sub-
script that is too large, or calculate a value that is too large for the answer’s
variable type.

These errors are called exceptions because, presumably, they are not usual occurrences;
they are “exceptional”.The object-oriented techniques to manage such errors comprise
the group of methods known as exception handling.

Providing for exceptions involves an oxymoron; you must expect the unexpected.

Like all other classes in the Java programming language, exceptions are Objects; their class
name is Exception. In Java, there are two basic classes of errors: Error and Exception. Both
of these classes descend from the Throwable class, as shown in Figure 15-1.

With JDK version 1.4.0, Java acknowledges over 40 categories of Exceptions
with unusual names such as ActivationException, AlreadyBoundException,
AWTException, CloneNotSupportedException, PropertyVetoException, and
UnsupportedFlavorException. See the http://java.sun.com Web site for more
details about these and other Exceptions.

Tip

Throwable
Exception

IOException
RuntimeException

ArithmeticException
ArrayIndexOutOfBoundsException
Others..

Others..
ErrorException

OutOfMemoryException
InternalErrorException
Others..

Figure 15-1 Structure of the Exception class

Tip

542 Chapter 15 Exception Handling

Learning About Exceptions 543

The Error class represents more serious errors from which your program usually can-
not recover.These errors are the ones you probably have made in your own programs
when you spelled a class name incorrectly or stored a required class in the wrong folder.
When a program cannot locate a required class or your system runs out of memory, an
Error condition occurs. Of course, a person can recover from such errors by spelling a
name correctly, moving a file to the correct folder, or by physically installing more mem-
ory, but a program cannot recover from these kinds of mistakes.

The Exception class comprises less serious errors that represent unusual conditions
that arise while a program is running, and from which the program can recover. Some
examples of Exception class errors include using an invalid array subscript or perform-
ing certain illegal arithmetic operations.

When your code causes a program error, whether inadvertently or purposely, you can
determine whether the type of Throwable object generated is an Error or an Exception
by examining the message that you receive from Java after the error occurs. Next you
will generate an unrecoverable Error.

To purposefully cause an unrecoverable Error:

1. Go to the command prompt for Chapter 15.

2. Type javacƒNoSuchClass.java, and then press [Enter]. Unless you have
created a file named NoSuchClass.java in the current directory, the error
message you receive should look like Figure 15-2.

Even though you generated an Error with an uppercase E (that is, you generated
an instance of the Error class), the error message displays with a lowercase e.

The “cannot read” Error in Figure 15-2 must be remedied by typing a different class
name, or storing a file with the name NoSuchClass.java in the Chapter.15 folder. In
other words, a person must take action before the command can successfully execute;
there is no program code you could write that would prevent the Error message.
However, when you generate a recoverable Exception, which is less severe than an Error,
you see a different type of message.An Exception message indicates that you could have
prevented the message by using specific code within your program. Next you will gen-
erate a recoverable Exception.

Tip

Figure 15-2 Error message generated by missing file
15

To purposefully cause an Exception:

1. Open a new file in your text editor, and then type the following
MathMistake class that attempts to divide by zero:

publicƒclassƒMathMistake
{
ƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒnumƒ=ƒ13,ƒdenomƒ=ƒ0,ƒresult;
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒnumƒ/ƒdenom;
ƒƒƒƒƒƒƒ}
}

You never should write a program that purposefully divides a value by zero.
However, this situation certainly could occur if a variable used as a denomi-
nator gets its value as the result of user input.

2. Save the file as MathMistake.java in the Chapter.15 folder on your Student
Disk, and then compile using the javacƒMathMistake.java command.

3. After the program compiles successfully, run the program using the
javaƒMathMistake command.Your result should look like Figure 15-3.
You can see that the Exception is a java.lang. ArithmeticException, which is a
subclass of Exception.You also get some information about the error (“/ by
zero”), the method that generated the error (MathMistake.main), and the file
and line number for the error (MathMistake.java, line 6); your line number
might be different if you include comment lines at the beginning of your
program.

Just because an Exception occurs, you don’t necessarily have to deal with it. In the
MathMistake class, you simply let the offending program terminate. However, the pro-
gram termination is abrupt and unforgiving.When a program divides two numbers (or
even performs a less trivial task such as playing a game with the user or balancing a
checkbook), the user might get annoyed if the program ends abruptly. However, if the
program is used for air-traffic control or to monitor a patient’s vital statistics during
surgery, an abrupt conclusion could be disastrous. Object-oriented error-handling tech-
niques provide more elegant (and safer) solutions.

Figure 15-3 Exception generated by the MathMistake class

Tip

544 Chapter 15 Exception Handling

Trying Code and Catching Exceptions 545

Programmers had to deal with error conditions long before object-oriented methods
were conceived. Probably the most-often-used error-handling solution has been to ter-
minate the offending program. For example, you can change the main() method of the
MathMistake class to halt the program before dividing by zero, as follows:

publicƒclassƒMathMistake
{
ƒƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒintƒnumƒ=ƒ13,ƒdenomƒ=ƒ0,ƒresult;
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒif(denomƒ==ƒ0)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.exit(1);
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒresultƒ=ƒnumƒ/ƒdenom;
ƒƒƒƒƒƒƒƒ}
}

You first used the System.exit() method in Chapter 5 when you wrote code
to close a dialog box. At that time, you used 0 as the argument to
System.exit() to indicate the program was ending normally. Here, you use 1,
which conventionally indicates a problem or error situation.

When you use the System.exit() method, the current application ends and control returns
to the operating system.The convention is to return 1 if an error is causing program ter-
mination, or 0 if the program is ending normally. Using this exit() method circumvents
displaying the error message because the program ends before the error occurs.

Exception handling provides a more elegant solution for handling error conditions. In
object-oriented terminology, you “try” a procedure that might cause an error.A method
that detects an error condition or Exception “throws an Exception”, and the block of
code that processes the error “catches the Exception”.

TRYING CODE AND CATCHING EXCEPTIONS

When you create a segment of code in which something might go wrong, you place the
code in a try block, which is a block of code you attempt to execute, while acknowl-
edging that an Exception might occur. A try block consists of the following elements:

� The keyword try

� An opening curly brace

� Statements that might cause Exceptions

� A closing curly brace

You must code at least one catch block immediately following a try block.A catch
block is a segment of code that can handle an Exception that might be thrown by the

Tip

15

try block that precedes it. Each catch block can “catch” one type of Exception.You
create a catch block by typing the following elements:

� The keyword catch

� An opening parenthesis

� An Exception type

� A name for an instance of the Exception type

� A closing parenthesis

� An opening curly brace

� Statements that take the action you want to use to handle the error condition

� A closing curly brace

If a method throws an Exception that will be caught, you must also use the keyword
throws, followed by an Exception type in the method header. Figure 15-4 shows the
general format of a try...catch pair.

A catch block looks a lot like a catch() method that takes an argument that
is some type of Exception. However, it is not a method; it has no return type,
and you can’t call it directly.

Some programmers refer to a catch block as a catch clause.

In Figure 15-4, someException represents the Exception class or any of its subclasses. If
an Exception occurs during the execution of the try block, then the statements in the
catch block will execute. If no Exception occurs within the try block, then the catch

Tip

Tip

Figure 15-4 General format of a try...catch pair

public class someMethod throws someException
{
 try
 {
 //Statements that might cause an Exception
 }
 catch(someExceptionan ExceptionInstance)
 {
 //What to do about it
 }
//Statements here execute even if there was no Exception
}

546 Chapter 15 Exception Handling

Trying Code and Catching Exceptions 547

block will not execute. Either way, the statements following the catch block execute
normally. Next you will alter the MathMistake class so it catches the division-by-zero
Exception.

To catch an ArithmeticException:

1. Use your text editor’s Save As command to save the MathMistake.java file as
MathMistake2.java, and then change the class name in the class header from
MathMistake to MathMistake2.

2. Position your insertion point at the end of the main() method header
(publicƒstaticƒvoidƒmain(String[]ƒargs)), press the Spacebar,
and then type throwsƒArithmeticException.

3. Position your insertion point at the end of the line that declares the three
integer variables, and then press [Enter] to start a new line.

4. Type try, press [Enter], and then type an opening curly brace.

5. Position your insertion point at the end of the line that performs division
(resultƒ=ƒnumƒ/ƒdenom;), press [Enter], and then type a closing curly
brace for the try block.

6. Press [Enter], and then type a catch block that sends a message to the com-
mand line, as follows:

catch(ArithmeticExceptionƒerror)
{
ƒƒƒƒƒƒSystem.out.println("Attemptƒtoƒdivideƒbyƒzero!");
}

If you want to send error messages to a different location from “normal” out-
put, you can use System.err instead of System.out. For example, if a program
writes a report to a specific disk file, you might want errors to write to a dif-
ferent disk file or to the screen.

7. Save the file, compile it, and then execute the program.The output looks like
Figure 15-5, which shows that the Exception was caught successfully and
your error message printed.

Figure 15-5 Output of MathMistake2

Tip

15

USING THE EXCEPTION GETMESSAGE() METHOD

When the MathMistake2 program prints the error message (“Attempt to divide by
zero!”), you cannot confirm that division by zero was the source of the error. In reality,
any ArithmeticException generated within the try block in the program would be
caught by the catch block in the method. Instead of writing your own message, you
can use the getMessage() method that ArithmeticException inherits from the Throwable
class.To retrieve Java’s message about any Throwable Exception named someException,
you code someException.getMessage(). In the next steps, you will use the
getMessage() method instead of creating your own.

To use the getMessage() method with the MathMistake class:

1. Use your text editor’s Save As command to save the MathMistake2.java file as
MathMistake3.java.

2. Change the class header to publicƒclassƒMathMistake3.

3. Within the catch block, remove the existing println() statement and replace
it with the following:

System.out.println("Theƒofficialƒmessageƒisƒ"ƒ+ƒerror.get
Message());

4. Save the file, and then compile and run it. Figure 15-6 shows the output.
Java’s analysis of the situation prints instead of your own.

Of course, you might want to do more in a catch block than print an error message;
after all, Java did that for you without catching any Exceptions.You also might want to
add code to correct the error; such code would force the arithmetic to divide by one
rather than by zero. Next you will add code to the catch block to catch the exception.

To add corrective code to the catch block of the MathMistake class:

1. Save the MathMistake3 file as MathMistake4.java.

2. Change the class header to reflect the new class name.

3. Position your insertion point at the end of the println() statement within the
catch block of the main() method of the class, and then press [Enter] to

Figure 15-6 Output of MathMistake3

548 Chapter 15 Exception Handling

Throwing and Catching Multiple Exceptions 549

start a new line.Type the following message to indicate the action you are
taking: System.out.println("Denominatorƒcorrectedƒtoƒ1");.
Follow this statement with a recalculation of the result variable by typing the
following code on a new line: resultƒ=ƒnumƒ/ƒ1;.

You can achieve the same result by coding resultƒ=ƒnum; instead of
resultƒ=ƒnumƒ/ƒ1;. Explicitly dividing by one simply makes the code’s
intention clearer.

4. Position your insertion point after the closing curly brace of the catch
block, and then press [Enter] to start a new line. Add the following println()
statement to show the result:

System.out.println("Resultƒisƒ"ƒ+ƒresult);

5. Save the program, and then compile and execute it. Figure 15-7 shows the
result, which confirms that the catch block provides you with a usable result.

THROWING AND CATCHING MULTIPLE EXCEPTIONS

You can place as many statements as you need within a try block, and you can catch
as many Exceptions as you want. If you try more than one statement, only the first
error-generating statement throws an Exception.As soon as the Exception occurs, the
logic transfers to the catch block, which leaves the rest of the statements in the try
block unexecuted.

When a program contains multiple catch blocks, they are examined in sequence until
a match is found for the type of Exception that occurred. Then the matching catch
block executes and each remaining catch block is bypassed.

For example, consider the program in Figure 15-8. The main() method in the
TwoMistakes class throws two types of Exceptions: ArithmeticExceptions and
IndexOutOfBoundsExceptions. (An IndexOutOfBoundsException occurs when an
array subscript is not within the allowed range.)

Figure 15-7 Output of MathMistake4

Tip

15

The TwoMistakes class declares three integers and an integer array with three elements.
In the main() method, the try block executes, and at the first statement within the try
block, an Exception occurs because the denom in the division problem is zero.The try
block is abandoned, and the logic transfers to the first catch block. Division by zero
causes an ArithmeticException, and because the first catch block receives an
ArithmeticException, the message “Arithmetic error” prints. In this example, the sec-
ond try statement is never attempted, and the second catch block is skipped.

If you make one minor change to the class in Figure 15-8, the process changes.You can
force the division in the try block to succeed by substituting a constant value for the
denom variable or by reversing the positions of num and denom in the line containing
the //ƒFirstƒtry comment.With either of these changes, division by zero does not
take place.The line containing //ƒFirstƒtry succeeds, and the program proceeds to
the //ƒSecondƒtry statement. This statement attempts to access element 13 of a
three-element array, so it throws an IndexOutOfBoundsException.The try block is
abandoned, and the first catch block is examined and found unsuitable because it does
not catch an IndexOutOfBoundsException.The program logic proceeds to the second
catch block whose Exception argument type is a match for the thrown Exception, so
the message “Index error” prints.

Sometimes you want to execute the same code no matter which Exception type occurs.
For example,within the TwoMistakes program in Figure 15-8, each of the two catch blocks

Figure 15-8 TwoMistakes class

public class TwoMistakes
{
 public static void main(String[]args)
 throws ArithmeticException, IndexOutOfBoundsException
 {
 int num= 13,denom= 0,result;
 int[] array= {22,33,44};
 try
 {
 result= num/denom;//First try
 result= array[num];//Second try
 }
 catch(ArithmeticExceptionerror)
 {
 Systemoutprintln("Arithmetic error");
 }
 catch(IndexOutOfBoundsException error)
 {
 System.out.println("Index error");
 }
 }

}

550 Chapter 15 Exception Handling

Throwing and Catching Multiple Exceptions 551

prints a unique message. Instead, you might want both the ArithmeticException’s catch
block and the IndexOutOfBoundsException’s catch block to use the getMessage()
method. Because ArithmeticExceptions and IndexOutOfBoundsExceptions are both sub-
classes of Exception, you can rewrite the TwoMistakes class as shown in Figure 15-9, using
a single generic catch block that can catch any type of Exception.

The catch block in Figure 15-9 accepts a more generic Exception argument type than
that thrown by either of the potentially error-causing try statements, so the generic
catch block can act as a “catch-all” block. When either an arithmetic or array error
occurs, the thrown error is “promoted” to an Exception error in the catch block.
Through inheritance, ArithmeticExceptions and IndexOutOf BoundsExceptions are
Exceptions, and an Exception is Throwable, so you can use the Throwable class
getMessage() method.

When you list multiple catch blocks following a try block, you must be careful
that some catch blocks don’t become unreachable. For example, if successive
catch blocks catch an IndexOutOf BoundsException and an ordinary Exception,
then IndexOutOf BoundsException errors will cause the first catch to execute and
other Exceptions will “fall through” to the more general Exception catch block.
However, if you reverse the sequence of the catch blocks, then even
IndexOutOf BoundsExceptions will be caught by the Exception catch. The
IndexOutOf BoundsException catch block is unreachable because the Exception
catch block is in its way and the class will not compile.

Figure 15-9 TwoMistakes class using a single, generic catch block

public class TwoMistakes
{
 public static void main(String[]args) throws
 ArithmeticException, IndexOutOfBoundsException
 {
 int num= 13,denom= 0,result;
 int[] array= {22,33,44};
 try
 {
 result= num/denom;//First try
 result= array[num];//Second try
 }
 catch(Exceptionerror)
 {
 System.out.println("Error is"+ error.getMessage());
 }
 }

}

15

USING THE finally BLOCK

When you have actions you must perform at the end of a try...catch sequence, you
can use a finally block.The code within a finally block executes whether or not
the preceding try block identifies Exceptions. Usually, you use a finally block to
perform clean-up tasks that must happen whether or not any Exceptions occurred, and
whether or not any Exceptions that occurred were caught. Figure 15-10 shows the for-
mat of a try…catch sequence that uses a finally block.

Compare Figure 15-10 to Figure 15-4 shown earlier in this chapter.With the program
in Figure 15-4, when the try code works without error, control passes to the statements
at the end of the method. Also, when the try code fails and throws an Exception, if
the Exception is caught, then the catch block executes, and again, control passes to the
statements at the end of the method. At first glance, it seems as though the statements
at the end of the method always execute. However, the last set of statements might never
execute for at least two reasons:

� It is possible that an unplanned Exception will occur.

� The try or catch block might contain a System.exit(); statement.

Any try block might throw an Exception for which you did not provide a catch
block. After all, Exceptions occur all the time without your handling them, as one did
in the first MathMistake program in this chapter. In the case of an unhandled Exception,
program execution stops immediately, the Exception is sent to the operating system for
handling, and the current method is abandoned. Likewise, if the try block contains an
exit() statement, execution stops immediately.

Figure 15-10 General form of a try...catch block with a finally block

public class someMethod throws someException
{
 try
 {
 //Statements that might cause an Exception
 }
 catch(someExceptionan ExceptionInstance)
 {
 //What to do about it
 }
 finally
 {
 //Statements here always execute
 }

}

552 Chapter 15 Exception Handling

Using the finally Block 553

When you include a finally block, you are assured that the finally statements will
execute before the method is abandoned, even if the method concludes prematurely. For
example, programmers often use a finally block when the program uses data files that
must be closed. You will learn more about writing to and reading from data files in
Chapter 16. For now, however, consider the pseudocode that represents part of the logic
for a typical file-handling program:

try
{
ƒƒƒƒƒƒƒOpenƒtheƒfile
ƒƒƒƒƒƒƒReadƒtheƒfile
ƒƒƒƒƒƒƒPlaceƒtheƒfileƒdataƒinƒanƒarray
ƒƒƒƒƒƒƒCalculateƒanƒaverageƒfromƒtheƒdata
ƒƒƒƒƒƒƒDisplayƒtheƒaverage
}
catch(IOExceptionƒe)
{
ƒƒƒƒƒƒƒIssueƒanƒerrorƒmessage
}
finally
{
ƒƒƒƒƒƒƒIfƒtheƒfileƒisƒopen,ƒcloseƒit
}

The preceding pseudocode represents a program that opens a file; if the file does not exist
or is empty, an input/output exception, or IOException, is thrown and the catch block
handles the error.However,because the program uses an array, it is possible that even though
the file opened successfully, an uncaught ArrayIndexOutOfBoundsException might occur.
In such an event, you want to close the file before proceeding.By using the finally block,
you ensure that the file is closed because the code in the finally block executes before
control returns to the operating system.The code in the finally block executes no mat-
ter which of the following outcomes of the try block occurs:

� The try ends normally.

� The catch executes.

� An Exception causes the method to abandon prematurely—perhaps the array
is not large enough to hold the data, or calculating the average results in divi-
sion by zero.These Exceptions would not allow the try block to finish, nor
would they cause the catch block to execute.

If a try block calls the System.exit() method, and the finally block calls
the same method, it is the exit() method in the finally block that will
actually execute. The try block’s exit() method call will be abandoned.Tip

15

UNDERSTANDING THE LIMITATIONS OF TRADITIONAL ERROR HANDLING

Before the conception of object-oriented programming languages, potential program
errors were handled using somewhat confusing, error-prone methods. For example, a
traditional, non-object-oriented, procedural program might perform three methods that
depend on each other using code that provides error checking similar to the pseudocode
in Figure 15-11.

The program in Figure 15-11 performs methodA; it then performs methodB only if
methodA is successful. Similarly, methodC executes only when methodA and methodB
are successful.When any method fails, the program sets an appropriate errorCode to A,
B, or C. (Presumably, the errorCode is used later in the program.) The program is diffi-
cult to follow, and the purpose of the program (and its presumed outcome when there
are no errors)—to print the finalResult—is lost in the maze of if statements.Also, you
can easily make coding mistakes within such a program because of the complicated nest-
ing, indenting, and opening and closing of curly braces.

Compare the same program logic using Java’s object-oriented error-handling technique
shown in Figure 15-12. Using the try…catch object-oriented technique provides the
same results as the traditional method, but the real statements of the program (calling
methods A, B, and C, and printing finalResult) are placed together where their logic is
easy to follow. The try steps should usually work without generating errors; after all,
the errors are “exceptions”. It is convenient to see these business-as-usual steps in one
location.The unusual, exceptional events are grouped and moved out of the way of the
primary action.

Figure 15-11 Pseudocode representing traditional error checking

call methodA
if methodA worked
{
 call methodB
 if methodB worked
 {
 call methodC
 if methodC worked
 everything's okay so print finalResult
 else
 set errorCode to 'C'
 }
 else
 set errorCode to 'B'
}
else set errorCode to 'A'

554 Chapter 15 Exception Handling

Specifying the Exceptions a Method Can Throw 555

SPECIFYING THE EXCEPTIONS A METHOD CAN THROW

When you write a method that might throw an Exception, you can type the clause
throwsƒ<name>Exception after the method header to indicate the type of
Exception that might be thrown. Every Java method you write has the potential to throw
an Exception. Some Exceptions, such as an InternalErrorException, can occur any-
where, at any time. However, for most Java methods that you write, you do not use a
throws clause. For example, you have used a throws clause only a few times in the
many programs you have written while working through this book. Most of the time,
you let Java handle any Exception by shutting down the program. Imagine how
unwieldy your programs would become if you were required to provide for every pos-
sible error, including equipment failures and memory problems. Most exceptions never
have to be explicitly thrown or caught.

You never have to throw Error or RuntimeException exceptions explicitly.
Most of the errors you received when you made mistakes in your Java pro-
grams are RuntimeExceptions—unplanned exceptions that occur during a
program’s execution.

One exception to the rule of not throwing Exceptions involves the IOException.You
learned in Chapter 5 that you must include a throws clause in the method header
of programs that allow keyboard input. In Chapter 16 you will discover that you also
must include a throws clause in programs that use file input. However, even when
you are not required to handle an Exception, you might choose to do so.When your

Tip

Figure 15-12 Pseudocode representing object-oriented Exception handling

try
{
 methodA(and maybe throw anException)
 methodB(and maybe throw anException)
 methodC(and maybe throw anException)
 everything's okay so print finalResult
}
catch(methodA's error)
{
 set errorCode to 'A'
}
catch(methodB's error)
{
 set errorCode to 'B'
}
catch(methodC's error)
{
 set errorCode to 'C'
}

15

method will throw an Exception that you want to handle, you must include the
throws clause in the method header.

InterruptedException is another example of a throws clause that Java
requires that you use when you are working with threads. You will learn about
threads in Chapter 17.

When a method you write throws an Exception, the method can catch the Exception,
although it is not required to do so.There are many times when you won’t want a method
to handle its own Exception. With many methods, you want the method to check for
errors, but you do not want to require a method to handle an error if it finds one.The
calling program might need to handle the error differently, depending on its purpose. For
example, one program that divides values might need to terminate if division by zero
occurs. A different program simply might want the user to reenter the data to be used.
The method that contains the division statement can throw the error, and the calling pro-
gram can assume the responsibility for handling the error detected by the method.

You know a method can throw without catching because you have written
methods that use keyboard input. With those methods, you threw an
Exception, but you did not provide a catch block.

Java requires that you use the throws clause in the header of a method that might throw
an Exception so that programs that use your methods are notified of the potential for an
Exception.When you use any method, to be able to use the method to its full potential,
you must know the method’s name and three additional pieces of information:

� The method’s return type

� The type and number of arguments the method requires

� The type and number of Exceptions the method throws

To use a method, you must first know what types of arguments the method that you send
it requires.You can call a method without knowing its return type, but if you do so, you can’t
benefit from any value that the method returns. (Also, if you use a method without know-
ing its return type, you probably don’t understand the purpose of the method.)Likewise, you
can’t make sound decisions about what to do in case of an error if you don’t know what
types of Exceptions a method might throw.A method’s header, including its name, any argu-
ments, and any throws clause, is called the method’s signature.

Next you will create a class that contains two methods that throw Exceptions but don’t
catch them. The PickMenu class allows Event Handlers Incorporated customers to
choose a dinner menu selection as part of their event-planning process. Before you cre-
ate PickMenu, you will create the Menu class that lists dinner choices for customers and
allows them to make a selection.

Tip

Tip

556 Chapter 15 Exception Handling

Specifying the Exceptions a Method Can Throw 557

To create the Menu class:

1. Open a new file in your text editor, and then enter the following class header
and the opening curly brace for the Menu class:

publicƒclassƒMenuƒ
{

2. Type the following String array for three entrée choices:

String[]ƒentreeChoiceƒ=ƒ{"RosemaryƒChicken",ƒ
ƒƒƒ"BeefƒWellington",ƒ"MaineƒLobster"};

3. Add the displayMenu() method, which lists each entrée option with a corre-
sponding number the customer can type to make a selection. Even though the
allowable entreeChoice array subscripts are 0, 1, and 2, most users would expect
to type 1, 2, or 3. So, you code xƒ+ƒ1 rather than x in the println() prompt.

publicƒvoidƒdisplayMenu()
{
ƒƒƒƒƒƒƒSystem.out.printlnƒƒ
ƒƒƒƒƒƒƒƒƒ("Typeƒyourƒselection,ƒthenƒƒƒƒƒƒƒ
ƒƒƒƒƒƒƒpressƒ[Enter].");
ƒƒƒƒƒƒƒfor(intƒxƒ=ƒ0;ƒxƒ<ƒentreeChoice.length;ƒ++x)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.out.println("Typeƒ"ƒ+ƒ(xƒ+ƒ1)ƒ+ƒ
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ"ƒforƒ"ƒ+ƒentreeChoice[x]);
}

4. Create the following getSelection() method, which requires an integer argu-
ment and returns the name of one of the selected menu items. Because the
user enters a value that is one higher than the actual subscript, you need to
subtract one from x when accessing the array. Finally, include the closing
curly brace for the Menu class.

ƒƒƒpublicƒStringƒgetSelectionƒ(intƒx)
ƒƒƒ{
ƒƒƒƒƒƒƒreturn(entreeChoice[xƒ-ƒ1]);
ƒƒƒ}
ƒƒƒ}

5. Save the file as Menu.java in the Chapter.15 folder on your Student Disk.

6. Compile the class using the javac command.

Next you can create the PickMenu class, which lets the customer choose from the avail-
able dinner entrée options.The PickMenu class declares a Menu, an integer that holds
the user’s numeric menu choice, and a String named guestChoice that holds the name
of the entrée that the customer selects.

To enable the PickMenu class to operate with different kinds of Menus in the future,
you pass a Menu to PickMenu’s constructor. This technique provides two advantages:
First, when the menu options change, you can alter the contents of the Menu.java file

15

without changing any of the code in any programs that use Menu. Second, you can
extend Menu, perhaps to VegetarianMenu, LowSaltMenu, or KosherMenu, and still use
the existing PickMenu class. When you pass any Menu or Menu subclass into the
PickMenu constructor, the correct customer options will appear.

You have written many programs using GUI dialog boxes for input and out-
put. However, you will use command-line prompts and input here to better
illustrate Exception handling.

To create the PickMenu class:

1. Open a new file in your text editor, and then add the following first few lines
of the PickMenu class with its three data fields (a Menu, and both a number
and a String that reflect the customer’s choice):

publicƒclassƒPickMenuƒ
{
ƒƒƒƒƒƒƒMenuƒbriefMenu;
ƒƒƒƒƒƒƒintƒchoice;
ƒƒƒƒƒƒƒStringƒguestChoiceƒ=ƒnewƒString();

2. Enter the following PickMenu constructor, which receives an argument rep-
resenting a Menu.The constructor assigns the Menu that is the argument to
the local Menu, and then calls the setChoice() method, which prompts the
user to select from the available menu.The PickMenu() constructor method
must throw an Exception because it contains the setGuestChoice() method,
which uses keyboard input, and any method that uses keyboard input or calls
a method that uses keyboard input must throw the potential Exception.

publicƒPickMenu(MenuƒtheMenu)ƒthrowsƒException
{
ƒƒƒƒƒƒƒbriefMenuƒ=ƒtheMenu;
ƒƒƒƒƒƒƒsetGuestChoice();
{

3. The following setGuestChoice() method displays the menu and reads key-
board data entry, so the method throws an Exception. Start the method by
declaring a character and String for input:

publicƒvoidƒsetGuestChoice()ƒthrowsƒException
{ƒ
ƒƒƒƒƒƒƒcharƒnewChar;
ƒƒƒƒƒƒƒStringƒinputStringƒ=ƒnewƒString();

4. Add the following data-entry procedure, which is similar to others that you
have written:

System.out.println("Chooseƒfromƒtheƒfollowingƒmenu:");
briefMenu.displayMenu();
newCharƒ=ƒ(char)System.in.read();

Tip

558 Chapter 15 Exception Handling

Specifying the Exceptions a Method Can Throw 559

while(newCharƒ>=ƒ'0'ƒ&&ƒnewCharƒ<=ƒ'9')
{
ƒƒƒƒƒƒinputStringƒ=ƒinputStringƒ+ƒnewChar;
ƒƒƒƒƒƒnewCharƒ=ƒ(char)System.in.read();
}
System.in.read();

5. Add the following code to convert the entered String to an integer, and then
use it as an argument to the getSelection() method that you wrote in the
Menu class. Because briefMenu is a Menu (an instance of the Menu class), it
has access to the getSelection() method.When you pass an integer to the
getSelection() method, it returns one of the Strings in the menu. Here, you
assign the returned String to the guestChoice field. Finally, you end the
setGuestChoice() method with a closing curly brace.

ƒƒƒƒƒƒchoiceƒ=ƒInteger.parseInt(inputString);
ƒƒƒƒƒƒguestChoiceƒ=ƒbriefMenu.getSelection(choice);
}

6. Add the following getGuestChoice() method.This method is simpler; it
returns the String that represents the customer’s menu selection. Finally,
include the closing curly brace for the PickMenu class.

ƒƒƒpublicƒStringƒgetGuestChoice()
ƒƒƒ{
ƒƒƒƒƒƒƒreturn(guestChoice);
ƒƒƒ}
}

7. Save the file as PickMenu.java in the Chapter.15 folder on your Student
Disk, and then compile it using the javac command.

You created a Menu class that simply holds a list of food items, displays itself, and allows
you to retrieve a specific item.You also created a PickMenu class that has fields that hold
a user’s specific selection from a given menu and methods to get and set values for those
fields.The PickMenu class contains two methods that throw Exceptions, but no meth-
ods that contain ways to catch those Exceptions. Next you will write a program that
uses the PickMenu class.This program can catch Exceptions that PickMenu throws.

To write the PlanMenu class:

1. Open a new file in your text editor, and start entering the following
PlanMenu class, which will have just one method—a main() method:

publicƒclassƒPlanMenu
{
ƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒƒƒƒ{

2. Construct the following Menu named briefMenu, and also declare a
PickMenu object that you name entrée.You do not want to construct a
PickMenu object yet because you want to be able to catch the Exception

15

that the PickMenu constructor might throw.Therefore, you want to wait and
construct the PickMenu object within a try block. For now, you will just
declare entrée and assign it null. Also, you will declare a String that will
hold the customer’s menu selection.

MenuƒbriefMenuƒ=ƒnewƒMenu();
PickMenuƒentreeƒ=ƒnull;
StringƒguestChoiceƒ=ƒnewƒString();ƒ

3. Write the following try block that constructs a PickMenu item. If the
construction is successful, the next statement assigns a selection to the
entrée object. Because entrée is a PickMenu object, it has access to the
getGuestChoice() method in the PickMenu class, and you can assign the
method’s returned value to the guestChoice String.

try
{
ƒƒƒƒƒƒPickMenuƒselectionƒ=ƒnewƒPickMenu(briefMenu);
ƒƒƒƒƒƒentreeƒ=ƒselection;
ƒƒƒƒƒƒguestChoiceƒ=ƒentree.getGuestChoice();
}

4. The catch block must immediately follow the try block.When the try block
fails, guestChoice will not have a valid value, so recover from the Exception by
assigning a value to guestChoice within the following catch block:

catch(Exceptionƒerror)
{
ƒƒƒƒƒƒguestChoiceƒ=ƒ"anƒinvalidƒselection";
}

5. Use the following code to print the customer’s choice at the end of the
PlanMenu program, and then add closing curly braces for the main() method
and the class:

ƒƒƒƒƒƒƒƒƒƒSystem.out.println("Youƒchoseƒ"ƒ+ƒguestChoice);
ƒƒƒƒƒ}
}

6. Save the file as PlanMenu.java in the Chapter.15 folder on your Student
Disk, and then compile and execute it. Choose an entrée selection by typing
its number from the menu, and then compare your results to Figure 15-13.

560 Chapter 15 Exception Handling

Specifying the Exceptions a Method Can Throw 561

7. The PlanMenu program works well when you enter a valid menu
selection. One way that you can force an Exception to take place is to
enter an invalid menu selection at the prompt. Run the PlanMenu
program again, and type 4, A, or any invalid value at the prompt.
Entering 4 produces an ArrayIndexOutOfBoundsException, and entering
A produces a NumberFormatException. If the program lacked the
try...catch pair, either entry would halt the program. However,
because the setGuestChoice() method in the PickValue class throws
either type of Exception and the PlanMenu program catches it,
guestChoice takes on the value “an invalid selection” and the program
ends smoothly, as shown in Figure 15-14.

Figure 15-14 Exceptional run of the PlanMenu program

Figure 15-13 Sample run of the PlanMenu program

15

HANDLING EXCEPTIONS UNIQUELY WITH EACH catch
An advantage to using object-oriented exception-handling techniques is that you gain
the ability to appropriately deal with Exceptions as you make conscious decisions about
how to handle them. When you use a class and one of its methods throws an
Exception, the class that throws the Exception does not have to catch it. Instead, your
calling program can catch the Exception, and you can decide what you want to do.
Just as a police officer can deal with a speeding driver differently depending on cir-
cumstances, you can react to Exceptions specifically for your current purposes. For
example, the PickMenu class you created throws Exceptions. When you write new
programs that use the PickMenu class, you can decide to handle error conditions dif-
ferently within each program you write.

Next you will extend the Menu class to create a new class named VegetarianMenu.
Subsequently, when you write a program that uses PickMenu with the VegetarianMenu,
you can deal with any Exception differently than you did when you wrote the
PlanMenu program.

To create the VegetarianMenu class:

1. Open a new file in your text editor, and then type the following class header
for the VegetarianMenu class VegetarianMenu that extends Menu:

publicƒclassƒVegetarianMenuƒextendsƒMenu
{

2. Provide new menu choices for the VegetarianMenu as follows:

String[]ƒvegEntreeChoiceƒ={ƒ"SpinachƒLasagna",
ƒƒƒƒƒƒƒƒ"CheeseƒEnchiladas",ƒ"FruitƒPlate"};

3. Add the following constructor that calls the superclass constructor and assigns
each vegetarian selection to the Menu superclass entreeChoice array, and then
add the closing curly brace for the class:

ƒƒpublicƒVegetarianMenu()ƒ
ƒƒ{
ƒƒƒƒƒƒƒƒsuper();
ƒƒƒƒƒƒƒƒfor(intƒxƒ=ƒ0;ƒxƒ<ƒvegEntreeChoice.length;ƒ++x)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒentreeChoice[x]ƒ=ƒvegEntreeChoice[x];
ƒƒ}
ƒƒ}

4. Save the class as VegetarianMenu.java in the Chapter.15 folder on your
Student Disk, and then compile it.

5. Now write a program that uses VegetarianMenu.You could write any pro-
gram, but for demonstration purposes, you can simply modify PlanMenu.java.
Open the PlanMenu.java file in your text editor, and then immediately save
it as PlanVegetarianMenu.java.

562 Chapter 15 Exception Handling

Tracing Exceptions Through the Call Stack 563

6. Change the class name in the header to PlanVegetarianMenu.

7. Change the first statement within the main() method as follows so it declares
a VegetarianMenu instead of a Menu:

VegetarianMenuƒbriefMenuƒ=ƒnewƒVegetarianMenu();

8. Change the guestChoice assignment statement in the catch block as follows
so it is specific to the program that uses the VegetarianMenu:

guestChoiceƒ=ƒ"anƒinvalidƒvegetarianƒselection";

9. Save the file in the Chapter.15 folder on your Student Disk, compile it, and
then run the program.When you see the vegetarian menu, enter a valid selec-
tion and confirm that the program works correctly. Run the program again
and enter an invalid selection.The error message, shown in Figure 15-15,
identifies your invalid entry as “an invalid vegetarian selection”. Remember
that you did not change the PickMenu class.Your new PlanVegetarianMenu
program uses the PickMenu class that you wrote and compiled before a
VegetarianMenu ever existed. However, because PickMenu throws uncaught
Exceptions, you can handle those Exceptions as you see fit in any new pro-
grams in which you catch them.

TRACING EXCEPTIONS THROUGH THE CALL STACK

When one method calls another, the computer’s operating system must keep track of
where the method call came from, and program control must return to the calling
method when the called method is completed. For example, if methodA calls methodB,
the operating system has to “remember” to return to methodA when methodB ends.
Likewise, if methodB calls methodC, then while methodC executes, the computer must
“remember” that it is going to return to methodB and, eventually, to return methodA.
The memory location known as the call stack is where the computer stores the list of
locations to which the system must return.

Figure 15-15 Exceptional run of the PlanVegitarianMenu program

15

When a method throws an Exception, and if the method does not catch the
Exception, then the Exception is thrown to the next method up the call stack, or in
other words, to the method that called the offending method. Figure 15-16 shows how
the call stack works. If methodA calls methodB, and methodB calls methodC, and
methodC throws an Exception, then Java first looks for a catch block in methodC.
If none exists, then Java looks for the same thing in methodB. If methodB does not have
a catch block, then Java looks to methodA. If methodA cannot catch the Exception,
then it is thrown to the operating system.

The technique of cycling through the methods in the stack has great advantages because
it allows methods to handle Exceptions wherever the programmer has decided it is most
appropriate. However, when a program uses several classes, this system’s disadvantage is
that it is very difficult for the programmer to locate the original source of an Exception.

You have already used the Throwable method getMessage() to obtain information about
an Exception.Another useful Exception method is the printStackTrace() method.When
you catch an Exception, you can call printStackTrace() to display a list of methods in
the call stack so you can determine the location of the Exception.

To use the printStackTrace() method:

1. Open the PlanMenu.java file in your text editor, and then save it as
PlanMenuWithStackTrace.java.

2. Change the class header to PlanMenuWithStackTrace.

Operating system

Is there a catch here? No?

methodA
 calls methodB

methodB
 calls methodC

methodC
 throws Exception

Is there a catch here? No?

Figure 15-16 Cycling through the call stack

564 Chapter 15 Exception Handling

Tracing Exceptions Through the Call Stack 565

3. Position your insertion point within the catch block after the statement
guestChoice = "an invalid selection";, and then press [Enter]
to start a new line.

4. Type the following two new statements to identify and print the stack trace:

System.out.println("StackƒTrace");
error.printStackTrace();

5. Save the file in the Chapter.15 folder on your Student Disk, and then compile
and execute it. After the menu appears, enter an invalid selection. If you
entered 4, your screen looks like Figure 15-17. If you read the list that follows
the Stack Trace heading, you see that an ArrayIndexOutOfBoundsException
occurred in the method Menu.getSelection().That method was called by
the PickMenu.setGuestChoice() method, which in turn was initiated by the
PickMenu constructor.The PickMenu constructor was called from the
PlanMenuWithStackTrace.main() method.You see the line number as addi-
tional information within each method where the Exception occurred (your
line numbers might be different). If you did not understand why entering 4
caused an error, you would use the stack trace information to examine the
Menu.getSelection() method as the first source of the error. Using
printStackTrace() can be a helpful debugging tool.

6. Run the PlanMenuWithStackTrace program again, and then enter A for
the user selection.You can see from the stack trace that this time the Exception
does not originate in the Menu.getSelection() method.This program stops at
the parseInt() method before the program attempts getSelection().

Figure 15-17 Exceptional run of the PlanMenuWithStackTrace program

15

Often, you do not want to place a printStackTrace() method call in a finished
program. The typical program user has no interest in the cryptic messages
that print. However, while you are developing a program, printStackTrace()
can be a useful tool for diagnosing your program’s problems.

CREATING YOUR OWN EXCEPTIONS

Java provides over 40 categories of Exceptions that you can throw in your programs.
However, Java’s creators could not predict every condition that might be an Exception
in your programs. For example, you might want to declare an Exception when your bank
balance is negative or when an outside party attempts to access your e-mail account.
Most organizations have specific rules for exceptional data; for example, an employee
number must not exceed three digits, or an hourly salary must not be less than the legal
minimum wage. Of course, you can handle these potential error situations with if state-
ments, but Java also allows you to create your own Exceptions.

To create your own throwable Exception, you must extend a subclass of Throwable.Recall
from Figure 15-1 that Throwable has two subclasses, Exception and Error, which are used
to distinguish between recoverable and nonrecoverable errors. Because you always want
to create your own Exceptions for recoverable errors, you should extend your Exceptions
from the Exception class. You can extend any existing Exception subclass, such as
ArithmeticException or NullPointerException, but usually you want to extend directly
from Exception.

When you create an Exception, it’s conventional to end its name with
Exception.

Next you will create a PartyException class for Event Handlers Incorporated. The
PartyException class has just one method—a constructor.You can include data fields and
other methods within the PartyException class if you want. For example, you might
want the PartyException class to contain a customized toString() method that you can
use to display party details.To keep this example simple, however, you will include only
the constructor.The constructor will take a String argument representing the name of
the party, such as the Jones party.You will pass this String to the Exception superclass so
you can use the String within superclass methods, such as getMessage().

To write your own Exception:

1. Open a new file in your text editor, and then type the following
PartyException class:

publicƒclassƒPartyExceptionƒextendsƒException
{
ƒƒƒƒƒƒƒpublicƒPartyException(Stringƒs)
ƒƒƒƒƒƒƒ{

Tip

Tip

566 Chapter 15 Exception Handling

Creating Your Own Exceptions 567

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒsuper(s);
ƒƒƒƒƒƒƒ}
}

2. Save the file as PartyException.java in the Chapter.15 folder on your
Student Disk, and then compile it.

Next you will create a Party class that holds information about any party hosted by
Event Handlers Incorporated. The Party class holds two fields—the name of the party
host and the number of guests—and it contains a constructor that requires values for
both fields. Event Handlers does not host parties with fewer than 10 guests.Therefore,
you want to test the guest number in the constructor, and throw a PartyException when
the guest number is less than 10.The PartyException class constructor requires a String
argument, so pass the name of the party host to the Exception. That way, you can use
the host’s name in error messages generated by the Exception class.

You can throw any type of Exception at any time, not just Exceptions of your
own creation. For example, within any program you can code
throw(newƒRuntimeException());. Of course, you would want to do
so only with good reason because Java handles RuntimeExceptions for you
by stopping the program. Because you cannot anticipate every possible error,
Java’s automatic response is often the best course of action.

To create the Party class:

1. Open a new file in your text editor, and then type the following Party class:

publicƒclassƒParty
{
ƒƒƒƒƒƒƒStringƒhostƒ=ƒnewƒString();
ƒƒƒƒƒƒƒintƒguests;
ƒƒƒƒƒƒƒpublicƒParty(Stringƒhst,ƒintƒgst)ƒthrowsƒ
ƒƒƒƒƒƒƒPartyException
ƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒhostƒ=ƒhst;
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒguestsƒ=ƒgst;
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒif(gstƒ<ƒ10)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒthrow(newƒPartyException(hst));
ƒƒƒƒƒƒƒ}
}

2. Save the file as Party.java in the Chapter.15 folder on your Student Disk,
and then compile it.

Next you will write a program that instantiates a few Party objects.When you run the
program, you can observe which objects generate PartyExceptions.

Tip

15

To write the ThrowParty program:

1. Open a new text file, and then type the following first few lines of the
ThrowParty program and its main() method:

publicƒclassƒThrowParty
{
ƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)

2. Enter the following code to attempt to construct three Party objects in a
try block:

try
{
ƒƒƒƒƒƒƒPartyƒfirstƒ=ƒnewƒParty("Jones",15);
ƒƒƒƒƒƒƒPartyƒsecondƒ=ƒnewƒParty("Lewis",5);ƒ
ƒƒƒƒƒƒƒPartyƒthirdƒ=ƒnewƒParty("Newman",10);
}

3. Enter the following code to catch any PartyExceptions and use the
Exception class getMessage() method to display a message, and then add two
closing curly braces:

ƒƒcatch(PartyExceptionƒerror)
ƒƒ{
ƒƒƒSystem.out.println("PartyƒError:ƒ"ƒ+ƒ
ƒƒƒƒƒƒerror.getMessageƒ());
ƒƒ}
ƒ}
}

4. Save the file as ThrowParty.java in the Chapter.15 folder on your
Student Disk.

5. Compile ThrowParty.java, and then run the program. Compare your results
to Figure 15-18.The two Party objects constructed with 10 or more guests
compiled successfully, but the Party object with only 5 guests generated a
PartyException.

Figure 15-18 Output of the ThrowParty program

568 Chapter 15 Exception Handling

Chapter Summary 569

You should not create an excessive number of special Exception types for your classes,
especially if the Java development environment already contains an Exception that will
catch the error. Extra Exception types add complexity for other programmers who will
use your classes. However, when appropriate, specialized Exception classes provide an
elegant way for you to handle error situations.They enable you to separate your error
code from the usual, nonexceptional sequence of events. They also allow for errors to
be passed up the stack and traced.

CHAPTER SUMMARY
❒ An exception is an unexpected or error condition.The object-oriented techniques to

manage such errors comprise the group of methods known as exception handling. In
Java, there are two basic classes of errors—Error and Exception. Both of these classes
descend from the Throwable class.

❒ In object-oriented terminology, you “try” a procedure that might not complete
correctly. A method that detects an error condition or Exception “throws an
Exception”, and the block of code that processes the error “catches the Exception”.

❒ Exceptions inherit the getMessage() method from the Throwable class.

❒ You can place as many statements as you need within a try block; only the first
error-generating statement throws an Exception.You can catch as many
Exceptions as you want, or you can let the operating system handle them.

❒ When you have actions that always must occur at the end of a try...catch
sequence, you use a finally block.

❒ In a traditional, non-object-oriented program, error-checking code is complex.
Object-oriented exception-handling allows you to isolate error-handling code.

❒ You can use the clause throwsƒ<name>Exception after the method header to
indicate the type of Exception that might be thrown.

❒ An advantage of using object-oriented exception-handling techniques is they afford
you the ability to make your reaction to Exceptions specific for your current pur-
poses—you can handle the same Exception differently in every application, or
choose not to handle it at all.

❒ The call stack is the memory location where the computer stores the list of loca-
tions to which the system must return after method calls.When a method throws
an Exception, and if the method does not catch the Exception, then the
Exception is thrown to the next method “up” the call stack.You can display this list
using the printStackTrace() method.

❒ You can create your own Exceptions by extending the Exception class.

15

REVIEW QUESTIONS
1. In object-oriented programming terminology, an unexpected or error condition is

a(n) .

a. anomaly

b. aberration

c. deviation

d. exception

2. All Java Exceptions are .

a. Errors

b. RuntimeExceptions

c. Throwables

d. Omissions

3. Which of the following statements is true?

a. Exceptions are more serious than Errors.

b. Errors are more serious than Exceptions.

c. Errors and Exceptions are equally serious.

d. Exceptions and Errors are the same thing.

4. The method that ends the current application and returns control to the operating
system is .

a. System.end()

b. System.done()

c. System.exit()

d. System.abort()

5. In object-oriented terminology, you a procedure that might
not complete correctly.

a. try

b. catch

c. handle

d. encapsulate

6. A method that detects an error condition or Exception an
Exception.

a. tries

b. catches

c. handles

d. encapsulates

570 Chapter 15 Exception Handling

Review Questions 571

7. A try block includes all of the following elements except .

a. the keyword try

b. the keyword catch

c. curly braces

d. statements that might cause Exceptions

8. The segment of code that handles or takes appropriate action following an excep-
tion is a block.

a. try

b. catch

c. throws

d. handles

9. You within a try block.

a. must place only a single statement

b. can place any number of statements

c. must place at least two statements

d. must place a catch block

10. If you try three statements, and include three catch blocks, and the second try
statement throws an Exception, then .

a. the first catch block executes

b. the first two catch blocks execute

c. only the second catch block executes

d. the first matching catch block executes

11. When a try block does not generate an Exception and you have included multi-
ple catch blocks, .

a. they all execute

b. only the first one executes

c. only the first matching one executes

d. no catch blocks execute

12. The catch block that begins catchƒ(Exceptionƒe) can catch Exceptions of
type .

a. IOException

b. ArithmeticException

c. both of the above

d. none of the above

15

13. The code within a finally block executes when the try block .

a. identifies one or more Exceptions

b. does not identify any Exceptions

c. either a or b

d. neither a nor b

14. An advantage to using a try...catch block is that exceptional events are
.

a. eliminated

b. reduced

c. integrated with regular events

d. isolated from regular events

15. Which methods can throw an Exception?

a. Methods with a throws clause

b. Methods with a catch block

c. Methods with both a throws clause and a catch block

d. Any method

16. A method can .

a. check for errors but not handle them

b. handle errors but not check for them

c. either of the above

d. neither of the above

17. When you use any method, you must know three pieces of information to use the
method to its full potential; but you don’t need to know .

a. the method’s return type

b. the type of arguments the method requires

c. the number of statements within the method

d. the type of Exceptions the method throws

18. The memory location where the computer stores the list of locations to which
the system must return is known as the .

a. registry

b. call stack

c. chronicle

d. archive

572 Chapter 15 Exception Handling

Exercises 573

19. You can get a list of the methods through which an Exception has traveled by
using the method.

a. getMessage()

b. callStack()

c. getPath()

d. printStackTrace()

20. To create your own Exception that you can throw, you must extend a subclass of
.

a. Object

b. Throwable

c. Exception

d. Error

EXERCISES
1. Write a program named GoTooFar in which you declare an array of five integers

and store five values in the array. Initialize a subscript to zero.Write a try block
in which you access each element of the array, subsequently increasing the sub-
script by 1. Create a catch block that catches the eventual
ArrayIndexOutOfBoundsException, and then print to the screen the message,
“Now you’ve gone too far.” Save the program as GoTooFar.java in the
Chapter.15 folder of your Student Disk.

2. The Integer.parseInt() method requires an integer argument.Write a program in
which you try to parse a String. Catch the NumberFormatExceptionError that is
thrown, and then display an appropriate error message. Save the program as
TryToParseString.java in the Chapter.15 folder of your Student Disk.

3. Write an application program that prompts the user to enter a number to use as an
array size, then attempt to declare an array using the entered size. If the array is cre-
ated successfully, display an appropriate message. Use a catch block that executes if
the array size is non-numeric or negative. Save the program as NegativeArray.java
in the Chapter.15 folder of your Student Disk.

4. Write a program that throws and catches an ArithmeticException. Declare a vari-
able and assign it a value.Test the variable, and if it is negative, throw an
ArithmeticException. Otherwise, use the Math.sqrt() method to determine the
square root. Save the program as SqrtError.java in the Chapter.15 folder of your
Student Disk.

5. Create an EmployeeException class whose constructor receives a String that con-
sists of an employee’s ID and pay rate. Create an Employee class with two fields,
idNum and hourlyWage.The Employee constructor requires values for both
fields. Upon construction, throw an EmployeeException if the hourlyWage is less

15

than $6.00 or over $50.00.Write a program that establishes at least three Employees
with hourlyWages that are above, below, and within the allowed range. Save the
program as ThrowEmployee.java in the Chapter.15 folder of your Student Disk.

6. a. Create an IceCreamConeException class whose constructor receives a
String that consists of an ice cream cone’s flavor and number of scoops. Create
an IceCreamCone class with two fields—iceCreamFlavor and scoops.The
IceCreamCone constructor calls two data-entry methods—getFlavor() and
getScoops().The getScoops() method throws an IceCreamConeException
when the scoop quantity exceeds 3.Write a program that establishes several
IceCreamCone objects and handles the Exception. Save the program as
ThrowIceCream.java in the Chapter.15 folder of your Student Disk.

b. Modify the IceCreamCone getFlavor() method to ensure that the user enters a
valid flavor.Allow at least four flavors of your choice. If the user’s entry does not
match a valid flavor, throw an IceCreamConeException.Write a program that
establishes several IceCreamCone objects and handles the new Exception. Save
the program as ThrowIceCream2.java in the Chapter.15 folder of your
Student Disk.

7. Write a program that displays a student ID number and asks the user to enter a
numeric test score for the student. Create a ScoreException class, and throw a
ScoreException for that class if the user does not enter a valid score (less than or
equal to 100). Catch the ScoreException and then display an appropriate message.
Save the program as TestScore.java in the Chapter.15 folder of your Student Disk.

8. Write a program that displays a student ID number and asks the user to enter a
test letter grade for the student. Create an Exception class named GradeException,
and throw a GradeException if the user does not enter a valid letter grade. Catch
the GradeException and then display an appropriate message. Save the program as
TestGrade.java in the Chapter.15 folder of your Student Disk.

9. Write an applet that prompts the user for a color name. If it is not red, white, or
blue, throw an Exception. Otherwise, change the applet’s background color appro-
priately. Save the program as RWBApplet.java in the Chapter.15 folder of your
Student Disk.

10. Write an applet that prompts the user for an ID number and an age. Create an
Exception class and throw an Exception of that class if the ID is not in the range
of valid ID numbers (zero through 899), or if the age is not in the range of valid
ages (0 through 89). Catch the Exception and then display an appropriate mes-
sage. Save the program as BadIDAndAge.java in the Chapter.15 folder of your
Student Disk.

574 Chapter 15 Exception Handling

Case Project 575

11. Each of the following files in the Chapter.15 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugFifteen1.java will become FixDebugFifteen1.java.
You will also use a file named DebugEmployeeIDException.java with the
DebugFifteen4.javafile.

a. DebugFifteen1.java

b. DebugFifteen2.java

c. DebugFifteen3.java

d. DebugFifteen4. java

CASE PROJECT
Gadgets by Mail sells many interesting items through its catalogs.Write a program that
prompts the user for an item number and quantity ordered. Create an Exception class
named OrderException, and throw an OrderException if the user does not enter a
valid item number (at least 111, but no more than 999) or quantity (at least 1, but no
more than 50). Catch the OrderException and display an appropriate message. If the
item number and quantity are valid, display the final price, which is $2.00 per item,
no matter what the item number is.

Case
Project

15

577

CHAPTER

16
FILE INPUT AND OUTPUT

In this chapter, you will:
� Use the File class
� Understand data file organization and streams
� Use streams
� Write to and read from a file
� Write formatted file data
� Read formatted file data
� Use a variable filename
� Create random access files

Haven’t I seen you spending a lot of time at the keyboard lately?” asks
Lynn Greenbrier one day at Event Handlers Incorporated.

“I’m afraid so,” you answer. “I’m trying to write a program that displays a
month’s scheduled events, one at a time. Every time I run it, I have to enter
the data for every event—the host’s name, the number of guests, and so on.”

“You’re typing all the data over and over again?” Lynn asks in disbelief. “It’s
time for me to show you how to save data to a file.”

PREVIEWING A PROGRAM THAT USES FILE DATA

Event Handlers Incorporated stores a record of each scheduled event in a file.Any employee
in the company can view the scheduled events on-screen.You will create a similar program
in this chapter; however, you can now use a completed version of the Chap16ReadEventFile
program that is saved in the Chapter.16 folder on your Student Disk.

For convenience, the data file used in this example is stored on a floppy disk.
However, business files are usually stored on a hard disk, either locally or on
a network server. No matter where a data file is physically located, the process
of saving and retrieving the file is the same.

To use the Chap16ReadEventFile class:

1. Go to the command prompt for the Chapter.16 folder on your Student Disk,
type javaƒChap16ReadEventFile, and then press [Enter].This program
lets you view previously stored data about events, one event at a time.

2. Click the View Event button.The data for the Albertson event appears and
shows that the event is scheduled for the 12th day of the month with 100
guests. See Figure 16-1.

3. Click the View Event button again to view the data for five additional
events. Click the Close button to exit the program at any time.The program
will also exit automatically when you reach the end of the stored data file.

USING THE FILE CLASS

Computer users use the term file to describe the objects that they store on permanent
storage devices, such as hard, floppy, or zip disks, reels of magnetic tape, or compact discs.
Some files are data files that contain facts and figures, such as employee numbers, names,
and salaries; some files are program files, also called applications, that store software
instructions. Other files can store graphics, text, or operating system instructions.

Figure 16-1 Chap16ReadEventFile program

Tip

578 Chapter 16 File Input and Output

Using the File Class 579

Although their contents vary, files have many common characteristics—each file occu-
pies a section of disk (or other storage device) space, has a name and a specific time of
creation.You can use Java’s File class to gather file information.The File class does not
provide any opening, processing, or closing capabilities for files. Rather, you use the File
class to obtain information about a file, such as whether it exists or is open, its size, and
its last modification date.

You must include the statement import java.io.* in any program that uses the File
class.The java.io package contains all the classes you use in file processing.The File class
is a direct descendant of the Object class.You can create a File object using a constructor
that includes a filename; for example, File someData = new File("data.txt");,
where data.txt is a file on the default disk drive.You can also specify a path for the file, as
in File someData = new File("A:\\Chapter.16\\data.txt");, in which the
argument to the constructor contains a disk drive and path.Table 16-1 lists some useful
File class methods.

The io in java.io stands for input/output.

Recall that the backslash (\) is used as part of an escape sequence in Java.
You must type two backslashes to indicate a single backslash to the operat-
ing system. You learned about the escape sequence in Chapter 2.

Next you will write a class that examines a file and prints appropriate messages con-
cerning its status.

Method Signature Purpose

boolean canRead() Returns true if a file is readable

boolean canWrite() Returns true if a file is writeable

boolean exists() Returns true if a file exists

String getName() Returns the file’s name

String getPath() Returns the file’s path

String getParent() Returns the name of the folder in which the file can
be found

long length() Returns the file’s size

long lastModified() Returns the time the file was last modified; this time is
system dependent and should be used only for comparison
with other files’ times, and not as an absolute time

Table 16-1 Selected File class methods

Tip

Tip

16

To create a class that uses a File object:

1. Open a new file in your text editor, and then type the following first few
lines of a class that checks a file’s status:

importƒjava.io.*;
publicƒclassƒCheckFile
{
ƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒƒƒƒ{

2. Enter the following line to create a File object that represents a disk file
named data.txt. Although the filename on the disk is data.txt, within the
program the filename is myFile.

FileƒmyFileƒ=ƒnewƒFile("data.txt");

3. Enter the following if…else statements to test for the file’s existence. If the
File object myFile exists, print its name and size, and then test whether the
file can be read or written. If the file does not exist, simply print a message
indicating that fact.

if(myFile.exists())
{
ƒƒƒƒƒƒƒSystem.out.println(myFile.getName()ƒ+ƒ"ƒexists");
ƒƒƒƒƒƒƒSystem.out.println("Theƒfileƒisƒ"ƒ+ƒ
ƒƒƒƒƒƒƒƒƒƒmyFile.lengthƒ()ƒ+ƒ"ƒbytesƒlong");
ƒƒƒƒƒƒƒif(myFile.canRead())
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.out.println("ƒokƒtoƒread");
ƒƒƒƒƒƒƒif(myFile.canWrite())
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.out.println("ƒokƒtoƒwrite");
}
else
ƒƒƒƒSystem.out.println("Fileƒdoesƒnotƒexist");

4. Add a closing curly brace for the main() method and a closing curly brace for
the class.

5. Save the file as CheckFile.java in the Chapter.16 folder on your Student
Disk, and then compile the file.

6. Open a new file in your text editor, and then type the company name, Event
Handlers Incorporated!. Save this file as data.txt in the current directory
(the Chapter.16 folder on your Student Disk).

7. Run the CheckFile program using the command javaƒCheckFile.The
output appears in Figure 16-2.The file is 28 bytes long because each character
you typed, including spaces and punctuation, consumes one byte of storage.

580 Chapter 16 File Input and Output

Using the File Class 581

If you added comments to the beginning of your data.txt file or mistyped
the company name, then the total number of characters in your file might
differ from 28.

Next you will change the program to test for a file that does not exist.

To check for a nonexistent file:

1. Open the CheckFile.java file from the Chapter.16 folder in your text edi-
tor, and then immediately save it as CheckFile2.java.

2. Change the class name to CheckFile2.

3. Change the filename in the File constructor so that it refers to a nonexistent file:

FileƒmyFileƒ=ƒnewƒFile("nodata.txt");

4. Save the file, and then compile and run the program. Unless you have a file
named nodata.txt on your Student Disk, the output looks like Figure 16-3.

In the preceding steps, the program found the file named data.txt because the file
was physically located in the current directory from which you were working.You
can check the status of files in other directories by using a File constructor with two
String arguments. The first String represents a path to the filename, and the second
String represents the filename. For example, File someFile = new File("\\
com\\EventHandlers","data.txt"); refers to the data.txt file located in the
EventHandlers folder within the com folder in the root directory.

Next you will create a second data file so that you can compare its size and time stamp
with the data.txt file.

Figure 16-3 Output of the CheckFile2 program

Help
?

Figure 16-2 Output of the CheckFile program

16

To create a data2.txt file and a program for comparing data2.txt to data.txt:

1. Open a new file in your text editor, and then type a shorter version of the
company name, Event Handlers.

2. Save the file as data2.txt in the Chapter.16 folder on your Student Disk.

3. Open a new file in your text editor, and then type the following first few
lines of the CheckTwoFiles program:

importƒjava.io.*;
publicƒclassƒCheckTwoFiles
{
ƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒƒƒƒ{

4. Enter the following code to declare two file objects:

Fileƒf1ƒ=ƒnewƒFile("data.txt");
Fileƒf2ƒ=ƒnewƒFile("data2.txt");

5. Enter the following code to determine whether both files exist. If they do,
comparing their creation times determines which file has the more recent
time stamp, and then the program prints the filename of that file. (Note: Do
not add a closing curly brace for the if statement in this step; in the next step
you will continue to add statements that belong within this if structure.)

if(f1.exists()ƒ&&ƒf2.exists())
{
ƒƒƒƒƒƒƒƒSystem.out.println("Theƒmoreƒrecentƒfileƒisƒ");
ƒƒƒƒƒƒƒƒif(f1.lastModified()ƒ>ƒf2.lastModified())
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.out.println(f1.getName());
ƒƒƒƒƒƒƒƒelse
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.out.println(f2.getName());

6. Enter additional statements within the if block that executes when both files
exist.These statements compare the length of the files and print the name of
the longer file—that is, the one that contains more bytes:

System.out.println("Theƒlongerƒfileƒisƒ");
if(f1.length()ƒ>ƒf2.length())
ƒƒƒƒƒƒƒƒƒSystem.out.println(f1.getName());
else
ƒƒƒƒƒƒƒƒƒSystem.out.println(f2.getName());

7. Add three curly braces—one to end the if statement that checks whether
both files exist, one for the main() method, and one for the class.

8. Save the file as CheckTwoFiles.java in the Chapter.16 folder of your
Student Disk, and then compile and run the program.The output appears in
Figure 16-4. Note that the data2.txt file was created after the data.txt file, so
it is more recent, but it has fewer characters.

582 Chapter 16 File Input and Output

Understanding Data File Organization and Streams 583

UNDERSTANDING DATA FILE ORGANIZATION AND STREAMS

Most businesses generate and use large quantities of data every day.You can store data in
variables within a program, but this type of storage is temporary.When the program ends,
the variables no longer exist and the data is lost.Variables are stored in the computer’s
main or primary memory, which is called RAM (random access memory). When you
need to retain data for any significant amount of time, you must save the data on a per-
manent, secondary storage device such as a floppy disk, hard drive, or compact disc (CD).

Because you can erase data from files, some programmers prefer the term
persistent storage over permanent storage. In other words, you can remove
data so it is not permanent, but the data remains in the file even when the
computer loses power, so, unlike RAM, the data will persist, or persevere.

Data used by businesses is stored in a data hierarchy, as shown in Figure 16-5.The small-
est, useful piece of data that is of interest to most people is the character. A character is
any one of the letters, numbers, or other special symbols, such as punctuation marks, you
can read and to which you can assign meaning. Characters are made up of bits (the zeros
and ones that represent computer circuitry), but people who use data are not concerned
with whether the internal representation for an A is 01000001 or 10111110.

Java uses Unicode to represent its characters. You first learned about Unicode
in Chapter 2.

When businesses use data, they group characters into fields. A field is a group of char-
acters that has some meaning. For example, the characters T, o, and m might represent
your first name. Other data fields might represent items such as last name, Social Security
number, zip code, and salary.

Tip

Tip

Figure 16-4 Output of the CheckTwoFiles program

16

Fields are grouped together to form records.An individual’s first and last names, Social
Security number, zip code, and salary represent that individual’s record.When program-
ming in Java, you have created many classes, such as an Employee class or a Student class.
You can think of the data typically stored in each of these classes as a record.These classes
contain individual variables that represent data fields. A business’s data records usually
represent a person, item, sales transaction, or some other concrete object or event.

Records are grouped to create files. Files consist of related records, such as a company’s
personnel file that contains one record for each company employee. Some files have only
a few records; perhaps your professor maintains a file for your class with 25 records—one
record for each student. Other files contain thousands or even millions of records. For
example, a large insurance company maintains a file of policyholders, and a mail-order
catalog company maintains a file of available items.

Before a program can use a data file, the program must open the file. Similarly, when
you finish using a file, the program should close the file. If you fail to close an input file—
that is, a file from which you are reading data, there usually are not any serious conse-
quences; the data still exists in the file. However, if you fail to close an output file—that
is, a file to which you are writing data, the data may become inaccessible.You should
always close every file you open, and you should close the file as soon as you no longer
need it.When you leave a file open for no reason, you use computer resources and your
computer’s performance suffers. Also, particularly within a network, another program
might be waiting to use the file.

While people view files as a series of records with each record containing data fields, Java
views files as a series of bytes.When you perform an input operation in a program, you
can picture bytes flowing into your program from an input device through a stream,
which functions as a pipeline or channel.When you perform output, some bytes flow out
of your program through another stream to an output device, as shown in Figure 16-6.
A stream is an object, and like all objects, streams have data and methods.The methods
allow you to perform actions such as opening, closing, and flushing (clearing) the stream.

Figure 16-5 Data hierarchy

Employee File

Collins RecordBrown RecordAndrews Record

JenniferBrown 12.95ID 786

B r o w n

File:

Records:

Fields:

Characters:

584 Chapter 16 File Input and Output

Using Streams 585

Most streams flow in only one direction; each stream is either an input or output stream.
You might open several streams at once within your program. For example, three streams
are required by a program that reads a data disk. One input stream checks the data for
invalid values, and then one output stream writes some records to a file of valid records;
another output stream writes other records to a file of invalid records.

Random access files use streams that flow in two directions. You will use a
random access file later in this chapter.

USING STREAMS

Figure 16-7 shows a partial structure of Java’s Stream classes; it shows that InputStream
and OutputStream are subclasses of the Object class. InputStream and OutputStream
are abstract classes that contain methods for performing input and output. As abstract
classes, these classes contain methods that must be overridden in their child classes.The
capabilities of the most commonly used classes that provide input and output are sum-
marized in Table 16-2.

Class Description

InputStream Abstract class containing methods for performing input

OutputStream Abstract class containing methods for performing output

FileInputStream Child of InputStream that provides the capability to read from
disk files

FileOutputStream Child of OutputStream that provides the capability to write to
disk files

PrintStream Child of FilterOutputStream, which is a child of OutputStream;
PrintStream handles output to a system’s standard (or default)
output device, usually the monitor

BufferedInputStream Child of FilterInputStream, which is a child of InputStream;
BufferedInputStream handles input from a system’s standard (or
default) input device, usually the keyboard

Table 16-2 Description of selected classes used for input and output

Tip

Figure 16-6 File streams

INPUT
PROGRAM

OUTPUT

16

Java’s System class declares a PrintStream object. This object is System.out, which you
have used extensively in this book. Besides System.out, the System class defines an addi-
tional PrintStream object named System.err. The output from System.err and
System.out can go to the same device; in fact, System.err and System.out are both
directed to the command line on the monitor.The difference is that System.err usually
is reserved for error messages, and System.out is reserved for valid output.You can direct
either System.err or System.out to a new location, such as a disk file or printer. For
example, you might want to keep a hard copy log of the error messages generated by a
program, but direct the standard output to a disk file.

Figure 16-7 shows that the InputStream class is parent to FilterInputStream, which is
parent to BufferedInputStream. The object System.in is a BufferedInputStream object.
The System.in object captures keyboard input. Recall that you have used this object
with its read() method. A buffer is a small memory location that you use to hold data
temporarily. The BufferedInputStream class allows keyboard data to be held until the
user presses [Enter]. That way, the user can backspace over typed characters to change
the data before the program stores it.This allows the operating system—instead of your
program—to handle the complicated tasks of deleting characters as the user backspaces,
and then replacing the deleted characters with new ones.

Figure 16-7 Partial structure of the Stream classes

Object
|
+--InputStream
| |
| +--FileInputStream
| |
| +--FilterInputStream
| |
| +--DataInputStream
| |
| +--BufferedInputStream
|
+--OutputStream
| |
| +--FileOutputStream
| |
| +--FilterOutputStream
| |
| +--DataOutputStream
| |
| +--BufferedOutputStream
| |
| +--PrintStream
|
+--RandomAccessFile

586 Chapter 16 File Input and Output

Using Streams 587

Using a buffer to hold input or output improves program performance. Input and
output operations are relatively slow compared to computer processor speeds.
Holding input or output until there is a “batch” makes programs run faster.

You can create your own InputStream and OutputStream objects and assign to them
System.in and System.out, respectively. Then you can use the InputStream’s read()
method to read in one character at a time from the location you choose. The read()
method returns an integer that represents the Unicode value of the typed character; it
returns a value of -1 when it encounters an end-of-file condition, known as EOF.

You can also identify EOF by throwing an EOFException. You will use this
technique later in this chapter.

Next you will create InputStream and OutputStream objects so you can read from the
keyboard and write to the screen. Of course, you have already written many programs
that read from the keyboard and write to the screen without using these objects. By
using them here with the default input/output devices, you can easily modify the
InputStream and OutputStream objects at a later time; then you can use whatever input
and output devices you choose.

To create a program that reads from the keyboard and writes to the screen:

1. Open a new file in your text editor, and then type the following first few
lines of a program that will allow a user to input data from the keyboard and
then will echo that data to the screen.The class name is
ReadKBWriteScreen:

importƒjava.io.*;
publicƒclassƒReadKBWriteScreen
{

2. Add the following header and opening curly brace for the main() method.
The main() method throws an IOException because you will perform input
and output operations.

publicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒIOException
{

3. Enter the following code to declare InputStream and OutputStream objects,
as well as an integer to hold each character the user types:

InputStreamƒistream;
OutputStreamƒostream;
intƒc;

4. Enter the following code to assign the System.in object to istream, and the
System.out object to ostream.Then add a prompt telling the user to type
some characters.

Tip

Tip

16

istreamƒ=ƒSystem.in;
ostreamƒ=ƒSystem.out;
System.out.println("Typeƒsomeƒcharactersƒ");

5. Use the following try block to read from the file. If an IOException occurs,
you can print an appropriate message.Within the try block, execute a loop
that reads from the keyboard until the end-of-file condition occurs (when the
read() method returns -1).While there is not an end-of-file condition, send
the character to the ostream object.

You learned about try blocks in Chapter 15.

try
{
ƒƒƒƒƒƒwhile((cƒ=ƒistream.read())ƒ!=ƒ-1)
ƒƒƒƒƒƒƒƒƒƒƒƒƒostream.write(c);
}

6. Use the following catch block to handle any IOException:

catch(IOExceptionƒe)
{
ƒƒƒƒƒƒƒSystem.out.println("Error:ƒ"ƒ+ƒe.getMessage());
}

7. Regardless of whether an IOException occurs, you want to close the streams.
Use the following finally block to ensure that the streams are closed:

finally
{
ƒƒƒƒƒƒƒistream.close();
ƒƒƒƒƒƒƒostream.close();
}

8. Add a closing curly brace for the main() method and another for the class.

9. Save the file as ReadKBWriteScreen.java in the Chapter.16 folder on your
Student Disk, and then compile and run the program. At the command line,
type any series of characters and then press [Enter]. As you type characters,
the buffer holds them until you press [Enter], at which time the stored char-
acters echo to the screen. Do not try to end the program yet.

The while loop in the ReadKBWriteScreen program continues until the read()
method returns -1. However, you cannot end the program by typing -1.Typing a minus
sign (-) and a one (1) causes two additional characters to be sent to the buffer, and nei-
ther of those characters represents -1. Instead, you must press [Ctrl] + Z, which forces
the read() method to return -1, and which the operating system recognizes as the end
of the file. Next you will end the ReadKBWriteScreen program.

Tip

588 Chapter 16 File Input and Output

Writing to and Reading from a File 589

Pressing [Ctrl] + Z to end a program is an operating system command, not a
Java command.

To end the ReadKBWriteScreen program:

1. At the command line, press [Ctrl]+Z, and then press [Enter].The program
ends. Figure 16-8 shows a typical program execution. Notice that the keystroke
combination [Ctrl]+Z appears on the screen as ^Z.

2. Execute the program again.This time, type a line of characters, press [Enter],
and observe the echoed output.Then type another line, and press [Enter].
You can type as many lines as you want. Press [Ctrl]+Z, and then press
[Enter].The program will continue to echo your lines to the screen until
you end the program.

Do not press [Ctrl]+C to end the program. Doing so breaks out of the pro-
gram before its completion and does not properly close the files.

WRITING TO AND READING FROM A FILE

Instead of assigning files to the standard input and output devices, you can also assign a
file to the InputStream or OutputStream. For example, you can read data from the key-
board and store it permanently on a disk. To accomplish this, you can construct a
FileOutputStream object and assign it to the OutputStream. If you want to change a
program’s output device, you don’t have to make any other changes to the program other
than assigning a new object to the OutputStream; the rest of the program’s logic remains
the same. Java lets you assign a file to a stream object so that screen output and file out-
put work in exactly the same manner.

You can associate a File object with the output stream in one of two ways:

� You can pass the filename to the constructor of the FileOutputStream class.

Tip

Figure 16-8 Typical execution of ReadKBWriteScreen program

Tip

16

� You can create a File object passing the filename to the File constructor.
Then you can pass the File object to the constructor of the
FileOutputStream class.

The second method has some benefits—if you create a File object, you can use the File class
methods such as exists() and lastModified() to retrieve file information. In the next set of
steps you will use a FileOutputStream to write keyboard-entered data to a file you create.

Because applets are designed for distribution over the Internet, you are not
allowed to use an applet to write to files on a client’s workstation. Applets
that write to a client’s file could destroy a client’s existing data.

To create a program that writes keyboard data to a file:

1. Save the ReadKBWriteScreen.java file as ReadKBWriteFile.java in the
Chapter.16 folder on your Student Disk.

2. Change the class header to publicƒclassƒReadKBWriteFile.

3. Position your insertion point at the end of the line that defines the ostream
object (OutputStreamƒostream;), and then press [Enter] to start a new
line. On the new line, define a File object as follows:

FileƒoutFileƒ=ƒnewƒFile("datafile.dat");

4. Replace the statement that assigns System.out to the ostream object with the
statement:

ostreamƒ=ƒnewƒFileOutputStream(outFile);

5. Save the file, and then compile and execute the program. At the command
line, type Event Handlers handles events of all sizes, and then press
[Enter]. After you press [Enter], the characters will not appear on the screen;
instead, they are output to a file named datafile.dat that is written in the
default directory, the current directory from which you are working—in this
case, the Chapter.16 directory.

6. Press [Ctrl]+Z, and then press [Enter] to stop the program.

7. In your text editor, open the datafile.dat file.The characters are an exact
copy of the ones you entered at the keyboard.

You could enter any number of characters to the output stream before ending the program
and they would be saved in the output file. If you run the ReadKBWriteFile program again,
the program will overwrite the existing datafile.dat file with your new data.

Tip

590 Chapter 16 File Input and Output

Writing Formatted File Data 591

Reading from a File
The process you use to read data from a file is similar to the one you use to write data
to a file.You can assign a File object to the input stream, as you will do in the next steps.

To read data from a file:

1. In your text editor, open the ReadKBWriteScreen.java file you created
earlier in this chapter, and then immediately save the file as
ReadFileWriteScreen.java in the Chapter.16 folder of your Student Disk.

2. Change the class header to publicƒclassƒReadFileWriteScreen.

3. Position your insertion point to the right of the statement that declares the
OutputStream object named ostream, and then press [Enter] to start a new
line. On the new line, enter the following code to create a File object to refer
to the datafile.dat file you created:

FileƒinFileƒ=ƒnewƒFile("datafile.dat");

4. Change the statement that assigns the System.in object to istream (istream
= System.in) so that you can use the File object for input instead of the
keyboard by replacing it with the following:

istreamƒ=ƒnewƒFileInputStream(inFile);

5. Remove the statement that prompts the user for input;
System.out.println("Typeƒsomeƒcharactersƒ");. A disk file does
not need a prompt.

6. Save the file, and then compile and run the program.The data you stored in
the datafile.dat file (“Event Handlers handles events of all sizes”) appears on
the screen, and the program ends.

WRITING FORMATTED FILE DATA

You do not usually want to read data files as a series of characters. For example, you
might have a data file that contains personnel records that include an employee ID num-
ber, name, and salary for each employee in your organization. Rather than reading a
series of bytes, it is more useful to be able to read such a file in groups of bytes that con-
stitute an integer, a String, and a double. You can use the DataInputStream and
DataOutputStream classes to accomplish formatted input and output.

DataOutputStream objects enable you to write binary data to an OutputStream. Much
of the data that you write with DataOutputStream objects is not readable in a text edi-
tor because it is not stored as characters. Instead the data is formatted correctly for its
type. For example, a double with the value 123.45 is not stored as six separate readable
characters that can correctly display in a text editor. Instead, numeric values are stored
in a more compact form that you can read later with a DataInputStream object.

16

The DataOutput interface is implemented by DataOutputStream.The DataOutput inter-
face includes methods such as writeBoolean(), writeChar(), writeDouble(), writeFloat(),
and writeInt(). Each method writes data in the correct format for the data type its name
indicates.You can use the method writeUTF() to write Unicode format strings.

The meaning of the acronym UTF is disputed by various sources. The most
popular interpretations include Unicode Transformation Format, Unicode
Transfer Format, and Unicode Text Format.

When you create a DataOutputStream, you can assign a FileOutputStream object to it so
that your data is stored in a file. Using DataOutputStream with a FileOutputStream allows
you to use the correct write method that is appropriate for your data. When you use a
DataOutputStream connected to FileOutputStream, this approach is known as chaining
the stream objects.That is, if you define a DataOutputStream object with a statement
such as DataOutputStreamƒout;, then when you call the DataOutputStream con-
structor, you pass a FileOutputStream object to it (for example,ƒoutƒ=ƒnewƒ
DataOutputStream(newƒFileOutputStream("someFile"));).

In the next series of steps, you will create a full-blown project for Event Handlers
Incorporated like the one you saw in the Preview activity. The program uses a GUI
interface to capture data about an event from a user, and writes that data to an output
file using the DataOutput interface.The data required includes the host’s name, the date,
and the number of guests. For simplicity, this program accepts event dates for the cur-
rent month only, so the date field is an integer. Figure 16-9 shows a preliminary sketch
of the user’s interface.

To create a JFrame for data entry:

1. Open a new file in your text editor, and then type the following first few
lines of the CreateEventFile class. CreateEventFile is a JFrame that reacts to a
mouse click when you click an object within the JFrame.Therefore, you
must implement ActionListener.

Figure 16-9 Sketch of the user’s interface

Event Handlers Incorporated

Enter this month’s events Host

Date Guests Enter data

Tip

592 Chapter 16 File Input and Output

Writing Formatted File Data 593

importƒjava.io.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
importƒjavax.swing.*;
publicƒclassƒCreateEventFileƒextendsƒJFrame
ƒƒimplementsƒActionListener
{

2. Enter the following code to create a JLabel for the company name and a
Font object to use with the company name:

privateƒJLabelƒcompanyNameƒ=ƒƒ
ƒƒƒnewƒJLabel("EventƒHandlersƒIncorporated");
FontƒbigFontƒ=ƒnewƒFont("Helvetica",ƒFont.ITALIC,ƒ24);

3. Enter the following code to create a prompt that tells the user to enter data,
and JTextFields for the host, date, and guests. Because a host’s name is usually
several characters long, the field for the host’s name should be wider than the
fields for the date and number of guests.

privateƒJLabelƒpromptƒ=ƒ
ƒƒƒnewƒJLabel("Enterƒthisƒmonth'sƒevents");
privateƒJTextFieldƒhostƒ=ƒnewƒJTextField(10);
privateƒJTextFieldƒdateƒ=ƒnewƒJTextField(4);
privateƒJTextFieldƒguestsƒ=ƒnewƒJTextField(4);

4. Enter the following code to create a JLabel for each of the JTextFields.
Include a JButton object that the user can click when a data record is com-
pleted and ready to be written to the data file.Then add a Container to hold
the JFrame components.

privateƒJLabelƒhLabelƒ=ƒnewƒJLabel("Host");
privateƒJLabelƒdLabelƒ=ƒnewƒJLabel("Date");
privateƒJLabelƒgLabelƒ=ƒnewƒJLabel("Guests");
privateƒJButtonƒenterDataButtonƒ=ƒƒƒ
ƒƒƒnewƒJButton("Enterƒdata");
privateƒContainerƒconƒ=ƒgetContentPane();

5. When you write the user’s data to an output file, you will use the
DataOutputStream class, so create a DataOutputStream object as follows:

DataOutputStreamƒostream;

6. Save the work you have done so far as CreateEventFile.java in the
Chapter.16 folder on your Student Disk.

Next you will add the CreateEventFile’s constructor to the class.The constructor calls
its parent’s constructor, which is the JFrame class constructor, and passes it a title to use
for the JFrame.The constructor also attempts to open an events.dat file for output. If the
open fails, the constructor’s catch block handles the Exception; otherwise you add all
the JTextFields, JLabel, and JButton Components to the JFrame.

16

To write the CreateEventFile class constructor:

1. In the CreateEventFile.java file, press [Enter] to start a new line below the state-
ment that declares the DataOutputStream object, type the following constructor
header and opening curly brace, and then call the superclass constructor:

publicƒCreateEventFile()
{
ƒƒƒsuper("CreateƒEventƒFile");

2. Add the following try...catch block to handle the file creation:

try
{
ƒƒƒostreamƒ=ƒnewƒDataOutputStream
ƒƒƒ(newƒFileOutputStream("events.dat"));
}
catch(IOExceptionƒe)
{
ƒƒƒSystem.err.println("Fileƒnotƒopened");
ƒƒƒSystem.exit(1);
}

Notice the use of the System.err object to display an error message.
Alternately, you can display the message on System.out.

3. After the file is open, use the following code to set the JFrame’s size, choose a
layout manager, and add all the necessary Components to the JFrame:

setSize(320,200);
con.setLayout(newƒFlowLayout());
companyName.setFont(bigFont);
con.add(companyName);
con.add(prompt);
con.add(hLabel);
con.add(host);
con.add(dLabel);
con.add(date);
con.add(gLabel);
con.add(guests);
con.add(enterDataButton);

4. To finish the JFrame constructor, enter the following code to register the
JFrame as a listener for the JButton, make the JFrame visible, and set the
default close operation for the JFrame. Finally, add a closing curly brace for
the constructor.

ƒƒƒenterDataButton.addActionListener(this);
ƒƒƒsetVisible(true);
ƒƒƒsetDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
}

Tip

594 Chapter 16 File Input and Output

Writing Formatted File Data 595

5. Save the file. Don’t compile the file yet; you will add more code in the next
set of steps.

When the users see the JFrame, they can enter data in each of the available JTextFields.
When users complete a record for a single event, they click the JButton, which causes
the actionPerformed() method to execute.This method must retrieve the text from each
of the JTextFields and write it to a data file in the correct format.You will write a use-
able actionPerformed() method now.

To add the actionPerformed() method to the CreateEventFile program:

1. At the end of the existing code within the CreateEventFile.java file, press
[Enter] to start a new line below the constructor method, and then type the
following header for the actionPerformed() method.Within the method, cre-
ate an integer variable that will hold the number of guests at an event.

publicƒvoidƒactionPerformed(ActionEventƒe1)
{
ƒƒintƒnumGuests;

2. Use a try block to hold the data retrieval and the subsequent file-writing
actions so that you can handle any I/O errors that occur.You will use the
parseInt() method to convert the JTextField guest number to a usable integer, but
you will accept the host and date fields as simple text.You can use the appropri-
ate DataOutputStream methods to write formatted data to the output file.

You first learned about parseInt() and the Integer class in Chapter 7.

try
{
ƒƒƒnumGuestsƒ=ƒInteger.parseInt(guests.getText());
ƒƒƒostream.writeUTF(host.getText());
ƒƒƒostream.writeUTF(date.getText());
ƒƒƒostream.writeInt(numGuests);

3. Continue the try block by removing the data from each JTextField after it is
written to the file.That way, each JTextField will be clear and ready to
receive data for the next record. Notice that to clear the fields, you use a pair
of quotes with no space between them.Then end the try block.

ƒhost.setText("");
ƒdate.setText("");
ƒguests.setText("");
}

4. There are two types of Exceptions that you might want to deal with in this
application. Because the host name and date fields are text, the user can enter
any type of data. However, the guest field must be an integer.When you use
the parseInt() method with data that cannot be converted to an integer (such

Tip

16

as alphabetic letters), a NumberFormatException error occurs. In this case,
you can write an error message to the standard error device and explain the
problem as follows:

catch(NumberFormatExceptionƒe2)
{
ƒƒƒSystem.err.println(“Invalidƒnumberƒofƒguests”);
}

5. A second and more serious Exception occurs when the program cannot
write the output file, so you should catch the potential IOException, print
an error message, and exit using the following code:

catch(IOExceptionƒe3)
{
ƒƒƒSystem.err.println("Errorƒwritingƒfile");
ƒƒƒSystem.exit(1);
}

6. Add two closing curly braces—one for the actionPerformed() method and
one for the class.Then save and compile the file.

Next you will create a program that uses the CreateEventFile JFrame. The program’s
only task is to instantiate a CreateEventFile JFrame object.

To write a program that uses a CreateEventFile JFrame:

1. Open a new file in your text editor, and then type the following EventFile
program that establishes a CreateEventFile object:

publicƒclassƒEventFile
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒƒƒCreateEventFileƒcefƒ=ƒnewƒCreateEventFile();ƒ
ƒƒ}
}

2. Save the file as EventFile.java in the Chapter.16 folder on your Student
Disk, and then compile it using the javac command.When it compiles
successfully, run the program, which should look like Figure 16-10.

Figure 16-10 User interface for the EventFile program

596 Chapter 16 File Input and Output

Reading Formatted File Data 597

3. Type sample data into the JTextFields in the JFrame. Specifically, type Sagami
as the event host, on the 3(rd), with 150 guests.After entering the data into the
three data fields, click the Enter data button.Your data is sent to the file, and
the fields are cleared. Now you can enter a second record (make up your own
record information), and then click the Enter data button again. Repeat this
process until you have entered five data records.While entering at least one
record, type non-numeric data in the guest field. Notice the error message that
displays on the standard error device at the command line.

4. Click the Close button in the CreateEventFile JFrame to close it.

5. Examine your Student Disk using any file-management program or the DOS
command-line directory command, dir. Confirm that your program created
the events.dat data file in the Chapter.16 folder on your Student Disk.You
will write a program to read the file in the next series of steps.

READING FORMATTED FILE DATA

DataInputStream objects enable you to read binary data from an InputStream. The
DataInput interface is implemented by DataInputStream. The DataInput interface
includes methods such as readByte(), readChar(), readDouble(), readFloat(), readInt(), and
readUTF(). In the same way that the different write() methods of DataOutput correctly
format data you write to a file, each DataInput read() method correctly reads the type
of data indicated by its name.

When you want to create a DataInputStream object that reads from a file, you use
the same chaining technique you used for output files. In other words, if you define
a DataInputStream object as DataInputStreamƒin;, then you can associate it
with a file when you call its constructor, as in inƒ=ƒnewƒDataInputStream
(FileInputStream("someFile"));.

When you read data from a file, you need to determine when the end of the file has
been reached. Earlier in this chapter, you learned that you can determine EOF by
checking for a return value of -1 from the read() method. Alternately, if you attempt
each file read() from within a try block, you can catch an EOFException.When you
catch an EOFException, it means you have reached the end of the file and you should
take appropriate action, such as closing the file.

Most Exceptions represent error conditions. An EOFException is more truly an
“exception” in that most read() method calls do not result in EOF. For exam-
ple, when a file contains 999 records, only the 1,000th, or last, read() for a
file causes an EOFException.

Next you will create a JFrame in which employees of Event Handlers Incorporated can
view each individual record stored in the events.dat file.The user interface will look like
the interface used in the CreateEventFile JFrame, but the user will not enter data within

Tip

16

this JFrame. Instead, the user will click a JButton to see each succeeding record in the
event.dat file.

To create a JFrame for viewing file data:

1. Open a new file in your text editor, and then type the following first few
lines of the ReadEventFile class:

importƒjava.io.*;
importƒjava.awt.*;
importƒjava.awt.event.*;
importƒjavax.swing.*;
publicƒclassƒReadEventFileƒextendsƒJFrameƒ
ƒƒƒimplementsƒActionListenerƒ
{

2. Enter the following code to declare all of the JLabels, JTextFields, and
associated values that will appear in the JFrame.The text of the prompt and
JButton have changed, but these statements basically echo the statements in
the CreateEventFile.java file.

privateƒJLabelƒcompanyNameƒ=ƒ
ƒƒƒnewƒJLabel("EventƒHandlersƒIncorporated");
FontƒbigFontƒ=ƒnewƒFont("Helvetica",ƒFont.ITALIC,ƒ24);
privateƒJLabelƒpromptƒ=ƒƒnewƒ
ƒƒƒJLabel("Viewƒthisƒmonth'sƒevents");
privateƒJTextFieldƒhostƒ=ƒnewƒJTextField(10);
privateƒJTextFieldƒdateƒ=ƒnewƒJTextField(4);
privateƒJTextFieldƒguestsƒ=ƒnewƒJTextField(4);
privateƒJButtonƒviewEventButtonƒ=ƒnewƒ
ƒƒƒJButton("ViewƒEvent");
privateƒJLabelƒhLabelƒ=ƒnewƒJLabel("Host");
privateƒJLabelƒdLabelƒ=ƒnewƒJLabel("Date");
privateƒJLabelƒgLabelƒ=ƒnewƒJLabel("Guests");
privateƒContainerƒconƒ=ƒgetContentPane();

3. Enter the following code to declare a DataInputStream object.Then write
the ReadEventFile constructor method that uses a try...catch block to
open a file. Notice that you can chain the DataInputStream object and a
FileInputStream object using the same technique you used for output. (Note:
If you have stored your event.dat file in a location other than A:\Chapter.16,
then change the location in the FileInputStream constructor in your own
program.)

DataInputStreamƒistream;
publicƒReadEventFile()
{
ƒƒƒsuper("ReadƒEventƒFile");
ƒƒƒtry
ƒƒƒ{

598 Chapter 16 File Input and Output

Reading Formatted File Data 599

ƒƒƒƒƒƒƒƒƒistreamƒ=ƒnewƒDataInputStream
ƒƒƒƒƒƒƒƒƒƒƒ(newƒFileInputStream
ƒƒƒƒƒƒƒƒƒƒƒ("A:\\Chapter.16\\events.dat"));
ƒƒƒ}
ƒƒƒcatch(IOExceptionƒe)
ƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒSystem.err.println("Fileƒnotƒopened");
ƒƒƒƒƒƒƒƒƒƒSystem.exit(1);
ƒƒƒ}

4. After successfully opening the file, set the JFrame size, layout manager, and
Font for the JFrame as follows:

setSize(325,200);
con.setLayout(newƒFlowLayout());
companyName.setFont(bigFont);

5. Add the JFrame’s Components as follows:

con.add(companyName);
con.add(prompt);
con.add(hLabel);
con.add(host);
con.add(dLabel);
con.add(date);
con.add(gLabel);
con.add(guests);
con.add(viewEventButton);

6. Enter the following code to ensure that the JFrame listens for JButton mes-
sages, to make the JFrame visible, and to set the default close operation:

viewEventButton.addActionListener(this);
setVisible(true);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

7. Add the closing curly brace for the ReadEventFile constructor.

8. Type the beginning of the following actionPerformed() method.This method
declares variables for the file field data, and then uses a try block to call the
appropriate read() method for each field. Each data field then appears in the
correct JTextField.

publicƒvoidƒactionPerformed(ActionEventƒe1)
{
StringƒtheHost,ƒtheDate;
intƒnumGuests;
try
{
ƒƒƒƒtheHostƒ=ƒistream.readUTF();
ƒƒƒƒtheDateƒ=ƒistream.readUTF();
ƒƒƒƒnumGuestsƒ=ƒistream.readInt();

16

ƒƒƒƒhost.setText(theHost);
ƒƒƒƒdate.setText(theDate);
ƒƒƒƒguests.setText(String.valueOf(numGuests));
}

9. Code the following two catch blocks for the try block that reads the data
fields.The first catch block catches the EOFException and calls a closeFile()
method.The second catch block catches IOExceptions and exits the pro-
gram if there is a problem with the file. Notice that the Exceptions have
unique names (e2 and e3) because you cannot declare two data items with
the same name within the same method.

catch(EOFExceptionƒe2)
{
ƒƒƒcloseFile();
}
catch(IOExceptionƒe3)
{
ƒƒƒSystem.err.println("Errorƒreadingƒfile");
ƒƒƒSystem.exit(1);
}

10. Add the closing curly brace for the actionPerformed() method.

11. Write the following closeFile() method that closes the DataInputStream
object and exits the program:

publicƒvoidƒcloseFile()
{
ƒƒƒtry
ƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒistream.close();
ƒƒƒƒƒƒƒƒƒƒSystem.exit(0);
ƒƒƒ}
ƒƒƒcatch(IOExceptionƒe)
ƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒSystem.err.println("Errorƒclosingƒfile");
ƒƒƒƒƒƒƒƒƒƒSystem.exit(1);
ƒƒƒ}
}

12. Add the closing curly brace for the class.

13. Save the file as ReadEventFile.java in the Chapter.16 folder on your
Student Disk, and then compile the program using the javac command.

Next you will write a short host program that creates a ReadEventFile JFrame so Event
Handlers employees can examine the existing file of scheduled events.

600 Chapter 16 File Input and Output

Using a Variable Filename 601

To write a program that creates a JFrame and displays file data:

1. Open a new file in your text editor, and then type the following program
that instantiates a ReadEventFile object:

importƒjava.io.*;
publicƒclassƒEventFile2
{
ƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒ{
ƒƒƒƒƒReadEventFileƒrefƒ=ƒnewƒReadEventFile();
ƒƒ}
}

2. Save the file as EventFile2.java in the Chapter.16 folder on your Student Disk,
compile and execute the program, and then click the View Event button.
Figure 16-11 shows the interface with the first record from the events.dat data
file visible. (Your data might differ.) Click the View Event button again to see
the second record. Continue clicking the View Event button until you reach
the end of the file; when you do, the JFrame closes and the program ends.

USING A VARIABLE FILENAME

A program that reads a data file and displays its contents for you is useful.A program that can
read any data file, regardless of what you name it, is even more useful. Suppose Event
Handlers Incorporated keeps different event files for each month. When you execute the
EventFile2 program, it would be convenient to name the file you want to display. For exam-
ple, your command line might be javaƒEventFile2ƒeventsApril.dat or
javaƒEventFile2ƒOctober.dat.The same program would execute, but use the data
file that corresponds to the requested month. Next you will modify the EventFile2 program
to accept a variable filename from the user.

To modify the EventFile2 program to use a variable filename:

1. Open the ReadEventFile.java file and immediately save it as
ReadNamedFile.java. Be sure to change the class name to match.

Figure 16-11 Output of the EventFile2 program

16

2. Change the ReadEventFile constructor to the new class name and add an
argument that is a String.The value for this argument will originate from the
first element in the String array (String[]ƒargs) that you have included in
every main() method you have written.

publicƒReadNamedFile(StringƒfileName)

3. Within the try block of the ReadNamedFile constructor, remove the refer-
ence to the filename events.dat, and replace it with the variable filename that
represents the String you will use when you call this constructor. In other
words, change the istream assignment to the following:

istreamƒ=ƒnewƒDataInputStream
ƒƒƒƒ(newƒFileInputStream(fileName));

4. Save the file, and then compile the class.

5. Open a new file in your text editor and type the following program that creates
an instance of the ReadNamedFile class.As the argument to the ReadNamedFile
constructor, use the first (and only) String in the array of String arguments that
you will pass to the main() method from the command line.

importƒjava.io.*;
publicƒclassƒEventFile3
{
ƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒReadNamedFileƒrefƒ=ƒnewƒReadNamedFile(args[0]);
ƒƒƒ}
}

6. Save the file as EventFile3.java in the Chapter.16 folder on your Student
Disk, and compile the program.

7. You will test the program using the existing file event.dat.To execute the
program, at the command line type javaƒEventFile3ƒevents.dat.The
program executes, correctly showing you the events in the file as before. One
at a time, view each of the records in the file just like you did in the last set
of steps.

8. Attempt to execute the program using a nonexisting filename, for example
javaƒEventFile3ƒnoSuchFile.dat.You should see the message “File
not opened”.

CREATING RANDOM ACCESS FILES

The files you wrote to and read from in this chapter are sequential access files, which
means that you access the records in sequential order from beginning to end. For exam-
ple, if you wrote an Event record with host name Adams, and then you created an Event
record with host name Brown, when you retrieve the records you see that they remain

602 Chapter 16 File Input and Output

Creating Random Access Files 603

in the original data-entry order. Businesses store data in sequential order when they use
the records for batch processing, or processing that involves performing the same tasks
with many records, one after the other. For example, when a company produces pay-
checks, the records for the pay period are gathered in a batch and the checks are calcu-
lated and printed in sequence.

For many applications, sequential access is inefficient.These applications, known as real-
time applications, require that a record be accessed immediately while a client is wait-
ing. For example, if a customer telephones a department store with a question about a
monthly bill, the customer service representative does not need to access every customer
account in sequence. With tens of thousands of account records to read, it would take
too long to access the customer’s record. Instead, customer service representatives require
random access files, files in which records can be located in any order. Because they
enable you to locate a particular record directly (without reading all of the preceding
records), random access files are also called direct access files. You can use Java’s
RandomAccessFile class to create your own random access files.

The RandomAccessFile class contains the same read(), write(), and close() methods as
InputStream and OutputStream, but it also contains a seek() method that lets you select a
beginning position within a file before you read or write data. For example, if you declare
a RandomAccessFile object named myFile, then the statement myFile.seek(200);
selects the 200th position within the file. The 200th position represents the 201st byte
because, as with Java arrays, the numbering of file positions begins at zero.The next read()
or write() method will operate from the newly selected starting point.

When you store records in a file, it is often more useful to be able to access the 200th

record, rather than the 201st byte. In this case, you multiply each record’s size by the posi-
tion you want to access. For example, if you store records that are 50 bytes long, you
can access the nth record using the statement myFile.seek((n-1)ƒ*ƒ50);.

When you declare a RandomAccessFile object, you include a filename as you do
with other file objects.You also include r or rw within double quotation marks as a
second argument to indicate that the file is open for reading only (“r”), or for both
reading and writing (“rw”). For example, RandomAccessFileƒmyFileƒ=ƒnew
RandomAccessFile("C:\\Temp\\someData.dat","rw"); opens the
someData.dat file so that either the read() or write() method can be used on the file.
This feature is particularly useful in random access processing. Consider a business
with 20,000 customer accounts.When the customer who has the 14,607th record in
the file acquires a new telephone number, it is convenient to directly access the
14,607th record, the read() method confirms it represents the correct customer, and
then the write() method writes the new telephone number to the file in the loca-
tion the old telephone number was stored previously.You will demonstrate the seek()
method in the next set of steps.

16

To show how the seek() method works:

1. Open a new file in your text editor, and then type the following first few
lines of the AccessRandomly class:

importƒjava.io.*;
publicƒclassƒAccessRandomly
{
ƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)ƒthrowsƒ
ƒƒƒƒƒIOException
ƒƒƒƒƒ{

2. Enter the following code to declare an OutputStream object for output, an
integer to hold data temporarily, and a new RandomAccessFile.You will use
the data file for reading only, so you include “r” as the second argument in
the RandomAccessFile constructor.

OutputStreamƒostream;
intƒc;
RandomAccessFileƒinFileƒ=ƒ
ƒƒnewƒRandomAccessFile("datafile.dat","r");ƒ

3. Enter the following code to assign ostream as the standard output device.Then
try accessing the 10th file position (which is represented by the number 9).
Read this position, and then display its contents.

ostreamƒ=ƒSystem.out;
try
{
ƒƒƒinFile.seek(9);
ƒƒƒcƒ=ƒinFile.read();
ƒƒƒSystem.out.print("Theƒcharacterƒinƒpositionƒ9ƒisƒ");
ƒƒƒostream.write(c);
}

4. Add the following catch clause that executes if there is trouble accessing the
file, and then add a finally block to close the files:

catch(IOExceptionƒe)
{
ƒƒƒSystem.out.println("Error:ƒ"ƒ+ƒe.getMessage());
}
finally
{
ƒƒƒinFile.close();
ƒƒƒostream.close();
}

5. Add two closing curly braces—one for the main() method and one for the class.

6. Save the file as AccessRandomly.java in the Chapter.16 folder on your
Student Disk, and then compile it using the javac command.

604 Chapter 16 File Input and Output

Chapter Summary 605

7. Before you run the file, create a datafile.dat file by running the ReadKBWriteFile
program you created earlier in this chapter.At the command line, type
javaƒReadKBWriteFile, and then press [Enter].

8. At the prompt, type This is my random access file. Press [Enter], press
[Ctrl]+Z, and then press [Enter] to end the program. (The y in my is the
10th character you type.)

9. At the command line, run the AccessRandomly program by typing
javaƒAccessRandomly.The output is the tenth character in the file, as
shown in Figure 16-12.

In the AccessRandomly program, only one read() command was issued, yet the program
accessed a byte nine positions into the file.When you access a file randomly, you do not
read all the data that precedes the data you are seeking. Accessing data randomly is one
of the major features that makes large data systems maintainable.

CHAPTER SUMMARY
❒ Files are objects that you store on permanent storage devices, such as floppy disks,

CD-ROMs, or external drives.You can use the File class to gather file information.

❒ Data used by businesses generally is stored in a data hierarchy that includes files,
records, fields, and characters.

❒ Java views a file as a series of bytes, and a stream as an object through which input
and output data (in the form of bytes) flow. InputStream and OutputStream are
abstract subclasses of Object that contain methods for performing input and output.
FileInputStream and FileOutputStream provide the capability to read from and write
to files.You can use the InputStream read()method to read in one character at a time.

❒ You can use the DataInputStream and DataOutputStream classes to accomplish for-
matted input and output.The DataOutput interface includes methods such as

Figure 16-12 Output of the AccessRandomly program

16

writeBoolean(), writeChar(), writeDouble(), writeFloat(), and writeInt(). Each
method writes data in the correct format for the data type its name indicates.You
can use the method writeUTF() to write Unicode format strings.

❒ DataInputStream objects enable you to read binary data from an InputStream.The
DataInput interface includes methods such as readByte(), readChar(), readDouble(),
readFloat(), readInt(), and readUTF(). Each DataInput read() method correctly reads
the type of data indicated by its name, such as readByte(), readChar(), or
readDouble().

❒ You can provide a variable filename to a program using the command line.

❒ Random access files, or direct access files, are files in which records can be located in
any order.The RandomAccessFile class contains the same read(), write(), and close()
methods as InputStream and OutputStream, but it also contains a seek() method that
lets you select a beginning position within a file before you read or write.

REVIEW QUESTIONS
1. Files always .

a. hold software instructions

b. occupy a section of storage space

c. remain open during the execution of a program

d. all of the above

2. The File class enables you to .

a. open a file

b. close a file

c. determine a file’s size

d. all of the above

3. The package contains all the classes you use in file processing.

a. java.file

b. java.io

c. java.lang

d. java.process

4. The statement FileƒaFileƒ=ƒnewƒFile("myFile"); creates a file
.

a. on the disk in drive A

b. on the hard drive (drive C)

c. in the Temp folder on the hard drive (drive C)

d. on the default disk drive

606 Chapter 16 File Input and Output

Review Questions 607

5. The File method canWrite() returns a(n) value.

a. int

b. Boolean

c. Object

d. void

6. Data used by businesses is stored in a data hierarchy that includes the following
items, from largest to smallest:

a. file, field, record, character

b. record, file, field, character

c. file, record, field, character

d. record, field, file, character

7. A group of characters that has meaning is a .

a. file

b. record

c. field

d. byte

8. Files consist of related .

a. records

b. fields

c. data segments

d. archives

9. Before a program can use a data file, the program must the file.

a. create

b. open

c. store

d. close

10. When you perform an input operation in a Java program, you use a
.

a. pipeline

b. channel

c. moderator

d. stream

16

11. Most streams flow .

a. in

b. out

c. either in or out, but only in one direction

d. both in and out concurrently

12. The output from System.err and System.out go to the same
device.

a. must

b. cannot

c. might

d. might on a mainframe system, but never would on a PC

13. A small memory location that is used to temporarily hold data is a
.

a. stream

b. buffer

c. bulwark

d. channel

14. The read() method returns a value of -1 when it encounters a(n)
.

a. input error

b. integer

c. end-of-file condition

d. negative value

15. Much of the data that you write with DataOutputStream objects is not readable
in a text editor because .

a. it does not exist in any physical sense

b. it is stored in a non-character format

c. you can read it only with a special piece of hardware called a Data Reader

d. Java’s security features prohibit it

16. You use a DataOutputStream connected to FileOutputStream by using a method
known as .

a. sequencing

b. iteration

c. piggybacking

d. chaining

608 Chapter 16 File Input and Output

Exercises 609

17. When you catch an EOFException, it means you have .

a. failed to find the end of the file

b. forgotten to open a file

c. forgotten to close a file

d. reached the end of a file

18. Which of the following applications is most likely to use random file processing?

a. a program that schedules airline reservations

b. a credit card company’s end-of-month billing program

c. a college’s program that lists honor students at the end of each semester

d. a manufacturing company’s quarterly inventory reporting system

19. The method that the RandomAccessFile class contains that does not exist in the
InputStream class is .

a. read()

b. close()

c. seek()

d. delete()

20. You can open a RandomAccessFile object for .

a. reading

b. writing

c. both of the above

d. none of the above

EXERCISES
1. Create a file using any word-processing program or text editor.Write a program

that displays the file’s name, parent, size, and time of last modification. Save the
program as FileStatistics.java in the Chapter.16 folder on your Student Disk.

2. Create two files using any word-processing program or text editor.Write a pro-
gram that determines whether the two files are located in the same folder. Save
the program as SameFolder.java in the Chapter.16 folder on your Student Disk.

3. Write a program that determines which, if any, of the following files are stored in
the Chapter.16 folder of your Student Disk: autoexec.bat, SameFolder.java,
Chap16ReadEventFile.class, and Hello.java. Save the program as
FindSelectedFiles.java in the Chapter.16 folder on your Student Disk.

4. a. Create a JFrame that allows the user to enter a series of friends’ names and
phone numbers and creates a file from the entered data. Save the JFrame as
CreatePhoneList.java in the Chapter.16 folder on your Student Disk.To use

16

the JFrame, create a program named UsePhoneList.java that instantiates a
CreatePhoneList object.

b. Write a program that reads the file created by the UsePhoneList program and
displays one record at a time in a JFrame. Save the JFrame as
ReadPhoneList.java in the Chapter.16 folder on your Student Disk. Save the
program that uses this JFrame as UsePhoneList2.java.

5. a. Write a program for a mail-order company.The program uses a data-entry
screen in which the user types an item number and a quantity.Write each
record to a file. Save the program as MailOrderWrite.java in the Chapter.16
folder on your Student Disk.

b. Write a program that reads the data file created by the MailOrderWrite
program and displays one record at a time on the screen. Save the program
as MailOrderRead.java in the Chapter.16 folder on your Student Disk.

6. a. Write a program for a mail-order company.The program uses a data-entry
screen in which the user types an item number and a quantity.The valid item
numbers and prices are as follows:

When the user enters an item number, check the number to make sure that it
is valid. If it is valid, write a record that includes item number, quantity, price
each, and total price. Save the program as MailOrderWrite2.java in the
Chapter.16 folder on your Student Disk.

b. Write a program that reads the data file created by the MailOrderWrite2 pro-
gram and displays one record at a time on the screen. Save the program as
MailOrderRead2.java in the Chapter.16 folder on your Student Disk.

7. a. Write a program that allows a user to enter an integer representing a file posi-
tion.Access the requested position within a file and display the character there.
Save the program as SeekPosition.java in the Chapter.16 folder on your
Student Disk.

b. Modify the program created by the SeekPosition program so that you display
the next five characters after the requested position. Save the program as
Seek2.java in the Chapter.16 folder on your Student Disk.

8. a. Write a program that creates a JFrame with text fields for order processing for
a tee-shirt manufacturer. Include JTextFields for size, color, and slogan.Write
each complete record to a file. Save the JFrame as TeeShirtWrite.java in the
Chapter.16 folder on your Student Disk.Write a program named
UseTeeShirt.java that displays the JFrame.

Item Number Price ($)

101 4.59

103 29.95

107 36.50

125 49.99

610 Chapter 16 File Input and Output

Case Project 611

b. Write a program that reads the data file created by the TeeShirtWrite program
and displays one record at a time in a JFrame on the screen. Save the program
as TeeShirtRead.java in the Chapter.16 folder on your Student Disk.Write a
program named UseTeeShirt2.java that displays the JFrame.

9. Write a program that allows the user to type any number of characters into a file.
Then display the file contents backward. Save the program as
ReadBackwards.java in the Chapter.16 folder on your Student Disk.

10. a. Create a JFrame that allows you to enter student data—ID number, last name,
and first name. Include two buttons and instruct the user to click “Grad” or
“Undergrad” after entering the data for each student. Depending on the user’s
choice, write the data to either a file containing graduate students or a separate
file containing undergraduate students. Name the JFrame
GradAndUndergrad.java and create a program named
UseGradAndUndergrad.java that instantiates a JFrame object. Save both files
in the Chapter.16 folder of your Student Disk.

b. Create a JFrame named StudentRead.java that, in turn, accesses all the
records in the graduate and the undergraduate files created in the
GradAndUndergrad program.Write a program named UseStudentRead.java
that instantiates a JFrame object. Save both files in the Chapter.16 folder of
your Student Disk.

11. Each of the following files in the Chapter.16 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. Notice that DebugSixteen3.java and DebugSixteen4.java have companion
files that are part of each exercise. After you correct the errors, save each file using
the same filename preceded with Fix. For example, DebugSixteen1.java will
become FixDebugSixteen1.java.

a. DebugSixteen1.java

b. DebugSixteen2.java

c. DebugSixteen3.java

d. DebugSixteen4.java

CASE PROJECT
Create a data-entry and retrieval system for Mowers Inc., a lawn-mowing service. Use a
JFrame to enter data for the customer’s name and lawn size in square feet.An output file
holds the customer name, lawn size, and fee per mowing—$50 for lawns under 1,000
square feet and $75 for lawns 1,000 square feet or more. Name the JFrame
MowersInc.java and save it in the Chapter.16 folder of your Student Disk. Name the
client program that creates an instance of the JFrame UseMowersInc.java. Retrieve
the created records with a JFrame named MowersInc2.java and a client program
named UseMowersInc2.java.

Case
Project

16

613

CHAPTER

17
MULTITHREADING AND

ANIMATION
In this chapter, you will:

� Understand multithreading
� Learn about a Thread’s life cycle
� Use the Thread class
� Use the sleep() method
� Set Thread priority
� Use the Runnable interface
� Create an animated figure
� Reduce flickering
� Use pre-drawn animated Image objects
� Understand garbage collection
� Put animation in a Web browser page

Ithought I had learned a lot about Java,” you tell Lynn Greenbrier during
your six-month performance review at Event Handlers Incorporated.“I’ve

learned to write applets and applications, extend classes, and write data files.
I can even use sound and images in my applets.”

“You’ve come very far,” Lynn agrees. “I’m proud of you!”

“But there’s something missing. I want to create applets with moving figures
for Event Handlers. I want programs in which different activities take place
on the screen at the same time.”

“You almost know everything you need to accomplish your goals,” Lynn
explains.“You know about applets, exceptions, inheritance, and graphics.All
you have to do is put it all together. Let me tell you a little about threads,
and then you can get started on animation.”

PREVIEWING A PROGRAM THAT DISPLAYS ANIMATION

Event Handlers Incorporated wants an animated stick figure to appear on its Web site.
The figure appears to be using the Event Handlers company name as a yo-yo; that is, the
words “Event Handlers” move up and down as if controlled by the moving arm of the
stick figure.You will create a similar program in this chapter, but now you can use a com-
pleted version of the Chap17AnimationApplet applet that is saved in the Chapter.17
folder on your Student Disk.

To use the Chap17AnimationApplet class:

1. Go to the command prompt for the Chapter.17 folder on your Student Disk,
type appletviewerƒChap17Animation.html, and then press [Enter].
You will see a moving figure similar to the one captured in Figure 17-1.

2. When you are finished viewing the applet, click the Applet Viewer’s
Close button.

Figure 17-1 Chap17AnimationApplet applet

614 Chapter 17 Multithreading and Animation

Understanding Multithreading 615

UNDERSTANDING MULTITHREADING

A thread is the flow of execution of one set of program statements.When you execute a
program statement by statement, from beginning to end, you are following a thread. Each
of the programs you have written while working through this book has had a single thread;
this means that at any one time, Java was executing only a single program statement.

Single-thread programs contain statements that execute in very rapid sequence, but only
one statement executes at a time.When a computer contains a single central processing
unit (CPU, or processor), it can execute only one computer instruction at a time, regard-
less of its processor speed.When you use a computer with multiple CPUs, the computer
can execute multiple instructions simultaneously.

The Java programming language allows you to launch, or start, multiple threads, no mat-
ter which type of processor you use. Using multiple threads of execution is known as
multithreading.As already noted, if you use a computer system that contains more than
one CPU (such as a very large mainframe or supercomputer), multiple threads can exe-
cute simultaneously. Figure 17-2 illustrates how multithreading executes in a multi-
processor system.

If you use a computer with a single processor, the multiple threads share the CPU’s time,
as shown in Figure 17-3.The CPU devotes a small amount of time to one task, and then
devotes a small amount of time to another task.The CPU never actually performs two
tasks at the same instant. Instead, it performs a piece of one task, and then a piece of
another task. The CPU performs so quickly that each task seems to execute without
interruption.

Perhaps you have seen an expert chess player participate in chess games with several oppo-
nents at once.The chess player makes a move on the first playing board, and then moves
to the second board against a second opponent, while the first opponent analyzes his next
move.The master can move to the third board, make a move, and return to the first board
before the first opponent is even ready to respond.To the first opponent, it might seem as
though the expert player is devoting all of her time to him. Because the expert is so fast,
she can play other opponents in the first opponent’s “downtime”. Executing multiple
threads on a single CPU works in a similar way. The CPU transfers its attention from
thread to thread so quickly that the tasks don’t even “miss” the CPU’s attention.

Thread3

Thread2

Thread1

Time

Figure 17-2 Executing multiple threads in a multiprocessor system

17

You use multithreading to improve the performance of your programs. Multithreaded
programs often run faster, but what is more important is that they are more user-friendly.
With a multithreaded program, your user can continue to click buttons while your pro-
gram is reading a data file. With multithreading, an animated figure can display on one
part of the screen while the user makes menu selections on another part of the screen.
When you use the Internet, multithreading increases in importance. For example, you can
begin to read a long text file or listen to an audio file while they are still downloading.
Web users are likely to abandon a site if downloading a file takes too long.When you use
multithreading to perform concurrent tasks, you are more likely to retain visitors to your
Web site—this is particularly important if your site sells a product or service.

Programmers sometimes use the terms “thread of execution” or “execution
context” to describe a thread. They also refer to a thread as a lightweight
process because it is not a full-blown program. Rather, a thread must run
within the context of a full, heavyweight program.

LEARNING ABOUT A THREAD’S LIFE CYCLE

A Thread can be in one of five states during its life: new, ready, running, inactive, or fin-
ished. When you create a Thread, it is in the new state; the only method you can use
with a new Thread is the method to start it.When you call the Thread’s start() method,
the Thread enters the ready state. A ready Thread is runnable, which means that it can
run. However, a runnable Thread might not be in the running state because the CPU
might be busy elsewhere. Just as your runnable automobile cannot pass through an inter-
section until the traffic officer waves you on, a runnable Thread cannot run until the
CPU allocates some time to it.

If you call a Thread method that the Thread’s present state does not allow, Java
automatically throws an IllegalThreadStateException. For example, you can-
not call the stop() method for a Thread that is new and has not been started.

When a Thread begins to execute, it is in the running state. A Thread runs until it
becomes inactive or finishes. A Thread enters the inactive state when you call the

Tip

Tip

Thread3

Thread2

Thread1

Time

Figure 17-3 Executing multiple threads in a single-processor system

616 Chapter 17 Multithreading and Animation

Using the Thread Class 617

Thread’s sleep() or suspend() method, or it might become inactive if it must wait for
another Thread to finish and for the CPU to have available time. (You will see the sleep()
method at work when you write the DemoHelloGoodbyeThreads program later in this
chapter.) When a Thread completes the execution of its run() method, it is in the fin-
ished or dead state. A Thread can also enter the finished state before its run() method
completes if you call the Thread’s stop() method.You can use the isAlive() method to
determine whether a Thread is currently alive, which means that it has started but has
not stopped.The isAlive() method returns the Boolean value false if a Thread is new
or finished, and true if it is in any other state.

Table 17-1 describes several useful methods of the Thread class.

USING THE THREAD CLASS

Technically, every program you have created is a thread.You can also create a thread by
extending the Thread class, which is defined in the java.lang package.The Thread class
contains a method named run().You override the run() method in your extended class
to tell the system how to execute the Thread. For example, you can write the
HelloThread class shown in Figure 17-4, which prints a “Hello” message to the screen
100 times.The HelloThread class contains a single method—the run() method—which
prints a space, “Hello”, and another space in a loop that executes 100 times.

class HelloThread extends Thread
{
 public void run()
 {
 for(int x=0; x<100; ++x)
 System.out.print(" Hello ");
 }
}

Figure 17-4 The HelloThread class

Method Description

start() Starts the Thread causing the run() method to execute

stop() Stops the Thread

suspend() Suspends the Thread until you use the resume() method

resume() Resumes the Thread you suspended

isAlive() Returns true or false to indicate whether the Thread is currently running

setPriority(int) Lets you set a priority from 1 to 10 for a Thread by passing an integer (You
will learn about Thread priorities later in this chapter.)

sleep(int) Lets you pause thread execution for a specified number of milliseconds

Table 17-1 Selected Thread class methods

17

When you create a class that extends Thread, you inherit the start() method.You use the
start() method with an instantiated Thread object; it tells the system to start execution
of the Thread. For example, you can write a program that instantiates and starts a
HelloThread object, as shown in Figure 17-5.

The DemoHelloThread class instantiates a HelloThread object named hello.When you
use the start() method with the hello object, the run() method within the HelloThread
class executes.The output appears in Figure 17-6; the “Hello” message prints 100 times.

You can achieve multithreading by starting more than one Thread object. For example,
consider the GoodbyeThread class in Figure 17-7; it is identical to the HelloThread class
except for the message it prints. When you create a demonstration class like
DemoHelloGoodbyeThreads (see Figure 17-8), and instantiate one HelloThread and
one GoodbyeThread object within its main() method, then the output might appear as
shown in Figure 17-9.

Figure 17-6 Output of the DemoHelloThread program

class DemoHelloThread
{
 public static void main(String[] args)
 {
 HelloThread hello = new HelloThread();
 hello.start();
 }
}

Figure 17-5 The DemoHelloThread class

618 Chapter 17 Multithreading and Animation

Using the Thread Class 619

When you run a program like DemoHelloGoodbyeThreads, your output might not
appear exactly like Figure 17-9. In fact, if you run your program multiple times, your
output might look like Figure 17-10, which shows two subsequent runs of the program.
Notice that the first execution displays 16 “Hello” messages before the first “Goodbye”
message appears, but the second execution displays 13 “Hello” messages prior to the first
“Goodbye”. Other differences also appear in the order in which the two executions are
displayed. Depending on available resources, the operating system might alternate
between “Hello” and “Goodbye”, or execute several repetitions of the HelloThread in

Figure 17-9 Output of the DemoHelloGoodbyeThreads program

class DemoHelloGoodbyeThreads
{
 public static void main(String[] args)
 {
 HelloThread hello = new HelloThread();
 GoodbyeThread goodbye = new GoodbyeThread();
 hello.start();
 goodbye.start();
 }
}

Figure 17-8 DemoHelloGoodbyeThread class

class GoodbyeThread extends Thread
{
 public void run()
 {
 for(int x=0; x<100; ++x)
 System.out.print(" Goodbye ");
 }
}

Figure 17-7 GoodbyeThread class

17

a row, followed by several repetitions of the GoodbyeThread. Each Thread completes its
100 repetitions, but you have no guarantee as to the exact pattern of execution; your
only guarantee is that the threads execute concurrently.

Next you will extend the Thread class so it repeats a character on the screen.Then you
will create three Thread objects to observe how they execute concurrently.

To create a class that extends Thread:

1. Open a new file in your text editor, and then type the following first few
lines of the ShowThread class.This class has two data members: a character
that you will display on the screen and an integer that holds the number of
repetitions to be displayed.

classƒShowThreadƒextendsƒThread
{
ƒƒƒƒƒƒƒprivateƒcharƒoneChar;
ƒƒƒƒƒƒƒprivateƒintƒrepƒ=ƒ100;

2. Create the following constructor for the ShowThread class.The constructor
accepts a character and assigns it to the oneChar variable.

publicƒShowThread(charƒprintChar)
{
ƒƒƒƒƒƒƒoneCharƒ=ƒprintChar;
}

Figure 17-10 Multiple runs of the DemoHelloGoodbyeThreads program

620 Chapter 17 Multithreading and Animation

Using the Thread Class 621

3. Enter the following run() method, which prints the character as many times
as the rep value specifies:

publicƒvoidƒrun()
{
ƒƒƒƒƒƒƒfor(intƒxƒ=ƒ0;ƒxƒ<ƒrep;ƒ++x)
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒSystem.out.print(oneChar);
}

4. Add a closing curly brace for the class.

5. Save the file as ShowThread.java in the Chapter.17 folder on your Student
Disk, and then compile the file using the javac command.

Next you will write a DemoThreads class containing a main() method that declares and
uses three ShowThread objects.

To write the DemoThreads class:

1. Open a new file in your text editor, and then type the following class:

classƒDemoThreads
{
ƒƒƒƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒShowThreadƒshowAƒ=ƒnewƒShowThread('A');
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒShowThreadƒshowBƒ=ƒnewƒShowThread('B');
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒShowThreadƒshowCƒ=ƒnewƒShowThread('C');
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒshowA.start();
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒshowB.start();
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒshowC.start();
ƒƒƒƒƒƒƒ}
}

2. Save the file as DemoThreads.java in the Chapter.17 folder on your
Student Disk, and then compile and execute the program.The output appears
similarly to Figure 17-11, although the execution sequence of your
ShowThread objects might vary.

3. Run the program several more times and examine the output for changes in
the execution sequence.

4. Open the ShowThread.java file in your text editor, and then change the
value in the rep variable definition so that it is 500 (for example, private
int rep = 500;). Save the class using the same filename, and then com-
pile and execute it.

17

5. Recompile the DemoThreads.java file, and then execute it. Observe any
differences in your output.

USING THE SLEEP() METHOD

One interesting and useful member of the Thread class is the sleep() method.You use
the sleep() method to pause a Thread for a specified number of milliseconds. For exam-
ple, writing sleep(500); within a Thread class’s run() method causes the execution
to rest for 500 milliseconds, or half a second.You might use the sleep() method to pause
a program to give a user time to respond to a question or to absorb an image before dis-
playing subsequent images in a series.

You might also use sleep() to give lower priority threads a chance to execute.
The next section explains the concept of priority.

When you use the sleep() method, you must catch an InterruptedException—the type
of Exception thrown when a program stops running before its natural end.When you
use the sleep() method, you intend for your program to be interrupted, so you usually
catch the Exception and take no action.

To demonstrate using the sleep() method:

1. Open a new file in your text editor, and then type the following lines to
begin the SleepThread class:

importƒjava.awt.*;
classƒSleepThreadƒextendsƒThreadƒ
{

Tip

Figure 17-11 Output of the DemoThreads program

622 Chapter 17 Multithreading and Animation

Using the sleep() Method 623

2. Enter the following first few lines of the run() method, which uses a for loop
to print 100 integers:

publicƒvoidƒrun()ƒ
{
ƒƒfor(intƒxƒ=ƒ0;ƒxƒ<ƒ100;ƒ++x)
ƒƒ{
ƒƒƒƒƒƒƒƒƒƒSystem.out.print(xƒ+ƒ"ƒ");

3. Within the for loop, add the following try block.You will test the loop
counter variable, x, and when it equals 25, pause for three seconds; when it
equals 75, pause for five seconds. End the try block, and then catch the
InterruptedException.

try
{
ƒƒƒif(xƒ==ƒ25)
ƒƒƒƒƒƒƒƒƒƒƒsleep(3000);
ƒƒƒif(xƒ==ƒ75)
ƒƒƒƒƒƒƒƒƒƒƒsleep(5000);
}
catch(InterruptedExceptionƒe)
{
}

4. Add three closing curly braces: one for the for loop, one for the run()
method, and one for the SleepThread class.

5. Save the file as SleepThread.java in the Chapter.17 folder on you Student
Disk, and then compile it using the javac command.

6. Open a new file in your text editor, and then type the following
DemoSleepThread class that will create a SleepThread object and demon-
strate its use:

classƒDemoSleepThread
{
ƒƒƒƒpublicƒstaticƒvoidƒmain(String[]ƒargs)
ƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒSleepThreadƒsThreadƒ=ƒnewƒSleepThread();
ƒƒƒƒƒƒƒƒƒƒƒsThread.start();
ƒƒƒƒ}
}

7. Save the file as DemoSleepThread.java in the Chapter.17 folder, and then
compile and execute the program.When the program runs, 25 integers display,
and then you must wait during a three-second sleep.When the program
resumes, 50 more integers display, and then you must wait during a five-second
sleep.When the program completes, all 100 integers (0 through 99) appear on
the screen.

17

SETTING THREAD PRIORITY

Every Java Thread has a priority, or rank, in terms of preferential access to the operat-
ing system’s resources.Threads with the same priority are called peers.With some oper-
ating systems (like Windows), threads are timesliced; that is, each peer receives a set
amount of processor time during which it can execute.When that time is up, even if the
thread has not finished its execution, the next thread that has equal priority receives a
slice of time. Without timeslicing (as in the Solaris operating system), a thread runs to
completion before one of its peers can execute.

Each Thread object’s priority is represented by an integer in the range of 1 to 10. If you
do not assign a priority to a Thread object, it assumes a default priority of 5.You can
change a Thread’s priority by using the setPriority() method, or determine a Thread’s
priority with the getPriority() method. If you extend a Thread from an existing Thread,
the child Thread assumes its parent’s priority.

The Thread class contains three constants. They are MIN_PRIORITY, NORM_
PRIORITY, and MAX_PRIORITY, which represent 1, 5, and 10, respectively.When you
set a Thread’s priority, you can use an integer, as in myThread.setPriority(10);,
or you can use one of the three constants, as in myThread.setPriority
(Thread.MAX_PRIORITY);. You also can use an arithmetic expression, such as
yourThread.setPriority(Thread.MAX_PRIORITYƒ-ƒ2);.

If you use the priority constants with your Thread objects, then your Threads
will have the appropriate relative priority even if the developers of Java decide
to change the priority values in the future.

When you run a Java program, the runnable Thread with the highest priority runs first.
If several Threads have the same priority, they run in rotation. Lower-priority Threads
can run only when higher-priority Threads are not runnable (such as when they are fin-
ished, suspended, or asleep).

In general, when ThreadA has higher priority than ThreadB,ThreadA will be running
and ThreadB will be waiting. However, sometimes Java will choose to run ThreadB to
avoid starvation. Starvation occurs when a Thread cannot make any progress because
of the priorities of other Threads.The result of starvation can be similar to creating an
infinite loop—the program runs continuously without completing because one or more
threads never get the opportunity to execute.

The ultimate form of starvation is called deadlock. Deadlock occurs when two
Threads must wait for each other to do something before either can progress.

Tip

Tip

624 Chapter 17 Multithreading and Animation

Setting Thread Priority 625

Next you will set the priorities of some Threads and observe the effects of those settings.

To demonstrate Thread priorities:

1. Open the ShowThread.java file in your text editor, and immediately save it
as ShowThread2.java.

2. Change the class name and the constructor name to ShowThread2.

3. Change the value of the rep variable to 5000.This step is necessary on most
systems so that there will be enough executions of the output loop for you to
observe the effect of the priority settings.

4. Save the file and compile it using the javac command.

5. Open the DemoThreads.java file in your text editor, and immediately save
it as DemoThreadsPriority.java.

6. Change the class header to class DemoThreadsPriority.

7. Change the declaration of the three Threads to use the newly created
ShowThread2 class. In other words, the declarations become the following:

ShowThread2ƒshowAƒ=ƒnewƒShowThread2('A');
ShowThread2ƒshowBƒ=ƒnewƒShowThread2('B');
ShowThread2ƒshowCƒ=ƒnewƒShowThread2('C');

8. Position your insertion point to the right of the line with the third
ShowThread2 declaration (the showC declaration), and then press [Enter] to
start a new line.

9. Type the following lines to set the showB Thread’s priority to 4 and the
showC Thread’s priority to 6:

showB.setPriority(Thread.NORM_PRIORITY-1);
showC.setPriority(Thread.NORM_PRIORITY+1);

10. Save the file, and then compile and run the program.The output is more
than will fit on your screen, and the middle of the execution looks similar to
Figure 17-12. Although the As, Bs, and Cs are somewhat intermingled, the
showC Thread, with a priority of 6, finishes before showA and showB.
Notice that although the highest priority Thread (showC) finishes first, and
the next highest (showA) finishes second, showB is allowed some processor
time before showA finishes.

17

USING THE RUNNABLE INTERFACE

You can create a Thread subclass by inheriting from the Thread class, but this approach
won’t work if you want your Thread subclass to inherit from another class as well.You have
already learned that Java does not allow a class to inherit from more than one superclass.
So, for example, if you want to create a JApplet that can run as a Thread, you cannot inherit
from both JApplet and Thread; instead you must implement an interface.You can imple-
ment the Runnable interface as an alternative to inheriting from the Thread class.

You learned about implementing interfaces in Chapter 12.

You can write an applet that acts as a timer; the applet counts and displays seconds as they
pass.You declare an integer variable—for example, int secs = 0;. The applet’s paint()
method contains a statement that adds one to the secs variable, and then displays the current
count of seconds.

To let the applet run indefinitely, you can create an infinite loop that repaints the screen
every 1,000 milliseconds (or every second), as in the following code:

while(true)ƒƒ//ƒexecuteƒforever
ƒƒƒƒƒƒƒrepaint();
try
{
ƒƒƒƒƒƒƒclock.sleep(1000);
}
catch(InterruptedExceptionƒe)
{
}

Tip

Figure 17-12 Middle part of the DemoThreadsPriority program output

626 Chapter 17 Multithreading and Animation

Using the Runnable Interface 627

The problem with this approach is that as long as the infinite while loop is running, the
CPU is occupied and cannot perform any other actions, such as carrying out the
repaint() method. Instead of displaying a counter, the applet appears to freeze the screen.

The solution is to place the while loop in a Thread that can share time with the oper-
ating system’s default Thread in which the applet runs. Next you will produce a JApplet
that uses this approach as you create a JApplet that shares processor time with the clock
Thread that hosts it.

To create a JApplet that implements the Runnable interface:

1. Open a new file in your text editor, and then type the following first few
lines of the TimerApplet applet:

importƒjavax.swing.*;
importƒjava.awt.*;
publicƒclassƒTimerAppletƒextendsƒJAppletƒ
ƒƒimplementsƒRunnable
{

2. Define three JLabels.The first and third contain literal Strings.The second
will display the changing time count.

privateƒJLabelƒlabel1ƒ=ƒnewƒJLabel("Timeƒisƒpassing.");
privateƒJLabelƒlabel2ƒ=ƒnewƒJLabel();
privateƒJLabelƒlabel3ƒ=ƒnewƒ
ƒƒJLabel("Planƒyourƒeventƒtoday.");

3. Declare a Container, a variable to hold the seconds, and a Thread named clock:

privateƒContainerƒcƒ=ƒgetContentPane();
privateƒintƒsecsƒ=ƒ0;
privateƒThreadƒclock;

4. The init() method establishes the layout manager, adds the three JLabels to
the content pane, and declares a Thread object named clock.When the applet
is initialized, the clock Thread will have value null because the constructor
has not been called yet, so within the init() method, you instantiate the
Thread.The run() method of the TimerApplet will execute when the Thread
is created because the this in clock = new Thread(this); refers to
“this” applet. Finally, add start() to the Thread.

publicƒvoidƒinit()
{
ƒƒc.setLayout(newƒFlowLayout());
ƒƒc.add(label1);
ƒƒc.add(label2);
ƒƒc.add(label3);
ƒƒif(clockƒ==ƒnull)
ƒƒƒƒƒƒƒclockƒ=ƒnewƒThread(this);
ƒƒclock.start();
}

17

5. The applet contains the following run() method because the applet imple-
ments Runnable.Within the run() method, you place the infinite loop that
calls repaint() every second and provides for the InterruptedException thrown
by the sleep() method.

publicƒvoidƒrun()
{
ƒƒwhile(true)
ƒƒ{
ƒƒƒƒƒƒrepaint();
ƒƒƒƒƒƒtry
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒƒƒƒclock.sleep(1000);
ƒƒƒƒƒƒ}
ƒƒƒƒƒƒcatch(InterruptedExceptionƒe)
ƒƒƒƒƒƒ{
ƒƒƒƒƒƒ}
ƒƒ}
}

6. Add the following paint() method that adds one to the secs variable (because
paint() is called once every second) and updates the displayed count in label2:

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒƒ++secs;
ƒƒlabel2.setText("Time:ƒ"ƒ+ƒsecs);
}

7. Add a closing curly brace for the applet.

8. Save the applet as TimerApplet.java in the Chapter.17 folder on your
Student Disk. Compile the applet using the javac command.

9. Open a new file in your text editor, and then type the following HTML
document to host your applet:

<HTML>
<APPLETƒCODEƒ=ƒ"TimerApplet.class"ƒ
ƒƒƒƒWIDTHƒ=ƒ300ƒHEIGHTƒ=ƒ50>
</APPLET>
</HTML>

10. Save the HTML file as TestTimer.html in the Chapter.17 folder, and then
execute it using the appletviewer command.The output appears similar
to Figure 17-13. As you watch the timer, note that the time value changes
every second.

11. Click the Close button to close the Applet Viewer window.

628 Chapter 17 Multithreading and Animation

Creating an Animated Figure 629

The TimerApplet that you created uses the default system Thread, and your clock object
uses its own Thread.You could not have created this applet without using the power of
multithreading.

CREATING AN ANIMATED FIGURE

Cartoonists create animated films by drawing a sequence of frames or cells.These indi-
vidual drawings are shown to the audience in rapid succession to give the illusion of
natural movement.You create computer animation using the same techniques. If you dis-
play computer images as fast as your CPU can process them, you might not be able to
see anything. Most computer animation employs the Thread class sleep() method to
pause for short periods of time between animation cells, so the human brain has time
to absorb each image’s content.

Artists often spend a great deal of time creating the exact images they want to use in an
animation sequence. As a much simpler example, Event Handlers Incorporated wants
you to create a stick figure whose arm moves up and down.The only difference between
creating a stick figure and a more complex graphic image is in the amount of time and
degree of artistic talent you have; the programming skills you use are the same.

You begin to create computer animation by using graph paper to sketch a figure, as
shown in Figure 17-14.

Figure 17-13 Output of the TimerApplet program

17

To create the illusion that this figure’s arm moves, you create a second sketch in which
the arm is slightly raised from its position in the first sketch. In your third drawing the
arm is slightly higher, and so on. Figure 17-15 shows four potential arm positions for
the stick figure.

Figure 17-14 Sketch of a stick figure

85, 110

40, 160

140, 160

85, 210

40, 310

130, 310

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0 10 20 30 40 50 60 70 80 90

100
110
120

130
140

150

160
170
180

190
200

210

220
230

240
250

260

260

270
280
290
300
310
320

630 Chapter 17 Multithreading and Animation

Creating an Animated Figure 631

Each time you draw the stick figure on the screen, the arm will appear slightly higher, giv-
ing the viewer the illusion of movement.The head, body, and legs of the stick figure never
change.You can draw the stick figure’s body using constant values for the drawing coor-
dinates, but you need variables to store the horizontal and vertical positions of the end of
the moving arm. One efficient approach is to store the x- and y-coordinates for the end
location of each of the arm positions in parallel arrays, as in the following example:

int[]ƒhorizƒ=ƒ{140,ƒ150,ƒ160,ƒ150,ƒ140};
int[]ƒvertƒ=ƒƒ{160,ƒ150,ƒ140,ƒ130,ƒ120};

Each time you redraw the stick figure, you can increase a subscript and use the next hor-
izontal and vertical coordinate pair to indicate the end of the figure’s arm. When you
have used all five arm coordinates, you can reduce the subscript to a value of zero, and
then begin again. Next you will create a stick figure and use an array of coordinates to
animate its arm.

Figure 17-15 Sketch of four arm positions for the stick figure

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

0 10 20 30 40 50 60 70 80 90

100
110
120

130
140

150

160
170
180

190
200

210

220
230

240
250

260

260

270
280
290
300
310
320

140, 120
150, 130

160, 140
150, 150

140, 160

17

To create an animated stick figure for Event Handlers Incorporated:

1. Open a new file in your text editor, and then type the following first few
lines of the AnimatedFigure class. (You will inherit from Applet instead of
from JApplet because Applets’ surfaces are automatically updated when
repainted.)

importƒjava.applet.*;
importƒjava.awt.*;
publicƒclassƒAnimatedFigureƒextendsƒApplet
{

2. Declare an integer index that you can use to access the horizontal and verti-
cal position arrays. Also declare the arrays themselves, which are loaded with
values taken from the preliminary sketches:

privateƒintƒindexƒ=ƒ0;
int[]ƒhorizƒ=ƒ{140,150,160,150,140};
int[]ƒvertƒ=ƒƒ{160,150,140,130,120};

3. Add the following variable to store the sleep time. If you want to speed up or
slow down the figure later, it will be convenient to change the value in this
variable. For now, set the sleep time to 100 milliseconds as follows:

privateƒintƒsleepƒ=ƒ100;

4. In the applet’s start() method, initialize the index to 0:

publicƒvoidƒstart()
{
ƒƒindexƒ=ƒ0;
}

5. Within the applet’s paint() method, add the following code to draw the figure’s
head, body, and two legs. Use the sketch as a reference for the coordinates:

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒƒgr.drawOval(30,30,80,80);
ƒƒgr.drawLine(85,110,85,210);
ƒƒgr.drawLine(85,210,40,310);
ƒƒgr.drawLine(85,210,130,310);

6. You can create the figure’s left arm by using the coordinates in the sketch.
However, creating the right arm is more complicated. Although the right arm
always starts at the same position on the body, the hand end of the arm might
be in any one of four positions taken from the horiz and vert arrays. After
you draw the right arm using position 0 from each array, you want to
increase the index, so you will use the next pair of coordinates the next time
you draw the arm.When the index eventually exceeds the highest subscript
allowed, reset the index to 0 so the process of drawing each of the arm posi-
tions can start over.

632 Chapter 17 Multithreading and Animation

Creating an Animated Figure 633

gr.drawLine(85,140,40,160);
gr.drawLine(85,140,horiz[index],vert[index]);
++index;
if(indexƒ==ƒhoriz.length)
ƒƒƒƒƒindexƒ=ƒ0;

7. Add the following try block to make the thread sleep for the designated
amount of time, and then add a catch block to handle the
InterruptedException.

try
{
ƒƒThread.sleep(sleep);
}
catch(InterruptedExceptionƒe)
{
}

8. The last step in the paint() method is to call the repaint() method.This
restarts paint() to draw the figure with a new arm position, update the index,
and sleep. Add two curly braces—one to close the paint() method and one to
close the class.

ƒƒƒƒrepaint();
ƒƒ}
}

9. Save the file as AnimatedFigure.java in the Chapter.17 folder on your
Student Disk, and then compile it.

10. Open a new file in your text editor and create the following HTML docu-
ment to host the applet:

<HTML>
<APPLETƒCODEƒ=ƒ"AnimatedFigure.class"ƒ
ƒƒWIDTHƒ=ƒ350ƒHEIGHTƒ=ƒ400>
</APPLET>
</HTML>

11. Save the HTML file as TestAnim.html, and then use the appletviewer
command to run the applet.The stick figure’s arm waves up and down. (You
might notice some flickering on the screen; you will learn to eliminate any flick-
ering in the next section.) One frame of the output appears in Figure 17-16.

17

12. Close the Applet Viewer by clicking its Close button.

Next you will add some text to the applet. Event Handlers Incorporated wants the com-
pany name to move up and down on the screen, as though the stick figure is using the
name as a yo-yo.You will also add text which will appear in a fixed position in the applet.

To add moving text to the applet:

1. Open the AnimatedFigure.java file in your text editor if it is not still open,
and then immediately save it as AnimatedFigure2.java in the Chapter.17
folder on your Student Disk.

2. Change the class name to AnimatedFigure2.

3. Within the paint() method, position your insertion point at the end of the
last drawLine() method call (the statement that draws the moving arm), and
then press [Enter] to start a new line.

4. To draw the “Event Handlers” name as though it is moving along with the
stick figure’s arm, indicate its vertical position as 30 pixels below the arm’s
current vertical position as follows:

gr.drawString("EventƒHandlers",180,ƒvert[index]ƒ+ƒ30);

Figure 17-16 Output of the AnimatedFigure applet

634 Chapter 17 Multithreading and Animation

Reducing Flickering 635

5. Add the following text lines at lower positions on the next two lines:

gr.drawString("Planƒwithƒusƒonce",170,260);
gr.drawString("Likeƒaƒyo-yo,ƒ
ƒƒyouƒwillƒcomeƒback!",170,280);

6. Save the file, and then compile it using the javac command.

7. Open the TestAnim.html file in your text editor. Change the APPLET
CODE reference to "AnimatedFigure2.class", and then save the
HTML document as TestAnim2.html in the Chapter.17 folder on your
Student Disk.

8. Use the appletviewer TestAnim2.htmlcommand to run the applet.The
stick figure appears to use the Event Handlers company name as a yo-yo. One
snapshot of the output is shown in Figure 17-17.

9. Close the Applet Viewer window.

REDUCING FLICKERING

When you create an applet with animation, your screen might flicker. To understand
why screens flicker, recall the applet life cycle that you learned about in Chapter 9.

Figure 17-17 Output of the AnimatedFigure2 applet 17

The faster your processor speed is, the less flickering you will see. The stick fig-
ure you created does not require a lot of drawing, so even with a processor of
moderate speed you may not experience flickering. However, if you create a
detailed drawing, you might experience flickering even with a fast processor,
and you will want to employ the techniques you learn in this section.

When you change a drawing in an applet, such as when you reposition the stick figure’s
arm and the moving text String, you call the repaint() method to repaint the applet sur-
face.The repaint() method calls the update() method, which clears the viewing area, and
then calls the paint() method, which contains the instructions for drawing the figure and
String in their new positions. If the repaint() method did not call update() to clear the
screen, then all previous versions of the applet would remain visible. After the first five
passes through the paint() method you would see all five of the figure’s arms and all five
messages, as shown in Figure 17-18.

Your program must clear the screen so only one version of the arm and message appears
at a time. However, clearing the screen takes enough time that your eye detects it; this
results in the flickering you see on your screen. One way to reduce or eliminate flick-
ering is to override the applet’s update() method so that the viewing area is not cleared.
After all, every time you call update() to clear the screen, the head, body, legs, and left
arm of the stick figure and the two messages are immediately redrawn in the same posi-
tions from which they were just cleared. It is more efficient to draw the unchanging

Figure 17-18 AnimatedFigure without the update() method

Tip

636 Chapter 17 Multithreading and Animation

Reducing Flickering 637

parts of the screen just once when the applet starts, and then constantly redraw only
those portions of the screen that change.

The trick for erasing a portion of a drawing on the screen is to use the applet’s back-
ground color to redraw the portion of the screen that you want to erase.When you cre-
ate graphics using the background color, the graphics seem to disappear. In other words,
to appear to move the stick figure’s arm, you draw over its old arm in the background
color, and then draw the new arm position in the previous drawing color.

For example, if the applet background color is white and the drawing color is black, one
way to draw over the old black arm line is to save the arm coordinates after you draw
the arm.Then before you draw a new black arm line, draw over the old line in white,
using the saved coordinates.

To reduce flickering in the AnimatedFigure2 applet:

1. If it is not open, open the AnimatedFigure2.java file in your text editor.
Immediately save the file as AnimatedFigure3.java in the Chapter.17 folder
on your Student Disk.

2. Change the class name from AnimatedFigure2 to AnimatedFigure3.

3. Position the insertion point at the end of the statement that declares the vert
array, and then press [Enter] to start a new line. Create the following two
new integer variables that will hold the previous arm coordinates. Initialize
these variables to the first pair of coordinates.Then create a variable to indi-
cate whether the paint() method is on its first or a subsequent execution.

intƒoldxƒ=ƒhoriz[0],ƒoldyƒ=ƒvert[0];
booleanƒfirstTimeƒ=ƒtrue;

4. Position your insertion point to the right of the closing curly brace for the
start() method, and then press [Enter] to start a new line.Type the following
code to override the applet’s automatic update() method.The replacement
update() method calls paint(), passing along the Graphics object received from
the repaint() method.

publicƒvoidƒupdate(Graphicsƒgr)
{
ƒƒpaint(gr);
}

5. Delete the current paint() method statements up to, but not including, the
statement ++index;. Begin the following replacement paint() method by
drawing the head, body, legs, left arm, and constant text only if this is the first
pass through the paint() method. Conclude the if block by setting the
firstTime variable to false.

17

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒƒƒƒƒƒƒif(firstTime)
ƒƒƒƒƒƒƒ{
ƒƒƒƒƒƒƒƒƒƒgr.drawOval(30,30,80,80);
ƒƒƒƒƒƒƒƒƒƒgr.drawLine(85,110,85,210);
ƒƒƒƒƒƒƒƒƒƒgr.drawLine(85,210,40,310);
ƒƒƒƒƒƒƒƒƒƒgr.drawLine(85,210,130,310);
ƒƒƒƒƒƒƒƒƒƒgr.drawLine(85,140,40,160);
ƒƒƒƒƒƒƒƒƒƒgr.drawString("Planƒwithƒusƒonce",170,260);
ƒƒƒƒƒƒƒƒƒƒgr.drawString("Likeƒaƒyo-yo,ƒyou willƒcomeƒ
ƒƒƒƒƒƒƒƒƒƒƒƒback!",170,280);
ƒƒƒƒƒƒƒƒƒƒfirstTimeƒ=ƒfalse;
ƒƒƒƒƒƒƒ}

6. Continue adding the following paint() method statements that execute every
time the paint() method executes—that is, whether or not it is the first exe-
cution. First, set the drawing color to the background color, and redraw the
arms and moving String in the background color to make them invisible.

gr.setColor(getBackground());
gr.drawLine(85,140,oldx,ƒoldy);
gr.drawString("EventƒHandlers",180,ƒoldyƒ+ƒ30);

7. Add the following code to change the drawing color back to the usual draw-
ing color, and then to draw the new arm and the new moving message in
their new positions:

gr.setColor(getForeground());
gr.drawLine(85,140,horiz[index],vert[index]);
gr.drawString("EventƒHandlers",180,ƒvert[index]ƒ+ƒ30);

8. Before increasing the index for the next execution of the paint() method, use
the following code to save the current arm coordinates by storing them in
the oldx and oldy variables:

oldxƒ=ƒhoriz[index];
oldyƒ=ƒvert[index];

9. Save the file, and then compile it using the javac command.

10. Open the TestAnim2.html file in your text editor. Change the APPLET
CODE reference to "AnimatedFigure3.class", and then save the
HTML document as TestAnim3.html in the Chapter.17 folder on your
Student Disk.

11. Run the applet using the appletviewer command.When the applet runs,
you will not see any flickering. (If your animation appears to run too fast or
too slowly, change the value of the sleep variable.)

12. Minimize the Applet Viewer window, and then restore it.You can see only a
disembodied moving arm and message. Close the Applet Viewer window.

638 Chapter 17 Multithreading and Animation

Using Pre-Drawn Animated Image Objects 639

The flickering disappears in the AnimatedFigure3 applet because the update() method
no longer redraws the entire screen. However, a problem occurs when you minimize,
restore, or move the applet—the figure no longer is visible and only the moving arm
and message remain. When you start the applet, firstTime is set to true, the figure is
drawn, and firstTime is set to false.When you minimize the applet, it is still running.
When you restore the applet, the applet is redrawn, but because the applet is still run-
ning, firstTime is already set to false.The head and other body parts are drawn only
when firstTime is true, so the applet now shows a disembodied arm. Next you will cor-
rect this problematic development.

To correct the applet problem:

1. Open the AnimatedFigure3.java file in your text editor, and immediately
save it as AnimatedFigure4.java.

2. Change the class name to AnimatedFigure4.

3. Within the start() method, position your insertion point to the right of the state-
ment that sets the index equal to 0, and then press [Enter] to start a new line.

4. Add the statement firstTimeƒ=ƒtrue;. Now, every time the applet
restarts, the applet will redraw the head and body.

5. Save the file, and then compile it using the javac command.

6. Open the TestAnim3.html file in your text editor. Change the APPLET
CODE reference to "AnimatedFigure4.class", and then save the
HTML document as TestAnim4.html in the Chapter.17 folder on your
Student Disk.

7. Run the applet using the appletviewer command.The applet runs the
same as before. Minimize the Applet Viewer window and then restore it.The
entire figure and complete set of messages are visible, because they are
redrawn every time the start() method executes.

8. Close the Applet Viewer window.

USING PRE-DRAWN ANIMATED IMAGE OBJECTS

If your artistic talent is limited to drawing stick figures, you can substitute a variety of more
sophisticated, pre-drawn animated images to achieve the graphic effects you want within
your applets. In Chapter 10, you used the getImage() method to load a stored image into
an applet.You can also use getImage() to load animated files in your programs.When you
call getImage(), an image is loaded in a separate thread of execution; this allows program
execution to continue while the image loads.When you used getImage() in Chapter 10,
you did not create a thread—Java created one for you. Because loading images can be a
time-consuming task, it is a great advantage that Java automatically creates a separate thread

17

for them. Recall that the getImage() method requires two arguments: a URL object and
the name of an image file.

Next you will load a pre-drawn animated .gif file into an applet and execute it.The .gif
file includes 16 frames that display a falling egg that Event Handlers Incorporated is
using in an advertising slogan to give Event Handlers a “crack” at planning the cus-
tomer’s next party.

To demonstrate loading a pre-drawn animated image into an applet:

1. Open a new file in your text editor, and then enter the following first few
lines of an applet that will load a pre-drawn animated image:

importƒjava.applet.*;
importƒjava.awt.*;
publicƒclassƒLoadImageƒextendsƒApplet
{

2. Declare an Image object that will represent the falling egg as follows:

privateƒImageƒegg;

3. The Chapter.17 folder on your Student Disk contains an animated .gif file
named egg.gif.Type the following init() method, which loads the egg.gif file
in the applet:

publicƒvoidƒinit()
{
ƒƒeggƒ=ƒgetImage(getDocumentBase(),"egg.gif");
}

4. Type the following paint() method, which draws the egg Image at location 1,1
within the applet, and also draws two Strings:

publicƒvoidƒpaint(Graphicsƒg)
{
ƒƒg.drawImage(egg,1,1,this);
ƒƒg.drawString("Planningƒyourƒnextƒparty?",100,50);
ƒƒg.drawString
ƒƒƒƒ("GiveƒEventƒHandlersƒaƒcrackƒatƒit.",100,ƒƒƒ300);
}

5. Type a closing curly brace for the applet.

6. Save the file as LoadImage.java in the Chapter.17 folder on your Student Disk,
and then compile the applet using the javacƒLoadImage.java command.

7. Open a new file in your text editor, and then create the following HTML
document:

<HTML>
<APPLETƒCODEƒ=ƒ"LoadImage.class"
ƒƒWIDTHƒ=ƒ300ƒHEIGHTƒ=ƒ350>
</APPLET>
</HTML>

640 Chapter 17 Multithreading and Animation

Understanding Garbage Collection 641

8. Save the HTML document as TestImage.html in the Chapter.17 folder of
your Student Disk.

9. Execute the HTML file using the appletviewer command.The animation
shows an egg that falls and cracks open at the bottom of the applet viewing
area. Figure 17-19 shows the final frame of the animation.

10. Watch the egg fall and crack open repeatedly.When you are ready, close the
Applet Viewer window.

Many animated images are available on the Web for you to use freely. Use
your search engine to search for keywords such as gif files, jpeg files, and ani-
mation to find sources for shareware files. The egg file was found at
www.mediabuilder.com.

UNDERSTANDING GARBAGE COLLECTION

The Java programming language supports a garbage collection feature that you seldom
find in other programming languages. The garbage collector provides for the auto-
matic cleanup of unnecessarily reserved memory.

With many programming languages, when you allocate memory from the memory that
is available (often known as the heap), you must purposely deallocate it or your system’s
performance begins to slow as less memory is available. The Java garbage collector

Tip

Figure 17-19 LoadImage applet

17

automatically sweeps through memory looking for unneeded objects and destroys them.
Out-of-scope objects or objects with null references are available for collection.
Partially constructed objects that throw an Exception during construction are also avail-
able for collection.

You first learned about garbage collection in Chapter 7 when String memory
addresses were introduced. Recall that when you change a String’s contents,
the previous contents still exist in memory. These unused characters would
needlessly occupy memory if they were not collected and disposed of.

Garbage collection works by running as a very low-priority Thread.Typically, this Thread
runs only if available memory is very low.That is, all other Threads must be delayed by
memory limitations before the garbage collector gets the opportunity to run.

You cannot prevent the garbage collector from running, but you can request that it run
by using the statement System.gc();. Suppose you write a program that counts sec-
onds and uses a String named counter to hold the values “one”,“two”, and so on.When
you assign “two” to counter, the memory that holds the character string “one” becomes
garbage. Instead of allowing the useless strings to accumulate in memory, you might want
to use the System.gc(); statement. Using this statement does not force the garbage
collector to run; it is only a request to the system to schedule the garbage collector.The
garbage collector will run when all other Threads are delayed.

PUTTING ANIMATION IN A WEB BROWSER PAGE

If you browse the Internet, you probably have seen examples of animation on Web pages.
Web page creators use animation to attract your attention and to make their pages more
appealing. Next you will create an applet that displays a moving word. As a stand-alone
applet it is interesting, but using the applet becomes much more interesting when you
run several versions of it in a Web browser at the same time.

Each version of the applet displays the single String “Party” at x- and y-coordinates.After
each display, you use the Thread class sleep() method to pause the animation.You then
erase the String by drawing it in the background color; you then redraw it in a new
position. The new position is three pixels to the right and down from the previous
String, so the illusion is that the String is moving down and to the right.When the String
reaches the right edge of the viewing area, you begin to subtract three pixels from the
horizontal and vertical coordinates, so the String appears to reverse course and move up
and to the left.

To create the first of three applets containing a moving word that you will
run in the browser:

1. Open a new file in your text editor, and then type the following opening
lines for the BouncingParty1 applet:

Tip

642 Chapter 17 Multithreading and Animation

Putting Animation in a Web Browser Page 643

importƒjava.applet.*;
importƒjava.awt.*;
publicƒclassƒBouncingParty1ƒextendsƒApplet
{

2. Establish variables for the step value increase for each drawString() and for
the x- and y-coordinates as follows:

privateƒintƒstepƒ=ƒ3;
privateƒintƒxƒ=ƒ10,ƒyƒ=ƒ10;

3. Also establish variables to hold the maximum screen positions, the previous
screen positions, and the sleep interval as follows:

privateƒintƒmaxXƒ=ƒ100,ƒmaxYƒ=ƒ100;
intƒoldx,ƒoldy;
privateƒintƒsleepƒ=ƒ50;

4. Type the following update() method that calls the paint() method (so Java
doesn’t call its own update() method, which would clear the viewing area and
increase flickering):

publicƒvoidƒupdate(Graphicsƒgr)
{
ƒƒpaint(gr);
}

5. Begin the following paint() method, which draws “Party” using the back-
ground color at the previous x- and y-coordinates, and then draws the String
using the foreground color at the new coordinates:

publicƒvoidƒpaint(Graphicsƒgr)
{
ƒƒgr.setColor(getBackground());
ƒƒgr.drawString("Party",ƒoldx,ƒoldy);
ƒƒgr.setColor(getForeground());
ƒƒgr.drawString("Party",ƒx,ƒy);

6. Save the x and y values in the oldx and oldy variables.Then increase x and y
by the step value as follows:

oldxƒ=ƒx;
oldyƒ=ƒy;
xƒ+=ƒstep;
yƒ+=ƒstep;

7. When the String approaches the edge of the applet viewing area, you want to
reverse the direction of movement.You can accomplish this by changing the
step value to its negative equivalent as follows:

17

if(xƒ<ƒ10ƒ||ƒxƒ>ƒ90)
ƒƒƒstepƒ=ƒ-step;
try
{
ƒƒƒThread.sleep(sleep);
}
catch(InterruptedExceptionƒe)
{
}
repaint();

8. Add the closing curly brace for the paint() method and the closing curly
brace for the class.

9. Save the file as BouncingParty1.java in the Chapter.17 folder on your
Student Disk, and then compile the class using the javac command.

10. In a new file in your text editor, create the following HTML document to
test the class:

<HTML>
<APPLETƒCODEƒ=ƒ"BouncingParty1.class"ƒ
ƒƒWIDTHƒ=ƒ120ƒHEIGHTƒ=ƒ120>
</APPLET>
</HTML>

11. Save this file as TestParty.html in the Chapter.17 folder, and then use the
appletviewer command to test the class.The word “Party” moves up and
down the screen. Close the Applet Viewer window.

The simple BouncingParty1 applet is interesting, but it won’t hold your attention for
very long. If you create several similar applets and run them at the same time, the out-
put will be more noteworthy. Next you will create two more applets that display a
bouncing “Party” message.You will alter each applet so that the displayed String starts
in a slightly different position within each applet.

To create applets in which the moving String starts in a different position:

1. Open the BouncingParty1.java applet in your text editor, and then imme-
diately save it as BouncingParty2.java.

2. Change the class name to BouncingParty2.

3. Change the beginning x and y variable values from 10 to 40 so the statement
becomes private int x = 40, y = 40;.

4. Save the file, and then compile it using the javacƒcommand.

5. To create the third applet, save the BouncingParty2.java file as
BouncingParty3.java. Change the class name to BouncingParty3.
Change the values for both the x and y variables to 70. Save the file and
compile it.

644 Chapter 17 Multithreading and Animation

Putting Animation in a Web Browser Page 645

You now have three similar applets that each display a bouncing “Party” String; the only
difference is that each initially places the String in a different position. In the next set
of steps you will incorporate these three applets into an HTML document and view it
in your Web browser.To make the HTML document more interesting, you will add two
headings to the document.

HTML provides six levels of headings named H1 through H6.H1 headings are the largest,
and H6 are the smallest. Just as with the <APPLET> and </APPLET> tags you have used
in your HTML documents, the heading tags come in pairs.You place text you want to
display between a pair, such as <H1> and </H1>.

HTML document authors seldom use H6 headings; they are quite small and
difficult to read. You first learned about HTML tags in Chapter 9.

To create an HTML document to use with your browser to view the three applets:

1. Open a new file in your text editor, and then enter the following HTML doc-
ument, which consists of a large heading, three applets, and another heading:

<HTML>
<H1>Weƒkeepƒyourƒpartyƒmoving</H1>
<APPLETƒCODEƒ=ƒ"BouncingParty1.class"
ƒƒƒƒWIDTHƒ=ƒ120ƒHEIGHTƒ=ƒ120>
</APPLET>
<APPLETƒCODEƒ=ƒ"BouncingParty2.class"
ƒƒWIDTHƒ=ƒ120ƒHEIGHTƒ=ƒ120>
</APPLET>
<APPLETƒCODEƒ=ƒ"BouncingParty3.class"
ƒƒWIDTHƒ=ƒ120ƒHEIGHTƒ=ƒ120>
</APPLET>
<H1>atƒEventƒHandlersƒIncorporated</H1>
</HTML>

2. Save the file as TestParties.html in the Chapter.17 folder on your Student Disk.

3. Open a Web browser such as Netscape Navigator or Microsoft Internet
Explorer. (You do not need to connect to the Internet to complete this step.)
From your browser’s main menu, select File, click Open, and either choose
the Browse button to locate your HTML document, or type its complete
path; for example, A:\Chapter.17\TestParties.html, and then press
[Enter]. Alternately, you can locate the TestParties.html file using Explorer or
My Computer, and then double-click the file icon to open it in your default
browser.The three applets run within the HTML document, as shown in
Figure 17-20. Depending on your browser, the background colors for the
three applets might differ.

Tip

17

Instead of opening the HTML document using the File menu, you can type
the path to your HTML document in your browser’s Location field (where you
type URLs to visit Web sites), and then press [Enter].

4. Close your Web browser.

5. Experiment with modifying the step variable value and the sleep time in the
BouncingParty applets and observe the results in your browser.

6. Try to modify one of the applets so that the “Party” message moves from
upper right to lower left by altering the x- and y-coordinates so that as x gets
bigger, y gets smaller.

7. Experiment with modifying the HTML document to hold additional applets.

CHAPTER SUMMARY
❐ A thread is the flow of execution of one set of program statements.The Java pro-

gramming language allows you to launch, or start, multiple threads.You use multi-
threading to make your programs perform better.

❐ You can create threads by extending the Thread class, which is defined in the
java.lang package.The Thread class contains a method named run() that you over-
ride to tell the system how to execute the Thread.

Figure 17-20 Three applets running in the browser

Tip

646 Chapter 17 Multithreading and Animation

Review Questions 647

❐ A Thread can exist in one of five states during its life: new, ready, running, inactive,
or finished.

❐ You use the sleep() method to pause a Thread for a specified number of millisec-
onds.When you use the sleep() method, you must catch an InterruptedException.

❐ Every Thread in Java has a priority, or rank, in terms of preferential access to the
operating system’s resources.The Thread class contains three constants: MIN_
PRIORITY, NORM_PRIORITY, and MAX_PRIORITY.

❐ You can implement the Runnable interface as an alternative to inheriting from the
Thread class.

❐ You create computer animation by displaying Images in rapid sequence. Most com-
puter animation employs the Thread class sleep() method to pause for short periods
of time between animation cells; then the viewer has time to absorb each image’s
content.

❐ Clearing the screen before new images are drawn or added takes enough time that
your eye detects it.As a result, the screen appears to flicker. One way to reduce or
eliminate flickering is to override the applet’s update() method so that the viewing
area is not cleared.To “erase” a portion of a drawing on the screen, you use the
applet’s background color to redraw the portion of the screen that you want to erase.

❐ The applet method getImage() loads a stored image into an applet.The getImage()
method requires two arguments: a URL object and the name of an image file.

❐ Garbage collection runs as a low-priority Thread and provides for the automatic
cleanup of unnecessarily reserved memory.

❐ Web page creators use animation to attract your attention and to make their pages
interesting.You can use HTML heading tags to display text in Web documents.

REVIEW QUESTIONS
1. A thread is the one set of program statements.

a. amount of memory occupied by

b. flow of execution of

c. machine language code for

d. area of memory occupied by

2. A modern computer with a single CPU can execute state-
ment(s) at a time.

a. one

b. two

c. at least several dozen

d. at least several thousand

17

3. If you use a computer with a single processor, you can execute
concurrently.

a. only one thread

b. several threads

c. any number of threads

d. You cannot execute multiple threads on a single-processor computer.

4. You can create threads by the Thread class.

a. making a copy of

b. instantiating

c. extending

d. overriding

5. You override the method to tell the system how to execute
a Thread.

a. thread()

b. execute()

c. run()

d. start()

6. You achieve by starting more than one Thread object.

a. polythreading

b. bithreading

c. multithreading

d. buffered threading

7. Which of the following states is not possible for a Thread?

a. ready

b. finished

c. altered

d. new

8. A Thread’s rank in terms of preferential access to the operating system’s resources
is its .

a. priority

b. prerogative

c. supremacy

d. license

648 Chapter 17 Multithreading and Animation

Review Questions 649

9. If you do not assign a priority to a Thread object, it assumes a priority of
by default.

a. 0 (zero)

b. 1

c. 5

d. 10

10. Which of the following Threads would most likely run first?

a. a finished Thread with priority 10

b. a suspended Thread with priority 5

c. a runnable Thread with priority NORM_PRIORITY

d. a runnable Thread with priority 2

11. Java sometimes chooses to run a low-priority Thread to avoid .

a. construction

b. death

c. starvation

d. sedation

12. You can use the Runnable to inherit Thread methods.

a. interface

b. method

c. mode

d. formula

13. When you define a Thread as private Thread someThread;, the value of
someThread is .

a. zero

b. null

c. false

d. unknown

14. You would see all versions of an animated drawing at the same time if you did
not call an applet’s method.

a. clear()

b. paint()

c. draw()

d. update()

17

15. A technique to reduce screen flickering is to .

a. redraw the entire image with each call to the paint() method

b. redraw only those portions of the screen that actually change

c. call the paint() method directly instead of repaint()

d. buy a more expensive monitor

16. To create the illusion that an object moves up and to the left, you would
.

a. increase its x-coordinate and decrease its y-coordinate

b. decrease its x-coordinate and increase its y-coordinate

c. increase both its x- and y-coordinates

d. decrease both its x- and y-coordinates

17. The applet method getImage() .

a. allows you to draw an image on the screen

b. loads a stored image into an applet

c. produces a copy of a displayed image

d. returns the name of an image when you point to it with your mouse

18. When you use getImage(), .

a. you must create a thread in which it can run

b. you must not create a thread in the same file

c. Java automatically creates a thread for you

d. as many threads are launched as there are frames within the image

19. HTML provides levels of headings.

a. two

b. six

c. 12

d. an unlimited number of

20. Image files usually use as filename extensions.

a. .jpeg or .gif

b. .exe or .doc

c. .www or .url

d. .com or .net

650 Chapter 17 Multithreading and Animation

Exercises 651

EXERCISES
1. a. Create a Thread class named Friend whose constructor accepts a friend’s name.

The Friend class run() method displays a single space 499 times before display-
ing the friend’s name once.Write a program that instantiates three Threads to
wihich you pass your first name and the first names of two friends. Start the
Threads and observe which Thread wins the race. (When you run the program
several times, a different Friend will win by different margins represented by
the spaces between the names.) Save the Friend class as Friend.java and the
program as NameRace.java in the Chapter.17 folder on your Student Disk.

b. Set different priorities for the three Thread objects you created in Exercise 1a,
and then run the program again. Save the new program as
NameRaceWithPriorities.java in the Chapter.17 folder of your Student Disk.

2. Create two classes that extend Thread—LovesMeThread and LovesMeNotThread.
Each Thread displays the phrase its name implies 1000 times.Write a program to
start the two Threads; the final message is the answer to your question! Save the
classes as LovesMeThread.java and LovesMeNotThread.java and the program
as LoveQuestion.java in the Chapter.17 folder on your Student Disk.

3. Create a class named RaceHorse that extends Thread. Each RaceHorse has a
name and a run() method that displays the name 5000 times.Write a program that
instantiates two RaceHorse objects.The last RaceHorse to finish is the loser. Save
the class as RaceHorse.java and the program that creates the RaceHorse objects
as Race.java in the Chapter.17 folder on your Student Disk.

4. Create a CharacterThread class that displays a single character 500 times.Write a
program that creates five CharacterThreads, each of which displays a different
character. Give two Threads the minimum priority, two Threads the maximum
priority, and one Thread the default priority. Run the program and observe the
results. Save the class as CharacterThread.java and the program as
FiveThreads.java in the Chapter.17 folder on your Student Disk.

5. a. Write an applet that displays a stick figure doing jumping jacks. Save the pro-
gram as Exercise.java in the Chapter.17 folder on your Student Disk.

b. Add text to the Exercise applet so it serves as an advertisement for a health
club. Save the new program as ExerciseAd.java in the Chapter.17 folder on
your Student Disk.

6. Write an applet that shows a bouncing ball by drawing a circle in a foreground
color, redrawing it in the background color, and then drawing a new foreground-
colored ball in a new position.The ball reverses direction when it nears the edge
of the viewing area. Use the Thread.sleep() method so there is enough time for
the user to absorb the changes on the screen before it is redrawn. Save the pro-
gram as Pong.java in the Chapter.17 folder on your Student Disk.

17

7. a. Write an applet that shows a yo-yo moving up and down on its string. Each
time you redraw the yo-yo, let it sleep 100 milliseconds. Create an HTML file
named TestYoYo.html that you can run in your browser to test the class. Save
the program as YoYo.java in the Chapter.17 folder and save both the program
and the HTML file on your Student Disk.

b. Save the YoYo.java program as YoYo1.java.Then create a new YoYo2.java file
in which the yo-yo sleeps for 150 milliseconds—slightly longer than YoYo1.
Create a file named TestYoYos.html that you can run in your browser to
watch both yo-yos at once. Save all the files in the Chapter.17 folder on your
Student Disk.

8. Locate a shareware animated GIF file on the Web, and then include it in an
applet. Save the program as MyMovie.java in the Chapter.17 folder on your
Student Disk.

9. Write an applet that creates a straight line that constantly rotates in a circle. Save
the program as Baton.java in the Chapter.17 folder on your Student Disk.

10. Write an applet that simulates a marquee by displaying a String of characters one-
at-a-time from right-to-left across the screen. Use the Thread.sleep() method to
pause momentarily before each new character displays.When the String message
is fully displayed, start the message again. Save the program as Marquee.java in
the Chapter.17 folder on your Student Disk.

11. Each of the following files in the Chapter.17 folder on your Student Disk has
syntax and/or logical errors. In each case, determine the problem and fix the pro-
gram. After you correct the errors, save each file using the same filename preceded
with Fix. For example, DebugSeventeen1.java will become
FixDebugSeventeen1.java.You can use the files testDebug3.html and
testDebug4.html in the Chapter.17 folder of your Student Disk to test the applets
in DebugSeventeen3.java and DebugSeventeen4.java, respectively.There are five
additional files accompanying the Debug files. DebugSeventeen1.java uses
DebugThreadA.java and DebugThreadB.java. DebugSeventeen2.java uses
DebugSeventeen2Thread.java.You can use the html files TestDebug3.html and
TestDebug4.html to run DebugSeventeen3.java and DebugSeventeen4.java,
respectively.

a. DebugSeventeen1.java

b. DebugSeventeen2.java

c. DebugSeventeen3.java

d. DebugSeventeen4.java

652 Chapter 17 Multithreading and Animation

Case Project 653

CASE PROJECT

The Healthy Heart Association is sponsoring a walk-a-thon to raise money and wants
an animated figure to display on its Web site.Write an applet that displays a figure that
walks from left-to-right across the screen.When the figure nears the right side of the
screen, start the figure at the left again. Save the program as Walking.java.Write an
HTML document named TestWalkers.html that displays three walking figures and
includes text describing a fund-raising walk-a-thon. Save both files in the Chapter.17
folder on your Student Disk.

Case
Project

17

655

APPENDIX

A
WORKING WITH JAVA SDK 1.4

In this Appendix, you will:
� Configure the Java System Development Kit
� Use Notepad to save and edit source code
� Use the DOS prompt to compile source code
� Use TextPad to work with Java
� Use TextPad to save and edit source code

CONFIGURING WINDOWS TO WORK WITH THE SDK
To configure Windows with the SDK that accompanies this book, you must add the
Java bin directory to the command path of your operating system (OS).That way, your
OS will know where to look for the Java commands that you use.

One way to update the OS path for Windows 95 and 98 is to use a procedure to edit
the OS Path or set the OS Path command in the autoexec.bat file.This is the file that
is automatically executed every time you start your computer. After you edit or set the
command in the file, to test whether the path is set correctly to include the bin direc-
tory, you can type autoexec.bat at the command prompt.

How to set the path for Windows 95 or 98:

1. Go to the Start menu and select the Run option.

2. In the Run dialog box, type sysedit, and then click OK.This should start
the System Configuration Editor.

3. If necessary, use the Window menu to switch to the AUTOEXEC.BAT file.

4. If the file contains a PATH or SET PATH command, type a ; (semicolon) at
the end of the command, then type C:\j2sdk1.4.0\bin\, followed by
another ; (semicolon), then a . (period), and finally an ending ; (semicolon).
The command should look something like the following:

PATHƒ=ƒC:\WINDOWS;C:\WINDOWS\COMMAND;C:\jdk1.4.1\bin\;.;

5. If the file does not contain a PATH command, enter:
PATHƒ=ƒC:\j2sdk1.4.0\bin\;.; at the beginning of the file.

6. So that the OS can find your class files that are in the Java bin directory and
also on your hard disk or floppy disk, add the CLASSPATH command to
the AUTOEXEC.BAT file. Enter the command SET CLASSPATH on a
separate line in the AUTOEXEC.BAT file: SETƒCLASSPATHƒ=ƒC:\
j2sdk1.4.0\bin\;.;.

7. The previous steps assume you are using JDK1.4.0. If you are using JDK1.3.1
or JDK1.2, substitute that name in the previous steps.

8. Save the file and exit the System Configuration Editor.

9. Reboot your system to have the new path take effect.

How to set the path for Windows NT, Windows 2000, or Windows XP:

1. Open the Start menu and click Control Panel. For Windows 2000 and
Windows NT users, the Control Panel is found under Settings on the
Start menu.

2. On the Control Panel, double-click the System icon. On System Properties,
click the Advanced tab. (If you are using Windows XP, you will need to
switch to Classic View.)

3. Click the Environment Variables button.

4. In the bottom pane labeled System variables, if necessary scroll to find the
Path statement.

5. If the file contains a Path or SET PATH command, click to select the Path
variable, and then click the Edit button.A new Edit System Variable window
opens and the existing Path command can be edited.At the end of the existing
Path command, type a ; (semicolon), and then type C:\j2sdk1.4.0\bin\,
followed by another ; (semicolon), then type a . (period), and finally type
an ending ; (semicolon).The command should look something like the
following: PATH (in the top window specifying the command name), and
%SystemRoot%\system32;C:\j2sdk1.4.0\bin;.; in the bottom Edit
System variable window.

6. If no such PATH command exists, click the New button and enter PATH as
the Variable Name and C:\j2sdk1.4.0\bin\;.; as the Variable Value.

7. So that the OS can find your class files that are in the Java bin directory and
also on your hard disk or floppy disk, add the CLASSPATH command to the
AUTOEXEC.BAT file. Enter the command SETƒCLASSPATH on a separate
line in the AUTOEXEC.BAT file by clicking the New button, then enter
CLASSPATH as the Variable Name, and SETƒCLASSPATHƒ=ƒC:\
j2sdk1.4.0\bin\;.; as the Variable Value.

8. The previous steps assume you are using JDK1.4.0. If you are using JDK1.3.1
or JDK1.2, substitute that name in the previous steps.

656 Appendix A Working with Java SDK 1.4

Using Notepad to Save and Edit Source Code 657

9. Save the file and exit.

10. Reboot your system to have the new path take effect.

USING NOTEPAD TO SAVE AND EDIT SOURCE CODE

Figure A1-1 shows how to use the Windows Notepad text editor to save and edit the
source code for Java Programs.To start Notepad using Windows 95/98/2000, click the
Start menu, select the Program folder, select Accessories, and then select Notepad. To
start Notepad using Windows XP, click the Start menu, click All Programs, select
Accessories, and then select Notepad. After you start Notepad, you can enter and edit
the code just as you would with any text editor.

Saving source code in Notepad requires that the Java source file be saved with a .java
extension. Because Java is case sensitive, you must save a file with the proper capitaliza-
tion. If the class name of the file and the filename do not match, in both spelling and
case, you will receive an error when you attempt to compile the source code. Because
the class name in Figure A1-1 is “First” you must save the file as “First.java”. If you use
TextPad to create your files, you can select Java as a Save As type as shown in Figure A1-2.
If you use Notepad, one way to ensure that the Java file is saved in the proper format is to
place double quotation marks around the filename, as in “First.java”.This ensures that the
file is not saved as “First.java.txt”.

Figure A1-1 First.java as it appears in Notepad using Windows XP

A

USING THE DOS PROMPT TO COMPILE SOURCE CODE

Figure A1-3 shows how to use the DOS prompt, or command prompt, to compile and
run applications. Finding the command prompt varies depending on your version of
Windows as follows:

� Windows 95 and 98; click Start, click Programs, and then click
MS-DOS Prompt

� Windows 2000: Click Start, click Programs, click Accessories, and then click
Command Prompt

� Windows XP: Click Start, click All Programs, click Accessories, and then
click Command prompt

At the command prompt, change from the default drive prompt to the drive where your
application is stored. For example you might type A: and press [Enter] to change to the
A prompt as shown in Figure A1-3, then change the directory (or folder) to the direc-
tory that holds your application using the cd (change directory) command. For example,
you might type cdƒChapter.01 as shown in Figure A1-3.

To compile an application, you type the javac command to start the Java compiler.The
command javac is entered, followed by a space and the complete name of the .java
file—in this case First.java. If the application doesn’t compile successfully, the PATH

Figure A1-2 First.java shown correctly in Save As dialog box

658 Appendix A Working with Java SDK 1.4

Using TextPad to Work with Java 659

might not be set correctly to the Java SDK bin directory where the javac.exe file is
located.Also, you might have failed to use the same capitalization as the name of the Java
class name.

When you compile a .java file correctly, the Java compiler creates a .class file that has the
same filename as the .java file.Thus, a successful compilation of the First.java file creates
a First.class.

To run a Java program, you use the java command and the class name without the .class
extension. For example, after a program named First.java is compiled producing
First.class, you execute the program using the command javaƒFirst as shown in
Figure A1-3.When the program ends, control is returned to the command prompt. If a
program does not end on its own, or you want to end it prematurely, you can press
[Ctrl]+C to return to the command prompt.

USING TEXTPAD TO WORK WITH JAVA

Now that you’ve learned how to use Notepad and the DOS prompt for working with
Java, you’re ready to learn how to use TextPad. Because this text editor is designed for
working with Java, many programmers prefer it to Notepad.You can download a trial
version from http://www.textpad.com.

Unlike Notepad,TextPad is not included with Windows, and you must install it before
you can use it.To do so, run the setup file that you can download from the TextPad Web
site.Then respond to the resulting dialog boxes. Because this is a trial version of TextPad,
you should purchase TextPad if you decide to use it beyond the initial trial period.
TextPad is relatively inexpensive, especially when you consider how much time and
effort it can save you.

Figure A1-3 Commands for compiling and running the First.java program

A

Note that TextPad runs only under the Windows operating system. If you are not using
Windows, you can use the text editor that comes with your operating system or you can
search the Web to find a text editor that better suits your needs.

USING TEXTPAD TO SAVE AND EDIT SOURCE CODE

Figures A1-4 and A1-5 show how to use TextPad to create, edit, and save source code.
To enter and edit source code, you can use the same techniques that you use when work-
ing with any other Windows text editor. In short, you can use the standard Windows
shortcut keystrokes and menus to enter, edit, and save your code.You can use the File
menu to open and close files.You can use the Edit menu to cut, copy, and paste text.
And you can use the Search menu to find and replace text. In addition, TextPad color
codes the source files so it is easier to recognize the Java syntax. TextPad also makes it
easier to save *.java files with the proper capitalization and extension.

To save the source code, select the Save command from the File menu ([Ctrl]+S). Enter
the filename so it is exactly the same as the class name, and then select the Java option from
the Save As type list so TextPad adds the four-letter Java extension to the filename. (If you
are using earlier versions of Windows, you may need to enter the four-letter extension with
the filename, as in First.java. Otherwise, the extension will be truncated to jav.)

Figure A1-4 Creating and Editing First.java with TextPad

660 Appendix A Working with Java SDK 1.4

Using TextPad to Save and Edit Source Code 661

Figure A1-6 shows how to use TextPad to compile the source code for a Java application.
To compile the current source code, press [Ctrl]+1 or select the Compile Java command
from the Tools menu.

Figure A1-6 Compiling source code using the Tools Menu

Figure A1-5 The TextPad Save As dialog box

A

If the source code does not compile cleanly, TextPad will leave you at a Command
Results window like the one shown in Figure A1-7. In this case, you can read the error
message, switch to the source code window, correct the error, and compile the source
code again. Because each error message identifies the line number of the error, it is often
easier to find the error by selecting the Line Number option from the View menu.That
way,TextPad will display line numbers.

When you have several Java files open at once, you can use the document selector pane
to switch between files. In Figure A1-7, only two documents are open (First and
Command Results), but you can open as many Java files as you like.You can also use the
Windows menu and standard Windows keystrokes ([Ctrl]+F6 and [Ctrl]+Shift+F6) to
switch between windows.

To edit as efficiently as possible, you can use the Document Properties command in the
View menu to set formatting options. In particular, you should set the tab settings so you
can easily align the code in a program.

How to Use TextPad to Run an Application
Once you’ve completed the source code for an application, you can run that application
by pressing [Ctrl]+2 or by clicking Run Java Application from the Tools menu. If the
application that you run prints text to the console,TextPad will start a DOS Prompt win-
dow like the one shown in Figure A1-8.Then you can press any key to end the appli-
cation. If necessary, you can also click the Close button or press [Alt]+F4 to close the
DOS Prompt window.

Figure A1-7 A compile time error

662 Appendix A Working with Java SDK 1.4

Using TextPad to Save and Edit Source Code 663

Figure A1-8 Text printed to the console

A

Index

665

Symbols
& (ampersand), 163
* (asterisk), 14, 122
@ (at sign), 439
\ (backslash), 14, 44, 282, 577
: (colon), 171
, (comma), 31, 32
{} (curly braces), 10–12, 57, 58,

74, 99
$ (dollar sign), 8–9
“ (double quotes), 43, 44
= (equal sign), 31, 155
! (exclamation point), 148, 172
/ (forward slash), 14
> (greater-than sign), 258
< (less-than sign), 258
- (minus sign), 121
() (parentheses), 7, 10, 38, 42, 58,

65–66
. (period), 8, 59
+ (plus sign), 35, 190, 214
(pound sign), 10
? (question mark), 171
; (semicolon), 7, 31, 122, 155,

162–163, 236
‘ (single quote), 7, 43, 44, 155
[] (square brackets), 11, 233
_ (underscore), 8–9, 115
| (vertical bar), 164

A
aBackspaceChar variable, 44
abs method, 119
abstract class(es)

access modifier for, 9, 73, 425, 426
creating, 425–434
defined, 425
graphics and, 370
inheritance and, 424–434, 448–449

instantiating objects from, 426
interfaces and, 448–449
Swing components and, 466

abstract keyword, 9, 73, 425, 426
abstract methods

defined, 425–426
event handling and, 522

Abstract Windows Toolkit. See AWT
(Abstract Windows Toolkit) applets

access modifiers
abstract class, 9, 73, 425, 426
basic description of, 10–11
final, 9, 73–74, 115–116, 119, 413
private, 9, 58, 74–75, 407–409
public, 9–11, 58, 63–64, 73–75,

407–409
removing, 63, 64
static, 9, 11, 58, 74–76, 413

AccessRandomly class, 603
AccessRandomly.java, 603, 604
accumulating process, defined, 190
AChildClass.java, 406
acos method, 119
action keys, 524
ActionEvent class, 297–299, 475,

521–523, 528
ActionListener class, 523
ActionListener event listener,

374–375, 470–471, 493, 494
ActionListener interface, 297–299,

304, 314, 449, 522–523, 528, 529
actionPerformed method, 315–316,

334–336, 341, 376, 471, 474, 476,
494, 516, 522–523, 529
adding output and, 301–302
applet life cycles and, 306–308
basic description of, 298
file I/O and, 593, 597–598
sophisticated applets and, 311–312

actual parameters, 69

acyclic gradients, 360, 361
add method, 286, 301, 313, 472–473,

487, 493, 514
addActionListener method, 298,

300, 523
addComponentListener method, 527
addFocusListener method, 298, 527
addItem method, 485
addItemListener method, 523
Addition (+) operator, 36–38, 173
addKeyListener method, 298
addMouseListener method, 527
addMouseMotionListener

method, 527
addPoint method, 346
aDept field, 100–101
AdjustmentEvent class, 523
AdjustmentListener event listener, 470
adminAssistant object, 100–101
aGreeting variable. 210, 211
AM_PM argument, 126
ambiguity, learning about, 106–108
American Standard Code for

Information Interchange. See ASCII
(American Standard Code for
Information Interchange)

ampersand (&), 163
AND operator, 163–168, 173
Animal class, 426–427, 434–436
AnimalArray class, 436–437
AnimalArray.java, 436–437
Animal.java, 450
AnimalReference class, 434–435
AnimalReference.java, 435
AnimatedFigure class, 630
AnimatedFigure2 class, 632
AnimatedFigure2.java, 632, 635
AnimatedFigure3.java, 635–637
AnimatedFigure4.java, 635–637

666 Index

AnimatedFigure.java, 631–633
animation, 367, 373–377, 611–651

adding, to Web browser pages,
640–644

adding moving text to, 632–633
pre-drawn objects for, 637–640
programs that display, previewing, 612
screen flickering and, 633–637
stick figure/cartoon, 627–633

anti-aliasing, 359
aNum field, 100–101
AParentClass.java, 406
APIs (Application Programming

Interfaces), 125, 126
append method, 222
applet(s). See also applets (listed by

name); Swing applets
adding output to, 301–302
adding multiple components to,

295–296
AWT (Abstract Windows Toolkit),

280–289
basic description of, 6, 279–323
event-driven programming and,

296–301
height/width of, 282–283
previewing, 280–281
running, 282, 286–287, 660–661
understanding simple, 283–285
viewing, 286–287, 336–337
writing HTML documents to host,

281–283
Applet class, 280, 284, 285
<APPLET> tag, 282, 283, 367, 643
Applet Viewer, 280–282, 286–288,

291, 300. See also appletviewer
command
destroy method and, 303, 304
display method and, 308
resizing, 328
windows, positioning components

in, 313–317
applets (listed by name). See also

applets
AccessRandomly.java, 603, 604
AChildClass.java, 406
AnimalArray.java, 436–437

Animal.java, 450
AnimalReference.java, 435
AnimatedFigure2.java, 632, 635
AnimatedFigure3.java, 635–637
AnimatedFigure4.java, 635–637
AnimatedFigure.java, 631–633
AParentClass.java, 406
ASuperClass.java, 400
Birthdate.java, 127
BouncingParty1.java, 640–642
BouncingParty2.java, 640–642
BouncingParty3.java, 642
Chap3EventSite.java, 56
Chap5ChooseManager.java, 140
Chap5Event.java, 140
Chap6EvenInt.java, 184
Chap7SecretPhrase.java, 208
Chap8Event.java, 232
Chap9Greet.java, 279–280
Chap10JGregorianTime.java, 326
Chap12EntertainmentSelector.java,

424
Chap14JPanelApplet.java, 506–507
CheckFile2.java, 579
CheckFile.java, 578–579
CheckTwoFiles.java, 580–581
ChooseManager2.java, 162, 168
ChooseManager3.java, 168, 170–171
ChooseManager4.java, 171, 189–190
ChooseManager.java, 140, 161–162
Cow.java, 450
CreateEventFile.java, 592–594
DemoArray2.java, 236, 237
DemoArray3.java, 237
DemoArray.java, 235, 236
DemoBlock.java, 102–103
DemoButtonGroup.java, 482
DemoClassVar.java, 118–119
DemoConstruct.java, 111, 112
DemoConstructors.java, 400–401
DemoDate2.java, 125
DemoDate3.java, 125
DemoDate.java, 123–124
DemoEntertainment.java, 433–434
DemoIncrement.java, 192
DemoMath.java, 121
DemoOverload.java, 106
DemoSleepThread.java, 621

DemoStringBuffer.java, 223
DemoSuper.java, 407
DemoThreads.java, 619–620, 623
DemoThreadsPriority.java, 623–624
DemoVariables2.java, 34, 35
DemoVariables3.java, 35–38
DemoVariables4.java, 37, 39–40
DemoVariables5.java, 39–40, 41
DemoVariables6.java, 41, 46
DemoVariables7.java, 46
DemoVariables.java, 33–34
DemoWorkingDog.java, 448
DialogInitials.java, 150–151
DinnerEvent.java, 395, 398
DinnerEventWithConstructor.java,

401, 404
DinnerEventWithHeader.java, 398,

401, 409
DinnerEventWithProtectedData.java,

410
Dog2.java, 442
DogCompare2.java, 442–443
DogCompare.java, 441–443
Dog.java, 442, 450
DogString.java, 440
Entertainment2.java, 444
EntertainmentDataBase.java,

438–439, 444, 453
Entertainment.java, 430, 444,

451, 452
EntertainmentNoDuplicates.java,

444, 445
Event2.java, 239, 250
Event3.java, 250
EventArray.java, 239–240
EventArray2.java, 240–241, 244
EventArray3.java, 244
EventArray4.java, 246, 250
EventArray5.java, 251, 252
EventArray6.java, 252, 253
EventArray7.java, 254
EventFile2.java, 599–600
EventFile3.java, 600
EventFile.java, 594
EventInt.java, 196–198
Event.java, 161, 239, 393, 397
EventSite2.java, 76
EventSite3.java, 76–77, 82–83

Index 667

EventSite4.java, 84, 86
EventSite5.java, 86, 109
EventSite6.java, 109–110, 112
EventSite7.java, 112, 118
EventSite8.java, 118
EventSite.java, 76
EventStringBuffer.java, 220–221
EventWithConstructorArg.java, 404
EventWithConstructor.java, 401, 404
EventWithHeader.java, 397, 401, 409
EventWithProtectedData.java, 409
FindState.java, 255–256
FindStudent.java, 268
First2.java, 18
First.java, 7–17, 57–59, 115, 655–658
Greet.java, 283, 286
Hello2.java, 15, 16–17
Hello3.java, 18–19
Hello.java, 13–15
J2DLine.java, 363
JBoxAround2.java, 359–360
JBoxAround.java, 357–359
JButtonFrame.java, 530
JCardLayout.java, 516
JChangeMessage.java, 475
JDemoBorderNoNorth.java,

510–511
JDemoBox.java, 489
JDemoButtonGroup.java, 484
JDemoCheckBox.java, 480–482
JDemoColor.java, 333–334
JDemoCreateGraphicsObject2.java,

341
JDemoCreateGraphicsObject3.java,

342
JDemoCreateGraphicsObject.java,

336
JDemoFlowRight.java, 511–513
JDemoFontMetrics.java, 353–355
JDemoFrame.java, 468–469
JDemoGraphics.java, 330, 331–332
JDemoGraphics2.java, 332
JDemoGrid.java, 513
JDemoList.java, 486–489
JDemoPaint.java, 327–328
JDemoRectangles2.java, 340
JDemoRectangles.java, 339–340
JDemoToolBar.java, 493–494

JEventImage.java, 373
JEventSound.java, 368–370
JFontList.java, 350–351, 354
JGreet2.java, 291–292, 295–296
JGreet3.java, 296, 299–300
JGreet4.java, 300, 301
JGreet5.java, 301
JGreet6.java, 301–302
JGreet7.java, 302
JGreet.java, 289–292
JGregorianTime.java, 326, 374–377
JKeyFrame.java, 526
JLifeCycle.java, 304, 306–309
JMouseFrame.java, 533
JMoveLabel2.java, 316
JMoveLabel.java, 315, 316
JPartyPlanner.java, 309–313
JShapes2D.java, 365–366
JStar.java, 345–346
JThreeStars.java, 347–348
JWesternPanel.java, 519
LoadImage.java, 638
MathMistake2.java, 547, 548
MathMistake3.java, 548
MathMistake4.java, 548–549
MathMistake.java, 547, 552
Menu.java, 557–558
MusicalEntertainment2.java, 445
MusicalEntertainment.java, 431,

445, 452
NoSuchClass.java, 543
NumInput.java, 219
OtherEntertainment2.java, 445
OtherEntertainment.java, 445, 452
Party.java, 567
PartyException.java, 567
PassArrayElement.java, 248
PassArray.java, 249
PickMenu.java, 559
PlanMenu.java, 560–562, 564
PlanMenuWithStackTrace.java,

564, 565–566
PlanVegetarianMenu.java, 562
ReadEventFile.java, 598, 599
ReadFileWriteScreen.java, 589
ReadKBWriteFile.java, 588, 603
ReadKBWriteScreen.java,

586–587, 589

ReadNamedFile.java, 599–600
SecretPhrase.java, 216–217
SetUpSite2.java, 63, 70–71
SetUpSite3.java, 71, 78
SetUpSite4.java, 78
SetUpSite5.java, 79
SetUpSite.java, 56, 60–63
ShowThread2.java, 623
ShowThread.java, 618, 619, 623
SleepThread.java, 621
SortCharArray2.java, 262
SortCharArray.java, 259–262
SortObjects.java, 262
SortSalon.java, 277
SortStrings.java, 264–265
TestCharacter.java, 209–210
TestConstructor.java, 86–87
TestEmployee2.java, 100
TestExpandedClass.java, 84–85
TestStatement2.java, 63–64
TestStatement.java, 62, 63
ThrowParty.java, 568
TicketNumber.java, 54
TimerApplet.java, 626–627
TwoMistakes.java, 550–551
UseChap11WeekendEvent.java,

386
UseDinnerEvent.java, 395–396
UseEventsWithConstructorArg.java,

405
UseEventsWithConstructors.java,

402
UseEventWithHeader.java, 399
UseProtected.java, 411
UsersInitials2.java, 145
UsersInitials.java, 142–145
UseSimpleEvent.java, 393–395
VegetarianMenu.java, 562

appletviewer command, 286–287,
290–291, 301. See also
AppletViewer

applications, basic description of, 6
approvalprocess method, 69
architectural neutrality, of Java, 5
arcs

defined, 339
drawing, 337, 339–340, 342–344

668 Index

args identifier, 11
arguments

ambiguity and, 107
basic description of, 7, 58, 65
constructors and, 108–112, 403–405
Font object and, 291
get method and, 126
JOptionPane class and, 147–149
methods that require a single, 65–67
overloading methods and, 104,

105–106
passing multiple, 67–69
return types and, 70–71
setCharAt method and, 223

arithmetic operator(s). See also
arithmetic statements
basic description of, 36–38
floating-point numbers and, 41
loops and, 190–192
numeric type conversion and, 42–43
shortcut, 190–192

arithmetic statements. See also
arithmetic operators
loops and, 190–192
writing, 36–38

ArithmeticExceptions, 549, 551, 566
array(s)

basic description of, 233
creating, 253–256
declaring, 232–241
elements, sorting, 256–265
initializing, 232–241
multidimensional, 265–269
of objects, 237–241
parallel, 242, 244, 246–247
passing, to methods, 247–251
programs that use, creating, 234–235
sorting, 256–265
of subclass objects, 436–439
searching, for exact matches/range

matches, 241–247
single-dimensional, 265–266
two-dimensional, 265–269
using subscripts with, 236–237

ArrayIndexOutOfBoundsException,
553, 561, 565

ascending order, 256, 258

ascent, defined, 352–353
ASCII (American Standard Code for

Information Interchange)
basic description of, 44–46
char data type and, 43–44
decimal codes/character equivalents,

list of, 43–44
keyboard input and, 142

asin method, 119
assignment operators, 31, 173
Associated Press, 297
asterisk (*), 14, 122
AStudent class, 407–409
ASuperClass.java, 400
at sign (@), 439
aTabChar variable, 44
atan method, 119
attributes

basic description of, 4, 72
HTML, 282

.au (Sun Audio) file format, 367
audio

animation and, 374–375
clips, 367–368, 374–375
file formats, 367

AudioClip method, 368
AUTOEXEC.BAT, 653
AWT (Abstract Windows Toolkit)

applets. See also applets
basic description of, 284–289
previewing, 280–281
using labels with, 285–288

AWTEvent class, 521, 523, 527–528

B
background color, 334, 335, 338,

532, 635. See also color
backslash (\), 14, 44, 282, 577
backspace character, 44
“Bad command or filename”

message, 16
BankLoan class, 69
base classes

information hiding and, 410
inheritance and, 389, 410

base 16 (hexadecimal) notation,
44–45, 439

BASIC
arrays and, 233
if structures and, 156

BasicStroke interface, 361, 363
batch processing, 601
billPatients method, 391
binary digits

basic description of, 43, 581
conversion of source code into, 5
type casting and, 43

binary operators
defined, 190
loops and, 190–191

Birthdate.java, 127
Birthday class, 127
bits. See binary digits
black constant, 331
block(s)

basic description of, 98–103
catch, 545–554, 559–560, 562–564
comments, 14
if structures and, 158, 160
inside, 98
nested, 98
outside, 98
scope, 101–102
try, 545–548, 552–554, 560

blue constant, 331
Boolean data type

AND operator and, 164, 165, 166
arrays and, 241, 245, 255
basic description of, 38–40
conditional operators and, 172
constructors and, 85
equals method and, 441
graphics and, 344
if structures and, 158–163
loops and, 184, 185, 187, 192, 194
making decisions and, 154–156
methods and, 69
variables and, 30, 38–41

Boolean keyword, 9
BorderLayout layout manager, 375,

473, 491–492, 496
basic description of, 508–510

Index 669

event handling and, 525
JPanel class and, 517–518

BouncingParty1.java, 640–642
BouncingParty2.java, 640–642
BouncingParty3.java, 642
BoxLayout layout manager,

507–508, 520
braces method, 391
break keyword, 9, 169
break statement, 170, 243
browser(s), 282–283, 285–287

defined, 282
destroy method and, 303, 304
fonts and, 291–292
interpreters and, 2
Internet Explorer, 2, 282, 286–287
loading HTML documents into, 282
Netscape Navigator, 2, 282, 286–287
pages, adding animation to, 640–644
running applets with, 286–287
screen viewing area consumed

by, 283
bubble sorts, 257, 259–263. See also

sorting
bubbleSort method, 259, 260, 261,

262–263
BufferedInputStream class, 583, 584
buffers

defined, 219, 584
file I/O and, 583, 584
StringBuffer class and, 219–223

business card program, 27
ButtonGroup class, 481–484
Byte class, 118
byte data type. See also bytes

classification of, as a variation of
the int data type, 32

numeric type conversion and,
42–43

variables and, 30
byte keyword, 9
bytes. See also byte data type

basic description of, 5, 43
type casting and, 43

byvalue keyword, 9

C
C++ (high-level language)

abstract classes and, 425
inheritance and, 425, 446
modeling of Java after, 6
syntax, 2

calculateAge method, 70–71
calculateRaise method, 69–70
call(s)

basic description of, 3
stacks, tracing exceptions through,

563–566
Cancel option, 148–149
CANCEL_OPTION variable, 149
canRead method, 577
canWrite method, 577
capacity method, 220
capacity, of objects, 220
capitalization. See also case sensitivity

of class names, 4, 9
of field names, 115
of variable names, 31

card, use of the term, 514
CardGame class, 449
CardLayout class, 514
CardLayout layout manager, 508,

514–516
carriage returns, 10, 44, 46
Cartesian coordinates, 119. See also

coordinate space
case keyword, 9, 169
case sensitivity. See also capitalization

HTML and, 282
Java and, 8
XML and, 282

case structure, 169–170
cast keyword, 9
catch blocks, 545–554, 559–560,

562–564. See also exceptions
catch keyword, 9
catch method, 546
cd\ (change directory) command, 452
ceil method, 119
ChangeListener event listener, 470, 471
ChangeMessage class, 475

changeSalary method, 78
Chap3EventSite.java, 56
Chap5ChooseManager.java, 140
Chap5Event.java, 140
Chap6EvenInt.java, 184
Chap7SecretPhrase.java, 208
Chap8Event.java, 232
Chap9Greet class, 280
Chap9Greet.java, 279–280
Chap10JGregorianTime.java, 326
Chap11WeekendEvent class, 386–387
Chap12EntertainmentSelector

class, 424
Chap12EntertainmentSelector.java,

424
Chap13JDemoButtonGroup class, 464
Chap14JPanelApplet.java, 506–507
Chap16ReadEventFile class, 576
Chap17AnimationApplet class, 612
Chap17Animation.html, 612
char data type. See also characters

basic description of, 43–44
variables and, 30

char keyword, 9
Character class, 118, 208–210
characters. See also char data type;

symbols
ASCII, 43–46, 142
foreign language, 45, 142
manipulating, 208–210
nonprintable, 44, 46
sorting, 258–262
Unicode, 9, 44, 46, 85, 142,

219–220, 235, 259, 581, 585
wildcard, 122, 453

charAt method, 213, 223
CheckFile2.java, 579
CheckFile.java, 578–579
CheckTwoFiles.java, 580–581
child classes

creating, 404
defined, 390
examples of, 391, 393
information hiding and, 409
Swing components and, 466

670 Index

ChooseManager class, 157–158
ChooseManager2 class, 161
ChooseManager2.java, 162, 168
ChooseManager3 class, 168
ChooseManager3.java, 168, 170–171
ChooseManager4 class, 171
ChooseManager4.java, 171, 189–190
ChooseManager.java, 140, 161–162
class(es). See also classes (listed by

name); inheritance
adding constructors to, 86, 401–402
base, 389, 410
basic description of, 4, 55–95
changing, 18
child, 390, 391, 393, 404, 409, 466
concepts, learning about, 71–73
concrete, 425
creating, 73–75, 391, 425–434, 578
defining, 8–9, 56
fundamental, 118
headers, 73, 75
instantiation of, 72, 73
libraries, 118
methods and, relationship of,

57, 114
names, 4, 8–10, 17–18, 59, 73–75
optional, 118
organizing, 80–85
reusability of, 72, 389, 450
test, creating, 86
types, returning, 69
using, 55–95
valid, list of, 9
virtual, 425

.class file extension, 17, 281, 282
class keyword, 9, 10
class variables

basic description of, 114
creating, 116–117

classes (listed by name). See also
classes; Employee class
AccessRandomly class, 603
ActionEvent class, 297–299, 475,

521–523, 528
ActionListener class, 523
AdjustmentEvent class, 523
Animal class, 426–427, 434–436

AnimalArray class, 436–437
AnimalReference class, 434–435
AnimatedFigure class, 630
AnimatedFigure2 class, 632
Applet class, 280, 284, 285
AStudent class, 407–409
AWTEvent class, 521, 523,

527–528
BankLoan class, 69
Birthday class, 127
BufferedInputStream class, 583, 584
ButtonGroup class, 481–484
Byte class, 118
CardGame class, 449
CardLayout class, 514
ChangeMessage class, 475
Chap9Greet class, 280
Chap11WeekendEvent class,

386–387
Chap12EntertainmentSelector

class, 424
Chap13JDemoButtonGroup

class, 464
Chap16ReadEventFile class, 576
Chap17AnimationApplet class, 612
Character class, 118, 208–210
ChooseManager class, 157–158
ChooseManager2 class, 161
ChooseManager3 class, 168
ChooseManager4 class, 171
Color class, 331
Component class, 466, 467
ComponentEvent class, 297, 521,

523, 527
Container class, 289, 465, 466, 467
ContainerEvent class, 523
Cow class, 426, 428
CreateEventFile class, 590, 592
Date class, 122, 124–125, 284
DemoArray3 class, 237
DemoConstruct2 class, 112
DemoDate2 class, 124
DemoHelloGoodbyeThread class,

616–618
DemoHelloThread class, 616
DemoIncrement class, 191
DemoInput class, 140–142
DemoMath class, 120

DemoOverload class, 105–106
DemoThreads class, 619
DemoVariables class, 33
DemoVariables2 class, 34
DemoVariables3 class, 35
DemoVariables4 class, 37
DemoVariables6 class, 41
DemoVariables7 class, 46
Dentist class, 391
Desk class, 71
DialogInitials class, 150
Dimension class, 349–350
DinnerEvent class, 391, 393–395,

397–398, 401
DinnerEventWithConstructorArg

class, 404, 405
DinnerEventWithHeader class, 398
Dog class, 426–427, 439, 441,

442, 444
Dog2 class, 442
Double class, 118, 217
Drum class, 396
Employee2 class, 101
EmployeeWithTerritory class,

388–391
Entertainment class, 428–429,

444, 453
EntertainmentDataBase class,

444–445
Error class, 542, 543
Event class, 160–161, 249–250,

391–394, 397, 401–404
Event2 class, 239, 250
EventArray2 class, 240
EventArray3 class, 244, 245
EventArray5 class, 250
EventArray6 class, 252
EventArray7 class, 253
EventInt class, 196
EventInt2 class, 197
EventObject class, 471, 521, 527
EventSite class, 56, 60
EventSite2 class, 76
EventSite3 class, 76–78, 82–83
EventSite4 class, 82–84, 86
EventSite5 class, 86
EventSite6 class, 109–110, 112
EventSite7 class, 112, 118

Index 671

EventSite8 class, 118
EventWithConstructorArg class, 404
EventWithHeader class, 397, 398
EventWithProtectedData class, 409
Exception class, 542, 543, 566, 567
File class, 576–581, 588
FileInputStream class, 583, 596
FileOutputStream class, 583,

587–588, 590
FilterInputStream class, 584
FindState class, 254
FindStudent class, 267
First class, 8, 11, 17, 57
Fish class, 71, 72
Float class, 118
FlowLayout class, 295–296, 511
FocusEvent class, 523
Frame class, 466
FullTimeStudent class, 409
GoodbyeThread class, 616–617
Graphics class, 329
Graphics2D class, 358–368
GraphicsEnvironment class, 348–349
GregorianCalendar class,

126–127, 284
Guitar class, 396
HairSalon class, 277
Hello class, 12, 13
Hello2 class, 18
HelloThread class, 616
HourlyEmployee class, 73, 399, 425
Image class, 370
ImageIcon class, 370, 492
InputStream class, 583, 585, 587,

595, 601
Integer class, 118, 217
Inventory class, 73
InventoryItem class, 9
ItemEvent class, 522, 523, 527
JApplet class, 284–285, 290,

295–299, 370, 390, 397, 446, 492,
625–626

JButton class, 292, 294–299, 300,
302–305, 309–310, 313–316

JChangeMessage class, 473–474
JCheckBox class, 471, 475–479,

484–489, 508–509
JDemoCheckBox class, 477, 483

JDemoColor class, 334
JDemoCreateGraphicsObject

class, 336
JDemoCreateGraphicsObject2

class, 226
JDemoCreateGraphicsObject3

class, 341
JDemoFrame class, 467
JDemoGraphics class, 329–332
JDemoGraphics1 class, 330
JDemoGraphics2 class, 331–332
JEventImage class, 372–373
JFrame class, 465–470, 473–475, 489
JGreet2 class, 291
JGreet4 class, 299, 300
JGreet5 class, 301
JKeyFrame class, 524–525
JLabel class, 288–292, 301–302,

305, 310, 313–316
JMouseFrame class, 531
JMoveLabel class, 314
JOptionPane class, 146–151
JPanel class, 472–475, 478, 487,

493, 516–520
JPartyPlanner class, 310
JScrollPane class, 489–491
JTextArea class, 489, 490–491
JTextField class, 292–296,

300–302, 310
JToolBar class, 471, 491–496
JWesternPanel class, 517
KeyEvent class, 521–522, 524,

527–528
Label class, 285–289, 291–292
Long class, 118
Math class, 118–121, 414
MathMistake class, 544, 545,

548–549
Menu class, 556–557, 562
MouseEvent class, 521, 522,

523, 527
MusicalEntertainment class, 428,

430–431, 433, 437–438, 453
MusicalInstrument class, 396
Objects class, 519–520
Orthodontist class, 391
OtherEntertainment class, 428,

431–433, 437–438, 453

OutputStream class, 583, 585, 587,
589, 603, 601

PartTimeStudent class, 409
Party class, 72, 567
PartyException class, 566
Payroll class, 73
Peridontist class, 391
PickMenu class, 556, 558–560,

562, 563
PlanMenu class, 559–560
Point2D class, 362
PrintStream class, 583
Product class, 446
ReadEventFile class, 596
ReadNamedFile class, 600
SalariedEmployee class, 73, 425
ScrollPaneConstants class, 490
setEntertainmentFee class, 431
SetUpSite class, 60
SetUpSite2 class, 63, 64, 70
SetUpSite3 class, 70
SetUpSite4 class, 78
SetUpSite5 class, 78–79
Short class, 118
SleepThread class, 620–621
Snake class, 427–428
SortCharArray class, 260
SortCharArray2 class, 261
String class, 11, 210, 211, 213–217,

440, 446
StringBuffer class, 219–223
Super class, 411–412
System class, 8, 73, 118, 140, 149
TestConstructor class, 86
TestExpandedClass class, 84–85
TextEvent class, 297, 521, 522, 523
Thread class, 194, 615–619, 624
Throwable class, 542, 566
Toolkit class, 349–351
Tree class, 389–390
TwoMistakes class, 550
UnderGradStudent class, 9
UsersInitials class, 142, 154
UsersInitials2 class, 145
VegetarianMenu class, 562
WeekendEvent class, 386
Window class, 466

672 Index

WindowEvent class, 522, 524, 527
WorkingDog class, 447–448

CLASSPATH command, 654
clearRect method, 338
Close button, 280, 287, 326,

468–470, 478, 487, 493, 521, 576
close method, 601
closeFile method, 598
closePath method, 366
COBOL

arrays and, 233
if structures and, 156

CODE attribute, 282, 367
code. See also code reuse

basic description of, 5
conversion of, into byte code, 5
inlining, 413
readability of, 11

code reuse
classes and, 72, 389, 450
inheritance and, 72, 389, 450
packages and, 450

CODEBASE attribute, 368
codeIsValid variable, 245
color

background, 334, 335, 338, 532, 635
designating, 331–335
fill patterns and, 360–361
rendering attributes and, 360–361
of shapes, 337, 338, 344
three-dimensional effects and, 344

Color class, 331
combo boxes, 484–489
comma (,), 31, 32
command-line operating systems,

3–4, 452
comment(s)

adding, 13–15
defined, 13
for the Employee class, 81–82
importance of, 84
javadoc, 14
organizing classes and, 84
packages and, 450
positioning of, in the first three

lines, 13, 15
types of, 14

COMPANY_ID constant, 115–116
compareTo method, 212, 213, 264
comparison operators

arrays and, 241
basic description of, 38–39

compilers. See also compiling
ambiguity and, 106–108
basic description of, 2, 5
class modifiers and, 64
comments and, 14
constants and, 115
constructors and, 85
curly braces and, 10–11
date calculations and, 124
errors, 16–19, 60, 125
file extensions and, 13
hexadecimal notation and, 44
options for, 450–452
this references and, 113

compiling. See also compilers
basic description of, 15–17, 33,

34, 37
constants and, 115
constructors and, 85
errors, 16–19, 60, 125
hexadecimal notation and, 44
if structures and, 159
options, 450–452
with TextPad, 659–660
troubleshooting, 15–17, 18
using the DOS prompt, 656–57

Component class, 466, 467
ComponentEvent class, 297, 521,

523, 527
components. See also Swing

components
adding multiple, 146, 295–296
basic description of, 284
enabling/disabling, 315–316
event listeners for, 470–472
JFrame class and, 465–470
positioning, 313–317

computePrice method, 386
concrete classes, defined, 425
conditional operators, 171–173
ConfirmDialog, 146, 148–151
console applications, basic

description of, 6

const keyword, 9
constant(s)

arrays and, 244
automatically imported, 118–121
basic description of, 30
char data type and, 43
declaring, 116
graphics and, 331
names, capitalization of, 331
predictRaise method and, 66
prewritten, 118–121
type casting and, 42–43
variables, 115
working with, 30–31, 115–118

constructor(s), 288–289, 294
adding, to classes, 86, 401–402
altering, 109–110
basic description of, 85–87
Date class, 122–123
Event class, 160
inheritance and, 399–405
JButton class, 294
layout managers and, 514, 520
methods, 78, 85, 108–111
overloading, 111–113
that require arguments, 403–405
sending arguments to, 108–111
superclass, 399–402

Container class, 289, 465, 466, 467
Container object, 289
ContainerEvent class, 523
containers

creating, 509–510
defined, 284, 289, 466
JFrame class and, 465–469
JPanel class and, 516
layout managers and, 509–510, 514

content pane, 289
continue keyword, 9
coordinate space, 313–317, 328–330,

342–346
animations and, 629–633
Cartesian coordinates and, 119
defined, 360
device, 360
user, 360

Copy command, 63

Index 673

copyArea method, 346–348
copying

areas of graphics, 346–348
statements, 250

countDisplay method, 307
Cow class, 426, 428
Cow.java, 450
CPUs (central processing units)

animations and, 634
flickering and, 634
multithreading and, 613–615
speed of, 634

CreateEventFile class, 590, 592
CreateEventFile.java, 592–594
cross-platform compatibility, 6
curly braces ({}), 10–12, 57, 58,

74, 99
currDate value, 70
cyan constant, 331
cyclic gradients, 360, 361

D
-d compiler option, 450, 451, 452
darkGray constant, 331
data files

basic description of, 576–577
formatted, writing, 589–595
organization of, 581–583
reading, 595–599

data types. See also specific data types
methods and, 69–71
numeric type conversion and, 42–43
primitive, 30
reference, 30
type casting and, 42–43
variables and, 30, 31

data2.txt, 579
data.txt, 578, 579–580
Date class, 122, 124–125, 284
dateOfHire field, 396
DAY_OF_MONTH argument, 126
DAY_OF_WEEK argument, 126
DAY_OF_YEAR argument, 126
deadlock, 622
deal method, 449

debugging, 154–158. See also errors
basic description of, 19
inheritance and, 440
toString method and, 440

deepClean method, 391
default keyword, 9, 169
definite loops, 185
DemoArray2.java, 236, 237
DemoArray3 class, 237
DemoArray3.java, 237
DemoArray.java, 235, 236
DemoBlock.java, 102–103
DemoButtonGroup.java, 482
DemoClassVar.java, 118–119
DemoConstruct2 class, 112
DemoConstruct.java, 111, 112
DemoConstructors.java, 400–401
DemoDate2 class, 124
DemoDate2.java, 125
DemoDate3.java, 125
DemoDate.java, 123–124
DemoEntertainment.java, 433–434
DemoHelloGoodbyeThread class,

616–618
DemoHelloThread class, 616
DemoIncrement class, 191
DemoIncrement.java, 192
DemoInput class, 140–142
DemoMath class, 120
DemoMath.java, 121
DemoOverload class, 105–106
DemoOverload.java, 106
DemoSleepThread.java, 621
DemoStringBuffer.java, 223
DemoSuper.java, 407
DemoThreads class, 619
DemoThreads.java, 619–620, 623
DemoThreadsPriority.java, 623–624
DemoVariables class, 33
DemoVariables2 class, 34
DemoVariables2.java, 34, 35
DemoVariables3 class, 35
DemoVariables3.java, 35–38
DemoVariables4 class, 37

DemoVariables4.java, 37, 39–40
DemoVariables5.java, 39–40, 41
DemoVariables6 class, 41
DemoVariables6.java, 41, 46
DemoVariables7 class, 46
DemoVariables7.java, 46
DemoVariables.java, 33–34
DemoWorkingDog.java, 448
Dentist class, 391
deprecated APIs (Application

Programming Interfaces), 125, 126
derived classes, 389. See also inheritance
descending order, 256, 258
descent, defined, 352–353
Desk class, 71
destroy method, 285, 303,

306–308, 326
dialog box(es)

confirm, 146, 148–151
input, 146–147, 150–151
message, 146, 147–148, 150–151
titles, 147, 148, 149

DialogInitials class, 150
DialogInitials.java, 150–151
Dimension class, 349–350
dinnerChoice field, 404
DinnerEvent class, 391, 393–395,

397–398, 401
DinnerEvent.java, 395, 398
DinnerEventWithConstructorArg

class, 404, 405
DinnerEventWithConstructor.java,

401, 404
DinnerEventWithHeader class, 398
DinnerEventWithHeader.java, 398,

401, 409
DinnerEventWithProtectedData.java,

410
directories, changing, 452
Discount table, 246–247
Disk Operating System. See DOS

(Disk Operating System)
display method, 305–308
displayMenu method, 557
displayMetrics method, 354

674 Index

DISPOSE_ON_CLOSE variable, 470
Division (/) operator, 36–38, 173
do keyword, 9, 195
.doc file extension, 13
dockable toolbars, 491–496
Dog class, 426–427, 439, 441, 442, 444
Dog2 class, 442
Dog2.java, 442
DogCompare2.java, 442–443
DogCompare.java, 441–443
Dog.java, 442, 450
DogString.java, 440
dollar sign ($), 8–9
DOS (Disk Operating System)

command-line, 3, 452, 656–657
compiling and, 452, 656–657
console applications and, 6
wildcard symbols and, 122

dot operator, 100
Double class, 118, 217
double data type

arguments and, 68
basic description of, 40–41
Math class calculations and, 120
methods and, 69, 70
numeric type conversion and,

42–43
variables and, 30, 31

double keyword, 9
double quotes (“), 43, 44
doubleValue method, 218
do...while loops, 194–195. See

also loops
draw method, 362
draw3DRect method, 344
drawArc method, 342–344
drawImage method, 370–372
drawing. See also graphics

arcs, 337, 339–340, 342–344
creating objects for, 362–367
flowcharts, 151–153
lines, 337–338, 341–342, 362–364
ovals, 337, 340–342, 364, 532–533
polygons, 337, 344–346, 364–367

rectangles, 337, 338–340, 344,
356–357, 363–364

strokes, 359–363
drawLine method, 337–338, 344
drawOval method, 340–342, 532
drawPolygon method, 344–346
drawRect method, 338, 344, 357
drawRoundRect method, 339
drawString method, 328–330, 332,

335–337, 369, 375
drop-down lists, 484–489
Drum class, 396
dual-alternative if, 156, 157
dynamic method binding, 434–436

E
E constant, 119
Edit menu

Copy command, 63
Paste command, 63

elements, defined, 233–234
else keyword, 9
Employee class, 9, 73–78, 85–87, 425

arrays and, 237–241, 262–263
blocks and, 100–101
constants and, 116
constructors and, 108–113
inheritance and, 388–389, 391
organizing classes and, 80–85
this references and, 113–115

Employee constructor, 399
Employee2 class, 101
EmployeeWithTerritory class, 388–391
empMethod method, 100
empNum field, 75, 76, 388
empSal field, 388
empTerritory field, 388
encapsulation, 5
end-of-file condition. See EOR

(end-of-file condition)
endsWith method, 213
Entertainment class, 428–429,

444, 453
Entertainment2.java, 444

EntertainmentDataBase class,
444–445

EntertainmentDataBase.java,
438–439, 444, 453

Entertainment.java, 430, 444, 451, 452
EntertainmentNoDuplicates.java,

444, 445
EOF (end-of-file condition), 585, 586
EOFException, 595, 598
equal method, 440–445
equal sign (=), 31, 155
Equal to (= =) operator, 38–39
equals method, 211–212, 444
equalsIgnoreCase method, 212
Error class, 542, 543
ERROR_MESSAGE variable, 147,

148, 149
error messages. See also errors

class modifiers and, 64
compiling and, 16–19, 60, 125
dialog boxes and, 147, 148
instantiation and, 426

errors. See also error messages;
exceptions
blocks and, 100
compiling, 16–17, 18–19, 125, 60
constants and, 116
logic, 3, 19, 68
DemoDate3.java and, 125
syntax, 16, 19, 60–61
traditional handling of, limitations

of, 554–555
escape sequences, 44, 46
event(s). See also event listeners

basic description of, 296–297, 520
classes, relationships among, 521
-driven programming, 296–301
handling, 520–533
inheritance and, 528–530
listeners, 470–472
messages, preparing applets to

accept, 297–301
mouse, 530–533

Event class, 160–161, 249–250,
391–394, 397, 401–404

Index 675

event listeners. See also event listeners
(listed by name)
defined, 297
event handling and, 522–524

event listeners (listed by name). See
also event listeners
ActionListener event listener,

374–375, 470–471, 493, 494
AdjustmentListener event

listener, 470
ChangeListener event listener,

470, 471
FocusListener event listener, 470, 471
ItemListener event listener, 470,

471, 478, 479, 487
KeyListener event listener, 470, 471
MouseListener event listener,

470, 471
MouseMotionListener event lis-

tener, 470, 471
WindowListener event listener,

470, 471
Event2 class, 239, 250
Event2.java, 239, 250
Event3.java, 250
EventArray.java, 239–240
EventArray2 class, 240
EventArray2.java, 240–241, 244
EventArray3 class, 244, 245
EventArray3.java, 244
EventArray4.java, 246, 250
EventArray5 class, 250
EventArray5.java, 251, 252
EventArray6 class, 252
EventArray6.java, 252, 253
EventArray7 class, 253
EventArray7.java, 254
eventCode array, 244–245, 253
EventFile2.java, 599–600
EventFile3.java, 600
EventFile.java, 594
eventGuests field, 391, 393, 401
EventInt class, 196
EventInt2 class, 197
EventInt.java, 196–198
Event.java, 161, 239, 393, 397

EventObject class, 471, 521, 527
EventObject method, 528
EventSite class, 56, 60
EventSite object, 60
EventSite2 class, 76
EventSite2.java, 76
EventSite3 class, 76–78, 82–83
EventSite3.java, 76–77, 82–83
EventSite4 class, 82–84, 86
EventSite4.java, 84, 86
EventSite5 class, 86
EventSite5.java, 86, 109
EventSite6 class, 109–110, 112
EventSite6 constructor, 112
EventSite6.java, 109–110, 112
EventSite7 class, 112, 118
EventSite7.java, 112, 118
EventSite8 class, 118
EventSite8.java, 118
EventSite.java, 76
EventStringBuffer.java, 220–221
eventType variable, 161
EventWithConstructorArg class, 404
EventWithConstructorArg.java, 404
EventWithConstructor.java, 401, 404
EventWithHeader class, 397, 398
EventWithHeader.java, 397, 401, 409
EventWithProtectedData class, 409
EventWithProtectedData.java, 409
exact matches, searching arrays for,

241–247
Exception class, 542, 543, 566, 567
exceptions, 597, 598, 603. See

also errors
arrays and, 240
basic description of, 140–141,

542–545
catching, 545–554, 559–560,

562–564
categories of, 542
creating, 566–569
finally block and, 552–553
getMessage method and, 548–549
handling, 541–576, 591, 592, 593
inheritance and, 391, 394, 429

keyboard input and, 140–141
throwing, 141, 240, 391, 394, 429,

549–552, 555–561
tracing, through the call stack,

563–566
traditional error handling and,

554–555
writing file data and, 591–594

exclamation point (!), 148, 172
exists method, 577, 588
exit method, 149, 545, 552, 553
EXIT_ON_CLOSE variable, 469,

470, 473, 478, 487, 525, 529
explicit overriding, of unifying

types, 42
extends keyword, 9, 283, 284–285,

390–396, 447

F
FAQs (Frequently Asked Questions),

19–20
field(s)

access modifiers for, 74, 75
assigning values to, 76
basic description of, 72, 581
constants and, 115–118
constructors and, 85, 110–112
if structures and, 160
modifiers, 74
organizing classes and, 80–85
this references and, 113–115

file(s)
direct access, 601
end-of-, condition (EOF), 585, 586
input/output (I/O), 575–610
nonexistent, checking for, 589
organization of, 581–583
random access, 600–603
reading from, 587–588
sequential access, 600
streams, 581–583
use of the term, 576
writing to, 587–588

File class, 576–581, 588
File menu

Open command, 287
Open Page command, 287

676 Index

filename(s)
extensions, 13, 17, 281, 282
paths for, 15, 16

FileInputStream class, 583, 596
FileOutputStream class, 583,

587–588, 590
fill method, 362
fill patterns, 359, 360–361
fill3DRect method, 344
fillArc method, 344
fillOval method, 340–342
fillPolygon method, 346
fillRect method, 338, 340
fillRoundRect method, 340
FilterInputStream class, 584
final class(es)

access modifier for, 9, 73–74,
115–116, 119, 413

inheritance and, 411–412, 414, 425
methods, 411–412

final keyword, 9, 74, 115–116,
119, 413

final methods, 411–414
finally block, 552–553
finally keyword, 9
FindState class, 254
FindState.java, 255–256
FindStudent class, 267
FindStudent.java, 268
First class, 8, 11, 17, 57
First2.java, 18
First.java, 7–17, 57–59, 115, 655–658
firstName field, 396
firstState object, 255
Fish class, 71, 72
flickering, reducing, 633–634
Float class, 118
float data type

basic description of, 40–41
graphics and, 361, 362
numeric type conversion and, 42–43
variables and, 30, 41–42

float keyword, 9
floating-point data types. See double

data type; float data type

flowcharts
basic description of, 152
drawing, 151–153

FlowLayout class, 295–296, 511
FlowLayout layout manager, 295,

305, 375, 477–478, 486
basic description of, 507–508,

511–512
event handling and, 528–529

FocusEvent class, 523
FocusListener event listener, 470, 471
font(s), 291–293, 348–358, 375

changing, 291–292
designating, 331–334
displaying available, 348–349
metrics for, 352–358
writing applets that list, 350–351

Font object, 291–292
for keyword, 9, 193
for loops, 193–194, 311

arrays and, 237, 240–246, 252–253,
258–260, 262, 268

breaking out of, early, 243
graphics and, 333–334, 350
inheritance and, 437, 438
nested, 196–198, 268

foreign language (international)
characters, 45, 142

formal parameters, 69
forward slash (/), 14
frame(s)

borders, 468
class variable actions for, 469–470
closing, 470
defined, 468
title bars, 468

Frame class, 466
Frequently Asked Questions. See

FAQs (Frequently Asked
Questions)

FullTimeStudent class, 409
fundamental classes, 118. See also classes
future keyword, 9

G
garbage collection, 639–640
generic keyword, 9

get method, 126, 127
getAllFonts method, 348, 349
getAscent method, 353
getAudioClip method, 368
getAvailableFontFamilyNames

method, 350
getBlue method, 333
getChange method, 477
getChars method, 223
getChoice method, 563
getClickCount method, 527, 531, 532
getCodeBase method, 367, 368
getComponent method, 527
getContentPane method, 289, 293,

514, 525, 529
getDate method, 72
getDay method, 123
getDefaultToolkit method, 349, 350
getDescent method, 353
getDocumentBase method, 367, 368
getEmpNum method, 75, 113, 114,

239, 390, 413
getEmpSal method, 262
getEventGuests method, 410
getEventMinRate method, 251
getFontMetrics method, 353
getGraphics method, 335
getGreen method, 333
getGuestChoice method, 559, 560
getHeight method, 353, 372
getImage method, 370, 637–638
getItem method, 477, 479
getItemAt method, 485
getItemCount method, 485
getKeyChar method, 525, 527
getLabel method, 294, 476
getLeading method, 353
getLocalGraphicsEnvironment

method, 349
getManagerName method, 83
getMessage method, 548–549, 551,

564, 566, 568
getModifiers method, 527, 528
getMonth method, 123
getName method, 426, 443, 577

Index 677

getPath method, 577
getPoint method, 527
getRateOfPay method, 396–397
getRateOfPayForContractual

method, 397
getRateOfPayForHourly method, 397
getRed method, 333
getScreenResolution method, 349
getScreenSize method, 349, 350
getSelectedIndex method, 485,

486, 488
getSelectedItem method, 485
getSelection method, 557, 559, 565
getSiteNumber method, 76, 78, 79, 83
getSource method, 299–300, 471,

475, 487–488, 527–528, 530
getState method, 476
getTerritoryNum method, 390
getText method, 293, 300
getTime method, 72, 123, 125, 375
getTitle method, 469
getUsageFee method, 83
getWhen method, 527
getWidth method, 372
getWindow method, 527
getX method, 527, 531
getY method, 527, 531
getYear method, 123
GIF (Graphics Interchange Format),

370, 638. See also graphics
GoodbyeThread class, 616–617
goto keyword, 9
gradient fills, 359, 360–361
graphics. See also drawing; images

for animation, 367, 373–377
arcs, 337, 339–340, 342–344
color of, 331–335, 338, 360–361, 368
copying areas of, 346–348
creating, 334–337
fonts for, 331–334, 348–350
GIF, 370, 638
gradients, 359, 360–361
JButton components and, 328,

335–336, 341–342, 374, 376
JPEG, 370
lines, 337–338, 341–342, 362–364

objects, instantiating, 334–337
ovals, 337, 340–342, 364
painting, 326–328
PNG, 370
polygons, 337, 344–346, 364–367
rectangles, 337, 338–340, 344,

356–357, 363–364
two-dimensional (2D), 334–337,

358–367
Graphics class, 329
Graphics Interchange Format. See

GIF (Graphics Interchange Format)
Graphics2D class, 358–368
GraphicsEnvironment class, 348–349
gray constant, 331
Greater than (>) operator, 38–39
Greater than or equal to (<=)

operator, 38–39
greater-than sign (>), 258
green constant, 331
Greet.java, 283, 286
Gregorian calendars, 126–127,

284, 326
GregorianCalendar class, 126–127, 284
GridBagLayout layout manager,

507–508, 520
GridLayout layout manager,

507–508, 512–513, 517, 520
guessing game program, 208, 216–217
guestLimit array, 311
GUI (graphical user interface), 284,

288–289, 465, 590–591. See also
graphics
event handling and, 521
input/output, using the

JOptionPane class for, 146–151
JScrollPane class and, 489–491
object-oriented programming and,

3–5
Swing components and, 465–469,

489–491
windowed applications and, 6

Guitar class, 396

H
HairSalon class, 277
headers, 11, 73, 75

HEIGHT attribute, 282, 283, 367
Hello class, 12, 13
Hello2 class, 18
Hello2.java, 15, 16–17
Hello3.java, 18–19
Hello.java, 13–15
HelloThread class, 616
hexadecimal (base 16) notation,

44–45, 439
HIDE_ON_CLOSE variable, 470
hiding

implementation, 65
information, 74, 407–411

high-level programming languages,
defined, 2

HORIZONTAL constant, 491
HORIZONTAL_SCROLLBAR_

ALWAYS constant, 490
HORIZONTAL_SCROLLBAR_

AS_NEEDED constant, 490
HORIZONTAL_SCROLLBAR_

NEVER constant, 490
HOUR argument, 126
HOUR_OF_DAY argument, 126
HourlyEmployee class, 73, 399, 425
HourlyEmployee constructor, 399
hours variable, 39
hoursWorked variable, 159–160
HouseEmployee constructor, 403
HTML (HyperText Markup

Language). See also HTML
documents (listed by name)
<APPLET> tag, 282, 283, 367, 643
basic description of, 281–283
documents, loading, into

browsers, 282
eXtensible (XHTML), 282
files, file extension for, 283
hosting applets with, 281–283
<HTML> tag, 282, 283

HTML documents (listed by name).
See also HTML (HyperText
Markup Language)
Chap17Animation.html, 612
TestAnim2.html, 633
TestAnim2.html, 636

678 Index

TestAnim3.html, 636, 637
TestAnim4.html, 636, 637
TestAnim.html, 631, 633
TestChap9Greet.html, 280
TestChap10JGregorianTime.html,

326
TestChap14JPanelApplet.html, 506
TestDemoGraphics2.html, 336
TestGreet.html, 283, 287, 288
TestImage.html, 639
TestJ2DLine.html, 363
TestJBorder.html, 510, 513
TestJBoxAround.html, 357
TestJCardLayout.hmtl, 516
TestJDemoColor.html, 334
TestJDemoCreateGraphicsObject2.

html, 337, 342
TestJDemoCreateGraphicsObject3.

html, 342
TestJDemoCreateGraphicsObject.

html, 336
TestJDemoFlowRight.html, 511
TestJDemoGraphics2.html, 334
TestJDemoGraphics.html, 330
TestJDemoPaint.html, 328
TestJEventSound.html, 369
TestJFontList.html, 351–352
TestJFontMetrics.html, 355
TestJGreet2.html, 291
TestJGreet3.html, 296
TestJGreet4.html, 300
TestJGreet5.html, 301, 302
TestJGreet6.html, 302
TestJGreet7.html, 302
TestJGreet.html, 290, 291
TestJGregorianTime.html, 376
TestJGrid.html, 513, 516
TestJLifeCycle.html, 307
TestJMoveLabel2.html, 316
TestJMoveLabel.html, 315
TestJPartyPlan.html, 312
TestJShapes2D.html, 366
TestJThreeStarts.html, 347
TestJWesternPanel.html, 519
TestParties.html, 643
TestParty.html, 642
TestTimer.html, 626

.html file extension, 283

I
if keyword, 9, 155, 157
if statements

arrays and, 241–242, 244, 256
basic description of, 154–158
compound statements in, 158–162
loops and, 193
nested, 162–163, 241–242
Swing components and, 472

if...else statements
basic description of, 154–158
arrays and, 244
compound statements in, 158–162
conditional operators and, 171
line drawings and, 341
nested, 162–163

Image class, 370
ImageIcon class, 370, 492
ImageObserver interface, 370
images. See also graphics

adding, 370–373
defined, 370
file formats for, 370
for toolbars, 492

implementation hiding, 65
implements keyword, 9, 447
import keyword, 9
import statements, 122–125, 283–284
importing

methods, 118–125
packages, 450–451, 453

indexOf method, 213, 216
IndexOutOfBoundsExceptions,

549–551
infinite loops

accidentally writing, 186
defined, 185–186
Swing components and, 468–469

information hiding, 74, 407–411
INFORMATION variable, 147,

148, 149
inheritance

achieving good software design
with, 446

advanced concepts for, 421–460
arrays and, 436–439

basic description of, 4, 383–422
code reuse and, 72, 389, 450
constructors and, 399–405
definition of, 287
dynamic method binding and,

434–436
event handling and, 528–530
extending, 390–396
information hiding and, 407–411
inlining and, 413
interfaces and, 446–449
multiple, 447
Object class and, 439–445
packages and, 449–453
polymorphism and, 396, 428
superclass methods and, 396–399,

406–407
init method, 285, 300, 302–305, 307,

310–311
audio clips and, 369
graphics and, 326, 327, 335, 374
inheritance and, 397
layout managers and, 517, 509–520

inlining, 413
inner keyword, 9
input. See also keyboard input

dialog boxes, 146–147, 150–151, 464
file, 575–610
integer, creating programs that will

accept, 218–219
java.io package and, 577
using the JOptionPane class for,

146–151
InputStream class, 583, 585, 587,

595, 601
insert method, 222
instance(s)

defined, 4
methods, 75–77
variables, 72

instanceof keyword, 9, 299, 301, 472
instantiation, 72–73, 426

basic description of, 78
constructors and, 85
instance methods and, 76
static modifier and, 76

Index 679

int data type
basic description of, 32–36
graphics and, 361
methods and, 69, 70
numeric type conversion and, 42–43
object declarations and, 77
type casting and, 43
variables and, 30, 31, 32–36

int keyword, 9
integer(s)

ambiguity and, 107
arithmetic operators and, 36–38
arrays and, 236–237, 266–267
basic description of, 32–33
declaring objects and, 77
input, creating programs that will

accept, 218–219
keyboard input and, 142

Integer class, 118, 217
interactive programs, basic

description of, 140
interface(s)

creating, 446–449
defined, 447
event handling and, 522–523
inheritance and, 446–449
prewritten, 449

interface keyword, 9
InternalErrorException, 555
international (foreign language)

characters, 45, 142
Internet Explorer browser

(Microsoft). See also browsers
interpreters and, 2
loading HTML documents into, 282
running applets with, 286–287

interpreters
basic description of, 2, 5
using, 15

invalid statements, 99, 100
Inventory class, 73
InventoryItem class, 9
IOException, 553, 555, 585, 586
is-a relationships, 71
isAltDown method, 527
isControlDown method, 527

isDigit method, 208
isLetter method, 208
isLetterOrDigit method, 208
isLowerCase method, 208
isResizable method, 469
isShiftDown method, 527
isUpperCase method, 208
isWhitespace method, 208
ItemEvent class, 522, 523, 527
ItemListener event listener, 470, 471,

478, 479, 487
itemPrice variable, 243
itemsSold variable, 163
itemStateChanged method, 477, 479,

483, 487

J
J2DLine.java, 363
JApplet class, 284–285, 290, 295–299,

370, 390, 397, 446, 492, 625–626
Java Development Kit. See JDK (Java

Development Kit)
.java file extension, 13, 658
java files

AccessRandomly.java, 603, 604
AChildClass.java, 406
AnimalArray.java, 436–437
Animal.java, 450
AnimalReference.java, 435
AnimatedFigure2.java, 632, 635
AnimatedFigure3.java, 635–637
AnimatedFigure4.java, 635–637
AnimatedFigure.java, 631–633
AParentClass.java, 406
ASuperClass.java, 400
Birthdate.java, 127
BouncingParty1.java, 640–642
BouncingParty2.java, 640–642
BouncingParty3.java, 642
Chap3EventSite.java, 56
Chap5ChooseManager.java, 140
Chap5Event.java, 140
Chap6EvenInt.java, 184
Chap7SecretPhrase.java, 208
Chap8Event.java, 232
Chap9Greet.java, 279–280

Chap10JGregorianTime.java, 326
Chap12EntertainmentSelector.java,

424
Chap14JPanelApplet.java, 506–507
CheckFile2.java, 579
CheckFile.java, 578–579
CheckTwoFiles.java, 580–581
ChooseManager2.java, 162, 168
ChooseManager3.java, 168, 170–171
ChooseManager4.java, 171, 189–190
ChooseManager.java, 140, 161–162
Cow.java, 450
CreateEventFile.java, 592–594
DemoArray2.java, 236, 237
DemoArray3.java, 237
DemoArray.java, 235, 236
DemoBlock.java, 102–103
DemoButtonGroup.java, 482
DemoClassVar.java, 118–119
DemoConstruct.java, 111, 112
DemoConstructors.java, 400–401
DemoDate2.java, 125
DemoDate3.java, 125
DemoDate.java, 123–124
DemoEntertainment.java, 433–434
DemoIncrement.java, 192
DemoMath.java, 121
DemoOverload.java, 106
DemoSleepThread.java, 621
DemoStringBuffer.java, 223
DemoSuper.java, 407
DemoThreads.java, 619–620, 623
DemoThreadsPriority.java,

623–624
DemoVariables2.java, 34, 35
DemoVariables3.java, 35–38
DemoVariables4.java, 37, 39–40
DemoVariables5.java, 39–40, 41
DemoVariables6.java, 41, 46
DemoVariables7.java, 46
DemoVariables.java, 33–34
DemoWorkingDog.java, 448
DialogInitials.java, 150–151
DinnerEvent.java, 395, 398
DinnerEventWithConstructor.java,

401, 404
DinnerEventWithHeader.java, 398,

401, 409

680 Index

DinnerEventWithProtectedData.java,
410

Dog2.java, 442
DogCompare2.java, 442–443
DogCompare.java, 441–443
Dog.java, 442, 450
DogString.java, 440
Entertainment2.java, 444
EntertainmentDataBase.java,

438–439, 444, 453
Entertainment.java, 430, 444,

451, 452
EntertainmentNoDuplicates.java,

444, 445
Event2.java, 239, 250
Event3.java, 250
EventArray.java, 239–240
EventArray2.java, 240–241, 244
EventArray3.java, 244
EventArray4.java, 246, 250
EventArray5.java, 251, 252
EventArray6.java, 252, 253
EventArray7.java, 254
EventFile2.java, 599–600
EventFile3.java, 600
EventFile.java, 594
EventInt.java, 196–198
Event.java, 161, 239, 393, 397
EventSite2.java, 76
EventSite3.java, 76–77, 82–83
EventSite4.java, 84, 86
EventSite5.java, 86, 109
EventSite6.java, 109–110, 112
EventSite7.java, 112, 118
EventSite8.java, 118
EventSite.java, 76
EventStringBuffer.java, 220–221
EventWithConstructorArg.java, 404
EventWithConstructor.java, 401, 404
EventWithHeader.java, 397, 401, 409
EventWithProtectedData.java, 409
FindState.java, 255–256
FindStudent.java, 268
First2.java, 18
First.java, 7–17, 57–59, 115, 655–658
Greet.java, 283, 286
Hello2.java, 15, 16–17
Hello3.java, 18–19

Hello.java, 13–15
J2DLine.java, 363
JBoxAround2.java, 359–360
JBoxAround.java, 357–359
JButtonFrame.java, 530
JCardLayout.java, 516
JChangeMessage.java, 475
JDemoBorderNoNorth.java,

510–511
JDemoBox.java, 489
JDemoButtonGroup.java, 484
JDemoCheckBox.java, 480–482
JDemoColor.java, 333–334
JDemoCreateGraphicsObject2.java,

341
JDemoCreateGraphicsObject3.java,

342
JDemoCreateGraphicsObject.java,

336
JDemoFlowRight.java, 511–513
JDemoFontMetrics.java, 353–355
JDemoFrame.java, 468–469
JDemoGraphics.java, 330, 331–332
JDemoGraphics2.java, 332
JDemoGrid.java, 513
JDemoList.java, 486–489
JDemoPaint.java, 327–328
JDemoRectangles2.java, 340
JDemoRectangles.java, 339–340
JDemoToolBar.java, 493–494
JEventImage.java, 373
JEventSound.java, 368–370
JFontList.java, 350–351, 354
JGreet2.java, 291–292, 295–296
JGreet3.java, 296, 299–300
JGreet4.java, 300, 301
JGreet5.java, 301
JGreet6.java, 301–302
JGreet7.java, 302
JGreet.java, 289–292
JGregorianTime.java, 326, 374–377
JKeyFrame.java, 526
JLifeCycle.java, 304, 306–309
JMouseFrame.java, 533
JMoveLabel2.java, 316
JMoveLabel.java, 315, 316
JPartyPlanner.java, 309–313
JShapes2D.java, 365–366

JStar.java, 345–346
JThreeStars.java, 347–348
JWesternPanel.java, 519
LoadImage.java, 638
MathMistake2.java, 547, 548
MathMistake3.java, 548
MathMistake4.java, 548–549
MathMistake.java, 547, 552
Menu.java, 557–558
MusicalEntertainment2.java, 445
MusicalEntertainment.java, 431,

445, 452
NoSuchClass.java, 543
NumInput.java, 219
OtherEntertainment2.java, 445
OtherEntertainment.java, 445, 452
Party.java, 567
PartyException.java, 567
PassArrayElement.java, 248
PassArray.java, 249
PickMenu.java, 559
PlanMenu.java, 560–562, 564
PlanMenuWithStackTrace.java,

564, 565–566
PlanVegetarianMenu.java, 562
ReadEventFile.java, 598, 599
ReadFileWriteScreen.java, 589
ReadKBWriteFile.java, 588, 603
ReadKBWriteScreen.java,

586–587, 589
ReadNamedFile.java, 599–600
SecretPhrase.java, 216–217
SetUpSite2.java, 63, 70–71
SetUpSite3.java, 71, 78
SetUpSite4.java, 78
SetUpSite5.java, 79
SetUpSite.java, 56, 60–63
ShowThread2.java, 623
ShowThread.java, 618, 619, 623
SleepThread.java, 621
SortCharArray2.java, 262
SortCharArray.java, 259–262
SortObjects.java, 262
SortSalon.java, 277
SortStrings.java, 264–265
TestCharacter.java, 209–210
TestConstructor.java, 86–87
TestEmployee2.java, 100

Index 681

TestExpandedClass.java, 84–85
TestStatement2.java, 63–64
TestStatement.java, 62, 63
ThrowParty.java, 568
TicketNumber.java, 54
TimerApplet.java, 626–627
TwoMistakes.java, 550–551
UseChap11WeekendEvent.java, 386
UseDinnerEvent.java, 395–396
UseEventsWithConstructorArg.java,

405
UseEventsWithConstructors.java,

402
UseEventWithHeader.java, 399
UseProtected.java, 411
UsersInitials2.java, 145
UsersInitials.java, 142–145
UseSimpleEvent.java, 393–395
VegetarianMenu.java, 562

Java Foundation Classes. See JFC
(Java Foundation Classes)

Java SDK (Software Development
Kit), 653–654

Java virtual machine. See JVM (Java
virtual machine)

java.applet package, 284
java.awt package, 284, 288–293,

348, 465
java.awt.event package, 297–300
javac command, 15, 16, 18, 60, 281
javadoc comments, 14. See also

comments
javadoc tool, 14
java.io package, 577
java.lang package, 118–119, 122,

194, 284
exception handling and, 544
inheritance and, 449
strings and, 209, 210, 217
Swing components and, 466

java.util package, 122, 284, 449
javax.swing package, 284, 288,

449, 465
JBoxAround2.java, 359–360
JBoxAround.java, 357–359

JButton class, 292, 294–299, 300,
302–305, 309–310, 313–316.
See also JButton components

JButton components, 494, 521, 528,
529. See also JButton class
ActionPerformed method and, 335
adding, to other components, 472
animation and, 374, 375, 376
disabling, 337, 341, 342
drawing ovals and, 341, 342
event listeners associated with, 471,

472, 474
graphics and, 328, 335–336,

341–342, 374, 376
JChangeMessage.java and, 473–475
JFrame components that display,

473–474
JPanel class and, 472, 518, 519, 520
layout managers and, 508–509,

514, 515
repaint method and, 328
toolbars and, 492
writing file data and, 591–592

JButtonFrame.java, 530
JCardLayout.java, 516
JChangeMessage class, 473–474
JChangeMessage.java, 475
JCheckBox class, 471, 475–479,

484–489, 508–509
JCheckBox components, 471,

508–509. See also JCheckBox class
JDemoBorderNoNorth.java,

510–511
JDemoBox.java, 489
JDemoButtonGroup method, 483
JDemoButtonGroup.java, 484
JDemoCheckBox class, 477, 483
JDemoCheckBox.java, 480–482
JDemoColor class, 334
JDemoColor.java, 333–334
JDemoCreateGraphicsObject

class, 336
JDemoCreateGraphicsObject2

class, 226
JDemoCreateGraphicsObject2.java,

341

JDemoCreateGraphicsObject3
class, 341

JDemoCreateGraphicsObject3.java,
342

JDemoCreateGraphicsObject.java,
336

JDemoFlowRight.java, 511–513
JDemoFontMetrics.java, 353–355
JDemoFrame class, 467
JDemoFrame.java, 468–469
JDemoGraphics class, 329–332
JDemoGraphics.java, 330, 331–332
JDemoGraphics1 class, 330
JDemoGraphics2 class, 331–332
JDemoGraphics2.java, 332
JDemoGrid.java, 513
JDemoList.java, 486–489
JDemoPaint.java, 327–328
JDemoRectangles2.java, 340
JDemoRectangles.java, 339–340
JDemoToolBar constructor, 493
JDemoToolBar.java, 493–494
JDK (Java Development Kit)

accessing, 20
downloading, 20
exception handling and, 542
inclusion of the Applet Viewer

with, 281
javadoc tool, 14
layout managers and, 507, 520
read method and, 145

JEventImage class, 372–373
JEventImage.java, 373
JEventSound.java, 368–370
JFC (Java Foundation Classes), 284,

288. See also classes
JFontList.java, 350–351, 354
JFrame class, 465–470, 473–475, 489
JFrame components, 471, 493, 525,

526, 532, 590–599
JGreet2 class, 291
JGreet2.java, 291–292, 295–296
JGreet3.java, 296, 299–300
JGreet4 class, 299, 300

682 Index

JGreet4.java, 300, 301
JGreet5 class, 301
JGreet5.java, 301
JGreet6.java, 301–302
JGreet7.java, 302
JGreet.java, 289–292
JGregorianTime.java, 326, 374–377
JKeyFrame class, 524–525
JKeyFrame.java, 526
JLabel class, 288–292, 301–302, 305,

310, 313–316. See also JLabel
components

JLabel components, 486, 517–518,
525, 591, 596. See also JLabel class

JLifeCycle.java, 304, 306–309
JMouseFrame class, 531
JMouseFrame.java, 533
JMoveLabel class, 314
JMoveLabel2.java, 316
JMoveLabel.java, 315, 316
Joint Photographic Experts Group.

See JPEG (Joint Photographic
Experts Group) format

JOptionPane class, 146–151
JPanel class, 472–475, 478, 487, 493,

516–520
JPartyPlanner class, 310
JPartyPlanner.java, 309–313
JPEG (Joint Photographic Experts

Group) format, 370. See also
graphics

JRadioButton component, 471
JScrollBar component, 471
JScrollPane class, 489–491
JShapes2D.java, 365–366
JSlider component, 471
JStar.java, 345–346
JTextArea class, 489, 490–491
JTextField class, 292–296, 300–302,

310. See also JTextField components
JTextField components, 471, 477,

525, 591, 593, 596, 597. See also
JTextField class

JThreeStars.java, 347–348
JToolBar class, 471, 491–496

JToolbar components, 471, 491–496
JVM (Java virtual machine), 5
JWesternPanel class, 517
JWesternPanel object, 517–518
JWesternPanel.java, 519
JWindow component, 471, 516

K
keepScore method, 449
keyboard input. See also input

accepting, 140–145
action keys and, 524
echoing on, 142–143
event handling and, 520–526
keyboard focus and, 293, 294
sorting, 258–262
streams and, 585–587
TestCharacter program and, 210
writing, to files, 588–589

KeyEvent class, 521–522, 524,
527–528

KeyListener event listener, 470, 471
KeyListener interface, 524–525
keyPressed method, 524, 525, 531
keyReleased method, 524, 526, 531
keyTyped method, 524, 525, 531
keywords

deleting, 63
reserved, 9, 30–31, 113

L
Label class, 285–289, 291–292
Label components, 285–287. See also

Label class
labels, 285–287, 291–292, 476
lastInit variable, 144
lastModified method, 577, 588
lastName field, 396
late binding, 434–436
layout managers. See also specific

layout managers
basic description of, 505, 507
constructors and, 514, 520
learning about, 507–508
JPanel class and, 516–519

leap seconds, calculating, 124

leap years, calculating, 124
length field, 252
length method, 253, 577
Less than (<) operator, 38–39
Less than or equal to (<=) operator,

38–39
less-than sign (<), 258
lightGray constant, 331
line(s)

comments, basic description of, 14
drawing, 337–338, 341–342,

362–364
objects for, creating, 362–364

linefeed character, 44
lineTo method, 365
Linux, 20
listeners. See also listeners (listed

by name)
defined, 297
event handling and, 522–524

listeners (listed by name). See also
listeners
ActionListener listener, 374–375,

470–471, 493, 494
AdjustmentListener listener, 470
ChangeListener listener, 470, 471
FocusListener listener, 470, 471
ItemListener listener, 470, 471, 478,

479, 487
KeyListener listener, 470, 471
MouseListener listener, 470, 471
MouseMotionListener listener,

470, 471
WindowListener listener, 470, 471

listRules method, 449
lists

creating, 484–489
drop-down, 484–489

literal constants, 30, 32, 244
literal strings

changing, 17–18
defined, 7
int data type and, 33

LoadImage.java, 638
local variables, 66. See also variables
log method, 120

Index 683

logarithms, 119
logic errors

arguments and, 68
defined, 3, 19

Logical AND operator, 173, 241
Logical OR operator, 173
Long class, 118
long data type

classification of, as a variation of
the int data type, 32

numeric type conversion and,
42–43

variables and, 30
long keyword, 9
loop(s). See also for loops; while loops

arithmetic operators and, 190–192
body of, 184, 187
defined, 183–185
do...while loops, 194–195
nested, 196–198
structure of, learning about,

184–185
loop method, 368, 369, 376
loopCount variable, 187

M
machine language, defined, 2
magenta constant, 331
main method, 10–13, 58–59, 223, 285

arrays and, 234–235, 239–240,
247–253, 259, 267

blocks and, 101
event handling and, 526, 529, 533
exceptions and, 545, 548–550,

560, 568
GregorianCalendar class and, 127
file I/O and, 578, 580, 600, 885, 586
if structures and, 161
inheritance and, 393, 401–402, 408,

411–413, 433
instantiation and, 78
keyboard input and, 140–142
loops and, 191, 198
Math class calculations and, 120
removing, 62, 63
return types and, 70
SetUpSite class and, 60

static modifiers and, 75–76
Swing components and, 467, 474,

479, 483, 487, 489, 493
this references and, 114
user input acceptance and, 150
variable declarations and, 33

Math class, 118–121, 414
mathematical constants, 115
MathMistake class, 544, 545,

548–549
MathMistake2.java, 547, 548
MathMistake3.java, 548
MathMistake4.java, 548–549
MathMistake.java, 547, 552
matrix, defined, 266
max method, 119, 120
Maximize button, 468
memory, 285, 211. See also buffers

addresses, 77
allocation, 77, 289
arrays and, 235–236
call stacks, tracing exceptions

through, 563–566
data files and, 581
exception handling and, 543,

563–566
file I/O and, 581
heap, 639
high-level languages and, 2
locations, variables as, 3, 30
this references and, 113–115
Unicode and, 44

Menu class, 556–557, 562
Menu.java, 557–558
MessageDialog, 146, 147–148
method(s). See also methods (listed

by name)
ambiguity and, 106–108
basic description of, 4–5, 57
calling, 61–62
changing, into single statements, 35
class concepts and, 71–73
creating, 57–71
declaring, 57–58, 65–66, 68
dynamic binding of, 434–436
headers, 11
implementation hiding and, 65

imported, 118–125
inheritance and, 396–399, 411–412,

434–436
names, 7, 58
overloading, 103–106, 108
overriding, 303, 411–412
parts of, 57–58
passing arrays to, 247–251
polymorphism and, 396
prewritten, 118–125
that require multiple arguments,

67–69
that require single arguments,

65–67
return types for, 57, 69–71
reusability of, 57
signatures, 556
using, 55–95
well-written, 5

methodGetsArray method, 248–249
methodGetsOneInt method, 247
methods (listed by name). See also

actionPerformed method; init
method; main method; println
method; start method
abs method, 119
acos method, 119
add method, 286, 301, 313,

472–473, 487, 493, 514
addActionListener method, 298,

300, 523
addComponentListener

method, 527
addFocusListener method, 298, 527
addItem method, 485
addItemListener method, 523
addKeyListener method, 298
addMouseListener method, 527
addMouseMotionListener

method, 527
addPoint method, 346
append method, 222
approvalprocess method, 69
asin method, 119
atan method, 119
AudioClip method, 368
billPatients method, 391
braces method, 391

684 Index

bubbleSort method, 259, 260, 261,
262–263

calculateAge method, 70–71
calculateRaise method, 69–70
canRead method, 577
canWrite method, 577
capacity method, 220
catch method, 546
ceil method, 119
changeSalary method, 78
charAt method, 213, 223
clearRect method, 338
close method, 601
closeFile method, 598
closePath method, 366
compareTo method, 212, 213, 264
computePrice method, 386
copyArea method, 346–348
countDisplay method, 307
deal method, 449
deepClean method, 391
destroy method, 285, 303,

306–308, 326
display method, 305–308
displayMenu method, 557
displayMetrics method, 354
doubleValue method, 218
draw method, 362
draw3DRect method, 344
drawArc method, 342–344
drawImage method, 370–372
drawLine method, 337–338, 344
drawOval method, 340–342, 532
drawPolygon method, 344–346
drawRect method, 338, 344, 357
drawRoundRect method, 339
drawString method, 328–330, 332,

335–337, 369, 375
empMethod method, 100
endsWith method, 213
equal method, 440–445
equals method, 211–212, 444
equalsIgnoreCase method, 212
EventObject method, 528
exists method, 577, 588
exit method, 149, 545, 552, 553
fill method, 362
fill3DRect method, 344

fillArc method, 344
fillOval method, 340–342
fillPolygon method, 346
fillRect method, 338, 340
fillRoundRect method, 340
get method, 126, 127
getAllFonts method, 348, 349
getAscent method, 353
getAudioClip method, 368
getAvailableFontFamilyNames

method, 350
getBlue method, 333
getChange method, 477
getChars method, 223
getChoice method, 563
getClickCount method, 527,

531, 532
getCodeBase method, 367, 368
getComponent method, 527
getContentPane method, 289, 293,

514, 525, 529
getDate method, 72
getDay method, 123
getDefaultToolkit method, 349, 350
getDescent method, 353
getDocumentBase method, 367, 368
getEmpNum method, 75, 113, 114,

239, 390, 413
getEmpSal method, 262
getEventGuests method, 410
getEventMinRate method, 251
getFontMetrics method, 353
getGraphics method, 335
getGreen method, 333
getGuestChoice method, 559, 560
getHeight method, 353, 372
getImage method, 370, 637–638
getItem method, 477, 479
getItemAt method, 485
getItemCount method, 485
getKeyChar method, 525, 527
getLabel method, 294, 476
getLeading method, 353
getLocalGraphicsEnvironment

method, 349
getManagerName method, 83
getMessage method, 548–549, 551,

564, 566, 568

getModifiers method, 527, 528
getMonth method, 123
getName method, 426, 443, 577
getPath method, 577
getPoint method, 527
getRateOfPay method, 396–397
getRateOfPayForContractual

method, 397
getRateOfPayForHourly

method, 397
getRed method, 333
getScreenResolution method, 349
getScreenSize method, 349, 350
getSelectedIndex method, 485,

486, 488
getSelectedItem method, 485
getSelection method, 557, 559, 565
getSiteNumber method, 76, 78,

79, 83
getSource method, 299–300, 471,

475, 487–488, 527–528, 530
getState method, 476
getTerritoryNum method, 390
getText method, 293, 300
getTime method, 72, 123, 125, 375
getTitle method, 469
getUsageFee method, 83
getWhen method, 527
getWidth method, 372
getWindow method, 527
getX method, 527, 531
getY method, 527, 531
getYear method, 123
indexOf method, 213, 216
insert method, 222
isAltDown method, 527
isControlDown method, 527
isDigit method, 208
isLetter method, 208
isLetterOrDigit method, 208
isLowerCase method, 208
isResizable method, 469
isShiftDown method, 527
isUpperCase method, 208
isWhitespace method, 208
itemStateChanged method, 477,

479, 483, 487
JDemoButtonGroup method, 483

Index 685

keepScore method, 449
keyPressed method, 524, 525, 531
keyReleased method, 524, 526, 531
keyTyped method, 524, 525, 531
lastModified method, 577, 588
length method, 253, 577
lineTo method, 365
listRules method, 449
log method, 120
loop method, 368, 369, 376
max method, 119, 120
methodGetsArray method, 248–249
methodGetsOneInt method, 247
methodWithRedeclarations

method, 100
methodWithTwoBlocks method,

98–99
min method, 120
mouseClicked method, 531, 532
MouseDragged method, 530
mouseEntered method, 531
mouseExited method, 531
MouseMoved method, 530
mousePressed method, 531
mouseReleased method, 531, 532
moveTo method, 364
nameAndAddress method, 58–59, 69
overloadDate method, 105–106
paint method, 326–329, 332,

339–340, 345, 347, 350–351,
374, 375

paintIcon method, 372
parseDouble method, 217, 478
parseInt method, 217, 218, 311,

393, 593–594
play method, 367, 368, 396
predictRaise method, 65–68
predictRaiseGivenIncrease

method, 68
print method, 8, 33, 211, 214,

222–223
printDinnerChoice method,

394–395, 398
printEventGuests method, 395, 402
printHeader method, 397,

398–399, 402
printPrivate method, 412
printPublic method, 412

printStackTrace method, 564,
565, 566

random method, 120
read method, 140, 142, 144–146,

584–586, 595, 597, 601, 603
readByte method, 595
readChar method, 595
readDouble method, 595
readFloat method, 595
readInt method, 595
readUTF method, 595
remove method, 302
repaint method, 302, 326–328,

375, 376
replace method, 213
requestFocus method, 293, 294
rint method, 120
round method, 120
seek method, 601–602
setBackground method, 334
setBounds method, 469, 520
setCharAt method, 222, 223
setChoice method, 558
setColor method, 331–335, 337,

360, 375
setContentPane method, 473,

474, 478
setDate method, 72
setDay method, 123
setDefaultCloseOperation method,

469, 470
setDinnerChoice method, 394,

395, 410
setEditable method, 293, 485, 488
setEmpNum method, 76, 109, 391
setEmpSal method, 391
setEnabled method, 313–317
setEntertainerName method, 429
setEntertainmentFee method, 430,

431, 432
setEventGuests method, 395,

409–410
setEventMinRate method, 250, 251
setFont method, 291, 331–335
setGuestChoice method, 558, 559,

561, 565
setIdNum method, 408
setLabel method, 294, 476

setLayout method, 474
setLength method, 220
setLocation method, 313–317,

329, 520
setManagerName method, 83
setMaximumRowCount

method, 485
setMonth method, 123
setResizable method, 469
setSelectedIndex method, 485
setSelectedItem method, 485
setSiteNumber method, 76, 78, 79

setSize method, 469, 474, 479,
487, 493, 520, 526, 529, 533

setState method, 476
setStroke method, 361
SetTerritoryNum method, 391
setText method, 285, 293, 475,

478, 525
setTime method, 72
setTitle method, 469
setTypeOfAct method, 431, 432
setTypeOfMusic method, 430
setUsageFee method, 83
setVisible method, 469
setYear method, 123
showConfirmDialog method,

148–149
showInputDialog method,

146–147, 478
showMessageDialog method,

147–148
shuffle method, 449
simpleInterest method, 103–104,

107–108
simpleInterestRateUsingDouble

method, 105
sin method, 120
sleep method, 194, 615, 620–622,

626, 627, 640
someClass method, 434
sortStrings method, 264–265
speak method, 426–427, 434–437
sqrt method, 120
square method, 65
square1 method, 65
square2 method, 65

686 Index

statementOfPhilosophy method,
60, 61, 62–63, 70

stop method, 285, 303–304,
306–308, 326, 369, 376

stringWidth method, 356
substring method, 214–215
super method, 405, 447, 488
System.in.read method, 198
takeXRays method, 391
tan method, 120
toLowerCase method, 208, 213
toString method, 213, 214, 350,

351, 375, 431–432, 439–440, 566
toUpperCase method, 208, 213
update method, 329
valueOf method, 218
work method, 447

methodWithRedeclarations
method, 100

methodWithTwoBlocks method,
98–99

microprocessors
animations and, 634
flickering and, 634
multithreading and, 613–615
speed of, 634

Microsoft Internet Explorer browser.
See also browsers
interpreters and, 2
loading HTML documents into, 282
running applets with, 286–287

Microsoft Visual Basic
arrays and, 233
syntax and, 2

Microsoft Windows 95, 653–654,
655, 656

Microsoft Windows 98, 653–654,
655, 656

Microsoft Windows 2000, 654,
655, 656

Microsoft Windows NT, 654
Microsoft Windows XP, 654, 655, 656
middleInit variable, 144
MIDI (Musical Instrument Digital

Interface) format, 367
MILLISECOND argument, 126
min method, 120

Minimize button, 307, 468
minus sign (-), 121
MINUTE argument, 126
Modulus (%) operator, 36–38
moneyAmount variable, 66, 68
monitors, 283. See also screens
MONTH argument, 126
mouse events, 530–533
mouseClicked method, 531, 532
MouseDragged method, 530
mouseEntered method, 531
MouseEvent class, 521, 522, 523, 527
mouseExited method, 531
MouseListener event listener, 470, 471
MouseListener interface, 530–531
MouseMotionListener event listener,

470, 471
MouseMotionListener interface,

530–531
MouseMoved method, 530
mousePressed method, 531
mouseReleased method, 531, 532
moveTo method, 364
Multiplication (*) operator,

36–38, 173
multithreading, 611, 613–623.

See also threads
Musical Instrument Digital Interface.

See MIDI (Musical Instrument
Digital Interface) format

MusicalEntertainment class, 428,
430–431, 433, 437–438, 453

MusicalEntertainment2.java, 445
MusicalEntertainment.java, 431,

445, 452
MusicalInstrument class, 396
myAge variable, 31
myAnniversary variable, 123
myNewSalary variable, 70
mySalary variable, 31, 66

N
nameAndAddress method, 58–59, 69
native keyword, 9
natural logarithms, 119

nested
blocks, 98
loops, 196–198, 268
statements, 162–163, 241–242

Netscape Navigator browser. See also
browsers
interpreters and, 2
loading HTML documents into, 282
running applets with, 286–287

new keyword, 9, 210, 236, 434
new operator, 77
newline (\n) character, 44, 433
news services, 297
newspapers, 297
No option, 148–149
NO_OPTION variable, 149
nonprintable characters, 44, 46
NoSuchClass.java, 543
Not equal to (!=) operator, 38–39
NOT operator, 171–172
Notepad, 12, 283, 655–656. See also

text editors
null keyword, 9, 147
NullPointerException, 566
NumberFormatException, 561
numeric type conversion, 42–43
NumInput.java, 219

O
object(s). See also OOP (object-

oriented programming)
advanced concepts for, 97–138
basic description of, 4, 55–95
capacity of, 220
class concepts and, 71–73
creating, 362–367
declaring, 77–79
immutable, 211
instantiation and, 72–73, 76, 78,

85, 426
sorting arrays of, 262–265
states of, 4
using, 55–95

Object class. 210, 439–445, 466, 467

Index 687

object-oriented programming.
See OOP (object-oriented
programming)

Objects class, 519–520
oneLong variable, 37
on/off switches, 2
OOP (object-oriented programming).

See also objects
basic description of, 3–5
class concepts and, 71–73
exception handling and, 544–545,

554–555
as an extension of procedural

programming, 3
implementation hiding and, 65
inheritance and, 388

Open command, 287
Open Page command, 287
operations, basic description of, 3
operator keyword, 9
operator precedence, 38, 172–174
OR operator, 163–168, 173
orange constant, 331
Orthodontist class, 391
OtherEntertainment class, 428,

431–433, 437–438, 453
OtherEntertainment2.java, 445
OtherEntertainment.java, 445, 452
outer keyword, 9
OutputStream class, 583, 585, 587,

589, 603, 601
ovals

drawing, 337, 340–342, 364,
532–333

objects for, creating, 364
ovenTemperature variable, 30
overloadDate method, 105–106

P
package keyword, 9
package statement, 450
packages

basic description of, 118
creating, 449–453
naming conventions for, 451
placing classes in, 451
wildcard symbols and, 122

paint method, 332, 345, 347,
350–351
animation and, 374, 375
basic description of, 326–329
drawing rectangles with, 339–340

paintIcon method, 372
parameters

ambiguity and, 107
copyArea method, 346–347
overloading methods and, 104

parent classes. See also inheritance
basic description of, 390
creating, 391
methods in, overriding, 397
Swing components and, 466

parentheses, 7, 10, 38, 42, 58, 65–66
parseDouble method, 217, 478
parseInt method, 217, 218, 311, 393,

593–594
PATH command, 653–654
PartTimeStudent class, 409
Party class, 72, 567
Party.java, 567
PartyException class, 566
PartyException.java, 567
Pascal, 156
PassArrayElement.java, 248
PassArray.java, 249
Paste command, 63
patterns, fill. See gradient fills
Payroll class, 73
peers, use of the term, 622
Peridontist class, 391
period (.), 8, 59
persistent storage, 581
philosophyString variable, 220
PI constant, 118–119
PickMenu class, 556, 558–560,

562, 563
PickMenu.java, 559
pink constant, 331
pixels

measuring applets with, 282–283
specifying component positions

with, 313–317
PLAIN variable, 147, 148, 149

PlanMenu class, 559–560
PlanMenu.java, 560–562, 564
PlanMenuWithStackTrace.java, 564,

565–566
PlanVegetarianMenu.java, 562
play method, 367, 368, 396
Playing interface, 447–448
plus sign (+), 35, 190, 214
PNG (Portable Network Graphics)

format, 370. See also graphics
Point2D class, 362
polygon(s)

creating, 344–346
drawing, 337, 344–346, 364–367
objects, creating, 364–367

polymorphism
defined, 428
inheritance and, 396, 428

Portable Network Graphics. See PNG
(Portable Network Graphics) format

postfix increment operators, 190–192
pound sign (#), 10
predictRaise method, 65–68
predictRaiseGivenIncrease

method, 68
prefix increment operators, 190–192
Press Me button, 300, 302, 326, 376
PRI_RATE constant, 171
primary key, 80
primitive

data types, 30, 235, 236, 262
elements, sorting, 256–265

print method, 8, 33, 211, 214,
222–223

printDinnerChoice method,
394–395, 398

printEventGuests method, 395, 402
printHeader method, 397,

398–399, 402
println method, 7–8, 10, 13, 57

arguments and, 65
arrays and, 237, 259
blocks and, 98, 101–102
constructors and, 112
creating methods and, 58
declaring objects and, 79

688 Index

DemoDate3.java and, 125
DemoVariables.java and, 34
exception handling and, 548
if structures and, 157, 158, 159, 162
inheritance and, 395
int data type and, 33, 35
keyboard input and, 140, 142
loops and, 192
return types and, 70
strings and, 210, 211, 214

printPrivate method, 412
printPublic method, 412
printStackTrace method, 564,

565, 566
PrintStream class, 583
private

access modifier, 9, 58, 74–75,
407–409

keyword, 9, 58, 74, 407, 408–409
methods, 411–412
variables, 118

procedural programming
defined, 3
events and, 296
object-oriented programming as an

extension of, 3–4
procedures, basic description of, 3
processors

animations and, 634
flickering and, 634
multithreading and, 613–615
speed of, 634

Product class, 446
Program Destruction Alert, 148
programming languages

basic description of, 2–3
high-level, 2

program(s). See also programs (listed
by name)
creating your first, 1–28
event-driven, 26–201
files, described, 576–577
modifying, 17–20
running, 15–17
starting, 7–13
test, creating, 84
types of, 6

use of the term, 2
using data with, 29–54

programs (listed by name)
AccessRandomly.java, 603, 604
AChildClass.java, 406
AnimalArray.java, 436–437
Animal.java, 450
AnimalReference.java, 435
AnimatedFigure2.java, 632, 635
AnimatedFigure3.java, 635–637
AnimatedFigure4.java, 635–637
AnimatedFigure.java, 631–633
AParentClass.java, 406
ASuperClass.java, 400
Birthdate.java, 127
BouncingParty1.java, 640–642
BouncingParty2.java, 640–642
BouncingParty3.java, 642
Chap3EventSite.java, 56
Chap5ChooseManager.java, 140
Chap5Event.java, 140
Chap6EvenInt.java, 184
Chap7SecretPhrase.java, 208
Chap8Event.java, 232
Chap9Greet.java, 279–280
Chap10JGregorianTime.java, 326
Chap12EntertainmentSelector.java,

424
Chap14JPanelApplet.java, 506–507
CheckFile2.java, 579
CheckFile.java, 578–579
CheckTwoFiles.java, 580–581
ChooseManager2.java, 162, 168
ChooseManager3.java, 168, 170–171
ChooseManager4.java, 171, 189–190
ChooseManager.java, 140, 161–162
Cow.java, 450
CreateEventFile.java, 592–594
DemoArray2.java, 236, 237
DemoArray3.java, 237
DemoArray.java, 235, 236
DemoBlock.java, 102–103
DemoButtonGroup.java, 482
DemoClassVar.java, 118–119
DemoConstruct.java, 111, 112
DemoConstructors.java, 400–401
DemoDate2.java, 125
DemoDate3.java, 125

DemoDate.java, 123–124
DemoEntertainment.java, 433–434
DemoIncrement.java, 192
DemoMath.java, 121
DemoOverload.java, 106
DemoSleepThread.java, 621
DemoStringBuffer.java, 223
DemoSuper.java, 407
DemoThreads.java, 619–620, 623
DemoThreadsPriority.java, 623–624
DemoVariables2.java, 34, 35
DemoVariables3.java, 35–38
DemoVariables4.java, 37, 39–40
DemoVariables5.java, 39–40, 41
DemoVariables6.java, 41, 46
DemoVariables7.java, 46
DemoVariables.java, 33–34
DemoWorkingDog.java, 448
DialogInitials.java, 150–151
DinnerEvent.java, 395, 398
DinnerEventWithConstructor.java,

401, 404
DinnerEventWithHeader.java, 398,

401, 409
DinnerEventWithProtectedData.java,

410
Dog2.java, 442
DogCompare2.java, 442–443
DogCompare.java, 441–443
Dog.java, 442, 450
DogString.java, 440
Entertainment2.java, 444
EntertainmentDataBase.java,

438–439, 444, 453
Entertainment.java, 430, 444,

451, 452
EntertainmentNoDuplicates.java,

444, 445
Event2.java, 239, 250
Event3.java, 250
EventArray.java, 239–240
EventArray2.java, 240–241, 244
EventArray3.java, 244
EventArray4.java, 246, 250
EventArray5.java, 251, 252
EventArray6.java, 252, 253
EventArray7.java, 254
EventFile2.java, 599–600

Index 689

EventFile3.java, 600
EventFile.java, 594
EventInt.java, 196–198
Event.java, 161, 239, 393, 397
EventSite2.java, 76
EventSite3.java, 76–77, 82–83
EventSite4.java, 84, 86
EventSite5.java, 86, 109
EventSite6.java, 109–110, 112
EventSite7.java, 112, 118
EventSite8.java, 118
EventSite.java, 76
EventStringBuffer.java, 220–221
EventWithConstructorArg.java, 404
EventWithConstructor.java, 401, 404
EventWithHeader.java, 397, 401, 409
EventWithProtectedData.java, 409
FindState.java, 255–256
FindStudent.java, 268
First2.java, 18
First.java, 7–17, 57–59, 115, 655–658
Greet.java, 283, 286
Hello2.java, 15, 16–17
Hello3.java, 18–19
Hello.java, 13–15
J2DLine.java, 363
JBoxAround2.java, 359–360
JBoxAround.java, 357–359
JButtonFrame.java, 530
JCardLayout.java, 516
JChangeMessage.java, 475
JDemoBorderNoNorth.java,

510–511
JDemoBox.java, 489
JDemoButtonGroup.java, 484
JDemoCheckBox.java, 480–482
JDemoColor.java, 333–334
JDemoCreateGraphicsObject2.java,

341
JDemoCreateGraphicsObject3.java,

342
JDemoCreateGraphicsObject.java,

336
JDemoFlowRight.java, 511–513
JDemoFontMetrics.java, 353–355
JDemoFrame.java, 468–469
JDemoGraphics.java, 330, 331–332
JDemoGraphics2.java, 332

JDemoGrid.java, 513
JDemoList.java, 486–489
JDemoPaint.java, 327–328
JDemoRectangles2.java, 340
JDemoRectangles.java, 339–340
JDemoToolBar.java, 493–494
JEventImage.java, 373
JEventSound.java, 368–370
JFontList.java, 350–351, 354
JGreet2.java, 291–292, 295–296
JGreet3.java, 296, 299–300
JGreet4.java, 300, 301
JGreet5.java, 301
JGreet6.java, 301–302
JGreet7.java, 302
JGreet.java, 289–292
JGregorianTime.java, 326, 374–377
JKeyFrame.java, 526
JLifeCycle.java, 304, 306–309
JMouseFrame.java, 533
JMoveLabel2.java, 316
JMoveLabel.java, 315, 316
JPartyPlanner.java, 309–313
JShapes2D.java, 365–366
JStar.java, 345–346
JThreeStars.java, 347–348
JWesternPanel.java, 519
LoadImage.java, 638
MathMistake2.java, 547, 548
MathMistake3.java, 548
MathMistake4.java, 548–549
MathMistake.java, 547, 552
Menu.java, 557–558
MusicalEntertainment2.java, 445
MusicalEntertainment.java, 431,

445, 452
NoSuchClass.java, 543
NumInput.java, 219
OtherEntertainment2.java, 445
OtherEntertainment.java, 445, 452
Party.java, 567
PartyException.java, 567
PassArrayElement.java, 248
PassArray.java, 249
PickMenu.java, 559
PlanMenu.java, 560–562, 564
PlanMenuWithStackTrace.java,

564, 565–566

PlanVegetarianMenu.java, 562
ReadEventFile.java, 598, 599
ReadFileWriteScreen.java, 589
ReadKBWriteFile.java, 588, 603
ReadKBWriteScreen.java,

586–587, 589
ReadNamedFile.java, 599–600
SecretPhrase.java, 216–217
SetUpSite2.java, 63, 70–71
SetUpSite3.java, 71, 78
SetUpSite4.java, 78
SetUpSite5.java, 79
SetUpSite.java, 56, 60–63
ShowThread2.java, 623
ShowThread.java, 618, 619, 623
SleepThread.java, 621
SortCharArray2.java, 262
SortCharArray.java, 259–262
SortObjects.java, 262
SortSalon.java, 277
SortStrings.java, 264–265
TestCharacter.java, 209–210
TestConstructor.java, 86–87
TestEmployee2.java, 100
TestExpandedClass.java, 84–85
TestStatement2.java, 63–64
TestStatement.java, 62, 63
ThrowParty.java, 568
TicketNumber.java, 54
TimerApplet.java, 626–627
TwoMistakes.java, 550–551
UseChap11WeekendEvent.java, 386
UseDinnerEvent.java, 395–396
UseEventsWithConstructorArg.java,

405
UseEventsWithConstructors.java,

402
UseEventWithHeader.java, 399
UseProtected.java, 411
UsersInitials2.java, 145
UsersInitials.java, 142–145
UseSimpleEvent.java, 393–395
VegetarianMenu.java, 562

protected keyword, 9, 58, 409, 410
pseudocode, 151–152, 554
public classes

access modifier for, 9, 10–11, 58,
63–64, 73–75, 407–409

690 Index

basic description of, 73–75
extension of, 73

public keyword, 9, 10–11, 58, 63–64,
73–75, 407–409

public variables, 118

Q
question mark (?), 171
QUESTION variable, 147, 148, 149

R
RAM (random-access memory). See

memory
random method, 120
RandomAccessFile object, 601
range matches, searching arrays for,

241–247
ratePerGuest array, 311–312
read method, 140, 142, 144–146,

584–586, 595, 597, 601, 603
readByte method, 595
readChar method, 595
readDouble method, 595
ReadEventFile class, 596
ReadEventFile.java, 598, 599
ReadFileWriteScreen.java, 589
readFloat method, 595
readInt method, 595
ReadKBWriteFile.java, 588, 603
ReadKBWriteScreen.java,

586–587, 589
ReadNamedFile class, 600
ReadNamedFile.java, 599–600
readUTF method, 595
real-time applications, 601
records, defined, 582
rectangle(s)

drawing, 337, 338–340, 344,
356–357, 363–364

objects, creating, 363–364
three-dimensional, 344

red constant, 331
reference data types, 30
regularPay variable, 159–160
Relational operator, 173
remainder (%) operator, 36–38

remove method, 302
rendering attributes, specifying,

360–361
repaint method, 302, 326–328,

375, 376
replace method, 213
requestFocus method, 293, 294
reserved keywords

class names and, 9
list of, 9
this references and, 113
variable names and, 30–31

resolution, 350–351, 440
rest keyword, 9
Restore button, 468
return keyword, 9
return statements, 69–70
return types, for methods, 57, 69–71
reusability, of code

classes and, 72, 389, 450
inheritance and, 389, 450
packages and, 450

rint method, 120
round method, 120
run time

basic description of, 140
errors, 19
exceptions, 567
keyboard input and, 140

Runnable interface, 624–627
RuntimeExceptions, 567

S
SalariedEmployee class, 73, 425
scalar variables, 236
scope, of variables, 98–103
screen. See also coordinate space

flickering, reducing, 633–637
measurement of, in pixels, 283
resolution, 350–351, 440
size/viewing area, 283, 349,

350, 440
scroll panes, 489–492, 494–495
ScrollPaneConstants class, 490
SDK (Software Development Kit).

See Java SDK (Software
Development Kit)

SECOND argument, 126
secondState object, 255
SecretPhrase.java, 216–217
seek method, 601–602
semicolon (;), 7, 31, 122, 155,

162–163, 236
sentinel values, defined, 189
setBackground method, 334
setBounds method, 469, 520
setCharAt method, 222, 223
setChoice method, 558
setColor method, 331–335, 337,

360, 375
setContentPane method, 473,

474, 478
setDate method, 72
setDay method, 123
setDefaultCloseOperation method,

469, 470
setDinnerChoice method, 394,

395, 410
setEditable method, 293, 485, 488
setEmpNum method, 76, 109, 391
setEmpSal method, 391
setEnabled method, 313–317
setEntertainerName method, 429
setEntertainmentFee class, 431
setEntertainmentFee method, 430,

431, 432
setEventGuests method, 395,

409–410
setEventMinRate method, 250, 251
setFont method, 291, 331–335
setGuestChoice method, 558, 559,

561, 565
setIdNum method, 408
setLabel method, 294, 476
setLayout method, 474
setLength method, 220
setLocation method, 313–317,

329, 520
setManagerName method, 83
setMaximumRowCount method, 485
setMonth method, 123
setResizable method, 469
setSelectedIndex method, 485

Index 691

setSelectedItem method, 485
setSiteNumber method, 76, 78, 79
setSize method, 469, 474, 479, 487,

493, 520, 526, 529, 533
setState method, 476
setStroke method, 361
SetTerritoryNum method, 391
setText method, 285, 293, 475,

478, 525
setTime method, 72
setTitle method, 469
setTypeOfAct method, 431, 432
setTypeOfMusic method, 430
SetUpSite class, 60
SetUpSite2 class, 63, 64, 70
SetUpSite2.java, 63, 70–71
SetUpSite3 class, 70
SetUpSite3.java, 71, 78
SetUpSite4 class, 78
SetUpSite4.java, 78
SetUpSite5 class, 78–79
SetUpSite5.java, 79
SetUpSite.java, 56, 60–63
setUsageFee method, 83
setVisible method, 469
setYear method, 123
shapes

arcs, 337, 339–340, 342–344
creating objects for, 362–367
lines, 337–338, 341–342, 362–364
ovals, 337, 340–342, 364, 532–333
polygons, 337, 344–346, 364–367
rectangles, 337, 338–340, 344,

356–357, 363–364
shell output program, 12
Short class, 118
short data type

classification of, as a variation of
the int data type, 32

numeric type conversion and,
42–43

variables and, 30
short keyword, 9
showConfirmDialog method,

148–149

showInputDialog method,
146–147, 478

showMessageDialog method, 147–148
ShowThread2.java, 623
ShowThread.java, 618, 619, 623
shuffle method, 449
signatures, of methods, 556
simpleInterest method, 103–104,

107–108
simpleInterestRateUsingDouble

method, 105
sin method, 120
single quote (’), 7, 43, 44, 155
single-alternative if, 156
siteNumber field, 110
sleep method, 194, 615, 620–622,

626, 627, 640
SleepThread class, 620–621
SleepThread.java, 621
Snake class, 427–428
socialSecurityNumber field, 396
Software Development Kit. See Java

SDK (Software Development Kit)
Solaris, 20
someClass method, 434
someNumbers array, 266
someString variable, 219
SortCharArray class, 260
SortCharArray2 class, 261
SortCharArray2.java, 262
SortCharArray.java, 259–262
sorting

array elements, 256–265
basic description of, 256
with bubble sorts, 257, 259–263
strings, 46, 264–265

SortObjects.java, 262
SortSalon.java, 277
sortStrings method, 264–265
SortStrings.java, 264–265
sound

animation and, 374–375
clips, 367–368, 374–375
file formats, 367

source code. See code; code reuse

speak method, 426–427, 434–437
sqrt method, 120
square brackets ([]), 11, 233
square method, 65
square1 method, 65
square2 method, 65
star shapes, drawing, 345–346, 347
start method, 285, 303–305,

307–308, 310–312, 397, 615, 616
animation and, 376
audio clips and, 369
paint method and, 326

startTime variable, 125
starvation, use of the term, 622
statementOfPhilosophy method, 60,

61, 62–63, 70
static

access modifier, 9, 11, 58,
74–76, 413

constants, 118–119
ID number fields, 114–115
keyword, 9, 11, 58, 74–76, 413
methods, 118–119, 411–412
variables, 118

stop method, 285, 303–304, 306–308
animation and, 376
audio clips and, 369
paint method and, 326

storage
permanent, 581
persistent, 581

streams, 581–587, 590
string(s)

arrays of, creating, 253–256
ASCII codes and, 46
char data type and, 43–44
concatenation of, 214, 215
converting, to numbers, 217–219
data structure, 43
defined, 207–208
drawing, 328–330
immutable, 211
methods, 213–217
objects, declaring, 210–211
previewing programs that use, 232
printing, 8
sorting, 46, 264–265

692 Index

values, comparing, 211–212
variables, 210–211

String class, 11, 210, 211, 213–217,
440, 446

StringBuffer class, 219–223
stringWidth method, 356
strokes, drawing

basic description of, 359–363
creating lines with, 362–363
defined, 361

student seating chart, 267–268
style argument, 291
subclass(es)

constructors, 399–402
creating, 396, 446
defined, 390
information hiding and, 408–409
methods and, 396–397, 406–407,

411–412
objects, arrays of, 436–439
superclasses and, relationship of, 425

subscripts
defined, 233
searching for range matches and,

246–247
using, with arrays, 236–237
while loops and, 243

substring method, 214–215
Subtraction (-) operator, 36–38, 173
Sun Microsystems

development of Java by, 5
Web site, 19–20, 520, 542

Super class, 411–412
super keyword, 9, 403, 404, 406
super method, 405, 447, 488
superclass(es)

constructors, 399–405
creating, 409–410, 446
defined, 390
information hiding and, 408–409
methods, 396–399, 406–407
subclasses and, relationship of, 425
Swing components and, 466

SVGA monitors, 283. See also screens
Swing applets, 284–285, 292–296.

See also applets; Swing components
adding functionality to, 299–300

adding multiple components to,
295–296

adding output to, 301–302
animation for, 367, 373–377
color for, 331–334
event handling and, 520–526
fonts for, 331–334
graphics and, 328–337, 367–377
inheritance and, 390
life cycle of, 303–309
preparing, to accept event messages,

297–301
sophisticated, 309–313
sound for, 367–377
viewing area, exceeding, 336–337
windows for, drawing strings in,

328–330
writing, 288–292

Swing components. See also
components; Swing applets
adding multiple, 295–296
basic description of, 146, 463–504
event listeners for, 470–472
JFrame class and, 465–470

switch keyword, 9, 169
switch statement, 168–171
switches, on/off, in machine language, 2
symbolic constants

arrays and, 244
attempts to change the value

of, 116
basic description of, 115

symbols. See also characters
& (ampersand), 163
* (asterisk), 14, 122
@ (at sign), 439
\ (backslash), 14, 44, 282, 577
: (colon), 171
, (comma), 31, 32
{} (curly braces), 10–12, 57, 58,

74, 99
$ (dollar sign), 8–9
“ (double quotes), 43, 44
= (equal sign), 31, 155
! (exclamation point), 148, 172
/ (forward slash), 14
> (greater-than sign), 258
< (less-than sign), 258

- (minus sign), 121
() (parentheses), 7, 10, 38, 42, 58,

65–66
. (period), 8, 59
+ (plus sign), 35, 190, 214
(pound sign), 10
? (question mark), 171
; (semicolon), 7, 31, 122, 155,

162–163, 236
‘ (single quote), 7, 43, 44, 155
[] (square brackets), 11, 233
_ (underscore), 8–9, 115
| (vertical bar), 164

synchronized keyword, 9
syntax, defined, 2
syntax errors. See also errors

arguments and, 68
basic description of, 16, 19
troubleshooting, 60–61

sysedit, 653
System class, 8, 73, 118, 140, 149
System.err object, 592
System.in.read method, 198
System.out.println statement, 7–8,

18, 19, 301
arrays and, 240, 254
blocks and, 101–102
Boolean variables and, 39
char data type and, 43
constants and, 30
creating methods and, 59
declaring objects and, 79
exception handling and, 547,

548–549
if...else structures and, 158
inheritance and, 391, 395, 396, 397,

398, 400
int data type and, 33, 35
JOptionPane class and, 146
keyboard input and, 140–141,

142, 143
loops and, 189, 196, 197
Math class calculations and, 121
strings and, 216

T
tabs, 10, 44
takeXRays method, 391

Index 693

tan method, 120
taskbar, 468
temp variable, 262
tempValue object, 218
TestAnim2.html, 633
TestAnim2.html, 636
TestAnim3.html, 636, 637
TestAnim4.html, 636, 637
TestAnim.html, 631, 633
TestChap9Greet.html, 280
TestChap10JGregorianTime.html, 326
TestChap14JPanelApplet.html, 506
TestCharacter.java, 209–210
TestConstructor class, 86
TestConstructor.java, 86–87
TestDemoGraphics2.html, 336
TestEmployee2.java, 100
TestExpandedClass class, 84–85
TestExpandedClass.java, 84–85
TestGreet.html, 283, 287, 288
TestImage.html, 639
TestJ2DLine.html, 363
TestJBorder.html, 510, 513
TestJBoxAround.html, 357
TestJCardLayout.hmtl, 516
TestJDemoColor.html, 334
TestJDemoCreateGraphicsObject2.

html, 337, 342
TestJDemoCreateGraphicsObject3.

html, 342
TestJDemoCreateGraphicsObject.

html, 336
TestJDemoFlowRight.html, 511
TestJDemoGraphics2.html, 334
TestJDemoGraphics.html, 330
TestJDemoPaint.html, 328
TestJEventSound.html, 369
TestJFontList.html, 351–352
TestJFontMetrics.html, 355
TestJGreet2.html, 291
TestJGreet3.html, 296
TestJGreet4.html, 300
TestJGreet5.html, 301, 302
TestJGreet6.html, 302
TestJGreet7.html, 302

TestJGreet.html, 290, 291
TestJGregorianTime.html, 376
TestJGrid.html, 513, 516
TestJLifeCycle.html, 307
TestJMoveLabel2.html, 316
TestJMoveLabel.html, 315
TestJPartyPlan.html, 312
TestJShapes2D.html, 366
TestJThreeStarts.html, 347
TestJWesternPanel.html, 519
TestParties.html, 643
TestParty.html, 642
TestStatement2.java, 63–64
TestStatement.java, 62, 63
TestTimer.html, 626
text editors

creating classes with, 74–75
demonstrating block scope with,

101–102
entering source code with, 12
file extensions and, 13
generating source code with, 5
Notepad, 12, 283, 655–656
previewing programs with, 46
saving and editing code with,

655–659
TextPad, 12, 657–658
writing exceptions with, 566–567

TextEvent class, 297, 521, 522, 523
TextPad, 12, 657–658
this keyword, 9, 407, 525
this references, 113–114
thread(s)

defined, 613
life cycle of, 614–615
multithreading and, 611–623
priority settings for, 622–623
runnable, 614

Thread class, 194, 615–619, 624
throw keyword, 9
Throwable class, 542, 566
ThrowParty.java, 568
throws clause, 555–556
throws keyword, 9
TicketNumber.java, 54
TimerApplet.java, 626–627

title bar, of dialog boxes, 147, 148, 149
toLowerCase method, 208, 213
toolbars

creating, 491–496
dockable, 491–496

Toolkit class, 349–351
toString method, 213, 214, 350, 351,

375, 431–432, 439–440, 566
toUpperCase method, 208, 213
transient keyword, 9
Tree class, 389–390
true-or-false comparisons, 38–40.

See also Boolean data type
try blocks, 545–548, 552–554, 560
try keyword, 9
TwoMistakes class, 550
TwoMistakes.java, 550–551
.txt file extension, 13
type casting, 42–43
typeface argument, 291

U
unary operators, 190–192
UnderGradStudent class, 9
underscore (_), 8–9, 115
Unicode

arrays and, 235, 259
ASCII and, relationship of, 46
characters, sorting, 259
constructors and, 85
defined, 9, 44
file I/O and, 581, 585
keyboard input and, 142
strings and, 219–220
Transformation Format (UTF), 590

Uniform Resource Locators. See
URLs (Uniform Resource Locators)

unifying types, 42
unique identifiers, 80
United Press International, 297
UNIX, 122
update method, 329
URLs (Uniform Resource Locators)

absolute, 368
animation and, 638, 644
audio clips and, 367, 368

694 Index

UseChap11WeekendEvent.java, 386
UseDinnerEvent.java, 395–396
UseEventsWithConstructorArg.java,

405
UseEventsWithConstructors.java, 402
UseEventWithHeader.java, 399
UseProtected.java, 411
userInput variable, 141, 142
userResponse variable, 155, 156
UsersInitials class, 142, 154
UsersInitials2 class, 145
UsersInitials2.java, 145
UsersInitials.java, 142–145
UseSimpleEvent.java, 393–395
U.S. Naval Observatory Web site, 124
UTF (Unicode Transformation

Format), 590

V
-val expression, 121
valA variable, 256
valB variable, 256
validValues array, 242–243
valueOf method, 218
var keyword, 9
variable(s). See also variables (listed

by name)
ambiguity and, 107
arrays and, 232–233, 235–236,

247–251, 255, 261–262
basic description of, 3, 30
blocks and, 98
char data type and, 43–44
constants and, 115–118
declarations, 30–31, 33–35, 37,

99, 211
decrementing, 187
incrementing, 187
initialization of, 31
local, 66
names, 30–31, 39
overriding, 100, 101
private, 74
scalar, 236
scope of, 98–103
type casting and, 42–43

unnecessary, avoiding, 98
using, 30–31

variables (listed by name). See also
variables
aBackspaceChar variable, 44
aTabChar variable, 44
CANCEL_OPTION variable, 149
codeIsValid variable, 245
DISPOSE_ON_CLOSE

variable, 470
ERROR_MESSAGE variable, 147,

148, 149
eventType variable, 161
EXIT_ON_CLOSE variable, 469,

470, 473, 478, 487, 525, 529
HIDE_ON_CLOSE variable, 470
hours variable, 39
hoursWorked variable, 159–160
INFORMATION variable, 147,

148, 149
itemPrice variable, 243
itemsSold variable, 163
lastInit variable, 144
loopCount variable, 187
middleInit variable, 144
moneyAmount variable, 66, 68
myAge variable, 31
myAnniversary variable, 123
myNewSalary variable, 70
mySalary variable, 31, 66
NO_OPTION variable, 149
oneLong variable, 37
ovenTemperature variable, 30
philosophyString variable, 220
PLAIN variable, 147, 148, 149
QUESTION variable, 147, 148, 149
regularPay variable, 159–160
someString variable, 219
startTime variable, 125
temp variable, 262
userInput variable, 141, 142
userResponse variable, 155, 156
valA variable, 256
valB variable, 256
vPlusPlus variable, 191
WARNING variable, 147, 148, 149
YES_OPTION variable, 149

yourAge variable, 31
yourSalary variable, 31

VegetarianMenu class, 562
VegetarianMenu.java, 562
vertical bar (|), 164
VERTICAL constant, 491
VERTICAL_SCROLLBAR_ALWAYS

constant, 490
VERTICAL_SCROLLBAR_AS_

NEEDED constant, 490
VERTICAL_SCROLLBAR_NEVER

constant, 490
View Event button, 576, 599
virtual classes, defined, 425
Visual Basic (Microsoft)

arrays and, 233
syntax and, 2

void methods, 66, 100–101
void keyword, 9, 11, 522–523
volatile keyword, 9
vPlusPlus variable, 191

W
WARNING variable, 147, 148, 149
WAV (Windows Wave) file

format, 367
Web browser(s), 282–283, 285–287

defined, 282
destroy method and, 303, 304
fonts and, 291–292
interpreters and, 2
Internet Explorer, 2, 282, 286–287
loading HTML documents into, 282
Netscape Navigator, 2, 282, 286–287
pages, adding animation to, 640–644
running applets with, 286–287
screen viewing area consumed

by, 283
Web servers, 367
WeekendEvent class, 386
while keyword, 9
while loops, 9, 243–244. See also loops

defined, 185
inheritance and, 392, 410
nested, 196–198

Index 695

SecretPhrase.java and, 217
using, 185–190

white constant, 331
whitespace

basic description of, 10
comparison operators and, 39
optional use of, 10

WIDTH attribute, 282, 283, 367
wildcard characters, 122, 453
Window class, 466
windowed applications, basic

description of, 6
WindowEvent class, 522, 524, 527
WindowListener event listener,

470, 471
Windows 95 (Microsoft), 653–654,

655, 656
Windows 98 (Microsoft), 653–654,

655, 656
Windows 2000 (Microsoft), 654,

655, 656

Windows NT (Microsoft), 654
Windows XP (Microsoft), 654,

655, 656
word-processing programs, 297
work method, 447
Working interface, 447–448
WorkingDog class, 447–448
workstations, writing to files on,

dangers of, 588
write method, 601
writeBoolean method, 590
writeChar method, 590
writeDouble method, 590
writeFloat method, 590

X
x-axis. See coordinate space
XHMTL (eXtensible HTML), 282
XML (eXtensible Markup

Language), 282

Y
y-axis. See coordinate space
YEAR argument, 126
yellow constant, 331
Yes option, 148–149
YES_OPTION variable, 149
yourAge variable, 31
yourSalary variable, 31

Z
zero element, 234

NCC Education Limited is one of the world’s leading
IT qualification-awarding bodies, with numerous
academic and professional education and training
courses being taught throughout the world. Our mission
is to ensure the widespread availability of quality
education and training for developers and users of IT.

Internet
http: //www.nccedu.com

Java is a popular programming language among professional programmers because it
can be used to build visually interesting GUI and Web-based applications. This book,
Java Programming, provides the student with a guide to developing applications and
applets using Java.

The textbook assumes little or no programming experience. It is written in a non-
technical style and emphasises good programming practice. It also provides a solid
background in good object-oriented programming techniques and introduces the
student to object-oriented terminology using clear, familiar language.

Particular features of the book include:

Each chapter begins with a list of objectives so that the student knows the topics
that will be covered

Tips are included that provide additional information, such as an alternative
method of performing a procedure or a common error to avoid

Each chapter includes a summary that recaps the programming concepts and
techniques that have been covered

Review questions are included in an end-of-chapter assessment in order to
reinforce the main ideas introduced in each chapter

Each chapter concludes with a programming exercise that provides additional
practice of the skills and concepts learned in that chapter

The author, Joyce Farrell, is Assistant Professor of Computer Information Systems at
Harper College in Palatine, Illinois, USA. She is the author of three other programming
texts.

Java Programming

9 780954 307110

ISBN 0-9543071-1-9

	IDCS Elective Workbook
	Java Programming
	Contents
	Detailed Contents
	Preface
	Read This Before You Begin
	Chapter 1
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 2
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 3
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 4
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 5
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 6
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 7
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 8
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 9
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 10
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 11
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 12
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 13
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 14
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 15
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 16
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Chapter 17
	Chapter Summary
	Review Questions
	Exercises
	Case Project

	Appendix A
	Index

